当前位置: 仪器信息网 > 行业主题 > >

电池流检测仪

仪器信息网电池流检测仪专题为您提供2024年最新电池流检测仪价格报价、厂家品牌的相关信息, 包括电池流检测仪参数、型号等,不管是国产,还是进口品牌的电池流检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池流检测仪相关的耗材配件、试剂标物,还有电池流检测仪相关的最新资讯、资料,以及电池流检测仪相关的解决方案。

电池流检测仪相关的资讯

  • 锂离子电池用X射线异物检测仪问世
    精工电子纳米科技有限公司成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日展出。  锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。  金属异物的掺入途径是通过活性物质[1]、分离器[2]等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。  最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。  把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。  X射线异物检测仪的主要特征:  1、可在数分钟内检测出A4大小样品中20μm左右的金属异物  例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。  2、元素识别速度大幅提升  对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。  3、一体化的操作,提高作业效率  X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。  [1]活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。  [2]分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来。
  • 锂离子电池用X射线异物检测仪问世
    世界首台*1 使微小金属异物的快速检测及元素分析自动化  精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。SIINT成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日的日本国内最大的分析仪器展「分析展/科学仪器展2011」(幕张Messe)展出。X射线异物检查仪(样机)  锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。  金属异物的掺入途径是通过活性物质*2・ 分离器*3等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。  最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。  把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。  【X射线异物检测仪的主要特征】  1.可在数分钟内检测出A4大小样品中20μm左右的金属异物  例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。  2.元素识别速度大幅提升  对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。  3.一体化的操作,提高作业效率  X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。  *1 敝司调查  *2 活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。  *3 分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来  本产品的咨询方式  中国:  精工盈司电子科技(上海)有限公司  TEL:021-50273533  FAX:021-50273733  MAIL:sales@siint.com.cn  日本:  【媒体宣传】  精工电子有限公司  综合企划本部 秘书广告部  【客户】  精工电子纳米科技有限公司  分析营业部 营业二科  TEL: 03-6280-0077(直线)  MAIL:info@siint.co.jp
  • 中国锂离子电池检测仪器设备市场解析|2018年
    p  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量有望达到155.82GWH,市场规模将到达2313.26亿元。中国是锂电池重要的生产国之一,2017年中国锂电池产量突破100亿只,增速达27.81%,2018年预计全国锂电池产量达到121亿只,增速22.86%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/06d25d4d-9770-4f94-90cf-561334abdcf6.jpg" title="01.jpg.png" alt="01.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1锂电产业链到测试仪器设备对应关系图/span/pp  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS检测系统、模组EOL检测系统、电池组EOL检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或X射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。图1展示了从锂电产业链到测试方法的对应关系。/pp  随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。图1展示了从锂电产业链到测试方法的对应关系,图2则展示了不同空间分辨率对应的部分的表征方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/12d49b40-626a-4708-986a-8546871af96b.jpg" title="02.jpg.png" alt="02.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图2 锂离子电池实验技术的空间分辨分布图/span/pp  从市面锂电检测相关市场调研报告或资料统计来看,多数主要针对生产制造环节的锂电检测系统,却鲜有涉及研发必需的各类分析仪器。然而,纵观目前国内锂电企业,低端产能过剩,高端产能不足是行业现状,锂电产品质量走向高端是必然发展趋势。走向高端则必须保持高研发投入,来保证不断材料改进和技术革新。基于此,仪器信息网(a style="color: rgb(0, 176, 240) text-decoration: underline " target="_self" href="https://www.instrument.com.cn/"span style="color: rgb(0, 176, 240) "https://www.instrument.com.cn//span/a)特组织了“中国锂离子电池检测仪器设备市场调研”活动,以期从市场应用角度,对锂电检测设备及仪器做更全面的梳理归纳,对近年来锂离子电池检测行业整体产业链发展现状、市场发展行情、锂电检测涉及到的仪器设备品类,各仪器设备品牌在市场中的占有率以及各自市场拓展情况等信息进行调研分析,为各锂电检测仪器设备商在以后的仪器销售和推广活动中提供决策参考。此次调研,面对的调研对象包括仪器信息网注册用户、锂电科研开发用户、锂电生产企业、锂电第三方检测机构、锂电检测领域专家以及部分锂电检测相关仪器设备主流生产厂商等。/pp  a style="color: rgb(0, 176, 240) text-decoration: underline " target="_blank" href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=151"strongspan style="color: rgb(0, 176, 240) "《中国锂离子电池检测仪器设备市场研究报告(2018版)》/span/strong/a内容包含了锂电行业行业监管体制及相关产业法规政策、标准,锂电及锂电检测发展现状,锂电检测用户调研分析,锂电检测设备商市场分析,锂电检测涉及各种分析检测仪器设备品牌分布分析等。/pp  a style="text-decoration: underline " target="_blank" href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=151"span style="text-decoration: underline color: rgb(0, 176, 240) "strong《中国锂离子电池检测仪器设备市场研究报告(2018版)》/strong/span/a得到了广大调研用户、相关企业以及业内专家的大力支持。近200余位来自锂电生产、研发、第三方检测机构、高校院所等领域的锂电检测用户参与在线调研。结合仪器信息网大数据平台,还对锂电仪器设备商近三年在仪器信息网发布的300篇锂电相关解决方案数据进行了统计分析。同时,报告详细统计分析2017年国内锂电检测相关文献,考察具有研究生教育能力的高校和研究院所,初步对近18年来锂电相关博士学位论文和优秀硕士学位论文6713篇数据统计。在此,谨对报告所有参与者表示最衷心的感谢strong!/strong/ptable align="center"tbodytr class="firstRow"td colspan="2" style="border: 1px solid windowtext padding: 0px 7px " width="568" valign="top"p style="text-align:center"strongspan style="font-size:19px font-family:' 微软雅黑' ,' sans-serif' color:red"关于《中国锂离子电池检测仪器设备市场研究报告(2018版)》/span/strong/p/td/trtrtd style="border-right: 1px solid windowtext border-width: medium 1px 1px border-style: none solid solid border-color: -moz-use-text-color windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="149"p style="text-align:center"strongspan style="font-family:' 微软雅黑' ,' sans-serif' color:red"报告适合对象/span/strong/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color padding: 0px 7px word-break: break-all " width="419" valign="top"p class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"△span style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "重点业务板块包含锂电检测的仪器设备企业/检测机构;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"span style="font-family:Wingdings"△span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "锂电领域呈增长趋势的仪器设备企业/检测机构;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"span style="font-family:Wingdings"△span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "将锂电作为重点拓展领域的仪器设备企业/检测机构;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"/spanspan style="font-family:Wingdings"△ span style="font:9px ' Times New Roman' "/span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "仪器设备产品为锂电检测重要或高占比品类的仪器设备企业;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"/spanspan style="font-family:Wingdings"△ span style="font:9px ' Times New Roman' "/span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "仪器设备品类齐全,涵盖了锂电检测诸多检测仪器品类的大综仪器设备企业;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"/spanspan style="font-family:Wingdings"△ /spanspan style="font-family:Wingdings"/spanspan style="font-family:Wingdings"....../spanspan style="font-family:' 微软雅黑' ,' sans-serif' "/span/p/td/trtrtd style="border-right: 1px solid windowtext border-width: medium 1px 1px border-style: none solid solid border-color: -moz-use-text-color windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="149"p style="text-align:center"strongspan style="font-family:' 微软雅黑' ,' sans-serif' color:red"获取报告可能带来哪些收益?/span/strong/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color padding: 0px 7px word-break: break-all " width="419" valign="top"p class="MsoListParagraph" style="margin-left:28px"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电检测市场至上而下系统性整体把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "锂电不同产业链阶段对检测仪器设备需求把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电封装后端锂电检测系统市场格局把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电封装前端检测仪器市场格局把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' "/span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' " 对锂电开发、科研检测仪器设备品类、各品类主流品牌、各品牌等市场格局把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电开发、科研检测仪器设备用户分布把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "锂电检测领域业务投资、拓展规划等导向参考;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "......./span/p/td/tr/tbody/tablep  strong报告链接/strong:a style="text-decoration: underline color: rgb(255, 0, 0) " target="_blank" href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=151"span style="color: rgb(255, 0, 0) "strong《中国锂离子电池检测仪器设备市场研究报告(2018版)》/strong/span/a/pp  span style="color: rgb(0, 176, 240) "strong欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部/strong/span/ppbr//ppspan style="color: rgb(255, 0, 0) "strong 报告节选:/strong/span/pp  strong一 锂电池行业监管体制及相关产业法规政策/strong/pp  ....../pp  2.1 相关法律、法规与政策(2007-2018)/pp  ....../pp  2.2 相关标准/pp  ....../pp  表 电池相关标准发布情况/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/da42376b-e785-4643-bcda-5bfa22228928.jpg" title="1.jpg" alt="1.jpg"//pp  表 电池检测相关标准发布情况/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/2ee83f81-7764-4535-8e2f-88fb8b4ecbb5.jpg" title="1.jpg" alt="1.jpg"//pp  ....../pp  strong二 锂电及锂电检测发展背景/strong/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/5f286267-b748-4f32-a0f8-f0d797ad87d2.jpg" title="03.jpg.png" alt="03.jpg.png" width="450" height="269"//pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/6c628d9f-6ae2-43e8-8d77-cd78c08d1497.jpg" title="04.jpg.png" alt="04.jpg.png" width="450" height="308"//pp  ....../pp strong三 锂电检测仪器设备市场调研分析/strong/pp ....../pp  strong四 锂电研发用检测仪器设备市场分析/strong/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/8ea20ccf-f148-40e4-86cd-7ef3fdba0766.jpg" title="05.jpg.png" alt="05.jpg.png" width="450" height="281"//pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/77d4360c-765d-47cf-b644-b44644c1803f.jpg" title="06.jpg.png" alt="06.jpg.png" width="450" height="296"//pp  ....../pp  3 2017年锂电研发用电镜市场分布情况/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/e06873f6-50ed-4630-bfa1-fc0b9a8f7c56.jpg" title="07.jpg.png" alt="07.jpg.png" width="450" height="271"//pp  ....../pp style="text-align: center "  span style="color: rgb(0, 176, 240) "表 锂电研发用电镜不同品牌用户在各地区分布数据表/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/992b6593-5342-4b53-a3a1-7576e9cc118f.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "表 锂电研发用电镜各地区品牌渗透数据表/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/4600a0aa-d5e7-4bb7-b821-27cf760d4d17.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/ca4cc6a1-a049-43df-8b15-078dd12e4357.jpg" title="08.png" alt="08.png" width="450" height="281"//pp  ....../pp 4 2017年锂电研发用电化学工作站市场分布情况/pp ....../pp  strong五 小结/strong/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/c0d39595-d1e6-4330-9b2e-037a61e4044c.jpg" title="09.png" alt="09.png" width="600" height="380"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "仪器厂商发布锂电解决方案数量与用户关注度柱状图/span/pp  ....../pp  span style="color: rgb(255, 0, 0) "strong正文目录/strong/span/pp  一 锂电池行业监管体制及相关产业法规政策...... 6/pp  1 锂电池行业监管体制....... 6/pp  2 锂电行业相关法律、法规与政策、标准....... 7/pp  二 锂电及锂电检测发展背景....... 15/pp  1 锂电产业链概况....... 15/pp  2 锂电检测行业概况及对仪器设备的需求....... 15/pp  三 锂电检测仪器设备市场调研分析....... 18/pp  1调研用户样本情况分析....... 18/pp  2 锂电封装后之电池检测系统市场概况....... 20/pp  3 锂电封装后之电池检测系统用户调研分析....... 23/pp  4 锂电封装前之检测仪器市场用户调研....... 25/pp  四 锂电研发用检测仪器设备市场分析....... 27/pp  1近18年发表锂电相关学位论文发布情况及主要发布单位....... 28/pp  2 2017年锂电研发用检测仪器品类分布分析....... 31/pp  3 2017年锂电研发用电镜市场分布情况....... 32/pp  4 2017年锂电研发用电化学工作站市场分布情况....... 36/pp  5 2017年锂电研发用电池性能检测系统市场分布情况....... 38/pp  6 2017年锂电研发用X射线衍射仪(XRD)市场分布情况....... 40/pp  7 2017年锂电研发用热分析仪市场分布情况....... 43/pp  8 2017年锂电研发用X射线光电子能谱仪(XPS)市场分布情况....... 45/pp  9 2017年锂电研发用红外光谱仪市场分布情况....... 46/pp  10 2017年锂电研发用比表面测试仪市场分布情况....... 48/pp  11 2017年锂电研发用拉曼光谱仪市场分布情况....... 49/pp  12 2017年锂电研发用电感耦合等离子体发射光谱仪(ICP)市场分布情况....... 51/pp  五 小结....... 51/pp  1锂电检测研发端:仪器种类繁多,仪器商众,进口品牌独占鳌头....... 52/pp  2锂电检测封装后锂电检测系统端:行业整合加速,品牌意识将加强....... 53/pp  3仪器信息网大数据之锂电检测仪器设备商:锂电产业热潮中,蜂拥关注,拓展尚处摸索期....... 54/p
  • 赛恩思碳硫仪助力宁夏宝丰能源锂电池负极材料检测
    赛恩思仪器,深耕分析仪器行业,始终秉持提供创新、精准、可靠的仪器设备,以满足不同行业、不同领域的高标准测试需求。近日,赛恩思仪器为宁夏宝丰能源集团提供的一套双炉红外及一台高频红外碳硫仪已经顺利安装并调试完成,将为该集团的锂电池负极材料的检测工作提供有力的技术支持。赛恩思的碳硫仪能够精准地分析和测量样品中的碳和硫含量。这对于锂电池负极材料的质量控制极为关键,因为碳和硫的含量直接影响到电池的性能和寿命。与此同时,赛恩思的管式炉以其高的温度控制精度和均匀的加热特性,使得锂电池负极材料的热处理过程更加精准、有效。赛恩思仪器始终坚守“精益求精、追求卓越”的经营理念,以满足用户需求为己任。我们自豪地看到,我们的设备正在帮助宁夏宝丰能源集团实现其锂电池负极材料的优质生产,同时也在推动整个锂电池行业的技术进步。赛恩思仪器期待与更多的企事业单位合作,提供精准、可靠的分析检测仪器,为其研发和生产助力!
  • 如果硫化氢检测仪出现故障,应该如何处理?
    硫化氢检测仪是一种专门用于检测环境中硫化氢气体浓度的仪器,它通常用于一些可能存在硫化氢气体的场所,比如工业领域、化工生产、石油开采、污水处理、下水道、沼泽地等。那么如果硫化氢检测仪出现故障,应该如何处理呢?本文跟随逸云天小编一起了解下吧。  如果硫化氢检测仪出现故障,以下是一些常见的处理步骤:  1.查看说明书:首先,参考检测仪的用户手册或操作指南,查找有关故障排除的部分。手册可能提供特定故障的解决方法和步骤。  2.重新启动检测仪:有时,简单地重启检测仪可能解决一些临时故障。关闭并重新打开仪器,看看是否能够恢复正常工作。  3.检查电池和电源:确保检测仪的电池电量充足,或者检查电源连接是否正常。低电量或不稳定的电源可能导致故障。  4.清洁传感器:传感器的污染或堵塞可能影响检测准确性。按照厂家的指导,清洁或更换传感器。  5.校准检测仪:校准不正确可能导致错误的读数。尝试进行校准操作,根据手册中的说明进行校准。  6.联系厂家技术支持:如果以上步骤无法解决问题,及时联系检测仪的厂家或供应商的技术支持团队。他们可以提供更专业的故障诊断和修复建议。  7.不要自行修理:除非你有相关的技术知识和经验,否则不建议自行尝试拆卸或修理检测仪。不当的操作可能会进一步损坏设备或导致安全问题。  综上所述,相关信息就分享到这里,希望这篇文章能帮助到大家。  应用场景:  1、密闭设备: 如船舱、贮罐、车载槽罐、反应塔、冷藏箱、管道、烟道、锅炉等   地下有限空间: 如地下管道、地下室、地下仓库、废井、地窖、污水池、沼气池、化粪池、下水道等   地上有限空间: 如储藏室、酒糟池、发酵池、垃圾站、温室、冷库、粮仓、料仓等。  广泛应用于:石油、化工、燃气输配、仓储、市政燃气、消防、环保、冶金、生化医药、能源电力等行业得到了广泛的应用,并得到广大客户的一致**。
  • 关于召开第六届“锂离子电池检测技术与应用”网络会议的通知
    1、 会议概述据工信部发布数据,2024年1-2月,我国锂离子电池行业继续保持增长态势,在市场需求和政策扶持的双向驱动下,全国锂电池总产量再创新高,超过117GWh,同比增长15%。下游应用端,一季度新能源汽车产销分别完成211.5万辆和209万辆,同比分别增长28.2%和31.8%,市场占有率已达31.1%。在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。主办单位:仪器信息网 国联汽车动力电池研究院有限责任公司直播平台:仪器信息网“3i讲堂”平台会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ (内容更新中)会议形式:线上直播,免费报名参会(报名入口见会议官网)2、 会议日程时间专场名称5月28日 全天锂电成分分析技术专场5月29日 上午锂电结构形貌分析技术专场5月29日 下午锂电粒度/表界面性能分析技术专场5月30日 上午锂电热性能分析技术专场5月30日 下午锂电安全与失效分析技术专场5月31日 上午锂电回收相关检测技术专场3、 线上报告征集1、 大会报告遴选:采取邀请、推荐与自荐三种方式结合,特别欢迎踊跃推荐或自荐;2、 推荐或自荐安排:1)凡期望能够在本次会议上发表演讲的单位与个人,都可直接推荐或自荐,演讲为线上PPT报告形式,每个报告30分钟(含约5分钟线上答疑互动时间);2)推荐或自荐演讲人时,请写明演讲人姓名、单位、主要从事研究内容以、拟演讲专场名称、演讲题目及详细联系方式(邮箱、电话号码),并发送至yanglz@instrument.com.cn ;3)推荐或自荐演讲人截止时间定于2022年5月15日前。4、 往届会议回顾1)第五届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2023/ 2)第四届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2022/ 3)第三届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc20214)第二届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc20205)第一届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc/5、 会议联系会议内容:杨编辑 15311451191(同微信)yanglz@instrument.com.cn 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 农药残留检测仪器设备-农药残留检测仪器设备-农药残留检测仪器设备
    随着我国经济水平的不断提高,农产品生产的重点逐渐从数量转移到质量安全方面。目前,国内农产品质量安全检测的主要是蔬菜中有机磷和氨基甲酸酯类二大类农药残留。国内用于农药残留的常用检测方法有气相色谱法和酶抑制法。气相色谱法成本高,适合用于定性定量检测 酶抑制法操作简便、成本低廉,适合用于定性的快速检测。实现对农产品中蔬菜、水果的农药残留监督,需要推行快速、简便、准确的检测方法,才能达到有效监控的目的。  农药残留检测仪器设备就是依据国家标准方法(GB/T5009.199-2003)以及世界卫生组织WHO、世界粮农组织FAO残留农药检测标准、世界环境保护局EPA参照摄入量等要求来设计。采用酶抑制率比色法对水果、蔬菜等农林产品中有机磷和氨基甲酸酯类农药含量进行快速准确的检测。  广泛应用于主要用于蔬菜、水果、茶叶、粮食、农副产品等食品中有机磷和氨基甲酸酯类农药残留的快速检测 此外还可用于果蔬茶生产基地和农贸批发销售市场现场检测,餐馆、学校、食堂、家庭果蔬加工前的安全速测等。  性能描述:  1、乙酰胆碱酯酶和丁酰胆碱酯酶试剂均可以使用,符合国家标准和农业部标准的要求。  2、自动判断样品是否合格,检测结果更加直观。  3、仪器具有100多种蔬菜名称菜单库,分类管理,并可按需添加或删除蔬菜名,编辑蔬菜名称,可直接打印出蔬菜名称。  4、检测通道:24个检测通道,可以同时测试多个样品,循环检测,即放即检,每个样品由程序控制分别独立工作,不会互相干扰。  5、智能操作系统,采用更加人性化操作,主控采用多核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。  6、显示方式:7英寸高灵敏真彩触摸屏显示,人性化中文操作界面,读数直观、简单。  7、打印机采用串口5v打印,可选择手动打印或者自动打印,三分钟出打印结果,打印格式为检测人姓名、吸光度差值、检测时间、检测机构、样品名称及结果判定。  8、光源采用进口超高亮发光二极管,具有低功耗、高精度、稳定性强、光源可控可以关掉不使用的光源,响应速度快等优点。  9、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。  10、仪器具有GPRS远传功能,可实现数据远传平台,wifi联网功能,可将数据快速上传电脑,进行数据管理与统计。  11、采用USB2.0接口设计,方便数据的存贮和移动,并可随时与计算机直接相连,并且可用计算机控制仪器。实现数据查询、浏览、分析、统计、打印等。  12、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能  13、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。  14、采用DC12v直流供电,安全系统更高,并且配备6A锂电池充电器。  15、仪器具有重新校准、锁定、恢复出厂设置功能。
  • 元能科技成立五年来完成首次融资 专注新能源电池新型检测设备
    近日,元能科技(厦门)有限公司(以下简称“元能科技”)完成数千万元Pre-A轮融资,融资资金将用于主营业务发展,包括继续加大研发投入、扩大生产、团队建设、市场推广等。据悉,本轮融资是元能科技成立五年来的首次融资,方正和生旗下北京大学科技成果转化基金和无锡光电产业基金对元能科技进行领投,厦钨嘉泰、厦门高新投与合方资本跟投。据研究机构EVTank、伊维经济研究院联合中国电池产业研究院共同发布的《中国锂离子电池行业发展白皮书(2023年)》显示,2022年,全球锂离子电池总体出货量957.7GWh,同比增长70.3%。展望未来,EVTank分析认为,未来十年,锂离子电池仍然是新能源汽车和储能领域的主要电池技术路线。随着新能源汽车的销量及储能行业的发展拉动对锂离子电池的需求,EVTank预计到2025年和2030年,全球锂离子电池的出货量将分别达到2211.8GWh和6080.4GWh,其复合增长率将达到22.8%。电池扩产潮下,市场竞争激烈,技术研发、产品创新、产品安全、工艺与良率提升等成为企业发力方向。资料显示,元能科技成立于2018年,是一家专注于锂离子电池检测仪器研发与生产的高新技术企业,公司定位于新能源电池高端检测设备,帮助新能源原材料企业和电池企业等提升电池研发的成功率、品质管控的良品率。客户方面,目前,元能科技已推出6款全球首创的检测仪器,获得多项专利授权,并与宁德时代、比亚迪、厦钨、厦门大学、清华大学等公司和院校达成技术产业化合作,多款新型检测仪器广泛应用于原材料企业、电芯企业、电池终端与国内科研院所。随着国外对于新能源产业的投入逐渐加大,元能科技在欧、美、日、韩等地区的客户数量也在快速增长。研发方面,截至2023年5月,元能科技已获得授权及公开的专利达52项,并联合多家龙头企业,参与制定了多项国家标准与行业标准。近期,元能科技陆续获得“国家级高新技术企业”“厦门市专精特新企业”及“福建省科技小巨人”等资质认定。
  • 热像仪应用 —制造业 铅酸电池桥接检测
    铅 酸 电 池 桥 接 检 测铅酸电池内部由数个至数十个单格组合而成,连接部位即桥接可能因安装质量 问题造成过热,严重影响产品质量,甚至于在电池产生氢气没有及时通风条件 下还会有爆炸隐患。本文介绍使用红外热像仪对铅酸电池充电时桥接部位的质 量检测的应用,保证铅酸电池的产品质量。 铅酸电池桥接处发热(本文得到蔡黎平和朱文浩的大力协助) 什么是铅酸电池的桥接?铅酸电池一般由数个或数十个单格组合而成,每个单格由若干正极板与负极板间隔重叠,正负极板间用玻璃纤维隔板隔离 ;数片正极板用铅合金焊接在一起组成正极群,数片负极板用铅合金焊接在一起组成负极群,正负极群装于铅酸电池槽内 组成单体铅酸蓄电池;单体铅酸蓄电池之间用链接条从单格之间的铅酸蓄电池槽隔板顶端以串联形式连在一起,这种链接 条即为桥接。桥接过热会造成哪些后果? 桥接过热可能受到两方面的因素影响:一是桥接线过短,二是安装时插入过深;过热会严重影响铅酸电池的产品质量,导 致充电不良,造成退货、换货增加;甚至在电池产生氢气没有及时通风条件下还会有爆炸隐患。 桥接部位可否被直接检测到? 桥接部位在铅酸电池内部,被外壳和盖板遮挡,无法直接检测,故通常用检测外壳的温度来发现桥接问题。 铅酸电池各单体充电 硫酸加注完成 在原先的铅酸电池质量检测中使用什么仪器?一般没有使用仪器,少部分使用红外测温仪。使用红外测温仪进行检测有什么缺点? 红外测温仪无法对整个铅酸电池表面进行温度检测,在对于大量铅酸电池的生产线检测时,容易造成漏检。 因硫酸的腐蚀性,红外测温仪至少需要在1米外进行检测,所以显示的温度是至少大于5厘米的圆的平均温度,但铅酸电 池表面的最高温度区域范围比5厘米小,这样就无法进行准确检测,同样会造成漏检。 如何使用红外热像仪检测铅酸电池? 热像仪在铅酸电池生产时可以检测外壳的发热情况,当外壳最高温度在60℃以上,说明内部的桥接处有严重过热,这时 铅酸电池可能会因为内部高温产生充电或放电故障,甚至引发爆炸事故。 铅酸电池外壳最高温度57.7℃,已接近温度报警限制使用红外热像仪检测铅酸电池桥接不良的注意事项 1 现场电池数量较多,注意不同距离的电池需要分别准确调焦; 2 铅酸电池表面有腐蚀性,检测时注意安全。 行业应用 各大、中型铅酸电池生产厂商。
  • 锂离子电池原料的含水量检测
    pstrong一、前言/strongbr/  锂电池与我们生活息息相关,扮演着不可或缺的角色。比如我们每天不离手的手机以及笔记本电脑,家用电器等。作为交通工具的飞机、混合动力车、电动车等对锂离子电池的需求也显著增加。在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。br/strong二、水分对锂电池的影响及市场现状/strongbr/strong2.1 水分会对锂离子电池造成哪些不良影响?/strongbr/  主要表现为电池容量小,放电时间变短,内阻增大,循环容量衰减,电池膨胀等现象,因此在锂离子电池的制作过程中,必须要严格控制环境的湿度和正负极材料、隔膜、电解液的含水量。br/strong2.2 锂离子电池水分控制方法检测现状?/strongbr/  目前市场上水分含量测定的技术方法最常用的是加热失重法和卡尔费休法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。br/strong三、分析与方法/strongbr/strong3.1 仪器/strongbr/  AKF-BT2015C 锂电池卡氏水分仪br/strong3.2 技术参数及特点/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/2f8bdcbf-c688-4dfd-aa4d-bedd9c41a0f0.jpg" title="1.jpg"//ppstrong特点:/strongbr/1. 卡氏顶空样品瓶加热技术,有效避免加热炉膛和反应杯污染;br/2. 禾工独创的样品瓶连接器,让载气无须穿刺样品瓶隔垫即可进入到样品瓶内部,密封性好,减少隔垫耗材的同时可拆卸方便;br/3. 精确流量控制设计,载气消耗量仅为同类进口产品管式加热炉的十分之一;br/4. 大功率散热槽设计,迅速冷却样品瓶,提高工作效率;br/5. 7" 高分辨率彩色触摸屏界面,多参数显示,直观简洁;一键测定,操作极为简便;br/6. 防凝结保温管路无死体积设计,保证挥发后的水分管壁系统无残留;br/7. 加热温度最高达300° ,0-100ml 气体流量自由调节,满足大多数固体原料水分测定需求;br/8. 全自动恒流极化检测,无需人工设定终点,检测精度高,水分测量分辨率达到0.1ug br/9. 一键启动,操作简单,稳定可靠,故障低,使用寿命长;br/strong3.3 分析原理/strongbr/  样品用卡氏加热炉专用密封进样小瓶装载,用顶空瓶连接器密闭后进入加热槽中,样品中的水分(还可能有其他挥发性的溶剂)以蒸气的形式完全释放,通过干燥载气(如干燥的空气或者氮气)由顶空瓶经加热伴管路转移到KF 滴定杯中,然后卡尔费休水分测定仪进行检测并显示测量数据。br/strong3.4 检测方法/strongbr/1.将电解液注入电解池以及电解电极的阴极室内,液位至下刻度线,加入微量水然后电解至平衡。br/2.将气源连接至卡氏加热炉,将干燥样品瓶装入加热槽,温度设置为250℃,流量调整为50mL/min,吹扫样品瓶和管路内可能存在水分,等待再次平衡。br/3.将样品瓶移至冷却槽冷却后取出,用电子天平称取约0.5~3g 样品置于样品瓶内,然后在水分仪上点击开始测量,同时将样品瓶装入加热槽。br/4.输入样品称取的重量,等待测量结束后显示最终测量结果。br/strong四、数据与结论/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c2469d3d-16f8-4766-a1cb-7d8da27630e8.jpg" title="2.jpg"//ppstrong结论说明:/strongbr/  通过本实验方法,可以精确测得锂离子电池原料的水分含量,检测结果精度与重复性均达到进口同类产品的水平。AKF 库仑法卡尔费休水分测定仪和KH-1 卡氏加热炉顶空进样器联用,能自动扣除漂移,操作便捷,能准确可靠的测出锂电池跟原料的含水量。/p
  • 下周二开播!第六届“锂离子电池检测技术与应用”网络会议全日程公布
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。点击图片报名一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 详细日程报告时间报告题目报告嘉宾05月28日锂电成分分析技术专场09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静北京安科慧生科技有限公司 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师05月29日 上午 锂电结构形貌分析技术专场09:00高镍正极材料热失控过程的显微学表征闫鹏飞北京工业大学 教授09:30日立电镜在锂电行业的最新应用周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长10:00全固态电池原位观察与分析——CP+SEM+EDS庞铮捷欧路(北京)科贸有限公司 应用工程师10:30XRD原位技术在锂电材料中的应用王通布鲁克衍射荧光事业部 XRD销售经理11:00冷冻电镜观察电池颗粒与界面王雪锋中国科学院物理研究所 特聘研究员、博士生导师11:30扫描电镜在锂电行业的应用魏丽英厦钨新能源材料股份有限公司 分析测试研究室主任5月29日 下午 锂电粒度/表界面性能分析技术专场14:00磷酸锰铁锂正极材料粒度对材料物理性能的影响梁广川河北工业大学材料学院 教授14:30应用XPS研究锂离子电池中的界面问题谢方艳中山大学 正高级实验师5月30日 上午 锂电热性能分析技术专场09:00动力电池热物性参数测试方法研究林春景重庆理工大学 副教授09:30热分析技术助力锂电池的热安全检测袁宁肖梅特勒托利多科技(中国)有限公司 技术应用专家10:00绝热量热技术与锂电池热安全测试邱文泽杭州仰仪科技有限公司 资深应用工程师10:30锂离子电池绝热产热量(ARC)和产气量(压力容器)测试方法薛钢苏州玛瑞柯检测技术有限公司 技术总监11:00锂电池导热性能参数无损测试方法侯德鑫中国计量大学 实验师5月30日 下午 锂电安全与失效分析技术专场14:00TIES固态锂电池设计开发评测技术及其失效机制介绍王愿习天目湖先进储能技术研究院有限公司 测试分析事业部负责人14:30金属锂电池安全设计:材料、界面与性能谭双杰中国科学院化学研究所 博士后15:00创新气相色谱技术助力锂电领域发展温焕斌岛津企业管理(中国)有限公司 GC高级产品专员15:30电芯及原材料分析实例分享张亮锂电企业 实验室经理16:00微米硅固态锂电池界面调控与失效分析韩响南京林业大学 副教授05月31日 设备更新主题:锂电回收相关检测技术专场09:30ICM动力电池碳足迹方法学研究余海军湖南大学 研究员10:00锂离子电池正极材料再生技术进展田俊行北京科技大学冶金与生态工程学院 讲师10:30基于弯晶阵列的单色X射线荧光部件研制与锂电池回收应用王清亚东华理工大学 讲师11:30如何通过3讲堂实现会议营销事半功倍刘亚伟北京信立方科技发展股份有限公司 会议运营部平台运营经理四、 演讲嘉宾(按报告时间排序)五、 参会指南1. 本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ 2. 审核通过后将以短信形式向报名手机号发送在线听会链接。3. 本次会议不收取任何注册或报名费用。4. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn5. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 回放视频上线!第六届“锂离子电池检测技术与应用”网络会议圆满召开
    5月28-31日,仪器信息网联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,大会为期3天半,邀请了众多锂电检测领域研究应用专家、相关仪器技术专家等,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行了探讨。本次会议圆满召开,吸引了千余名行业相关人士线上参会并积极讨论,总观看次数3200余次。参会者的行业背景广泛,涵盖了能源、石油与化工、电子电气、环保与水工业、汽车制造等多个领域。主要来自于工业企业(非仪器制造商)、高等院校和科研机构,占比近六成。所涉及的仪器品类包括质谱、X射线仪器、显微镜、色谱等10余种。为响应广大参会者的需求,报告回放视频已全部上线,欢迎大家点击回看,温故知新。回放链接报告题目报告嘉宾05月28日 锂电成分分析技术专场点击观看 德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师点击观看PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持点击观看 HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师点击观看电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师点击观看 核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员点击观看 单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静北京安科慧生科技有限公司 应用工程师-耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员点击观看 锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理点击观看 赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师点击观看 锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师点击观看雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用点击观看X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师05月29日 上午 锂电结构形貌分析技术专场点击观看 高镍正极材料热失控过程的显微学表征闫鹏飞北京工业大学 教授-日立电镜在锂电行业的最新应用周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长点击观看 全固态电池原位观察与分析——CP+SEM+EDS庞铮捷欧路(北京)科贸有限公司 应用工程师点击观看 XRD原位技术在锂电材料中的应用王通布鲁克衍射荧光事业部 XRD销售经理点击观看 冷冻电镜观察电池颗粒与界面王雪锋中国科学院物理研究所 特聘研究员、博士生导师-扫描电镜在锂电行业的应用魏丽英厦钨新能源材料股份有限公司 分析测试研究室主任5月29日 下午 锂电粒度/表界面性能分析技术专场点击观看 磷酸锰铁锂正极材料粒度对材料物理性能的影响梁广川河北工业大学材料学院 教授-应用XPS研究锂离子电池中的界面问题谢方艳中山大学 正高级实验师5月30日 上午 锂电热性能分析技术专场点击观看 动力电池热物性参数测试方法研究林春景重庆理工大学 副教授-热分析技术助力锂电池的热安全检测袁宁肖梅特勒托利多科技(中国)有限公司 技术应用专家-绝热量热技术与锂电池热安全测试邱文泽杭州仰仪科技有限公司 资深应用工程师点击观看 锂离子电池绝热产热量(ARC)和产气量(压力容器)测试方法薛钢苏州玛瑞柯检测技术有限公司 技术总监点击观看 锂电池导热性能参数无损测试方法侯德鑫中国计量大学 实验师5月30日 下午 锂电安全与失效分析技术专场点击观看 TIES固态锂电池设计开发评测技术及其失效机制介绍王愿习天目湖先进储能技术研究院有限公司 测试分析事业部负责人点击观看 金属锂电池安全设计:材料、界面与性能谭双杰中国科学院化学研究所 博士后点击观看 创新气相色谱技术助力锂电领域发展温焕斌岛津企业管理(中国)有限公司 GC高级产品专员点击观看 电芯及原材料分析实例分享张亮锂电企业 实验室经理点击观看 微米硅固态锂电池界面调控与失效分析韩响南京林业大学 副教授05月31日 设备更新主题:锂电回收相关检测技术专场点击观看 ICM动力电池碳足迹方法学研究余海军湖南大学 研究员-锂离子电池正极材料再生技术进展田俊行北京科技大学冶金与生态工程学院 讲师点击观看 基于弯晶阵列的单色X射线荧光部件研制与锂电池回收应用王清亚东华理工大学 讲师
  • 约稿|锂离子电池电化学原位XRD检测技术应用解析
    p style="text-indent: 2em "span style="text-indent: 2em "据Technavio最新报告数据,锂离子电池全球市场规模在2020-2024年期间有可能增长478.1亿美元,且市场的增长动力将在预测期内加速。/span/pp style="text-indent: 2em "无论是锂电实验室研究,还是商业化锂电失效分析,锂电材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meetings/ldc2020/" target="_blank" style="text-align: center white-space: normal "img src="https://img1.17img.cn/17img/images/202004/uepic/31be3033-f2b6-4ee0-aa1b-18b601b8e62b.jpg" title="1.jpg" alt="1.jpg" width="600" height="131" border="0" vspace="0" style="max-width: 100% max-height: 100% width: 600px height: 131px "//a/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "4月24日,锂电检测技术网络研讨会在线直播:/span/stronga href="https://www.instrument.com.cn/webinar/meetings/ldc2020/" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "点击免费报名参会/span/strong/a/pp style="text-indent: 2em "锂电材料晶体结构表征手段主要包括 X 射线衍射技术(XRD)、扩展 X 射线吸收精细谱(span style="text-indent: 2em "EXAFS)、中子衍射(neutron diffraction)、核磁共振(NMR)、电镜(EM)、拉曼散射(Raman)等。/span/pp style="text-indent: 2em "XRD是目前应用最为广泛的研究晶体结构的技术。XRD主流商业化产品中,进口品牌包括日本理学、布鲁克、马尔文帕纳科、岛津等;国产品牌包括丹东通达、丹东浩元、丹东奥龙、北京普析通用等。/pp style="text-indent: 2em "近日,仪器信息网有幸邀请国产XRD生产厂商丹东通达分享了锂离子电池电化学原位XRD检测技术应用,及对应应用方案。/pp style="text-align:center"span style="color: rgb(255, 0, 0) font-size: 18px "strongi专题约稿|锂离子电池电化学原位XRD检测技术应用/i/strong/span/pp style="text-align: center "span style="color: rgb(127, 127, 127) "——“锂电检测技术系列——晶体结构分析技术”专题约稿/span/pp style="text-align: center "span style="color: rgb(127, 127, 127) "作者:丹东通达科技有限公司/span/pp style="text-indent: 2em "可充电电池的发展促成了电动汽车的复兴,同时电动汽车的快速发展推动着可充电电池技术的快速进步,随着研发的深入,传统的研究方法已经不能满足对电池反应过程,容量衰退机制,热失控原因的深入理解与探索。因此,人们开发出了一系列的原位研究技术,它们具有的动态,实时,直观等特点,因此可以用来对电池材料的形貌与结构演变,氧化还原反应过程,固态电解质界面膜进行监视和探索。电池原位研究方法主要包括In situ XAS、in situ XRD、in situ TEM、in situ AFM、in situ Raman、in situ SEM,NPD,IR,...,这些研究方法及测试技术占据基础研究和应用技术开发的主导地位,将锂离子电池技术的研究推到前所未有的深度和广度。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/02b4c206-68f3-4020-a35c-2a5c6a626391.jpg" title="2.png" alt="2.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "丹东通达X射线多晶粉末衍射仪系列/span/pp style="text-indent: 2em "X射线衍射(XRD)是研究电极材料晶体结构性质的一种重要的工具,除此之外还能够用来研究化学反应的机理,在电化学系统之中,X射线衍射可以用于研究新型可充放电锂离子电池电极材料。/pp style="text-indent: 2em "其实,原位XRD技术(In situ X Ray Diffraction,In situ XRD)早在20世纪60年代就已经运用到材料研究中,电池原位X射线衍射技术是指在电池的充放电过程中进行XRD扫描,主要可用来观察充放电过程中电极材料所发生的结构和物相转变,精确揭示电池反应机理。Thurston等最早设计的原位电池装置,利用同步辐射光源的硬X射线探测体电极材料,直接观察到晶格膨胀和收缩、相变及多相的形成。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 312px " src="https://img1.17img.cn/17img/images/202004/uepic/d97ded1d-b7f3-45fe-80b9-cc7bc67801ef.jpg" title="3.png" alt="3.png" width="450" height="312" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) "首台国产X射线单晶衍射仪TD-5000 /span /pp style="text-indent: 2em "丹东通达科技有限公司长期致力X射线分析仪器的研究与生产工作,生产的TD系列x射线粉末衍射仪一直占据国内国产粉末衍射仪的销售及应用的大多数市场份额。同时丹东通达科技牵头与中山大学等单位合作承担国家重大科学仪器专项,研发第一台国产x射线单晶衍射仪,对晶体学及相关领域的科学研究具有重大意义。/pp style="text-indent: 2em "丹东通达科技有限公司依据In situ XRD原位测试技术理论及市场需求,结合多年研发XRD经验,采用合作伙伴武汉市蓝电电子股份有限公司配套的LAND电池测试系统,在TD3500型衍射仪上进行改造调整,完成锂离子电池的原位XRD解决方案:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/85add2a7-cac7-451f-a75b-125d3ffce7fe.jpg" title="4.png" alt="4.png"//pp style="text-indent: 2em "此方案是一种可以实现实时监测电极材料相变和结构演变的有效测试手段。依托TD-3500衍射仪及电池原位检测装置及电池测试系统完成测试整个过程是对同一个材料的同一片区域位置进行扫描分析,得到的谱图解析出信息(无论是晶胞参数、峰强度,还是其他参数)具有较高的可比性,可以得到一系列实时的结构变化信息,有助于深入认识材料在充放电过程中发生的反应,对如何改进材料具有较高的指导意义。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 315px " src="https://img1.17img.cn/17img/images/202004/uepic/4b3a9c5d-5623-4d20-a342-abb6623341a1.jpg" title="5.jpg" alt="5.jpg" width="450" height="315" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "通达科技原位解决方案:/spanspan style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "LAND电池测试系统控制软件/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 290px " src="https://img1.17img.cn/17img/images/202004/uepic/90c15cce-e321-4711-9a6c-944ac8959d6e.jpg" title="6.png" alt="6.png" width="500" height="290" border="0" vspace="0"//ppbr//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "通达科技原位解决方案:电池测试XRD控制软件/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/65934fbd-4c78-4381-a863-965291c9739c.jpg" title="7.png" alt="7.png"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "通达科技原位解决方案:测试谱图/span/pp style="text-indent: 2em "strong关于丹东通达科技有限公司/strong/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 100px height: 85px " src="https://img1.17img.cn/17img/images/202004/uepic/e2c87797-a84b-42b0-8294-043ed51109f5.jpg" title="8.jpg" alt="8.jpg" width="100" height="85" border="0" vspace="0"//pp style="text-indent: 2em "丹东通达科技有限公司位于中朝边境——辽宁省丹东市。公司是国家高新技术企业、辽宁省双软企业、ISO质量体系认证企业,并获得多项发明专利及实用新型专利,是辽宁省政府、丹东市政府重点扶持的高科技企业,并于2013年5月15日成立院士专家工作站。公司是X射线分析仪器及无损检测仪器的专业生产企业,是2013年国家科技部【国家重大科学仪器设备开发专项】项目承担单位。/pp style="text-indent: 2em "在国家重大专项资金的支持下,公司生产的TD系列分析仪器及TD系列无损检测仪器均已接近或达到世界先进水平,广泛应用于化学、化工、机械、地质、矿物、冶金、建材、陶瓷、石化、药物等材料研究领域。产品除了满足国内用户的需求外,还远销美国、韩国、阿塞拜疆等国家。/pp style="text-indent: 2em "公司加大科技投入,已完成分析仪器及无损检测仪器两大系列产品的系列化工作。分析仪器包括:TD系列X射线衍射仪、台式X射线小型衍射仪、X射线荧光光谱仪、X射线衍射/荧光一体机、X射线晶体定向仪、多功能全自动蓝宝石晶体定向仪、X射线晶体分析仪、激光粒度仪等产品;无损检测仪器包括:便携式X射线探伤机、移动式X射线探伤机、X射线实时成像系统、微焦点X射线检测系统、TD系列X射线管道爬行器及X射线管等产品。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong附:锂电检测系类专题约稿征集中/strong/span/pp style="text-indent: 2em "span style="text-indent: 2em "为促进锂电检测技术发展,近期,器信息网结合锂离子电池检测项目品类,从2019年起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。/spanspan style="text-indent: 2em color: rgb(0, 176, 240) "(锂电检测系列专题内容约稿征集进行中,欢迎投稿:/spanspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "15311451191,yanglz@instrument.com.cn/spanspan style="text-indent: 2em color: rgb(0, 176, 240) ")/span/ptable border="0" cellspacing="0" cellpadding="0" style="white-space: normal "tbodytr class="firstRow"td width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strongspan style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "系列序号/span/strong/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strongspan style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strongspan style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "专题链接/span/strong/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "1/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列——电性能检测技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "a href="https://www.instrument.com.cn/zt/lidian1"【链接】/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "2/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列——形貌分析技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "a href="https://www.instrument.com.cn/zt/lidian2"【链接】/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "3/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列——成分分析技术/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "a href="https://www.instrument.com.cn/zt/lidian3"【链接】/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "4/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列——晶体结构分析技术/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="font-size: 12px font-family: Arial, sans-serif color: rgb(68, 68, 68) "5/spanspan style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "月上线/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "5/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列——X射线光电子能谱分析技术/span/p/tdtd rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "即将上线/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "6/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all "p style="margin-top: auto margin-bottom: auto text-align: center "span style="font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) "锂电检测技术系列——安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablep style="text-indent: 2em "br/br//p
  • ACCSI2018“新材料检测技术及仪器论坛”关键词:锂电池、半导体
    p  strong仪器信息网讯 /strong2018年4月15-16日,中国科学仪器行业的“达沃斯论坛”——2018 (第十二届)中国科学仪器发展年会(ACCSI 2018)在江苏省常州市香格里拉大酒店隆重召开。ACCSI 2018借助十一年的品牌积淀,发挥常州的区位优势,吸引科学仪器及检验检测行业的1000余位高端人士参会。br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/4434112d-6bcd-408a-806c-a4594d4dc16e.jpg" title="IMG_5735_副本.jpg"//pp style="text-align: center "strong大会掠影/strong/pp  继大会首日的大会报告、仪器企业周年庆启动仪式、I100峰会之“中国科学仪器发展高峰论坛”、仪器及检测风云榜颁奖盛典等日程精彩上演后,4月16日,大会第二天,十个分论坛相继火热进行。/pp  16日下午,“新材料检测技术及检测仪器发展论坛”作为重要分论坛之一,在酒店二层聚德堂会议厅如期进行。该论坛由仪器信息网与北京材料分析测试服务联盟共同主办,聚焦新能源、锂电池、半导体等新材料检测热点领域,特邀9位相关学术及企业专家代表与参会者分享最新检测技术及仪器报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/516ea58e-fb2f-4173-90b8-5fc07faec353.jpg" title="QM4B8404_副本.jpg"//pp style="text-align: center "strong“新材料检测技术及检测仪器发展论坛”现场/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/2b08d021-95cc-4d01-9d90-abcc0562ca0c.jpg" title="IMG_6146_副本.jpg"//pp style="text-align: center "strong北京材料分析测试服务联盟秘书长关璐主持/strong/pp  值得一提的是,在专家报告前,聚焦材料物性测试仪器的2017年“第三届国产好仪器”在有着共同聚焦方向的材料论坛上进行了项目汇报及最终入选颁奖仪式,颁奖仪式请关注仪器信息网后续报道。/pp style="text-align: center "strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "九位专家报告速览/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6779341c-8a8a-45e6-98d4-7a1cd828674f.jpg" title="QM4B8413_副本.jpg"//pp style="text-align: center "strong报告人/strong:广州邦禾检测技术有限公司董事长 苗春茂/pp style="text-align: center "strong报告题目/strong:电池相关检测的技术进展及对仪器的需求/pp  电池涉及的终端产品种类繁多,由最初的手机、笔记本、MP3等少数电子产品,延伸到医疗器械、电动车、无人机、电动汽车等各个行业数千种产品。伴随电子产品的日益轻便、小型化,电动车续航里程需求的增加,高能量/高密度成为电池发展的趋势。但苗春茂也表示,这也随之带来事故几率及事故后危害的增大。而检测手段则可以降低电池的潜在风险,相关电池检测对仪器及设备的需求包括充放电池设备,记录间隔从 1s到5ms,对设备数据进度从± 1%到± 0.1%等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/60a50985-8205-4dbf-993b-c94ec219f12d.jpg" title="IMG_6111_副本.jpg"//pp style="text-align: center "strong报告人:/strong珀金埃尔默仪器有限公司材料表征技术支持 方伟宇/pp style="text-align: center "strong报告题目:/strongLCD/LED液晶面板行业材料性能检测探讨/pp  液晶面板行业包括上游材料或元件、中游面板制造厂、下游各类应用终端等,该行业面临的的检测需求包括原材料是否合格?如果发现不合格产品,原因何在等。方伟宇主要针对面板行业的需求,详细介绍了能够带来的相关仪器及解决方案,包括紫外/可见/近红外分光光度计、红外及其显微系统、热分析及其联用系统,及微小颗粒检测方案等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c49f8de5-095f-4022-983c-18dcfcb8874d.jpg" title="IMG_6140_副本.jpg"//pp style="text-align: center "strong报告人/strong:丹东奥龙射线仪器集团有限公司营销总监 杨国芳/pp style="text-align: center "strong报告题目/strong:工业CT在电池检测领域的应用/pp  杨国芳在报告中表示X射线无损检测在电池制造业正逐步从二维检测走向CT检测,甚至开始了在线CT检测的应用。国产工业CT正在以更优异的分辨能力,便携性和可定制性服务于该行业,为客户更快更准确的解决问题。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/3ccef5c4-2a4c-4531-a0cc-825d0b032a5a.jpg" title="IMG_6148_副本.jpg"//pp style="text-align: center "strong报告人/strong:上海微谱化工技术服务有限公司副总经理 吴杰/pp style="text-align: center "strong报告题目/strong:微谱分析助力企业研发与质量升级/pp  微谱分析,是指通过微观谱图(光谱、色谱、质谱、能谱、核磁共振谱、热谱等)对未知成分进行分析的技术方法。吴杰在报告中以对比分析、竞品分析、汽车内饰件气味/VOC评价及溯源等示例讲解了微谱分析对企业研发与质量升级的帮助。接着介绍了微谱分析最新技术进展,包括前处理升级、物质筛查体系及成分定性定量方法开发、微量物质结构解析及聚合物结构解析等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/31bc84cb-326c-42b4-bcac-3c6edd38fe60.jpg" title="IMG_6173_副本.jpg"//pp style="text-align: center "strong报告人/strong:丹东百特仪器有限公司总经理 董青云/pp style="text-align: center "strong报告题目/strong:颗粒表征技术在能源颗粒材料中的应用与进展/pp  首先,董青云通过概念解释、传统测试方法示例解析等方式对颗粒测试的“前世今生”进行了详细解答。接着,讲述了颗粒表征技术在能源颗粒材料中的应用,并着重介绍了两种能源颗粒粒度粒形测试最常用的两种方法:激光法和图像法。报告以丰富的产品及技术示例阐明,国产激光粒度仪的关键器件、原理性研究与进口品牌相比是过关的,现在的国产激光粒度仪、显微图像粒度仪能满足能源颗粒以及其它粉体材料粒度粒形分析要求。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/796c554d-7520-4341-8b6a-48db2d2d620a.jpg" title="IMG_6187_副本.jpg"//pp style="text-align: center "strong报告人/strong:安捷伦科技(中国)有限公司资深应用解决方案专家 王少珍/pp style="text-align: center "strong报告题目/strong:浅谈液质在新材料检测分析上的技术分享与应用解决方案/pp  王少珍表示,安捷伦液质产品技术可以帮助用户应对不同的挑战,分离技术方面,包含通用型的HPLC,SFC,2D-LC等 不同的实验目的和要求,可选择不同类型的质谱进行检测,如四极杆,Tof,IMS仪器 对未知样品进行定性分析方面,可使用MSC、MP、MPP等软件进行数据解析。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/8d72862f-4663-43d8-a89f-8d8a96619fde.jpg" title="IMG_6198_副本.jpg"//pp style="text-align: center "strong报告人/strong:国家纳米科学中心纳米加工技术实验室副主任 褚卫国/pp style="text-align: center "strong报告题目/strong:锂离子电池纳米正极材料及表征/pp  2003-2018年,锂电池增长态势良好,2018年产值达320亿美元。增长主要来源于电动汽车等动力电池领域、笔记本小型锂电池领域需求的快速增长。褚卫国认为,良好的电子离子导电性及结构、表面稳定性,取决于高性能的材料,而高性能的材料则离不开各种表征手段。电池材料相关表征手段很多,包括电镜、X射线、中子衍射、颗粒测试、核磁共振等。但褚卫国建议,要根据材料本身的特点来选择适当的表征方法,多种表征方法联合,相互印证结果。同时,表征技术在特定条件下与分析方法结合能够获取某种特定的重要信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/311bb580-20fb-4c0b-8b7d-e927d9a84061.jpg" title="IMG_6233_副本.jpg"//pp style="text-align: center "strong报告人/strong:日立高新技术公司电镜产品经理 席小宁/pp style="text-align: center "strong报告题目/strong:电子显微学表征技术在电池领域的应用及最新进展/pp  锂电池材料的研究主要集中在正负极材料及隔膜材料的形貌、结构、成分、电学特性等方面。席小宁表示,日立高新针对这些需求,有一系列的对应产品及解决方案。如锂电池的正极材料在制样、转移及观察过程中非常容易受空气的氧化,对形貌和成分分析产生影响。为了解决这一问题,日立提供了一整套空气隔离系统,包括离子研磨,SEM、FIB、TEM、AFM(真空型)以及连接所有设备的真空转移盒等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6d75b1ff-0a53-4597-a62e-2b91b7a64647.jpg" title="IMG_6250_副本.jpg"//pp style="text-align: center "strong报告人/strong:国家半导体器件质量监督检验中心主任 黄杰/pp style="text-align: center "strong报告题目/strong:半导体产业现状及相关检测技术进展/pp  我国是世界上半导体芯片产品最大的消耗国,半导体芯片年进口额超过2300亿美元, 是我国第一大宗的进口产品。按照产业链划分,半导体产业链可分为上游支撑产业链、中游核心产业链以及下游需求产业链。黄杰介绍到,半导体检测技术包括过程工艺控制检测及后道测试环节,电路测试中三大核心设备技术难点包括测试机、分选机,及探针台等。而我国半导体测试的发展方向包括大力发展推广低成本测试技术、着重研发前沿的测试技//积极与外商合作,引进先进测试技术等。br//p
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 2013年国家动力电池检测中心启用
    9月30日,长兴科技服务中心揭牌、国家动力电池检测中心启用仪式举行。县委副书记、县长吕志良和县领导高胜华、宋波、王春新、张加强参加揭牌、启用仪式。  吕志良在致辞中表示,长兴科技服务中心和国家动力电池检测中心的揭牌和启用,意义非常重大。两大中心的建设,凝聚了各方心血,得到了大家的重视支持。它们的建成将为全县的工业创强、转型升级提供有力的科技支撑,也将为广大科技企业提供更好的服务。办好两大中心,使命光荣。两大中心要自觉拉高标杆,瞄准更高定位,更好地发挥作用。科技服务中心要真正建设成为“企业满意、政府放心”的重要平台 动力电池检测中心要在前期工作的基础上,真正打造成为国内一流、国际先进的重要检测平台,从而为广大企业、各级各部门提供有力的支撑和服务。用好两大中心,需要各方支持。建设两大平台已经走出了第一步,希望省、市一如既往地关心支持两大中心的成长发展 希望上海研发公共服务平台对长兴科技服务中心多指导、多帮助 希望县级各部门、乡镇(街道、园区)大力支持配合两大中心的工作 希望广大企业充分发挥主体作用,用足用好两大中心资源。  上海研发公共服务平台由仪器设施共用、试验基地协作、专业技术服务、行业检测服务、技术转移服务、创业孵化服务等十大系统组成,其加盟单位包括各类大学、研发机构和大型企业。长兴科技服务中心作为上海研发公共服务平台在长兴设立的分中心,是企业与上海研发平台联系的重要桥梁,也能更加方便企业进行研制开发、产品检测等科技创新活动,可以一站式为长兴企业解决很多技术难题。
  • 新品速递|山东云唐全新升级旋转式农药残留检测仪
    山东云唐智能科技有限公司全新升级农药残留检测仪,产品广泛应用于主要用于蔬菜、水果、茶叶、粮食、农副产品等食品中农药残留的快速检测,依据国标GB/T5009.199-2003进行检测,适用于果蔬茶生产基地以及农贸批发销售市场现场检测,餐馆、学校、食堂、家庭果蔬加工前的安全速测等。 山东云唐专业提供农药残留检测仪以及食品安全检测仪等各项仪器的研发生产制造。山东云唐始终以技术作为驱动公司发展的核心动力,成立10年至今,坚持累计投入超千万建设自主研发中心。组建包括产品经理、结构、模具设计师、软硬件工程师等全链条技术人才团队30多人,深入行业应用场景,接收市场一线需求反馈,凭借强大的研究开发迭代能力以需求为导向充分利用研发成果并进行市场转化,提升核心能力及竞争力,驱动产业发展,为食品安全检测事业注入澎湃生命力,造福社会人民,实现可持续发展。山东云唐在多年的生产管理过程中积累了宝贵的经验,形成30多项品质管理/检测标准,同时还通过了3A级企业认证等10多项行业相关认证。山东云唐智能科技有限公司主营业务是研发、生产:农药残留检测仪、兽药残留检测仪、食品安全检测仪等快检设备,为食品药品监督委员会、第三方检测机构,以及农副产品检测等相关领域提供综合解决方案。多年来,公司研发生产了百余种食品检测专用仪器和相关集成系统方案,产品销往全国各地。公司拥有软件产品设计和开发团队,专注于具有自主核心技术和知识产权的软件产品。公司与全国各大高等院校和科研院所建立了良好的合作关系,大量引进高等科技成果,研发了众多质量上乘,价格优良的高科技产品,云唐科技已广泛应用于各个行业,得到了客户的认可和青睐,公司自成立之日起,秉持以人为本,以客户为本,引导客户需求,将客户的需求放在第一位,把客户的满意度当成我们工作成效的准绳,不断开拓进取。 一、新品主要技术参数: 1、机器采用全新安卓智能系统,主控芯片采用 ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、创新检测模式:*仪器采用精密旋转比色池设计,使用光源一致,可以解决各通道间由于光源误差带来的检测结果误差问题,检测结果更加精准。*仪器具有自动识别比色皿检测功能,即:将样品比色皿放入仪器后,点击样品检测,仪器自动识别比色皿进行通道检测。3、供电方式:交直流两用,直流 12V 供电,可连接车载电源,可配 6ah 大容量充电锂电池,方便户外流动测试。4、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。5、检测通道:12个检测通道,可以同时测试多个样品,循环检测,即放即检,每个样品由程序控制分别独立工作,不会互相干扰。 6、高精光源系统:①仪器光源采用进口超高亮发光二极管,光源亮度可以自动调节与校准②智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。 7、智能操作分析系统:①仪器具有100多种蔬菜名称菜单库,分类管理,并可按需添加或删除、编辑蔬菜名称;可在同一检测界面自动对应相关检测通道一次性选择1-24个样品名称,无需退出界面,节省操作时间。②内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、完善的配套硬件:①采用串口5v打印机,可选择手动打印或者自动打印,三分钟出打印结果,打印格式为检测人姓名、吸光度差值、检测时间、检测机构、样品名称及结果判定。②仪器具有无线上传模块,检测结果可批量打印,批量上传。 9、数据调用:①仪器可存储20万条检测结果,②检测结果为Excel表格,方便后期进行数据分析与汇总报告③仪器采用USB2.0接口设计,支持 U 盘存储,方便数据的存贮和移动,并可随时与计算机直接相连,实现数据查询、浏览、分析、统计、打印等。 10、后期产品固件可升级。11、安全证书,放心保障:仪器具有中国计量科学研究院校准证书,使用放心。12、机箱采用工业级ABS工程塑料箱,方便携带,稳固耐用,便于流动测试。二、升级后性能及特点:1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有无线联网上传功能,快速上传数据,进行数据统计和分析。2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能;同时,检测完成可自动打印检测报告和二维码。手机扫码可显示出详细检测信息。 3、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 。4、样品处理简单省力,整体操作快速、安全、便捷。 5、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。6、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库,方便后期操作调取使用。 7、仪器具有重新校准、锁定、恢复出厂设置功能。 四、新品参数配置*波长配置:410nm; *抑制率显示范围:0%~100%; *抑制率测量范围:0%~100%; *透射比准确度:±1.5%; *透射比重复性:≤0.5%; *漂移:≤0.005Abs/3min; *抑制率示值误差:≤10% *抑制率重复性:≤5%*仪器尺寸:43×35×20cm, *主机净重:5.1kg
  • 云唐新款推荐丨兽药残留检测仪的参数指标介绍
    新款推荐丨兽药残留检测仪的参数指标介绍想了解详细信息点击查看→→→https://www.instrument.com.cn/show/C530673.html设备特点山东云唐智能科技有限公司生产的高智能兽药残留检测仪可快速检测瘦肉精激素类食品安全项目,包含盐酸克伦特罗、沙丁胺醇、莱克多巴胺、己烯雌酚,兽药残留、抗生素类残留、真菌毒素类残留、动物疫病类等检测。该高智能兽药残留检测仪为集成化食品安全快速检测分析设备,目前已于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业及检验检疫部门等单位广泛使用。仪器主要技术性能1、仪器采用10.1英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,性能更强。2、仪器功能包括:胶体金检测模块、数字化管理模块、无线通讯模块等,可以满足同一软件下实现所有检测项目的检测,并在同一窗口展示检测结果。3.一体化台式快检设备,采用交直流两用供电方式,可连接车载电源,配备6ah大容量充电锂电池,可以满足现场及流动检测使用的需求。仪器尺寸:43×35×20cm, 主机净重:5.1kg4、系统自带数据集成模块,设备首页自动统计检测数据包含:周检测数据、月检测数据,全部检测总数量,均包含检测总数,合格数,不合格数,以及相关柱形分析图,对各项检测数据清晰掌握,无需电脑查询,更加快捷直观。5、仪器具有任务预设模块,可在样品送检前提前预设样品名称、检测指标、送检单位等信息,样品送检时一键调取保存信息,检测更加方便快捷。 6、胶体金检测模块:CT曲线图,CT线自动识别,无需手动调整,完成检测后自动退出检测卡。兼容市场上其他胶体金卡,使用耗材不受限制,极大增强用户使用体验。7、仪器检测系统拥有庞大数据库,并且构建了完善的检索、修订功能。食品库涵盖多种样品名称,可按需添加或删除、编辑样品名称;产品数据库以及历史检测记录支持一键检索功能。8、系统打印自定义化,打印格式多样化,产品合格证(国家标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息结果,可按需求自行设置打印内容。 9、A4纸版本报告打印功能(可选配):设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式链接外置打印机可进行打印10、仪器具有 wifi 联网上传、RJ45网线连接功能,可以快速上传数据。同步对接监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警。11、设备支持U盘存储,标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格,进行一键拷贝,并具有登录保护功能,可设置用户名及密码,规范不同人员操作权限,防止非工作人员操作,并且可以进行重新校准、锁定、恢复出厂设置功能。仪器固件可升级,后期检测项目可扩充。12、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。检测项目1.瘦肉精激素:盐酸克伦特罗、沙丁胺醇、莱克多巴胺、己烯雌酚等。2.抗生素残留:四环素类、硝基呋喃类、磺胺类、β-兴奋剂类、沙星类、磺胺类、喹诺酮类,甲砜霉素,氟苯尼考,金刚烷胺、替米考星、庆大霉素、林可霉素、链霉素、恩诺沙星、环丙沙星、头孢啦啶、青霉素、阿莫西林等。3.水产品安全类:孔雀石绿、氯霉素、呋喃妥因、呋喃西林、呋喃它酮、呋喃唑酮等4.蛋类药物残留:氯霉素,四环素,磺胺类,喹诺酮类,呋喃西林,呋喃它酮,呋喃妥因,呋喃唑酮,氟苯尼考,阿莫西林、头孢氨苄、红霉素、链霉素等。5.动物疫病类:禽流感、新城疫、牛羊口蹄疫、牛羊结核病、牛羊包虫、牛羊布病、小反刍兽、猪蓝耳病毒、猪瘟病毒、猪伪狂犬病毒、猪细小、猪圆环、犬细小病毒、犬瘟热病毒、犬狂犬病毒等。6.真菌毒素残留:食用油、粮食及饲料中黄曲霉毒素B1、黄曲霉毒素总量,奶中黄曲霉毒素M1、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素A、T2毒素、伏马毒素等。
  • 30亿巨头砸14亿布局氢燃料电池 检测市场新机?
    p style="text-align: justify text-indent: 2em "span style="text-align: justify text-indent: 28px font-family: 宋体 "日前,我国知名电池生产企业深圳市雄韬电源科技股份有限公司(简称雄韬股份)在最新一次董事会议上宣布,将非公开发行股票募资/spanspan style="text-align: justify text-indent: 28px "14.15/spanspan style="text-align: justify text-indent: 28px font-family: 宋体 "亿布局氢燃料电池项目,包括动力系统产业化基地建设项目,产业园项目、电堆研发项目等。/span/pp style="text-align: justify text-indent: 2em "strong style="text-indent: 2em "快增红利刺激 大手笔抢占氢燃料电池制高点/strong/pp style="text-align:center"span style="text-align: justify text-indent: 28px font-family: 宋体 "img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/201908/uepic/c754d60e-557b-4563-8a89-1b370c8cc3c8.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (4)雄韬股份.jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (4)雄韬股份.jpg" width="600" height="450" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"雄安股份是我国最早从事阀控式密封铅酸蓄电池研发和生产的专业厂家之一,/spanspan2018/spanspan style="font-family:宋体"年依托于锂离子电池业务的出色表现和氢燃料电池投资的较好利润收益,公司营业总收入近/spanspan30/spanspan style="font-family:宋体"亿元,利润总额也超过/spanspan1.1/spanspan style="font-family:宋体"亿元,同比增长/spanspan140%/spanspan style="font-family:宋体"。2019年,公司继续大规模投资氢燃料电池,本次拟投资的氢燃料电池项目计划由雄安股份董事会全票通过。据悉,在非公开募集资金到位之前,雄安股份将先自筹资金投入项目建设,项目详情汇总如下:/span/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/11b397de-0143-4a5a-8584-39b2d79b9434.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机?雄韬股份 (2).jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机?雄韬股份 (2).jpg"//span/ppspan/span/pp style="text-indent: 2em "strong产业化热潮蜂起 标准法规不断完善/strong/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/bfd5b9fc-5472-4450-885b-d8891d45e9e6.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (5)雄韬股份.jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (5)雄韬股份.jpg"//span/pp style="text-indent: 21px text-align: justify "span style="font-family:宋体"氢燃料电池是燃料电池的一种,是利用电解水的逆反应,将化学能转换成电能的电化学发电装置。早在/spanspan20/spanspan style="font-family:宋体"世纪/spanspan60/spanspan style="font-family:宋体"年代,氢燃料电池就在航天、发电、汽车等领域得到了应用,然而安全性、氢储存、高能量密度、高成本等问题使得氢燃料电池在我国的产业化始终面临瓶颈。但随着技术的不断提升,成本的进一步降低,燃料电池将逐渐进入产业化阶段。本次拟布局的项目,正是雄安股份抢占氢燃料电池业高地的大手笔。旨在锁定先发优势,在未来的市场竞争中处于有利的地位。/span/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 259px " src="https://img1.17img.cn/17img/images/201908/uepic/1357c2b0-b95e-4fad-83b7-6873e636f5cc.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (3)雄韬股份.jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (3)雄韬股份.jpg" width="600" height="259" border="0" vspace="0"//span/pp style="text-indent: 21px text-align: justify "span style="font-family:宋体"随着节能环保和/spanspanLCA/spanspan style="font-family:宋体"等概念的兴起,氢燃料电池因其无污染、无噪声、高效率等特点而成为人们热捧的研究方向。特别是在汽车行业,氢燃料电池汽车已成为业内普遍认为的商用车重要转型升级方向之一。美、英、韩、日等发达国家都出台了大量政策和规划来发展氢燃料电池汽车,我国作为世界上最大的制氢国,近年来也通过strongspan style="color:#00B0F0"《节能与新能源汽车产业发展规划(/span/strong/spanstrongspan style="color:#00B0F0"2012/span/strongstrongspan style="font-family:宋体 color:#00B0F0"—/spanspan style="color:#00B0F0"2020/span/strongstrongspan style="font-family:宋体 color:#00B0F0"年)》、《中国制造/spanspan style="color:#00B0F0"2025/span/strongstrongspan style="font-family:宋体 color:#00B0F0"》、《汽车产业中长期发展规划》/span/strongspan style="font-family:宋体"等政策及相关补贴法规,大力推动氢燃料电池汽车的发展,相关国家标准体系也不断丰富和完善。/span/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 689px " src="https://img1.17img.cn/17img/images/201908/uepic/d5e94621-9cc8-49b3-90c5-a385cf6a2381.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (6)雄韬股份.jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (6)雄韬股份.jpg" width="600" height="689" border="0" vspace="0"//span/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 760px " src="https://img1.17img.cn/17img/images/201908/uepic/edc87cad-d3cf-43a3-940c-2ca6b0f390a7.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (7)雄韬股份.jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (7)雄韬股份.jpg" width="600" height="760" border="0" vspace="0"//span/pp style="text-align: center text-indent: 0em "strongspan style="font-family:宋体"氢能源电池汽车检测国家标准/span/strong/pp style="text-indent: 0em "strongspan style="font-family:宋体"/span/strong/pp style="text-indent: 2em "strong仪器检测未来红利 延续锂电市场奇迹?/strong/pp style="text-indent: 21px text-align: justify "span2018/spanspan style="font-family:宋体"年,我国燃料电池产业布局资金已超过/spanspan850/spanspan style="font-family:宋体"亿,截至/spanspan2019/spanspan style="font-family:宋体"年/spanspan5/spanspan style="font-family:宋体"月,我国参与氢能燃料电池汽车生产的整车厂商已超过/spanspan41/spanspan style="font-family:宋体"家,包括力帆、众泰、奥迪等。氢燃料电池的聚焦和产业化布局的快速发展,也将给科学仪器检测市场带来更多的新商机,众所周知,近年来诸如电子显微镜、/spanspanXRD/spanspan style="font-family:宋体"、/spanspanXPS/spanspan style="font-family:宋体"、激光粒度仪、比表面及孔径分析仪、电化学仪器等一系列仪器类型都迎来了巨大的市场红利。而现如今氢燃料电池的前景也被很多科学仪器行业的从事者所看好。/span/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/201908/uepic/7184a896-e08a-4d04-8091-260a7e116ee2.jpg" title="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (8)雄韬股份.jpg" alt="30亿巨头砸14亿布局氢燃料电池 检测市场新机? (8)雄韬股份.jpg" width="600" height="450" border="0" vspace="0"//span/pp style="text-indent: 21px text-align: justify "span style="font-family: 宋体 background: white"在氢燃料电池的研发中,电极研发是关键技术之一,通常由/spanspan style="font-family:宋体"特制的多孔惰性材料制成,且需要具有很强的催化活性。/spanspan style="font-family: 宋体 background: white"它不仅要为气体和电解质提供较大的接触面,还要对电池的化学反应起催化作用,常用的材料有铂活性炭等。特别在材料物性仪器方面,预计,氢燃料电池电极的研发和检测将对比表面及孔径分析类仪器、粒度粒形分析类仪器有显著的需求。/span/pp style="text-indent: 21px text-align: justify "span style="font-family: 宋体 background: white"另外氢燃料电池也需要进行如下的环境可靠性、失效分析、理化分析、电子兼容、动力电池类等检测试验:/span/ptable border="1" cellspacing="0" cellpadding="0" style="border: none"tbodytr class="firstRow"td width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333"测试类型/span/strongstrong/strong/p/tdtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333"具体检测项目/span/strongstrong/strong/p/td/trtrtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333 background:white"环境可靠性测试/span/strongstrong/strong/p/tdtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "span style=" font-family:宋体 color:#333333 background:white"高低温试验、温湿度试验、盐雾腐蚀试验、振动试验、跌落试验、压力测试… … /span/p/td/trtrtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333 background:white"失效分析类测试/span/strongstrong/strong/p/tdtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "span style=" font-family:宋体 color:#333333 background:white"高低温试验、温湿度试验、盐雾腐蚀试验、振动试验、跌落试验、压力测试… … /span/p/td/trtrtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333 background:white"理化分析类测试/span/strongstrong/strong/p/tdtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "span style=" font-family:宋体 color:#333333 background:white"重金属检测、成分测试、有毒有害物质… … /span/p/td/trtrtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333 background:white"电磁兼容类测试/span/strongstrong/strong/p/tdtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "span style=" font-family:宋体 color:#333333 background:white"干扰抗干扰… … /span/p/td/trtrtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:宋体 color:#333333 background:white"动力电池类测/span/strongstrong/strong/p/tdtd width="284" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "span style=" font-family:宋体 color:#333333 background:white"浸水测试、防爆测试、针刺、挤压、翻滚… … /span/p/td/trtrtd width="568" colspan="2" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: justify "strongspan style=" font-family:' Helvetica' ,' sans-serif' color:#333333 background:white"etc/span/strong/p/td/tr/tbody/tablep style="text-indent: 21px text-align: justify "span style=" font-family:宋体 color:#333333"氢能源电池的产业化之路是否顺畅,究竟会走向何方?其发展给科学仪器检测市场带来的蛋糕能有多大?相信这些问题不久之后就能得到解答。/span/pp style="text-align: center "span style=" font-family:宋体 color:#333333"img style="max-width: 100% max-height: 100% width: 250px height: 250px " src="https://img1.17img.cn/17img/images/201908/uepic/4234cb64-d712-4e47-bf58-0babb988a6ea.jpg" title="小材子.jpg" alt="小材子.jpg" width="250" height="250" border="0" vspace="0"//span/pp style="text-align: center "strongspan style=" font-family:宋体 color:#333333"欢迎扫码添加仪器信息网材料类大V号小材子:XCZ3i666/span/strong/p
  • 网络会议|第四届“锂离子电池检测技术及应用”欢迎参加
    网络会议大会介绍根据4月6日工信部网站消息,1至2月全国锂电总产量超过82GWh。锂离子电池环节,储能电池产量超过9GWh,新能源汽车动力电池装车量约30GWh。出口贸易稳步增长,1-2月全国锂电出口总额达到357亿元。我国锂离子电池行业保持高速增长态势。锂电池材料关注的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能与材料多种性质相关,没有特别统一的规律,这给电池的研究带来很大挑战。准确和全面理解锂电池材料的构效关系需要综合运用多种检测技术。2022年5月24-26日,仪器信息网与中国化学与物理电源行业协会联合举办第四届“锂离子电池检测技术及应用”网络会议,按主要检测技术分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,促进我国锂电检测市场良性发展。日立专场14:30-15:00锂电结构形貌分析技术专场邀请您参会报名链接:报名信息_网络讲堂_仪器信息网 (instrument.com.cn)END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 锂云科技突破电池快速检测与分选技术,助力电池梯次利用行业革新
    随着电子设备和电动汽车的普及,锂电池的需求量迅猛增长。然而,伴随而来的大量报废电池问题也日益严峻。如何高效、安全、环保地处理这些报废电池,成为当前亟待解决的难题。面对这一挑战,锂云科技团队通过技术创新,成功开发出行业首创的电池机理孪生驱动的数字孪生运维模型,深度刻画电池机理、实现电池快速分选,为电池回收及梯次利用行业提供全新的解决方案。技术创新:高效精准的锂电池检测与分选技术 锂云科技团队开发的机理孪生驱动的退役电池快速检测技术,实现了检测效率提高20倍的突破。传统的满充满放方法不仅耗时,导致企业电费成本、厂房成本、人工成本等居高不下,而该团队的创新技术大幅缩短了检测时间,有效降低企业的成本,帮助企业大幅降本增效。同时,他们开发的高置性电芯一致性快速分选技术,使大规模退役电池筛选的一致性提高80%。通过先进的算法和检测手段,这项技术能够快速、准确地对退役电池进行检测和分类,大大缩短了检测时间,并有效降低了电池成组后的安全性隐患。团队精神:科研实力与环保热情的结合 锂云科技团队的成功离不开每一位成员的努力和奉献。团队负责人表示:“我们非常高兴能够取得这一重要突破,这是团队成员们长期以来刻苦钻研和不懈努力的结果。我们相信,这项技术将为解决锂电池回收和分选难题提供一种全新的思路和方法,强力助力该行业的发展!”未来展望:推动环保事业,助力可持续发展 锂云科技团队的创新成果在锂电池回收和分选领域具有广泛的应用前景。随着技术的不断完善和推广,这项技术将被广泛应用,为解决报废电池带来的环境和资源问题提供有效解决方案。通过这项技术的应用,不仅能减少资源浪费和环境污染,还能极大地提高锂电池回收和再利用的效率,推动我国绿色产业的升级。 锂云科技团队的努力和成就展示了技术创新在环保领域的重要性和巨大潜力。未来,随着更多创新技术的出现和应用,我们有理由相信,电池回收及梯次利用行业将迎来更加光明的未来!
  • 相关检测技术和设备成为开启电池回收百亿市场的关键
    p  在新能源汽车产业繁荣发展的同时,动力电池回收利用问题也已成为业内关注的焦点。无论是从环境保护还是资源最大化利用角度而言,动力电池回收利用都已是箭在弦上,而动力电池回收利用也在逐渐彰显其利用价值。国内机构预测,废旧电池所创造的回收市场规模在2018年将超过52.87亿元,2020年将超过100亿元。/pp  动力电池规模化退役时限渐行渐近。按照新能源汽车的使用周期和我国新能源汽车的市场化进程,今年将是新能源汽车动力电池大规模报废回收布局窗口。/pp  近年来,我国新能源汽车产业发展一直在稳步提升。据统计,2017年我国新能源汽车销量达77.7万辆,截至当年累计保有量约180万辆。而逐渐扩大的新能源汽车体系背后,动力电池报废回收再利用等方面的需求也随之加大。估算显示,动力电池“退役潮”今年将开始爆发,如按70%实施梯次利用计算,2020年将有约6万吨废旧电池等待处理。目前国内的动力电池主要是锂离子电池,其成分中的正极材料有可能造成重金属污染。/pp  在此背景下,我国有关动力蓄电池回收利用的政策不断出台。七部门印发《新能源汽车动力蓄电池回收利用管理暂行办法》,强调落实生产者责任延伸制度,要求汽车生产企业承担动力蓄电池回收的主体责任。随即,工信部公布的《新能源汽车动力蓄电池回收利用溯源管理暂行规定》明确,对动力蓄电池生产、销售、使用、报废、回收、利用等全过程进行信息采集。业内预测,随着相关技术的不断突破,政策发布速度将加快,预计相关标准也将在2018年发布。/pp  一边是蜂拥而至的批量报废,一边是尚处起步的新兴领域,动力电池回收将历经怎样的考验?由于体积大、成分复杂,动力电池回收再利用面临诸多限制和较高技术门槛。诚如电池类型、电池容量和电压平台均存在不小的差异,这是动力电池梯次利用面临的第一道坎,因此如何科学评估退役电池也成为决定电池“去哪儿”的第一关。同时我国没有出台动力电池的统一标准,要大范围集中利用还有困难。/pp  除了技术难题外,在多位业内人士看来,动力电池回收问题的焦点在于谁来收、怎么收及采用何种模式回收均不确定。当前倡导退役动力电池先梯次利用再报废回收的原则,并且要求整车企业作为动力电池回收主体,承担动力电池回收责任。而在回收模式上,因“退役潮”暂未大规模到来,不少企业面临盈利难题,短期内仍难实现规模效应。/pp  尽管起步艰难,前景却被业内普遍看好。甚至有机构预测,动力电池回收市场将形成百亿元新“风口”。这也是目前除了车企、电池企业、原材料回收企业,资本也大举进军该领域的原因,他们也在谋求这一领域的新机遇。迄今,新能源汽车动力电池的梯次利用和回收利用有望根据适用场景依次展开,新能源汽车产业链企业已经积极布局电池回收利用领域。/pp  其中,部分车企选择以合作的形式,联手其他公司共同推进国内动力电池回收再利用等相关事项。长安、比亚迪、银隆新能源等16家整车及电池企业与动力电池回收利用大户中国铁塔公司达成合作,解决退役动力电池回收再利用等问题。除了整车企业,电池生产企业也对此进行了积极探索,宁德时代、中航锂电、比克电池、国轩高科等企业都建立了电池回收网络,开始布局动力电池回收业务。/pp span style="color: rgb(0, 176, 240) " 截至目前,仅有少数车企开展了相关布局。相对于即将进入市场的报废动力电池总量来说,仍然是“杯水车薪”,总体而言,回收主体还处于缺位状态。因而,不论是市场规模还是处理技术都需要时间来完善。但业界一种普遍的观点是,控制退役电池的品质和安全是梯次利用技术的难点,必须研发相关检测技术和设备,才能准确判断退役电池能否进入梯次利用市场,并确定应用场景。/span/ppbr//p
  • 瘦肉精快速检测仪-瘦肉精快速检测仪-瘦肉精快速检测仪
    瘦肉精快速检测仪-瘦肉精快速检测仪-瘦肉精快速检测仪【霍尔德】瘦肉精检测仪可现场快速检测盐酸克伦特罗、莱克多巴胺、沙丁胺醇。仪器预留其他项目检测程序和端口,根据日后需求可方便的自主增加检测项目。日后可升级为检测抗生素、兽药残留、动物疫病、病害肉、的综合类型仪器。 一、产品性能: 1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速上传数据。 2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。 3、新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。 4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 5、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 6、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。 7、仪器内置摄像头拍照,可显示金标卡实时图像,系统自动分析并呈现出CT曲线图,CT线自动识别,无需手动调整。 8、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。 9、样品处理简单省力,整体操作快速、安全、便捷。 10、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 11、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。 12、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。 13、仪器具有重新校准、锁定、恢复出厂设置功能。 14、结果判定线可修改,对照值标定值可保存,断电不丢失数据。 15、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。 二、主要参数: 1、主控芯片采用ARMCortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。 4、光源亮度自动调节与校准 5、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。。 6、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 7、不间断进样,连续检测 8、样本编号自动累加。 9、检测项目可扩充。 10、检测结果可批量打印,批量上传。 11、检测结果为Excel表格,连接电脑即可拷贝。 12、检测结果存储容量20万条 13、支持U盘存储,标准USB接口,免驱动安装。 14、固件可升级
  • 飞纳电镜点亮亚太电池展,带来锂电池材料高效检测方案
    8 月 16 日 - 18 日,2017 第二届亚太电池技术展览会在广州琶洲国际会展中心举行。飞纳电镜作为锂电材料形貌成份高效检测工具,盛装出席此次会议,现场展示了飞纳电镜高分辨率专业版 Phenom Pro 和飞纳电镜大样品室卓越版 Phenom XL,其中 Phenom XL 集成了背散射电子成像,二次电子成像与能谱分析等功能,两台台式扫描电镜吸引了众多参观者的目光。由于新能源汽车的高速增长,各锂电池企业纷纷扩产。相对以往单纯追求产能的突破外,行业内先行企业把目光投射到材料研发带来的电池产品性能提升上。锂电池主要由五部分构成,即正极材料、负极材料、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂电池最为关键的原材料,占锂电池成本的 30% 以上。材料的研发少不了一双“眼睛”,这双眼睛就是扫描电镜。扫描电镜可以对锂电池材料的正极材料,负极材料,隔膜,极片等进行微观的形貌检测及元素成份分析。飞纳台式扫描电镜使用独特的 CeB6 灯丝,提高了扫描电镜的分辨率,保证了图像质量。由于操作简单,维护方便,抽真空时间短,大大地提高检测效率,受到锂电池企业客户的青睐。设计精巧,完全防震,省去了客户为精密仪器安装环境要求高的担忧。即时在展会现场喧闹的环境中,飞纳电镜仍然能高效运行,30 秒成像,持续稳定地工作。锂电池正极材料由于中国大型锂电正极材料近十年迅速发展,产品质量大幅度提高,并具备较强的成本优势,近年来日韩锂电企业开始逐步从中国进口锂电正极材料,据悉目前中国锂电正极材料市场份额已占据全球一半左右,未来发展空间仍广阔。飞纳电镜拍摄的锂电池正极材料锂电池负极材料负极材料作为锂电池的四大关键材料之一,决定了锂电池充放电效率、循环寿命等性能。锂电池负极材料国内技术成熟,碳材料种类繁多,成本比重最低,在 5-10% 左右。现阶段负极材料研究的主要方向如下:石墨化碳材料、无定型碳材料、氮化物、硅基材料、锡基材料、新型合金和其他材料。飞纳电镜拍摄的锂电池负极材料隔膜隔膜在成本构成上仅次于正极材料,占 20-30%,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能。飞纳电镜拍摄的锂电池隔膜更多体验,尽在飞纳电镜飞纳台式扫描电镜 VR 之旅手套箱版台式电镜有些锂电池材料很容易与空气发生反应,影响形貌成份分析,飞纳电镜发布全球首款手套箱版台式电镜,实现扫描电镜放置在手套箱内,制样-观察全程惰性气体保护。原位通电样品杯允许用户将电探针连接到样品进行原位测量
  • 食品检测仪器设备-食品检测仪器设备-食品检测仪器设备
    食品检测仪器设备-食品检测仪器设备-食品检测仪器设备【霍尔德】多功能食品安全检测仪为集成化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。 一、食品检测仪器设备应用范围: 多功能食品安全检测仪可现场快速检测非食用化学物质、滥用食品添加剂、农药残留、兽药残留、重金属、营养强化剂、抗生素类残留、激素类残留、真菌毒素类残留、化学类残留等200多项目的快速定性定量检测。如甲醛、二氧化硫、吊白块、过氧化氢、亚硝酸盐、蛋白质、蜂蜜果糖和葡萄糖、蜂蜜中蔗糖、过氧化值、酸价、白酒中的杂醇油、铅、汞砷、锡、镉、硼砂、食盐中亚铁氰化钾、食盐中碘、过氧化苯甲酰、红色色素(胭脂红、苋菜红)、黄色色素(柠檬黄、日落黄)、蓝色色素(亮蓝)、食醋的总酸、酱油的总酸、苯甲酸钠、甜蜜素、木耳中硫酸镁、芝麻油纯度、油脂丙二醛、溴酸钾、余氯、谷氨酸钠、挥发性盐基氮、山梨酸、糖精钠、饮料中维C、酱油氨基酸态氮、肉制品酸价、水中氰化物、水发产品中组胺、蜂蜜定粉酶、蜂蜜酸度、罗丹明B、三聚氰胺、盐酸克伦特罗、沙丁胺醇、莱克多巴胺、四环素类、硝基呋喃类、磺胺类、沙星类、氯霉素、孔雀石绿磺胺类、猪蓝耳病毒、猪瘟病毒、黄曲霉毒素B1、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒、鸡禽流感等快速检测。 二、食品检测仪器设备产品性能: 1、安卓智能操作系统,采用更加效率高和人性化操作,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速上传数据。 2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复功能。 3、新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。 4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 5、一体化主机,包含食品安全检测模块、多通道农药残留检测模块、胶体金免疫层析检测模块。 6、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 7、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。 8、食品安全检测仪CT线自动识别,无需手动调整。 9、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。 10、样品处理简单省力,整体操作快速、安全、便捷。 11、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。 12、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 13、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。 14、仪器具有重新校准、锁定、恢复出厂设置功能。 15、结果判定线可修改,对照值标定值可保存,断电不丢失数据。 16、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。 三、食品检测仪器设备主要参数: 1、主控芯片采用ARMCortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。 4、四波长冷光源,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专业光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。 5、光源亮度自动调节与校准 6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。 7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、不间断进样,连续检测 9、样本编号自动累加。 10、检测项目可扩充。 11、检测结果可批量打印,批量上传。 12、检测结果为Excel表格,连接电脑即可拷贝。 13、检测结果存储容量20万条 14、支持U盘存储,标准USB接口,免驱动安装。 15、固件可升级 16、仪器尺寸:43×35×20cm,主机净重:5.1kg
  • 拉萨81套中标气体类的检测仪,实力所在
    在拉萨中标气体检测仪产品 ,每种81套,真正的实力,真正的优惠价,最低价!!!!ET系列气体检测仪ET系列气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, ET具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:24个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH7:尺寸:180mm(长)× 110mm(宽)× 80mm(厚)8:重量:1Kg(带充电器) 可以任意选择四种传感器,组成四合一气体分析仪检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路180号电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com
  • 浅谈现有锂离子电池检测标准
    p  由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。/pp  strong1 电池安全性能检测标准简介/strong/pp  目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。/pp  应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3)/pp  和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。/pp  目前,国内外常用的锂离子电池标准列表归纳于表1。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title="003.jpg.png" alt="003.jpg.png"//pp  strong2 现有标准的侧重点分析/strong/pp  现行的主要标准可概括为以下几类:/pp  strong2.1 主要针对运输过程中的外部环境和机械振动/strong/pp  如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。/pp  strong2.2 主要针对设计和制造过程/strong/pp  如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。/pp  strong2.3 主要针对锂离子电池电性能和安全性/strong/pp  如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。/pp  strong3 现有标准的不足/strong/pp  过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。/pp  根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。/pp  迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。/pp  在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。/pp  strong4 结束语/strongbr//pp  安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。/pp  随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。/pp  span style="color: rgb(127, 127, 127) "i文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局)/i/span/p
  • 氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
    为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。 上篇中,我们展示了岛津ct在正极材料和负极材料观测方面的应用。本篇我们将展示岛津ct观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池ct的观察 在成品动力锂电池检查中,ct检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津smx-225ct fpd hr plus微焦点x射线ct系统 ct检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察 目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用ct对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的ct图像。 图1 18650动力锂电池ct图像 图2是方形动力锂电池的ct扫描图像,外形尺寸为l150mm´w100mm´h26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池ct图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,ct检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池ct图像 电池内部尺寸测量 在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点ct对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的ct观察 通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。x射线微焦点ct作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2d截面图像和3d图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验ct测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。 图7 动力锂电池充放电实验ct观察 通过以上案例展示,岛津x射线微焦点ct不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。上篇中,上篇中,我们展示了岛津CT在正极材料和负极材料观测方面的应用。本篇我们将展示岛津CT观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池CT的观察在成品动力锂电池检查中,CT检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津SMX-225CT FPD HR Plus微焦点X射线CT系统 CT检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用CT对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的CT图像。 图1 18650动力锂电池CT图像 图2是方形动力锂电池的CT扫描图像,外形尺寸为L150mm´W100mm´H26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池CT图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,CT检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池CT图像 电池内部尺寸测量在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点CT对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。 图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的CT观察通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。X射线微焦点CT作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2D截面图像和3D图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验CT测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。图7 动力锂电池充放电实验CT观察 通过以上案例展示,岛津X射线微焦点CT不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制