当前位置: 仪器信息网 > 行业主题 > >

电池径分析仪

仪器信息网电池径分析仪专题为您提供2024年最新电池径分析仪价格报价、厂家品牌的相关信息, 包括电池径分析仪参数、型号等,不管是国产,还是进口品牌的电池径分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池径分析仪相关的耗材配件、试剂标物,还有电池径分析仪相关的最新资讯、资料,以及电池径分析仪相关的解决方案。

电池径分析仪相关的资讯

  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • 粒度分析仪 | 电池行业小助手
    电池材料粒径及其分布影响锂离子的扩散具有单分散粒径分布的颗粒因较高的比表面积而与电解质溶液产生较多的相互作用,从而决定了在短时间内的高能释放。大颗粒和小颗粒混合产生较高的堆积密度,从而允许生产较大的电极,有助于提高存储能力电导率和离子导电性差是锂氧化物阴极的主要缺点,炭黑和石墨等碳基产品有助于提高电导率,且涉及锂离子电池的电化学氧化还原过程。碳基产品通过填充活性材料颗粒之间的自由空间,从而提高电极导电性。作为添加剂的碳应与阴极材料形成均匀的混合物,以获得稳定的电极浆料,并形成均匀涂层。通过测量不同类型颗粒材料间的zeta电位选择静电相互作用最大的组合,最好粒子具有相反的表面电荷。湿法/干法—2合1设计40nm-0.25mmPSA激光粒度仪小巧,随时可以测量!• 干/湿法复合测试仪器 • 固态激光 坚固,耐用!• 光学部件固定在仪器金属基座上 • 无需频繁地重复校正 • 耐振动纳米粒度及Zeta电位分析仪0.3nm-10 µmLitesizer模式方法优势粒径及其分布动态光散射(DLS)3个测试角度Zeta 电位电泳光散射(ELS)信号处理专利 cmPALS 特有的Omega样品池分子量静态光散射(SLS)量程可至20 MDa透过率透光法用于连续监测测量过程中颗粒的沉降和聚集折光率焦点散射强度DLS 及 ELS中的关键参数 市场上仅有的配备该功能的仪器(专利)电动固体表面分析仪Surpass 32 分钟内即可测得结果 自动pH扫描和检测等电点的信息研究表面化学 记录液-固表面吸附动力学以研究表面相互作用 不同样品池用于不用形态的材料燃料电池的催化剂和膜图中是发生在阴极的反应:催化剂促进离子(H+)、电子和氧气(氧化剂)的反应,形成水或可能的其他产物的过程燃料电池应用相当广泛,具有工作温度低和启动时间短的优势。传导膜通常由碳载体、铂粒子、离子导电膜和粘合剂组成。碳载体作为电导体(允许电子通过),而铂粒子作为催化反应位点,离子膜为质子传导提供了途径。测试材料与方法铂碳(Pt/C)催化剂的颗粒大小影响催化剂与离子膜之间的相互作用、催化剂层的厚度、离子分布、氧的扩散,从而也影响最终电池的性能。zeta电位是影响粒子团聚行为的一个参数,通过zeta电位可以了解胶体分散体的稳定性。结果与讨论粒径——炭黑与铂炭催化剂图1. 炭黑和Pt/C催化剂的水动力直径(HDD)随pH的变化图1 显示了两种不同分散剂中碳和Pt/C催化剂流体力学平均直径(HDD)随pH的变化。在0.01 mol/L KCl和pH 5时,炭黑具有较高的团聚倾向(HDD 1μm)。Pt/C催化剂的团聚体尺寸在pH 3-7 (HDD≅ 0.3 μm)范围内保持不变,与水中碳的团聚体尺寸相当。图2. DLS法测定pH为3.5时炭黑和Pt/C催化剂样品的粒径分布Pt/C催化剂的粒径分布较窄,且两种分散剂内的粒径均较小,碳的粒径和多分散度指数(PDI)均显著增加。在Pt/C催化剂中,Pt涂层可降低或抑制pH依赖性碳团的形成。图3. 使用激光衍射法对炭黑和铂炭催化剂颗粒进行测量从体积分布来看,无催化剂炭黑的平均直径明显更高,形成更大的团块。由跨度值表示的粒径分布宽度在两个样品之间是可比较的。铂颗粒增加了碳载体的表面积,提高了反应速率,有利于催化活性。Zeta电位——炭黑与铂炭催化剂图4. 炭黑和Pt/C催化剂zeta电位随pH的变化样品的zeta电位的绝对值随pH的降低而减小,pH低于4时加速减小。尤其是对于炭黑,zeta电位的绝对值小表明颗粒间的排斥力较小,颗粒开始凝聚。虽然两个样本的zeta电位都有下降的趋势,Pt / C催化剂更负 (- 40 mV),与炭黑相比表明更高的稳定性和形成更小的团聚体的概率。图5. 参考膜和不同碳含量的涂层膜表面zeta电位随pH的变化Zeta电位——离子膜图5. 参考膜和不同碳含量的涂层膜表面zeta电位随pH的变化图5显示了zeta电位随超过3的pH值的变化关系。IEP从参考膜的pH值1.5转移到较高的pH值3.5-4。zeta电位的变化表明涂层发生了变化。此外,两种覆膜的IEP表现出轻微的差异。对于含碳量较低的膜(灰色),IEP发生在稍低的pH值(3.5)。在该区域,通过查看pH值低于4的Litesizer 500数据,Pt/C催化剂的团聚体尺寸较小(HDD≅0.3 μm)。这表明,在该酸性区域进行涂层,最终涂层具有较好的均匀性。涂层的均匀性影响催化剂层的功能。图6.pH=4时,参考膜和不同碳含量的涂层膜zeta电位随时间的变化在第二次测量中,通过zeta电位随时间变化的测试,考察了pH为4时催化剂涂层在水中的稳定性。被涂膜的zeta电位向更小的负值偏移,证实了发生了涂层。在20分钟的平衡时间后,膜达到一个平台,这表明涂层的稳定性随着时间的推移。总结燃料电池中质子交换膜的效率与催化剂的粒径和稳定性密切相关。通过不同的pH值下对颗粒进行粒径及zeta电位研究可以找到合适的pH值,保证之后涂覆工艺的效果。通过Litesizer以及PSA的配合,充分了解了该催化剂中颗粒粒径的分布,并研究了小颗粒团聚之后的大小。通过Surpass 3测得的IEP位移和表面zeta电位值不仅提供了涂层的信息,而且还显示了碳含量对涂层的影响。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 锂离子电池· 燃料电池用 X射线异物分析仪「SEA-Hybrid」发售
    为确保电池容量、防止发热起火、成品率改善等作贡献 精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。新产品「SEA-Hybrid」可快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20&mu m大小的微小金属异物并进行元素分析。 X射线异物分析仪 「SEA-Hybrid」  构成锂离子电池和燃料电池的电极材料和隔膜中如果掺有金属异物的话,不仅会降低电池容量及缩短使用寿命,还会导致发热起火。SIINT致力于电池中的金属异物检测仪的开发,在今年9月份日本的分析展上展出了样机,现已经投产并开始销售。  「SEA-Hybrid」把电极板和隔膜以及装在容器里的活性物质放到仪器中,选择检查程序后,只需点击开始测量,从X射线透视图像的拍摄到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出,由此可简单地知道金属异物的掺入途径。因为无需前处理且完全自动,所以可以方便地进行抽样检查和故障分析。SIINT将销售此仪器到电池厂家、原材料厂家等,为电池的品质提高作贡献。 【SEA-Hybrid的主要特征】 1.  可在几分钟内对250× 200mm大小的样品检测出20&mu m大小的金属异物例如要检测250× 200mm(约B5尺寸)大小的电池电极板中20&mu m大小的金属异物,以往的X射线透视检查仪需要十小时左右的摄像时间。SIINT通过新型X射线透视方法的开发,成功缩短了时间。检测速度成功达到了以往的100倍以上,可在3~10分钟内完成。 2.电极板的微小金属异物也可进行元素分析 对样品中检测出的金属异物可自动使用X射线荧光法进行元素分析。以往,对于电极板中可能存在的20&mu m左右的微小金属异物,只能分析存在于样品表面的异物。这是由于存在于内部时,异物产生的X射线荧光被基材所吸收,信号强度非常微弱。「SEA-Hybrid」采用独自研发的高能量X射线光学系统,可对电极・ 有机薄膜内部所含的20&mu m大小的微小金属异物进行元素分析。 3. 一体化的操作,提高作业效率与以往的技术相比,金属异物的检测速度、元素分析速度大幅提高,并且把显微镜等都组合在一台仪器内,各个系统联动可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。 【SEA-Hybrid的主要规格】被测样品尺寸宽250× 深200mm异物检测时间3~10分钟左右(250× 200mm全面摄像、20&mu m大小异物的检测时间)异物元素分析时间1~4分钟左右 每检测出1个(根据异物尺寸及元素的不同,有时会发生变化)装置X射线发生系统冷却用水仪器自身尺寸1340(宽)× 1000(深)× 1550(高)mm 【价格】 5,800万日元~(不含税) 【销售目标台数】 20台(2012年度) 以上本产品的咨询方式中国:精工盈司电子科技(上海)有限公司TEL:021-50273533FAX:021-50273733MAIL:sales@siint.com.cn日本:【媒体宣传】精工电子有限公司综合企划本部 秘书广告部 井尾、森TEL:043-211-1185 【客户】精工电子纳米科技有限公司分析营业部 营业二科 浅井、村松TEL: 03-6280-0077http://www.siint.com/
  • 绿色革新:高频红外碳硫分析仪助力电池回收,共创绿色未来
    在追求可持续发展的今天,电池回收已成为环保领域的重要议题。随着电动汽车、智能手机等电子产品的普及,废旧电池的数量急剧增加,如何高效、环保地处理这些废旧电池,已成为摆在我们面前的一大挑战。幸运的是,高频红外碳硫分析仪的出现,为电池回收行业带来了创新的变化。精准检测,高效回收高频红外碳硫分析仪以其独特的红外光谱分析技术,能够精准测定电池材料中的碳、硫含量。在电池回收过程中,这些元素的含量是评估电池材料再利用价值的重要指标。通过高频红外碳硫分析仪的检测,我们可以快速了解电池材料的成分,为后续的回收处理提供科学依据。环保先行,绿色制造电池回收不仅关乎资源的再利用,更与环境保护息息相关。废旧电池中含有的重金属等有害物质如果处理不当,将严重污染环境。高频红外碳硫分析仪的应用,使得我们能够更加精准地控制回收过程中的杂质含量,减少环境污染的风险。同时,通过对回收材料的再利用,我们可以降低新电池的生产成本,实现绿色制造,为环保事业贡献力量。技术领先,创新驱动高频红外碳硫分析仪凭借其先进的技术和卓越的性能,在电池回收领域赢得了广泛的认可。它不仅能够快速、准确地检测电池材料中的碳、硫含量,还具备高度的自动化和智能化水平,提高了回收处理的效率和准确性。同时,随着技术的不断创新和升级,高频红外碳硫分析仪的性能将得到进一步提升,为电池回收行业带来更多的可能性。共创绿色未来高频红外碳硫分析仪的应用,让我们看到了电池回收行业的巨大潜力和广阔前景。它将继续引领电池回收行业的发展方向,推动环保事业的进步。让我们携手共进,共同创造一个绿色、美好的未来!在这个充满挑战和机遇的时代,高频红外碳硫分析仪以其卓越的性能和广泛的应用前景,成为了电池回收行业的得力助手。让我们共同期待它在未来发挥更大的作用,为环保事业贡献更多的力量!高频红外碳硫分析仪锐意5s高精度、宽量程、高可靠性及优异的长期稳定性多气室联合检测模块,保证全量程含量的精准检测:全新固态光源,长期稳定性更优异全新数字压力控制技术,提升了气路流量的稳定性全新数字功率控制技术,精准控制样品加热温度:具有自动气密性检测功能可选紫外波段检测SO2,屏蔽水汽干扰可选远程诊断功能。工作原理:经过净化后的纯净氧气进入燃烧室,通过高频炉感应加热,使得样品中的碳(C)、硫(S)在富氧条件下转化成CO2和SO2、所生成的CO2和SO2通过除尘除水净化装置后进入到相应的光学检测单元进行检测,检测信号通过数据处理后即可得到碳、硫元素的百分含量,含有CO2、SO2和O2的残余气体经过吸收装置后由专用管路排出。
  • 霍普斯氢燃料电池用氢质量分析仪亮相第二十一届中国国际环保展览会
    第二十一届中国国际环保展览会是由生态环境部、北京市人民政府等部门支持,中国环境保护产业协会主办的的展览会。展览会将于2023年4月13日至15日在北京中国国际展览中心(朝阳馆)举办本次展会是我司对外宣传的窗口,再一次向广大客户彰显了良好的公司形象和风貌,很多客户都现场进行了咨询,对霍普斯所展出的产品表示了极大的兴趣,希望通过这次机会进行深入合作。未来,我司将一如既往,不忘初心,砥砺前行,致力于成为行业内领先的环境监测与工业过程分析专家!氢燃料电池用氢质量分析仪产品介绍产品概述 采用色谱原理搭配多种高性能检测器,监测高纯气及超纯气中的微(痕)量杂质。分析仪本体防爆,采用多柱箱多流路并行设计,功能模块化,可实现各种复杂的应用。分析仪管路全惰性化及独特的防反渗技术,提高检测精度及重复性,检出限可达到ppb级。 传承霍普斯工业设计理念,预处理搭配阀柱系统及中心切割技术,实现一台表就可以对高纯氢、高纯氧、高纯氩、高纯氦、高纯二氧化碳等高纯气体分析。监测参数1. GB/T 37244-2018 (H2、He、N2、O2、Ar、CH4、CO、CO2、总硫、甲酸、甲醛、氨气等)2. GB/T 3634.2-2011( H2、N2、O2、Ar、CH4、CO、CO2 等)应用领域1. 电解水制氢;2. 甲醇制氢;3. 焦炉煤气制氢;4.变压吸附制氢;5.氢燃料电池用氢等;产品特点1. 分析仪采用气浴加热,柱箱始终保持正压,避免氢气聚集,安全系数更高;2. 阀柱系统位于气浴加热的柱箱内,受热更加均匀,分析仪稳定性和重复性更好;3. 分析仪配置节气模块:标气、样气及载气耗气量低,经济性高;4. 氧氩低温分离模块可使氧气和氩气达到良好的分离效果;5. 多阀多柱的中心切割与反吹系统。 优秀的产品,专业的服务,吸引来许多观众的驻足,走进展位,了解产品详情,我们的工作人员仔细的聆听、耐心的解答、用专业化的角度和眼光为进入到展位的浏览者给与指导。
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 手持材料分析光谱仪|怎么区分锂电池分类的成分
    近年来,随着全球新能源电动汽车的快速发展,锂电池的消耗量也迅速增加,镍、钴和稀有金属等原材料作为制造电池的常用材料,其需求量也骤然激增。面对与日俱增的需求和全球供应链的紧张,许多国家出现了原材料短缺的问题,废旧锂电池回收是获取原材料的重要来源之一。回收锂电池行业虽然热门,但是它的“水也很深",想要赚大钱不仅要有专业的回收设备,还要懂得行内话,了解锂电回收的“行话",还能让你判断对方在圈内的“道行"。手持材料分析光谱仪|怎么区分锂电池分类的成分-1、按正极材料分:“铁锂":即磷酸铁锂电池;“钴锂":即钴酸锂电池;“锰锂":即锰酸锂电池;“三元":即三元锂电池;手持材料分析光谱仪|怎么区分锂电池分类的成分-2、按产品形态分:“铝壳":即方形锂电池“钢壳":即圆柱锂电池;“聚合物/铝塑膜":即软包锂电池。手持材料分析光谱仪|怎么区分锂电池分类的成分-3、按用途分:消费类锂电池;动力锂电池;储能锂电池。可以为锂电回收行业提供系统的解决方案,为了帮助刚入行或者想要入行的客户快速了解锂电回收行业, 不同类型的锂电池价格可是天差地别,区分锂电池的种类,来给废料定价,是达到现场结算的基础;快速收货,以免上当,是回收的目的!千万别把铁锂的当成三元的带回家!手持光谱仪正极片及粉中镍(Ni)、钴(Co)、锰(Mn)等元素的成分检测;废旧电池负极材料铜箔中铜(Cu)含量的检测、电池金属外壳及粉料中成分检测;可以对大量废旧电池进行现场检测和快速分类;数秒便可判断出废旧电池的型号和成分含量;为购销双方在交易时,作出迅速判断提供必要的信息依据林巴斯合金分析仪是一种XRF光谱分析技术,可用于确定物质里的特定元素,同时将其量化。在这个飞速发展的时代,无论是什么行业,对于效率的要求就非常高了。  SciAps手持合金分析仪之所以被各个厂家和企业青睐,SciAps手持式合金分析仪设备耗电量低,适合野外检测,避测过程中电量不足导致实验中断的现象发生,弥补了大多数合金分析仪续航时间短这一共性缺陷。SciAps手持式合金分析仪重量仅有1.54公斤,这一特性也让它在野外检测工作中奠更受欢迎。
  • 岛津应用:电池材料的热特性评价分析
    锂离子电池被广泛应用于手机以及笔记本电脑等家用电器中。今后,作为交通工具的飞机、混合动力车(HV)以及电动车(EV)等对锂离子电池的需求也将显著增加,为此,锂离子电池需要具备更高的功率、效率,以及更长的使用寿命、更高的安全性。锂离子电池由阳极、阴极、电解液、分离器等部分组成,为提高性能,需要使用仪器对每个组成部分以及整个电池进行详细的特性评价和解析。本文向您介绍使用热分析法对锂离子电池进行热特性评价的示例。岛津热分析仪60系列 了解详情,敬请点击《电池材料的热特性评价分析》 关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 约稿|锂离子电池材料晶体结构分析技术探讨
    p style="text-indent: 2em "span style="text-indent: 2em "据Technavio最新报告数据,锂离子电池全球市场规模在2020-2024年期间有可能增长478.1亿美元,且市场的增长动力将在预测期内加速。/spanbr//pp style="text-indent: 2em "无论是锂电实验室研究,还是商业化锂电失效分析,锂电材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp style="text-indent: 2em "锂电材料晶体结构表征手段主要包括 X 射线衍射技术(XRD)、扩展 X 射线吸收精细谱(EXAFS)、中子衍射(neutron diffraction)、核磁共振(NMR)、电镜(EM)、拉曼散射(Raman)等。/pp style="text-indent: 2em "XRD是目前应用最为广泛的研究晶体结构的技术。而马尔文帕纳科(Malvern Panalytical )便是国内XRD市场主流品牌之一,近日,仪器信息网有幸邀请马尔文帕纳科分享了针对锂电材料晶体结构分析技术的探讨及技术展望。/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) font-size: 18px "istrong专题约稿|锂离子电池材料晶体结构分析技术探讨/strong/i/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "——“锂电检测技术系列——晶体结构分析技术”专题约稿/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "作者:马尔文帕纳科(Malvern Panalytical )/span/pp style="text-indent: 2em "strongInstrument:/strong贵司在锂电材料晶体结构分析方面,可以提供哪些仪器技术?有哪些技术优势?/pp style="text-indent: 2em "strongMalvern Panalytical:/strong锂电检测领域,马尔文帕纳科不仅可以提供电池检测需要的精密仪器,同时,还可以为相关用户获取高质量数据提供专业技术支持。具体而言,即针对不同的电池类型提供对应的解决方案。比如针对生产软包电池,马尔文帕纳科可以提供硬射线(银靶)的高端解决方案;针对原位充放电过程,使用马尔文帕纳科先进的GaliPIX探测器可以每30秒在线测量一次,对铜到银的辐射达100%的接收效率,捕捉到原位充放电过程中晶体相变的细节,进而了解电池相变引起的膨胀和收缩。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/31848243-1328-476c-8df2-fc26e7dbdc18.jpg" title="1.png" alt="1.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "装载了电池样品的Empyrean衍射仪/span/pp style="text-indent: 2em "上图是马尔文帕纳科荷兰实验室对电池进行分析使用的仪器照片和电池样品照片。该仪器使用银靶辐射作为入射光源,光管发出的发散X射线需经过入射光路专用的银靶聚焦光反射镜反射,转化为焦点在探测器上的高强度聚焦光束,电池样品垂直固定在样品台上,光束穿透样品发生衍射,衍射光路使用CdTe重元素半导体感应芯片的GaliPIX3D矩阵探测器采集衍射信号,整套光路为透射几何。实测电池样品为商用方型手机电池。充放电循环设置为3.2-4.2V,1/3C-rate,共4循环。单次衍射扫描总时间为5分钟,实验总计14小时。/pp style="text-indent: 2em "如果用户没有软包电池的样品台,马尔文帕纳科可以为用户提供一个纽扣电池结构的原位充放电样品池,测试您的正负极材料。同时也可以提供加热和冷却选项。不同类型电池样品的解决方案如下表:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 302px " src="https://img1.17img.cn/17img/images/202005/uepic/1ef962a3-2486-4f22-bb67-36e136d13e1e.jpg" title="2.png" alt="2.png" width="600" height="302" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "马尔文帕纳科的主要优势是提供高质量数据,以及切实有效的解决方案,有助于用户电池材料研究及加工工艺改善,或帮助科研用户发表高质量文章。/span/pp style="text-indent: 2em "strongInstrument:/strong strong锂电检测领域主要用户分布于哪些领域?有哪些典型用户?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong马尔文帕纳科用户广泛分布在工业及学术领域。工业领域方面,中国电池行业非常成熟,如比亚迪、CATL等遍布全球的知名公司都是马尔文帕纳科的用户,工业领域通过使用马尔文帕纳科的新技术系统,不断提升电池的质量和性能。学术领域,主要是小规模开发新技术的用户,中国高校处于电池研究的前沿,研究人员正在利用马尔文帕纳科的系统来不断进行新材料的研究开发。/pp style="text-indent: 2em "strongInstrument/strong:strong贵公司针对锂电材料晶体结构分析开发了哪些应用解决方案?/strong/pp style="text-indent: 2em "strongMalvern Panalytical:/strong 马尔文帕纳科的Empyrean XRD平台以其优异性能和灵活性而闻名于世。结合马尔文帕纳科HighScore Plus软件,可以用于专门定制分析电池材料,用户可以从合成阶段到组装电池全流程分析电池材料。利用对应的解决方案,用户可以研究创新正极材料的晶体结构,可以测量合成石墨负极的石墨化程度,可以研究加热或冷却时这些材料的变化;对于组装好的电池,还可以原位测量和分析失效原因,并将这些失效与底层的晶体结构变化联系起来。同时,马尔文帕纳科不仅提供硬件和软件方案,还将提供专业知识和技术支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 146px " src="https://img1.17img.cn/17img/images/202005/uepic/c86492d7-c700-41de-9ef7-79f6185b453e.jpg" title="3.png" alt="3.png" width="600" height="146" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em "解决方案免费获取链接:/spanspan style="text-indent: 0em text-decoration: underline "a href="https://www.instrument.com.cn/application/Solution-926077.html" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 0em color: rgb(0, 176, 240) "链接/span/a/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 151px " src="https://img1.17img.cn/17img/images/202005/uepic/5dbe84d2-b164-421b-b6d0-c26224560fdb.jpg" title="4.png" alt="4.png" width="600" height="151" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em "解决方案免费获取链接:/spana href="https://www.instrument.com.cn/application/Solution-926219.html" target="_blank" style="text-indent: 0em color: rgb(0, 176, 240) "链接/a/pp style="text-indent: 2em "strongInstrument/strongstrong:近两年来,贵公司在锂电领域的业界表现如何?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong锂离子电池领域,马尔文帕纳科是X射线衍射解决方案的技术领导者。中国70%的大型电池厂家使用马尔文帕纳科的激光粒度仪与X射线系统来表征电池材料粒度及粒度分布与晶体结构。在研究中,马尔文帕纳科的原位XRD解决方案与GaliPIX探测器设置了很高的基准,该基准也是目前市场上其他产品无法企及的。/pp style="text-indent: 2em "strongInstrument:/strongstrong贵公司如何看待锂电市场为仪器企业带来的机遇?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong随着锂离子电池市场的快速发展,特别是在中国,仪器制造商的前景十分广阔。整体的仪器市场会有高增长的同时,对仪器质量和服务支持的需求也会很高。因此,只有拥有良好基础并做好充足准备的公司才能更好的把握锂电发展带来的机遇。/pp style="text-indent: 2em "strongInstrument:/strongstrong贵公司将采取哪些措施加强对锂电领域的拓展?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong马尔文帕纳科将完全以客户为中心,不断扩展马尔文帕纳科的服务支持和专家网络。由于电池技术仍在不断发展,马尔文帕纳科将不断调整已有的解决方案,以应对新技术引入带来的挑战,使马尔文帕纳科的客户能够缩短开发过程,并在工业规模扩大期间获得正确的解决方案。/pp style="text-indent: 2em "strong附1:马尔文帕纳科X射线衍射仪产品系列/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 267px " src="https://img1.17img.cn/17img/images/202005/uepic/50b4685a-3b98-40a3-a9bb-2f7f932d2190.jpg" title="5.png" alt="5.png" width="500" height="267" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "Empyrean 锐影系列多功能X射线衍射仪/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 161px " src="https://img1.17img.cn/17img/images/202005/uepic/23284c83-b66f-4f81-bb0c-91b0c5e5ce59.jpg" title="6.png" alt="6.png" width="500" height="161" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Aeris 系列台式X射线衍射仪/span/pp style="text-indent: 2em "strong附2:/strongspan style="text-indent: 2em " /spanspan style="color: rgb(0, 0, 0) "strong style="text-indent: 2em color: rgb(255, 0, 0) font-family: 宋体, " arial="" margin:="" padding:=""锂电检测系类专题约稿征集中/strong/span/pdiv class="ContL" id="newContent" style="margin: 0px padding: 0px color: rgb(68, 68, 68) line-height: 26px " arial="" white-space:=""p style="margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em "span style="margin: 0px padding: 0px text-indent: 2em "为促进锂电检测技术发展,近期,器信息网结合锂离子电池检测项目品类,从2019年起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) "(锂电检测系列专题内容约稿征集进行中,欢迎投稿:/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline "15311451191,yanglz@instrument.com.cn/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) ")/span/ptable border="0" cellspacing="0" cellpadding="0" style="margin: 0px padding: 0px font-family: Arial, tahoma font-size: 12px " align="center"tbody style="margin: 0px padding: 0px "tr class="firstRow" style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "系列序号/span/strong/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "专题链接/span/strong/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "1/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——电性能检测技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian1" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "2/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——形貌分析技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian2" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "3/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——成分分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian3" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "4/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——晶体结构分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月上线/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "5/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——X射线光电子能谱分析技术/span/p/tdtd rowspan="2" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "即将上线/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "6/span/p/tdtd width="359" style="margin: 0px word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablep style="margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em "br//p/div
  • 明天直播!13报告|锂电/钠电/动力电池分析检测技术全解析
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 “新能源电池检测技术”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾新能源电池检测技术(11月29日全天)09:30新能源电池及其材料检测技术邵丹广州能源检测研究院 主任/高级工程10:00岛津光谱技术助力新能源材料解决方案曹亚南岛津企业管理(中国)有限公司 光谱产品专员10:30日立电镜新能源材料分析检测解决方案周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长11:00光学显微镜在新能源汽车检测中的应用王海银徕卡显微系统(上海)贸易有限公司 工业显微镜应用工程师11:30钒电解液检测解析胡俊平湖南省银峰新能源有限公司/江西银汇新能源有限公司 质量控制部部长,研发部副部长12:00午休14:00动力电池测试评价技术马小乐中汽研新能源汽车检验中心(天津)有限公司 平台总监14:30电位滴定仪&卡尔费休水分仪在新能源行业的应用龚雁瑞士万通中国有限公司 产品经理15:00牛津仪器显微分析技术在新能源材料中的应用陈帅牛津仪器科技(上海)有限公司 应用科学家15:30HORIBA拉曼光谱在新能源电池材料中的应用研究代琳心HORIBA科学仪器事业部 应用工程师16:00无机碳硫氧氮氢分析仪以及火花直读光谱仪在新能源汽车行业的应用王元慈艾力蒙塔(上海)贸易有限公司 产品专员16:30PAT技术在锂电材料工艺研究中的应用赵长兴梅特勒托利多科技(中国)有限公司 市场开发专员17:00二次电池层状正极材料失效的原子机制闫鹏飞北京工业大学 教授五、 嘉宾简介及报告摘要(按分享顺序)邵丹 广州能源检测研究院 主任/高级工程【个人简介】博士,高级工程师。现任国家化学储能材料及产品质量检验检测中心(广东)主任工程师,广州能源检测研究院学术委员会委员,广东省动力电池安全重点实验室副主任,广州市高层次人才,广州市科技局专家,广东省国际标准化人才,锂离子电池国际标准化专家,ATC汽车技术平台智库专家,广东锂电关键新材料产业技术创新联盟专家技术委员会委员,CSTM试验机构技术能力评价专家委员,CSTM试验人员技术能力评价专家委员。作为主要技术负责人完成国家化学储能材料及产品质量检验检测中心(广东)、中华人民共和国WTO-TBT/SPS新能源材料及产品技术性贸易措施研究评议基地、广东省动力电池安全重点实验室等多个国家级、省部级科技平台建设工作。主持及参与多项国家科技部重点研发计划、国家市场监督管理总局、广东省科技厅、广东省市场监督管理局、广州市科技局、广州市市场监督管理局等各级科研以及技术开发等项目。【摘要】待定曹亚南 岛津企业管理(中国)有限公司 光谱产品专员【个人简介】岛津企业管理(中国)有限公司 分析计测事业部 光谱产品专员,硕士毕业于北京化工大学,目前主要负责岛津紫外-可见-近红外分光光度计、荧光分光光度计等光谱产品的市场工作,拥有多年光谱分析技术和仪器测试方面的工作经验。【摘要】在双碳的背景下,新能源材料是新能源有效发展的核心。本报告主要介绍岛津激光粒度仪产品在锂电池材料中的解决方案,如磷酸锂、三元材料等,以及岛津紫外分光光度计产品在光伏材料中的表征方案,如光伏玻璃等。周海鑫 日立科学仪器(北京)有限公司 电镜市场部 副部长【个人简介】周海鑫博士毕业于北京化工大学,主修高分子材料和化学专业,曾在德国马克思普朗克高分子研究所(Max Plank Institute for Polymer Research)电镜中心工作,主要负责电子显微镜的测试和相关研究工作,对扫描电镜和透射电镜的原理、操作和应用非常熟悉。周博士现任日立科学仪器(北京)有限公司电镜市场部副部长,主要负责日立表面科学相关产品的技术支持和市场开发工作,具有十几年的电镜相关工作经验。【摘要】本报告将重点介绍日立电镜及相关产品在新能源材料分析和检测中的应用,包括对电极材料中不同组分的观察和分析,电极材料的样品制备,锂电池生产过程的异物分析等。结合日立丰富的产品线,为广大客户提供多种解决方案。王海银 徕卡显微系统(上海)贸易有限公司 工业显微镜应用工程师【个人简介】本硕毕业于英国帝国理工学院,纳米材料硕士,现为徕卡显微系统工业显微镜应用工程师,负责工业显微镜相关的技术支持工作。熟悉半导体光刻技术,在微电子、材料科学及其他先进制造领域有丰富的应用经验。【摘要】本报告将从数码显微镜、高倍复合显微镜、LIBS元素分析和清洁度专家等方面简要介绍徕卡工业显微镜产品在新能源汽车检测的应用。胡俊平 湖南省银峰新能源有限公司/江西银汇新能源有限公司 质量控制部部长,研发部副部长【个人简介】胡俊平,浙江金华人,湖南省银峰新能源有限公司研发部副部长、江西银汇新能源有限公司质量控制部部长、能源行业液流电池标准委员会观察员。【摘要】 1.全钒液流电池简介 2.钒电解液检测标准及方法 3.检测中遇到的问题及方法优化马小乐 中汽研新能源汽车检验中心(天津)有限公司 平台总监【个人简介】中汽研新能源汽车检验中心(天津)有限公司平台总监,多年来始终致力于电池热特性和热安全相关的仿真与测试评价技术研究,发表数篇相关论文,拥有多项发明专利。【摘要】待定龚雁 瑞士万通中国有限公司 产品经理【个人简介】龚雁,女,瑞士万通中国电位滴定仪和卡尔费休水分仪产品经理,有着十多年电位滴定和卡尔费休水分方面丰富的理论和客户实操经验。工作经历:在清华大学分析测试中心 开展硕士研究生课题的研究工作; 在国家纳米技术与工程研究院清华平台色谱组开展硕士研究生课题的研究工作。【摘要】电位滴定仪在正极材料和电解液的检测中发挥着不可或缺的作用,其应用包含残碱的测定,金属总量的测定,电解液中氯离子/游离酸的测定等。卡尔费休水分仪用于电池各组分水分含量检测,包含正负极材料,隔膜,电解液。瑞士万通将利用这次机会给新能源行业客户进行详细的讲解。陈帅 牛津仪器科技(上海)有限公司 应用科学家【个人简介】2015年3月毕业于日本京都大学材料工学专攻,获工学博士学位,博士期间主要研究超细晶亚稳态奥氏体钢的相变诱发塑性和马氏体相变。毕业后先后在钢铁公司和材料分析公司从事钢铁产品开发以及高纯材料分析等工作。2018年加入牛津仪器,主要负责EDS、WDS、EBSD、OP的推广及技术支持。【摘要】面对日益增加的环境危机,世界各国均主张通过技术进步获得新型能源来解决这一危机。几十年来,新能源材料的研究一直是材料领域的热点。新能源材料同样遵循最基本的规律,其成分和显微结构决定了服役性能。因此,通过各种技术分析材料的结构属性是提高新能源材料性能的必经之路。牛津仪器的材料分析技术涵盖了用于成分分析的EDS&WDS、结构和取向分析的EBSD&Raman成像以及物理性能测试的AFM,这些技术可多维度地表征材料的结构和性能,为新能源材料的研究提供技术支持。本次报告将以具体的案例展示这些显微分析技术在新能源材料中的应用。代琳心 HORIBA科学仪器事业部 应用工程师【个人简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱技术是研究新能源电池材料结构性质的重要光谱技术。拉曼光谱技术可用于表征锂电正负极材料,也可以测量异质结电池非晶硅薄膜晶化率以及检测燃料电池碳基涂层等。此外,通过原位电化学拉曼技术可实时监控电池反应和失效过程。本报告将介绍HORIBA Scientific高分辨率拉曼光谱技术在新能源电池研发和质控中的解决方案并分享相关应用案例。王元慈 艾力蒙塔(上海)贸易有限公司 产品专员【个人简介】毕业于美国东北大学,期间获得化学工程硕士学位。【摘要】1.新能源汽车行业发展概览 2.来自于德国元素公司的无机碳硫氧氮氢分析仪以及火花直读光谱仪解决方案 3.无机碳硫氧氮氢分析仪以及火花直读光谱仪在新能源汽车行业的应用。赵长兴 梅特勒托利多科技(中国)有限公司 市场开发专员【个人简介】赵长兴,本硕毕业于华东理工大学,学校期间一直从事前沿发光材料研究,包括有机荧光、纯有机室温磷光,并在前沿学术期刊Chemical Communication发表学术论文,拥有非常丰富的化学实验研究经验,熟练掌握常规化学表征手段。毕业后一直就职于梅特勒托利多,长期专注于行业研究,特别是PAT(过程分析技术)技术在锂电、化工新材料、学术前沿等行业的应用研究,特别是锂电材料领域,目前已经在六氟磷酸锂、双氟磺酰亚胺锂、磷酸铁锂、PVDF等领域成功探索到前沿的工艺研究技术,并成功开辟多家用户。【摘要】简要阐述梅特勒托利多的PAT技术用于锂电电解液材料的合成工艺研究、结晶工艺研究、正极材料的颗粒控制工艺研究、正负极浆料的固含量测定等。闫鹏飞 北京工业大学 教授【个人简介】闫鹏飞,北京工业大学教授,博士生导师。2010年博士毕业于中科院金属研究所,2010-2017先后在日本NIMS和美国太平洋西北国家实验室(PNNL)从事电子显微学研究。目前的研究领域是利用电子显微学研究二次电池材料的基本结构、储能机理以及失效和改性机制。在Nature Energy, Nature Nanotechnology,等期刊发表SCI学术论文100余篇,专利4项,引用6000余次,12篇ESI高被引论文,H因子40。入选国家海外高层次青年人才引进计划。IEEE PES 中国储能材料与器件分委会常务理事。【摘要】待定六、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • [应用介绍]奥林巴斯便携式XRD在电池材料分析中的应用
    泽权仪器泽权仪器是奥林巴斯(Olympus)旗下Vanta系列手持/便携式X射线荧光分析仪(XRF)和Terra系列便携式分析仪(XRD)的中国授权代理商和环境土壤检测的独家授权代理商。欢迎致电021-62837112/21/20或访问www.zeal-quest.com获取更多资讯。奥林巴斯Terra便携式XRD分析仪  X射线衍射分析仪(XRD)是研究电池电极材料晶体结构性质的重要工具之一。一般认为,在电池充放电过程中,电极材料的晶体类型和晶体参数等都会发生变化。通过检测电极材料产物及相的变化,利用衍射峰的位置和强度来定性或定量分析材料的结晶类型、晶体参数、晶体缺陷和不同结构相的含量等,可以推测出电池化学反应过程的反应机理,有助于工程师优化电极材料。案例分析1磷酸铁锰锂电池电极材料分析(Co - Ka)使用奥林巴斯XRD分析仪BTX获取样品衍射图谱,使用XPowder软件对衍射图谱进行成分定性及定量分析。将下图块状样品研磨成粉末,使用样品筛进行筛滤,取筛滤后样品放入样品舱进行检测。?奥林巴斯BTX-II紧凑型台式XRD分析仪利用XRD分析某蓄电池在性能优异和性能差的情况下的电极材料,通过比较俩图谱可知,性能优异的电极材料中存在一种特殊形态的锡锑晶相,而性能差的电极材料中没有发现该锡锑晶体的存在。如果想方法能够提高这种特殊形态锡锑晶相的稳定性以优化电池材料,那么在很大程度上可以延长该类电池的使用寿命。案例分析2锡锑惨杂电池材料的稳定性分析目前商品化的锂离子电池中使用的负极材料大都是碳材料。然而,信息化技术和便携式电子设备的发展对锂离子电池提出了更高的要求,迫切需要新型锂离子电池负极材料,其中锡与锡惨杂合金是很有希望取代碳负极材料的后选材料之一。利用XRD分析某蓄电池在性能优异和性能差的情况下的电极材料,通过比较俩图谱可知,性能优异的电极材料中存在一种特殊形态的锡锑晶相,而性能差的电极材料中没有发现该锡锑晶体的存在。如果想方法能够提高这种特殊形态锡锑晶相的稳定性以优化电池材料,那么在很大程度上可以延长该类电池的使用寿命。关于我们  上海泽权仪器设备有限公司作为国内知名的进口设备供应商之一,多年来一直致力于为环保、特检、钢铁、回收和乳品行业等提供专业的解决方案。公司目前有着Olympus手持XRF分析仪环保/特检行业的全国优先代理权和法国AMS Alliance旗下乳品酸化监控分析仪的独家代理权和连续流动分析仪和间断化学分析仪的华东地区代理权,全面负责代理产品的的销售和售后工作。主营产品  Olympus(奥林巴斯)手持式X射线荧光光谱仪  AMS Alliance Futura连续流动分析仪  AMS Alliance SmartChem全自动间断化学分析仪  AMS Alliance iCinac全自动乳品发酵酸度监控仪  Honeywell RAE Systems(华瑞)PID检测仪  Belec直读光谱仪  TSI手持激光诱导击穿观光谱仪  TSI手持粉尘/空气颗粒监测仪  如需获取更多资讯,敬请关注泽权仪器官方微信公众号(SH-Zealquest)。——泽权仪器——电话:021-62837112/21/20网址:www.zeal-quest.com邮箱:sales@zeal-quest.com地址:上海市肇嘉浜路798号坤阳国际商务广场303座
  • 科研赋能:珀金埃尔默在锂电池行业分析中的应用
    锂电池是一种以锂离子为电荷载体的可充电电池,广泛应用于便携式电子设备、电动汽车(EVs)、能源存储系统以及其他多种应用中。锂电池由正极材料、负极材料、电解液、隔膜、电池外壳等部件组成,其中 01正极材料: 常见的有锂钴氧化物(LiCoO2)、锂铁磷酸盐(LiFePO4)、锂镍锰钴氧化物(NMC)等。 02 负极材料: 通常使用石墨或硅基材料。 03 电解液: 含有锂盐的有机溶剂,如六氟磷酸锂(LiPF6)溶解在碳酸酯类溶剂中。 04 隔膜: 一种多孔材料,允许锂离子通过,同时防止电极间的物理接触。 05 电池外壳: 保护内部组件并提供结构支持。 如新能源汽车上使用的磷酸铁锂电池和三元锂电池,正极使用的配方与主量元素间的配比,直接决定电池的能量密度、充放电循环效率等。正/负极材料与点解液中的杂质元素含量,对电池品质也有着重要影响,珀金埃尔默分析仪器对上述质量控制节点,均有很好的解决方案。 1 ICP-OES/ICP-MS 正极材料分析中的应用 锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁(Fe )、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、铅(Pb)等金属杂质时,电池化成阶段的电压达到这些金属元素的氧化还原电位后,这些金属就会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。自放电对锂离子电池会造成致命的影响,因而从源头上防止金属异物的引入就显得格外重要。 图1. 电池正极材料 现阶段的众多锂电池企业,均采用ICP-OES作为主量元素配比以及杂质元素浓度的测定工具。使用ICP-OES测试主量与杂质元素时,可能会遇到的一些问题如: 1.主量元素浓度高,仪器动态范围是否够宽? 2.测定主含量元素的同时,能否测定微量杂质元素? 3.测定主含量元素仪器是否稳定? 4.测定杂质仪器是否有足够的灵敏度? 等等 得益于珀金埃尔默公司Avio系列ICP-OES上的独特设计,配备平板等离子体技术、双向观测模式、丰富的元素谱线库、专利性的光谱干扰校正技术(MSF,多谱拟合技术)能够有效解决上述问题。 (点击查看大图) 伴随着产业的发展以及工艺的提升,对杂质的管控越发严格,杂质浓度限值一直在往下调。ICP-OES由于其仪器原理的限制,在测定低浓度杂质元素时遇到瓶颈。Cr、Cu、Fe、Zn、Pb这些元素尤其明显。据调研,部分厂家该5个元素浓度控制在1ppm以下(部分厂家Fe含量在10 ppm以内),在常规100倍固液稀释比前处理后,样品溶液中该元素浓度在10 ppb以下,因此使用ICP-OES进行检测遇到了极大的挑战,尤其在谱线干扰严重的情况下。而ICP-MS由于其灵敏度更高,检测下限更低,是一个非常好的检测手段。 图2. NexION系列ICP-MS 使用ICP-MS测试正极材料中杂质元素的挑战包括: 1. 杂质元素会受到主量元素质谱干扰; 2. 对不同类型的质谱干扰,需要不同的干扰校正模式。 通过对多个厂家的锂电正极材料做测试,运用空白实验、平行样、加标回收等质控手段进行测试,验证了珀金埃尔默NexION系列ICP-MS,标配AMS进样系统,配合大锥孔三锥设计,四极杆离子偏转器,可以获得优异的基体耐受性、仪器稳定性,以及更低的记忆效应。 图3. NexION ICP-MS测试正极材料 杂质元素加标回收率 (点击查看大图) 图4. NexION ICP-MS测试正极材料 杂质元素校准曲线 (点击查看大图) 实验结果表明,通过选择合适的同位素以及仪器强大的耐基体性能保证了数据的准确性与稳定性。该方法十分适合分析高基体锂电正极材料。 2 ICP-MS在锂电池 电解液分析中的应用 电解液是锂离子电池的重要组成部分,在电池中作为离子传输的载体,使锂离子在正负极间移动。电解液通常由锂盐、溶剂和添加剂组成,其中溶剂提供离子传输介质,锂盐增强电解质的离子传输率。 电解液样品无法用传统的微波消解前处理,因为样品中含有乙醇与其他挥发性有机物,微波消解会发生爆罐。马弗炉灰化会产生大量有毒的氟化磷,而电热板消解需要大量酸同时实验人员必须在边上值守防止样品碳化,耗时且会引入污染。所以对于这类样品用有机溶剂直接溶解后快速直接进样。短时间内即可处理完样品,同时避免了容器与酸引入的污染。 珀金埃尔默公司的ICP-MS搭配全基体进样系统(AMS)为电解液中杂质元素分析提供一条全新思路。利用ICP-MS极高的灵敏度,可以采取更大稀释倍数降低Li元素带来的高盐影响,在前处理方面,仅采使用10%甲醇(电子级),50倍稀释上机,AMS使用氩氧混合气,实现加氧防止有机物积碳,同时用氩气减少基体效应。实现了电解液中杂质元素的准确、高效、环保分析。 电解液直接进样也会引入大量C相关的质谱干扰,如Mg、Al、Cr会分别受到CC、CN、ArC等干扰,另外Ar与H2O也会是K,Ca,Fe等收到干扰。NexION系列ICP-MS全系列均可使用纯氨气作为反应气体,消除相应的质谱干扰。从而获得最准确的结果。 图5. NexION ICP-MS测试电解液杂质元素1ppb(Hg 0.1ppb)加标回收率 (点击查看大图) 图6. NexION ICP-MS测试 电解液杂质部分元素校准曲线 (点击查看大图) 3 GCMS在锂电池 电解液分析中的应用 通常用于商用锂电池的电解质溶液含有锂盐、有机溶剂和一些添加剂。有机溶剂主要是环状碳酸酯,例如碳酸亚乙酯和碳酸丙烯酯,或链状碳酸酯,例如碳酸二乙酯和碳酸甲乙酯。这些碳酸盐的构成和比例对锂离子电池的能量密度、循环寿命和安全性有重要影响。因此,研究电解质溶液中碳酸盐的构成和含量对锂离子电池的开发和质量控制起着重要作用。 图7. 珀金埃尔默 GCMS 2400 珀金埃尔默 GCMS 2400配 EI 源测定了锂离子电池电解液中的9种碳酸盐。实验结果显示该方法具有良好的精确度、回收率、线性和检测限,能够满足锂离子电池行业的需求。 表1. 精确度、回收率以及方法检出限、定量限 (点击查看大图) 4 GC在锂电池中 鼓包气体成分分析中的应用 锂离子电池因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓包, 从而带来极大的安全隐患。因此,了解电池鼓包气体的组成对于优化电解液的组成是至关重要的。 珀金埃尔默独特的解决方案,采用气相色谱TCD和带甲烷转化炉FID检测器串接技术对锂离子电池中产生的鼓包气体进行检测,获得鼓包气体的主要成分和定量分析。常见鼓包气成分有H2,O2,N2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体,采用TCD和带甲烷转化炉FID检测器串接技术可以同时满足高含量的CO,CO2分析以及低含量的CO,CO2 ,CH4,C2H4,C2H6等烷烃分析,该方法CO,CO2及烷烃类检出限小于1ppm,H2检出限小于10 ppm,该方法可实现手动气密针进样以及气体阀进样,可以获得待测锂离子电池鼓包气体完整、精准的分析结果。 表2.n=7次进样的相对标准偏差(RSD%) (点击查看大图) 图7.鼓包气气体成分参考谱图 (点击查看大图) 5 热分析设备 在电池领域的应用简介 在电池组原材料领域, DSC设备可用来分析聚合物以及金属材料的各种相变过程以及相应吸放热量的大小(比如分析聚丙烯的玻璃化转变温度以及结晶熔融过程等);STA同步热分析仪可以研究各种材料的热稳定性,确定热分解温度,定量测定复合材料的相对组成比例等。典型图谱如下图8和图9所示; 图8 电池原材料熔融和结晶过程评价 (点击查看大图) 图9 电池原材料热稳定性评价曲线 (点击查看大图) 电池组件由正极、负极和隔膜等各种组件构成,珀金埃尔默公司所提供的逸出气体联用装置可用于研究各组件在温度变化过程中产生各类逸出气体的定性定量数据。图10为典型的STA-FTIR联用测试曲线; 图10 电池组件逸出气体分析测试谱图 (点击查看大图) 在电池封装领域,可对组件封装材料——EVA(乙烯-醋酸乙烯共聚物)等材料的交联率进行快速测试,进而替代传统的溶剂测试法。典型测试谱图如图11所示; 图11 电池封装材料交联度预测曲线 (点击查看大图) 扫描左侧二维码 获取《珀金埃尔默锂电池检测总体解决方案》 关注我们
  • 原子吸收法对锂电池正极活性物质/电解液高精度分析
    随着技术的不断革新,锂电池正在逐渐朝着小型轻量化,大容量化,长寿命化发展,对于锂电池的安全性能有了更高的要求,锂电池中每种材料的主成分、添加物和杂质都会影响其安全性和性能,因此需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,这种方法对某些元素的检测灵敏度低。而且使用成本较高。日立偏振塞曼原子吸收分光光度计可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。 ■ 分析实例对钴酸锂中的锂元素和钴元素进行定量分析,最终得到两种元素的摩尔比基本为其理想摩尔比1:1,其精度低于1%。采用日立偏振塞曼原子吸收分光光度计可以高精度地测定正极材料中组成元素的摩尔比。从电解液结果可知,分别使用火焰法测定电解液中钠元素,石墨炉法测定电解液中钾元素,可得到准确地测定结果,并且石墨炉法测定钾元素灵敏度高,可轻松实现ppb级别测定。采用日立偏振塞曼原子吸收分光光度计可以准确高灵敏度测定有机溶剂-电解液中含有的异物。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 耐驰热分析技术在电池检测与电极材料研究中的应用
    温度对于锂离子电池的稳定性和安全性有较大的影响,因而热分析表征在锂电研究中具有重要意义。在热分析仪器领域,耐驰拥有60余年的应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质/热红联用,都能提供一系列具有高精度及高稳定性的仪器,高温领域可达2800℃,低温可达-180℃。仪器信息网整理了2020年耐驰热分析技术在锂电研究中的最新应用。  点击报告题目,即可进入视频页面进行观看。报告题目主讲人锂电行业热分析解决方案介绍耐驰科学仪器商贸(上海)有限公司应用支持经理 王荣电极材料中碳含量的综合热质联用分析德国耐驰仪器制造有限公司 市场与应用总监 曾智强
  • 德国元素Elementar | 锂离子电池中碳、氢、氮、硫与氧元素分析的解决方案
    锂离子电池具有能量密度高、循环寿命长、自放电小、无记忆效应与环境友好等众多优点,已经在智能手机、智能手环、笔记本电脑等消费电子领域获得广泛应用。在纯电动汽车、混合动汽车与增程式电动汽车领域正在逐步推广。锂离子电池由正极、负极、电解液与隔膜等部分组成。正极与负极材料的性能直接影响电池的使用性能与寿命。正负极材料中的碳、氢、氮、硫与氧的含量测试显得非常重要,尤其是碳作为负极材料真正起电化学活性的组分,其含量至关重要。德国元素Elementar 元素分析仪的卓越性能,可实现CHNS+O的全方面精准分析,为锂离子电池的发展保驾护航。德国元素Elementar有机元素分析仪-石墨烯材料中碳、氮、氢、硫、氧元素的测定UNICUBE 有机元素分析仪根据 Q/JSGL 005-2014《石墨烯材料 碳、氢、氮、硫、氧元素含量测定方法》标准方法,采用元素分析仪高温催化燃烧法测定石墨烯材料中的碳、氢、氮、硫元素含量;高温裂解测定石墨烯材料中的氧。石墨烯是一种新型材料,不易燃烧。高达10mg的石墨烯取样量更是对仪器性能的严苛考验。德国元素Elementar有机元素分析仪,可配备高性能燃烧炉与红外检测器,实现对石墨烯样品中的高碳、低硫元素进行高精准的测量。实验仪器:UNICUBE 配氧模模式模式:CHNS+O样品:4-6mg石墨烯实验数据:德国元素Elementar-inductar CS cube 红外碳硫仪-磷酸铁锂中碳硫元素的测定依据YS/T1028.4-2015 《磷酸铁理化学分析方法 第4部分:碳量的测定 高频燃烧红外吸收法》,采用高频红外碳硫仪对正极材料—磷酸铁锂中的碳进行测定。磷酸铁锂是锂电池的一种正极材料,其碳与硫的准确分析是至关重要。InductarCS cube 红外碳硫分析仪不仅可以实现操作流程的简单化,亦可实现结果的高精准。满足锂电客户的测试需求。德国元素Elementar开发的碳硫分析仪在获得高度准确数据的同时,还具备简单易用、清洁和自动化流程等特点,给用户带来全新的金属和无机材料中的碳硫分析体验。inductarCS cube 红外碳硫仪充满先进和创新的理念,让碳硫分析更加简便,而且结果更为可靠。实验仪器:inductar CS cube 红外碳硫仪样品:100mg磷酸铁锂粉末实验数据:德国元素Elementar-enviro TOC 总有机碳分析仪-硫酸盐溶液中TOC总有机碳的测定对于电池级硫酸盐,按照北京资源强制回收环保产业技术创新战略联盟团体标准“电池级硫酸锰溶液”、“电池级硫酸镍溶液”、“电池级硫酸钴溶液”,硫酸盐中的油分可通过TOC分析仪进行测定。德国元素Elementar-enviro TOC 总有机碳分析仪,采用高温燃烧法对样品中的有机化合物进行完全燃烧分解,确保化合物中的所有碳得到全部释放,采用宽范围红外检测器进行高精度测定。整个过程实现高通量、快速、简单、精准的测定。实验仪器:enviro TOC 总有机碳分析仪样品:硫酸锰、硫酸镍、硫酸钴溶液实验数据:德国元素Elementar-inductar CS cube 红外碳硫仪-碳化硅中碳硫元素的测定碳化硅是一种无机碳化物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐电阻炉高温冶炼而成。在锂电行业中,用纳米硅粉做成纳米硅线用在充电锂电池负极材料里,或者在纳米硅粉表面包覆石墨用做充电锂电池负极材料,提高了充电锂电池 3倍以上的电容量和充放电循环次数。inductarCS cube 红外碳硫仪在碳化硅中碳硫的分析上展现出了出色的精度和准确度。inductar CS cube 操作简单,使用方便,对于该类质量控制是非常理想的一款仪器。实验仪器:inductar CS cube 红外碳硫仪样品:50mg碳化硅粉末实验数据:德国元素Elementar 在120余年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经120余年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 明天开播!千人大会之“电池材料与颗粒分析表征”专场精彩预告
    电池性能的优劣,很大程度上取决于其构成材料的选择与制备工艺,以及材料微观结构的精细控制。颗粒分析表征作为材料科学研究的重要手段,能够揭示材料在纳米至微米尺度的结构特征、化学成分、相变过程及界面效应等关键信息,为电池材料的设计与优化提供科学依据。为促进学术界与产业界的交流,推动电池材料科学与技术的进步,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“电池材料与颗粒分析表征”专场。点击图片直达报名页面 会议特邀中国颗粒学会秘书长王体壮致辞,中科院金属所研究员孙振华、北汽新能源高级经理宋冉冉、天目湖先进储能技术研究院吴喜明、清华大学博士研究生左安昊、中科大理化科学实验中心工程师周宏敏分享电池材料结构调控与电化学性能研究、关键指标及表征方法、单颗粒动力学测试方法与材料数据库等。中国科学院金属研究所研究员 孙振华《聚合物基储能材料的结构调控与电化学性能研究》(点击报名)孙振华研究员研究工作主要围绕着锂硫电池和固态电池等新型电池体系,开展关键电极材料、电解质和器件性能研究,相关研究成果在Nature Commun.、Chem. Soc. Rev.、Energy Environ. Sci.、Adv. Mater.等期刊发表SCI收录论文120余篇,被引用12000余次,H-index为53,申请发明专利22项,获授权专利9项。曾获得中国颗粒学会自然科学一等奖(排名第二),入选中国科学院青年创新促进会优秀会员和辽宁省“兴辽人才计划”青年拔尖人才。目前担任中国颗粒学会青年理事,《天津大学学报》编委,SusMat、eScience和中国化学快报的青年编委。聚合物材料在电化学储能材料和器件中具有重要的作用。聚合物材料的结构决定着锂离子在聚合物中的反应和输运行为,从而影响储能器件的性能。针对聚合物材料在锂硫电池电极材料中的应用,该报告系统总结了有机硫聚合物在锂硫电池中的不同功能。在此基础上,报告为聚合物在电化学储能中应用和提高锂硫电池、聚合物固态电池的性能提供了新思路。北京新能源汽车股份有限公司高级经理 宋冉冉《动力电池核心原材料关键指标及表征方法》(点击报名)宋冉冉博士2014年毕业于北京化工大学材料学,2016年入职北汽新能源。10年锂电池材料研发经验,对电芯材料合成制备、表征、电化学原理、材料前瞻技术等有较深入的研究。牵头电芯技术项目开发、负责电芯原材料选型及体系开发工作。本报告针对影响动力电池性能的各项核心原材料关键指标,讲述了指标特征、相关作用机理、表征方法和测试原理等,并对原材料失效进行典型案例分析。天目湖先进储能技术研究院高级工程师 吴喜明 《电池材料形貌、表界面表征方法及应用案例》(点击报名)吴喜明高工硕士毕业于深圳大学材料学专业,具有多年材料显微分析,表面分析、理化测试工作经验,目前在天目湖先进储能研究院从事电镜及表面分析仪器的测试工作,专注于先进分析仪器表征电池材料微观形貌、表面成分,为电池材料、电芯企业提供检测服务。电池材料的形貌、表界面性质对电池性能的发挥起着至关重要的作用,而常规的测试分析手段存在一定的局限性,本报告列举了透射电子显微镜(TEM)、俄歇电子能谱(AES)、X射线光电子能谱(XPS)、飞行时间-二次离子质谱(Tof-sims)等先进表征分析仪器在电池材料分析方面的独特作用,依赖类似高水平的测试技术可以对电池材料进行更加深入、细致的理解。清华大学博士研究生 左安昊《电池材料单颗粒动力学测试方法与材料数据库》(点击报名)左安昊博士担任北京易析普罗科技有限责任公司CEO,主要从事电池材料单颗粒测试方法相关基础研究与产业化工作。在Cell Reports Physical Science、Journal of Power Sources、Journal of Energy Storage、储能科学与技术等期刊上发表学术论文10篇,授权发明专利13项,参与国家自然科学基金、国家重点研发计划等多项课题。曾获国家奖学金、北京市三好学生、江苏省优秀学生干部、清华大学优秀学生干部标兵、清华大学“一二九”辅导员等荣誉以及世界电动车大会优秀论文奖、首届未来颗粒前沿论坛优秀报告奖等奖项。电池材料研发需要快速、精准的性能评价手段,电池模型搭建需要精确的动力学参数输入。目前,业内主要以电极/单体为测试对象,根据电池性能反推材料性能/参数。然而,电池内部含有多种材料、多种物相,传统动力学测试方法仅能得到不同材料各自动力学过程的混合结果,难以确定单因素对材料/电池性能的影响,也不能反映单一材料性能。本报告将介绍一种以材料单颗粒为实验对象的热/动力学性能测试方法。该方法适用于锂离子电池活性材料并具有较高的测量精度,对固态电解质、钠离子电池材料等也具有一定通用性。中国科学技术大学理化科学实验中心工程师 周宏敏《扫描电镜在新能源电池和钙钛矿材料表征中的应用》(点击报名)周宏敏工程师在中国科学技术大学理化科学实验中心从事扫描电镜应用服务及相关技术开发。主持中科院仪器设备功能开发技术创新项目2项,参与863仪器研究项目1项,作为第一发明人获授权专利3项,发表仪器技术及管理文章10余篇。针对新能源电池研究材料如Li,Na,K以及卤素、硫化物的全固态电解质等化学性质活泼的材料,不能接触空气的特点,周宏敏研制了基于气氛保护的传输盒,在扫描电镜仓内真空环境下打开,实现了测试材料从实验室手套箱全程不接触空气进入扫描电镜进行分析表征,支撑了多项成果发表于Nature Communications,Angew. Chem. Int. Ed.,Energy Storage Materials,J. Am. Chem. Soc.等高水平杂志。本报告针对有机无机杂化钙钛矿材料在电子辐射条件下不稳定的难点,将进行OIHP薄膜样品的扫描电镜成像条件探讨研究,采用低加速电压的策略,既保持OIHP表面细节的分辨率又减小辐射损伤,并采用扫描旋转的成像方式较好地解决截面成像易畸形的难点。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 沃特世推出全新Rheo-IS附件助力电池电极设计和性能分析
    新闻摘要: 全新的流变-阻抗谱(Rheo-IS)附件可帮助电池研究人员在实际和工艺相关条件下更好地评估电极浆料成分的质量。 这款适用于TA仪器的Discovery&trade 混合型流变仪的Rheo-IS附件采用无摩擦式专有设计(专利申请中),可完成全范围的流变学和电学测量。 它将测量控件与数据分析功能完全集成到一个软件平台中,操作简单,使用方便。 佛罗里达州奥兰多 – 国际电池研讨会 – 2024年3月13日 – 沃特世公司(纽约证券交易所代码:WAT)宣布推出一款适用于TA仪器公司Discovery HR系列混合型流变仪的全新附件,旨在实现电阻抗和流变学的同时测量。这项功能对于研究新型电池配方的科学家而言具有重大意义。 适用于TA仪器Discovery混合型流变仪的全新流变-阻抗谱(Rheo-IS)附件沃特世公司TA仪器事业部高级副总裁Jianqing Bennett表示:“专注于性能优化和大规模生产的电池创新人员需要采用灵敏的工具来表征电极浆料的成分并确保质量。有了Rheo-IS附件,我们就可以利用这款功能多样且简便易用的Discovery HR混合型流变平台进行浆料配方分析,实现全范围的电阻抗测量并获得出色的流变灵敏度。”将Rheo-IS附件与Discovery HR搭配使用时,电池研究人员可以在真实的工艺相关条件下,通过阻抗谱测量来评估电极浆料中的导电结构,包括模拟混合、储存和涂层过程中颗粒分布变化的表征,从而促进电极材料开发,提高电池生产效率。 美国西北大学化学与生物工程助理教授Jeff Richards表示:“TA仪器的Rheo-IS附件为我们的研究项目带来了全新的科学视角,让我们能够深入研究导电和离子导电柔性材料。这套一体化工作流程可自动执行复杂的流变学和电学方案,辅以硬件和软件的紧密集成,使测量成为常规性工作,在提高通量的同时还能够改善数据质量。”目前的流变学解决方案依赖于性能受限的机械接触来进行电阻抗测量,这不仅会影响灵敏度,还会限制数据的获取和深入分析。Rheo-IS附件采用的专有技术(专利申请中)突破了这些限制 ——这种设计利用Discovery HR混合型流变仪在全范围内的扭矩灵敏度进行精密流变学测量,并能在频率高达8 MHz的条件下进行电阻抗测量。 Rheo-IS附件简单易用,5分钟内即可完成安装,同时可将测量控件和数据分析功能完全集成到TA仪器的TRIOS&trade 软件中。新附件的加持扩展了Discovery HR在电池材料领域的应用性,使其不仅可以进行浆料流动特性的流变学测量和干电极涂层的粉体流变学测量,现在还支持同时进行浆料的电阻抗测量,所有这些工作都可以在同一个平台上轻松完成。沃特世-TA仪器现已面向全球发售Rheo-IS附件。 其他参考资料: 详细了解适用于TA仪器Discovery混合型流变仪的流变-阻抗谱(Rheo-IS)附件。 同时也欢迎参加3月15日上午8:30(美国东部时间)举行的研讨会:“通过流变学测量优化电极制造”,届时沃特世应用科学家Kimberly Dennis博士将向您介绍Rheo-IS附件的新近测试数据。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是居于全球前列的分析仪器和软件供应商,作为色谱、质谱和热分析创新技术先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。沃特世公司在35个国家和地区直接运营,下设14个生产基地,拥有8,000多名员工,旗下产品销往100多个国家和地区。关于TA仪器(www.tainstruments.com.cn)TA仪器创立于1963年,现隶属于沃特世公司旗下,是材料表征领域的行业领跑者,拥有热分析、流变、热物性、微量热及机械分析等仪器产品。TA仪器致力于服务材料科学、医学、电子和其他科学领域的领先发现,提供创新和可靠的仪器产品,以满足科学家在物理性能评估方面的需求,改善人类健康和福祉。 Waters、Discovery和TRIOS是沃特世公司的商标。# # # 媒体联系方式沃特世公司钱洁+ 86 21 6156 2644Jackie_qian@waters.com
  • 专题约稿|电池的多尺度分析对储能研究的贡献
    p style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""span style="margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "专题约稿|/strong/i/spanspan style="color: rgb(255, 0, 0) "istrongspan style="font-family: sans-serif "电池的多尺度分析对储能研究的贡献/span/strong/i/span/pp style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""strong style="margin: 0px padding: 0px "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-size: 18px color: red "/span/i/strongbr//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "——“锂电检测技术系列——形貌分析技术”专题征文/span/i/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(作者:赛默飞世尔科技)/span/i/pp  从我们的手机和笔记本电脑到我们用于建筑和运输的电动交通工具,电池对我们的日常生活至关重要。与此同时,在我们通过引入更高效的电动汽车和替代能源等方式来努力改善地球生活环境时,我们需要更好的新型电池材料来实现性能更高的电池最终目标。这意味着我们需要构建比目前市场上的电池和能量存储设备具备更经济,轻便,紧凑,安全,耐用,易于充电和能量密集的特性电池产品。/pp  利用电子显微镜,X射线断层扫描,拉曼显微镜,X射线衍射,FTIR,,和XPS等技术,研究人员可以从毫米到纳米级别对电池进行多尺度的检测,从而发现电池在充电和放电时性能衰减的原因。他们也正在学习如何设计在设计新电池时, 通过用不同的表征手段来检查从原材料,电池元件到最终产品的各个环节,从而得到能够承受极端温度的更安全的电池。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 401px " src="https://img1.17img.cn/17img/images/201905/uepic/7c6f1795-ad7a-422e-aa9d-a7e09c3b86d5.jpg" title="1.jpg" alt="1.jpg" width="450" height="401" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图:比较18650 锂电池充放电前后Cu集流器在每个水平切片的形状/span/pp  上图:通过自动的图像处理来确定Cu集流器在每一个水平切片的位置,可以定量的计算出电池中心部分由于充放电导致电极膨胀而变小。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/201905/uepic/7981de91-f38d-4e8e-83e6-97a9ff313f91.jpg" title="2.jpg" alt="2.jpg" width="450" height="253" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "上图:Thermo ScientificTM HeliScan microCT/span/pp  18650型锂电池被广泛应用于手电筒,电动香烟甚至一些电动汽车等各种电池供电设备。通过使用Thermo ScientificTM HeliScan microCT对这种电池在充放电前后进行3D扫描和成像,研究人员可以定量的研究电池在循环时内部的变化。通过对3D数据的定量分析,我们发现在电池充放电后,电池内部的电极片体积膨胀,中心杆周围的区域减小。 这种体积膨胀可以在电池单元中产生压力。 如果在电池设计中没有考虑到这种效果,电池单元中的压力可能会导致电池短路,从而可能导致灾难性后果。 因此在设计电池的过程中, 电池制造商对此进行量化非常重要。/pp  下一代电池的发展对我们的生活影响将是深远的。电动汽车一次充电就可以行驶更长的距离,充电过程需要几分钟而不是几小时。为我们的手机和笔记本电脑供电的电池功能将更强大,使用寿命更长,技术公司也可以将电池使用在更加复杂的应用上,例如虚拟现实。电动工具将持续更长时间并具有更强的输出电流,使工人能够在建筑行业中执行更高能耗的任务。 同时,下一代电池将能够存储更多来自太阳能电池板和风力涡轮机的能量,从而为我们的家庭和办公室提供更高效的电力。/pp  今天的大部分研究都集中在通过了解锂离子电池失效的原因来改善锂离子电池的性能。随着具有液体电解质的锂离子电池接近最高性能,科学家们正在探索能量密度更高的材料以及储能器件,例如固态电池,从而实现能量储存方面的进一步突破。/pp  使用不同的分析技术在多尺度对电池以及材料进行研究将是更好地理解电池衰减机理和帮助设计下一代新电池的关键。/pp  /pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=""  /span/strongstrong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "【征集申报链接】/span/a /ptable border="0" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"系列序号/span/strong/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"专题上线时间/span/strong/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"电性能检测技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian1" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"成分分析技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian2" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"形貌分析技术/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size:12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian3" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"4/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"晶体结构分析技术/span/p/tdtd rowspan="3" style="border: 1px solid rgb(0, 0, 0) padding: 5px "br//td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——X/spanspan style="font-size:12px font-family:宋体 color:#444444"射线光电子能谱分析技术/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"6/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablepbr//p
  • AI助力新能源分析: 锂离子电池材料显微智能分析方案
    随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。图1:锂离子电池的组成示意图 锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。 但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。图2:锂离子电池失效模式 虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。 软件特点简介 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。 应用案例0101开裂球、截面孔隙识别 通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图1:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。 在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。图2:二次球截面孔隙识别 正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。 图3:二次球截面孔隙率统计及RSD计算 0202团聚颗粒识别 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。图4:一次颗粒团聚形成的二次球颗粒识别 通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。图5:软件自动区分团聚颗粒及团聚颗粒截面 相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。 然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。 03单晶颗粒识别图6:单晶颗粒的识别 团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。 另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。 图7:单晶颗粒尺寸统计及分布图 04大小二次球识别 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。图9:大小二次球颗粒分布均匀性统计05隔膜孔隙率统计 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图10:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。 图11:隔膜孔隙率统计结果及孔隙面积分布图 针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家国际前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。
  • 全自动扫描电镜成像分析在优化电池正极材料质量管理中的应用
    BATTERY电动汽车电池组由数千个单独的电池组成,这些电池的每个电极都包含着数百万个颗粒。 在充电和放电过程中,重要的是这些颗粒要一同发挥作用。正极材料及其前驱体的粒径分布和微观结构对电池的能量密度和安全性至关重要,这就意味着,在生产过程中需要严格监控这些颗粒的质量。扫描电子显微镜(SEM)用于制造过程质量控制,能够识别原材料及其中间产物的质量波动。SEM 能够提供直观全面的形态统计结果,在正极颗粒的质量控制过程中发挥着重要作用。在本文中,对 NCM 正极及其前驱体使用了自动化 SEM 的检测方法,向研究人员展示了该方法是如何帮助正极材料生产商优化其质量检查(QC)工序的。这一自动化的解决方案有望通过提高工厂生产力,并节省大量成本。图1. 含镍正极材料的制造工艺示意图SEM 在正极材料 QC 工序中的应用案例图 1 显示了 NCM 正极粉末的生产过程。NCM 正极材料是将锂盐与前驱体混合后烧结(通常通过水热法和共沉淀法制备),烧结后,再将团聚的颗粒研磨粉碎成需要的粒径。NCM 正极前驱体颗粒的质量控制NCM 颗粒的最终形态和粒径取决于其前驱体颗粒的粒径以及烧结的过程,这就意味着在前驱体生产过程中控制前驱体的质量至关重要。质检人员在前驱体质量控制过程中测定两个主要的结构特征:尺寸分布和表面结构。通常,具有窄粒径分布的前驱体可以在更短的时间内锂化,从而获得更好的结晶度。窄的粒径分布和良好的层结构也代表着更好的电化学性能。图 2 显示了通过不同合成工艺生产的前驱体颗粒的 SEM 图。如图 2a 所示,具有宽粒径分布的前驱体颗粒直径范围约 4.5~13.6µ m。图 2b 显示了窄粒径分布且具有多孔表面结构的前驱体颗粒。(图中测量粒径尺寸和分布的软件为 Phenom ParticleMetric )图2. 不同的合成条件下的 NCM 前驱体 a)具有宽粒径粒径分布的前驱体颗粒b)具有窄粒径分布和多孔结构的前驱体颗粒NCM 正极材料的质量控制一次和二次颗粒特性的表征在 NCM 正极材料质量控制过程中发挥着重要作用。如图 3 所示,NCM 正极颗粒通常由许多一次晶体颗粒组成为球状多晶颗粒(称为二次颗粒)。图3. 具有不同一次晶体颗粒尺寸的多晶 NCM 颗粒在进行充电和放电时,每个一次晶体颗粒经历锂离子的嵌入和脱嵌入时,正极材料会发生二次颗粒破裂。在这个过程中,每个一次晶体颗粒的体积都会发生变化,这是造成颗粒裂开的主要原因。二次颗粒破裂加剧了电池内部反应,并缩短了电池的寿命周期。因此,一次晶体颗粒的表征对于整个 NCM 材料分析至关重要。图4. 由 Phenom ParticleMetric 软件测量的多晶 NCM 颗粒,显示分布着大量的二次颗粒图 4 显示了具有宽的二次粒径分布的 NCM 颗粒,这导致了较低的能量密度。总的来说,确保前驱体的粒径大小在预期值内,能够提高最终正极粉末符合规范的可能性。同时,不符合质量控制标准的前驱体颗粒可以回收再加工,从而降低制造成本。SEM 可以提供一次和二次颗粒粒径的信息,能够帮助制造商在烧结过程中优化关键参数。烧结后,将团聚的颗粒粉碎并研磨成单个颗粒。图 5a 显示了颗粒分散度不足的案例,而图 5b 则显示了过度分离导致颗粒破碎的案例。图 5c 则展示了颗粒高度团聚的案例,此情况是制造单晶正极材料时烧结温度过高的结果。这种团聚使颗粒比多晶材料更难分散。缺乏均匀性、分散不足或过度破碎都会对颗粒的电化学性能产生负面影响。SEM 可以清晰地显示研磨后的颗粒,有助于生产尺寸均匀的颗粒并优化该生产过程。图5. a)团聚的多晶颗粒 b)过度分离的颗粒 c)高度团聚的单晶颗粒SEM 应用于 QC 工序中传统的 SEM 用于 QC,需要检查一个样品中的多个位置,以确保结果具有普遍性。通常,需要不同放大倍数的 SEM 图像,高倍 SEM 图像显示详细的微观结构(例如,前驱体中的层状结构、一次晶体颗粒),而低倍 SEM 图像显示了整体颗粒特征(例如,尺寸、分布、圆度等)。获取这些多幅图像需要进行以下操作:加载样本导航到所需位置调整焦点、亮度、对比度等。获取不同放大倍数的图像根据需要重复步骤 2 - 4每日生产数吨材料的制造厂可能每天需要测试数百个样品。这意味着检测人员需要连续数小时重复单调的操作,这样很容易出现人为错误。图6. 传统的 SEM 成像工作流程与 Phenom XL 台式 SEM 的自动成像工作流程对比自动成像的工作流飞纳电镜 Phenom XL G2 提供了自动成像工作流,AutoScan 软件可以在加载样品后自动获取数据。该设备一次最多可容纳 36 个样品,每个样品能够在不同的位置以不同的放大倍数成像。整个过程可以轻松实现定制化工作流程。例如,正极原材料的标准质量控制可能需要对每个样品上的 5 个不同位置进行 1k、5k 和 10k 的放大倍数分析,并且要求对样品的微观结构进行清晰成像。手动操作 36 个样品,这将需要操作人员重复数百次图 6 所示的步骤,大约花费 3-4 小时才能完成。而 Phenom XL G2 自动化的工作流程只需要用户花费 10 分钟进行输入设置参数即可,这样可以为其他工作腾出宝贵的时间。SEM 可以在无人值守的情况下自动稳定运行,提高了检测效率,从而达到减小误差,提高生产率的效果。基于 AutoScan 软件的自动化成像AutoScan 软件基于Phenom 编程接口(PPI)。使用 AutoScan 软件,飞纳电镜可以根据用户的指令,对每个样品的不同位置以及不同位置下的多个放大倍数进行自动拍照成像。图7. AutoScan 软件用户界面该自动化程序可以每周七天、每天 24 小时运行。自动化的程序也提高了 Phenom 台式电镜的可操作性,可以获取海量数据,为他们的分析提供可靠的数据基础。进一步提升图像分析能力的软件ParticleMetric 飞纳颗粒统计分析软件为了进一步进行自动化粒径分析,可以将图像直接导入 Phenom ParticleMetric 软件,该软件可以自动分析图像并计算统计颗粒形态信息。分析完成后立即生成报告,包括各种颗粒性质和统计数据。图 8 显示了单晶 NCM 样品的 ParticleMetric 软件分析界面。自动粒径分布表明平均粒径为 2µ m。图8. 使用 Phenom ParticleMetric 软件对单晶 NCM 样品分析的用户界面。A)使用的所有图像的列表项目B)已识别的颗粒进行着色C)已识别颗粒的详细信息列表D)所有颗粒的统计信息E)可视化数据均可以进行自定义总结在本文中,介绍了扫描电镜(SEM)在正极材料质量控制中的作用。Phenom XL G2 台式电镜提供的自动化成像工作流,能够进行自动图像采集和分析,优化质量控制过程,从而降低生产成本并提高生产效率。飞纳电镜 Phenom XL G2 与 AutoScan 软件相结合,可以自动获取海量 SEM 图像在 ParticleMetric 软件中对 SEM 图像进行分析,实现关键颗粒信息的可视化自动化 SEM 成像工作流程同样可以应用于电池生产中使用的其他原材料的质量控制AutoScan 软件和 ParticleMetric 软件,从原材料的颗粒形态出发,为电池原材料生产商解决了海量拍照和颗粒统计的烦恼。但是,原材料或者生产过程中引入的杂质,同样严重影响电池的电化学性能,正、负极杂质颗粒都有可能刺穿隔膜,造成安全隐患。因此,对于原材料或者生产过程中的异物监控也是品控中的重要课题,在下期文章中,我们将重点介绍电池异物检测的解决方案 —— Phenom ParticleX 锂电清洁度检测系统。“参考文献ReferenceXu, Zhongling et al.“Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1&minus x&minus yCoxMny)O2cathode materials.”Journal of Power Sources 248, 180-189 (2014)Hietaniemi, Marianna et al.“Effect of precursor particle size and morphology on lithiation of Ni0.6Mn0.2Co0.2(OH)2.”Journal of AppliedElectrochemistry 51:11, 1545-1557 (2021)Langdon, Jayse, and Arumugam Manthiram.“A perspective on single-crystal layered oxide cathodes for lithium-ion batteries.”Energy StorageMaterials 37, 143-160 (2021)
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 欧波同锂离子电池显微智能分析解决方案
    锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。 欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。 一、锂离子电池材料显微智能分析系统(LIBMAS) 锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。 图一:汇鸿锂离子电池显微智能分析系统 针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。 1)识别: 通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。 图二:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。 正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。 图三:二次球截面孔隙识别2)团聚体颗粒识别: 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在短时间内快速获得标准化的统计结果,如图四。 图四:一次颗粒团聚形成的二次球颗粒识别 电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。 图五:软件自动区分团聚颗粒及团聚颗粒截面 3)单晶颗粒识别: 相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。 图六:单晶颗粒的识别 4)大小二次球识别: 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图七。图七:大小二次球颗粒分布均匀性识别和统计 5)隔膜孔隙率统计: 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。 图八:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。 二、锂离子电池异物分析系统(LIBIAS) 目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe 图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象 针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。 图四:颗粒类型占比饼状图(左),三元统计相图(右) 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757.[2] https://doi.org/10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] https://www.science.org/doi/abs/10.1126/science.abc3167.[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46( 14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168. 作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 快速分析锂离子电池电解液的劣化
    1. 前言随着全球工业化的进展,能源需求的增长,研究高性能的储能装置受到相关领域的广泛关注,锂离子电池是目前综合性能优异的电池体系。锂离子电池属于二次电池,可以充电后,再次使用,常用在电动汽车,手机,便携笔记本电脑中,属于绿色环保能源。具有体积小,寿命长,高电压,高功率密度,无记忆效应等特点。1.1 锂离子电池工作原理锂离子电池主要通过锂离子的“嵌入/脱出”实现电池能量的存储和释放。过渡金属的嵌锂化合物常用于正极材料,他们的晶格结构对电池的容量至关重要。如以LiCoO2为例,充电过程发生的反应如下:充电时,在外电场作用下,Li+从LiCoO2晶格脱出,穿过电解液隔膜,嵌入石墨负极,电子通过外电路从正极流出,流入负极,正极电压升高,负极电压降低,电池端电压升高,完成充电。放电时,Li+从石墨负极脱出,嵌入LiCoO2正极,电子经外电路从负极流出,对负载做功,流入正极,正极电压降低,负极电压升高,电池端电压降低,实现放电做功。 1.2 锂离子电池电解液正极材料,负极材料,隔膜材料,电解液材料是锂离子电池的四大关键部分。研发电池的关键材料是国内外开发的重点。其中电解液被称为锂离子电池的“血液”,是正负极材料之间传输电子的通道,是获得高功率,高能量密度,长寿命的锂离子电池的保证。电解液通常由纯度高的有机溶剂、锂盐、添加剂等组成。随着锂离子电池不断的充放电过程,电池会出现劣化,其中电解液状态是评价电池劣化的最主要因素之一,也是评价电池劣化的最直观的方法。因此,分析电解液的劣化非常重要。电解液分析的传统方法,如GC / LC-MS、核磁共振、傅里叶红外,这些方法在样品制备和前处理方面,耗时长,操作繁琐。另外,对于电解液中含量较少的成分,传统的方法很难检测出它们的变化差异。而三维荧光结合多变量分析方法,能够以更短的时间、更容易、高灵敏度的检测电解液的变化。客户可以使用三维荧光进行电解液中成分变化的筛选,联合传统分析方法确定变化的具体物质。因此三维荧光提供了一种快速寻找电池劣化的原因,可以有效减少或避免在研发或使用过程产生这种劣化的原因,大幅提高分析效率。 详细的应用数据请点击:https://www.instrument.com.cn/netshow/sh102446/s926995.htm荧光分光光度计F-7100和多变量分析软件3D SpectAlyze日立荧光分光光度计具有超高的扫描速度,无需复杂的样品前处理,能够快速测定样品。另外,日立具有专用多变量分析软件3D SpectAlyze,因此可以提供数据测量和解析一体化,从而获取样品的详细信息。使用荧光分光光度计结合多变量分析软件可以快速评价荧光强度发生变化的体系。
  • 【热点应用】ED-XRF分析锂离子电池正极材料
    锂离子电池正极材料的容量和能量密度对电池的性能起着关键作用。而在正极材料的三元层状结构中,元素配比对材料的性能具有至关重要的影响,因此对正极材料中各种元素的准确定量是电池研发生产关键技术之一。 使用何种分析手段去定量正极材料中的元素?要考虑诸多因素,除了检测速度、准确度、仪器稳定性等常见评价指标外,实验室安全和环保成本,样品前处理是否简单?检验设备的易用性以及最小化人为误差也是研发和生产质量控制中的不可忽视的问题。 目前,常用的锂电池正极材料元素定量手段包括ICP-OES、ICP-MS、AAS以及XRF。 因正极材料样品均质化的要求,ICP以及AAS需要液体进样,所以样品需要加入硝酸进行酸煮或微波消解成为液体。而这种前处理方法一方面存在消解不完全的情况,另一方面,废酸的处理也增加了实验室安全以及环保成本。此外,ICP方法只能分析痕量元素,所以样品需要较大的稀释倍数才能进样,这样也就带来了较大的稀释误差。 这些检测问题该如何解决呢?我们来看看X射线荧光光谱法(XRF)检测锂离子电池正极材料的几点优势: 相对而言,XRF与ICP相比可以直接进样,不需要复杂的前处理步骤,检测速度快。且样品制备简单:对于固体即可使用松散粉末直接进行测试,也可简单压片或进行玻璃熔珠测试;对于液体样品,更可以使用液体杯直接原样测试。 另一方面,XRF内部无复杂管路,光路简单,不会产生污染以及堵塞风险,检测浓度可以从ppm级至100%,对于正极材料而言,无论样品中的主量元素还是微量元素都能够进行准确定量,满足生产控制检测需求。 EDXRF在锂电行业正极材料中的应用 正如上文所述,在实际生产过程中,正极材料因为掺杂或者碳包覆,其他检测方法受制于常规酸很难消解样品,无法实现准确且稳定地测量。因此,X射线荧光光谱技术(XRF)越来越多地被锂电行业所接受并逐步应用。 近些年,快速发展的能量色散X射线荧光光谱(EDXRF)技术作为XRF技术的前沿分支,以其体积紧凑、使用方便等优势得到了许多行业检测用户的认可。但在锂电行业还未得到广泛应用,究其主要原因,是由于普通能谱仪的检测性能在缺乏标准品的情况下,无法满足某些元素准确定量的检测需求。 马尔文帕纳科作为X射线分析仪器的主要供应商,具有超过70年的行业经验。在XRF产品的设计以及制造方面有丰富的经验和独特的技术。其推出的高性能台式能谱仪 Epsilon4,装配了动态高通量X射线管、大面积高分辨SSD探测器和超高计数电路及全功能算法软件。其光路采用紧凑设计,可以获取最高的信号灵敏度和更快的响应速度,充分满足正极材料主量以及微量元素的测试需求。 应用实例一:前驱体溶液实验分析主要针对Ni(0-120g/L)、Co(0-120g/L)、Mn(0-120g/L)三种主量元素,Epsilon4 台式能谱仪拟合曲线相关系数均在0.9999以上。其工作曲线如下:与ICP稳定性对比实验,Epsilon4 台式能谱仪对前驱体容量进行多次测量,稳定性以及精密度均优于ICP。应用实例二:NCM三元材料实验分析该实验是通过Epsilon4台式能谱仪针对NCM三元材料Ni(15-70%)、Co(5-30%)、Mn(5-30%)三种主量元素,采用压片和玻璃熔珠两种不同的制样方法进行重复性测试,Epsilon4 台式能谱仪拟合曲线相关系数均在0.9999以上。实验中,分别对三元材料的主量元素平行测试了10次,可以看到不论玻璃熔珠还是压片的数据,其重复性RMS均小于0.01。综上所述,马尔文帕纳科Epsilon4 台式能谱仪分析速度快、准确度高。与ICP对比具有更优异的精密度以及稳定性。针对正极材料不同的配方还配有具体的定制方案,是锂电行业正极材料元素分析检测值得信赖的工具。 马尔文帕纳科波长色散X射线荧光光谱仪因其强大的分析能力,除了满足常规元素日常分析工作外,同样可应用于锂例子电池正极材料中的元素定量分析,且针对LiFePO4、NCM主量以及添加元素检测均有具体的应用解决方案,我们将在下一篇推文“WD-XRF用于锂离子电池正极材料分析”中具体介绍,敬请期待。
  • 动力电池格局分析:三元锂趋势明显
    p style="text-indent: 2em "随着整车续航要求的提升,高能量密度的三元电池需求量显著提高。预计2020年搭载三元电池的新能源汽车有望达到180万辆,占新能源汽车总量比例超过90%。我们测算,2018年预计国内新能源汽车对三元电池有望超过28GWh的需求量,对应市场规模超390亿市场规模。到2020年,三元动力电池需求量将增长至76GWh,对应市场规模超800亿,2018-2020年需求量CAGR约为39%,2018-2020年市场规模CAGR约为27%。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/fdafb790-9801-4b9f-9b4d-ca8faf162487.jpg" title="动力电池格局分析:三元锂趋势明显1.jpg"//pp style="text-align: center text-indent: 2em "2011-2017年全球动力电池市场需求量及增速情况/pp style="text-indent: 2em "strong中国动力电池出货量/strong/pp style="text-indent: 2em "伴随电动汽车于2011年在我国起步,动力电池行业步入发展初期,年出货量低于1GWh且仅维持小幅增长据前瞻产业研究院发布的《动力电池PACK行业发展前景预测与投资战略规划分析报告》数据显示,随着2014年补贴政策推出,行业进入爆发式发展期。动力电池出货量从2014年的5.9GWh攀升至2015年的17.0Gwh,同比增长接近2倍。2016年中国动力电池出货量达30.5GWh,同比上年增80%。总体而言,作为新能源车产业链的关键环节,动力电池行业将长期受益新能源汽车的销量和渗透率增长。2017年动力电池累计出货39.2GWh,同增30%以上。结合新能源车产销预测2018~2020年动力电池将延续高增长,CAGR约30%。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/17c1d3ee-9014-48de-ba43-87343c7e51d1.jpg" title="动力电池格局分析:三元锂趋势明显2.jpg"//pp style="text-indent: 0em "/pp style="text-align: center text-indent: 2em "2011-2025年中国动力电池组出货量及增速情况/pp style="text-indent: 2em "自2014年之后,动力电池装机进入爆发增长期,动力电池的回收问题也逐渐提上日程。一般家用乘用车以及电动客车电池会在5年左右退役,出租车和物流车动力电池一般2年就会退役。据此判断,从2018年开始,我国将会有大量的动力电池进入报废期。/pp style="text-indent: 2em " /pp style="text-indent: 2em "strong乘用车是主导市场,三元锂趋势明显/strong/pp style="text-indent: 2em "2017 年1-10 月国内动力电池装机总量约18.1GWh,其中乘用车电池装机量达9.8GWH,占比54%(客车占比30%,与用车占比16%)。仍电池类型来看,乘用车三元锂电池占比达到了70%左右,高二2016 年的52%,动力电池往三元锂方向发展的趋势明显。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/244a82b1-519d-4956-8b6c-de734a93ef76.jpg" title="动力电池格局分析:三元锂趋势明显3.jpg"//pp style="text-align: center text-indent: 2em "2017年前10个月不同电池装机情况统计(单位:GWh)/pp style="text-indent: 2em "在三元动力电池领域,竞争格局相对分散;宁德时代市场占有率23.0%排名第一,比兊动力(10.1%)、孚能科技(7.1%)、比亚迪(5.3%)分列2/3/4位,CR5约为49.4%。/pp style="text-indent: 2em "strong动力锂电池行业发展方向/strong /pp style="text-indent: 2em "鼓励动力电池向高能量密度技术方向发展,2017 年3 月发布的《促进汽车动力电池产业发展行动方案》,明确了到2020 年的目标是动力电池单体比能量超过300Wh/kg,系统比能量力争达到260Wh/kg。我国目前的动力电池系统比能量平均水平约为115Wh/kg,不260Wh/kg 的目标值仌有较大差距。因此,不断更新电池技术,提升电池能量密度,将会是动力电池企业的核心竞争力。/pp style="text-indent: 2em "提升电池能量密度的补贴门槛,符合政策鼓励使用高能量密度电池的大方向。不管未来政策如何发化,技术的不断革新和控制成本的能力将会是动力电池企业的核心竞争力。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制