当前位置: 仪器信息网 > 行业主题 > >

电池隔气定仪

仪器信息网电池隔气定仪专题为您提供2024年最新电池隔气定仪价格报价、厂家品牌的相关信息, 包括电池隔气定仪参数、型号等,不管是国产,还是进口品牌的电池隔气定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池隔气定仪相关的耗材配件、试剂标物,还有电池隔气定仪相关的最新资讯、资料,以及电池隔气定仪相关的解决方案。

电池隔气定仪相关的资讯

  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池隔膜市场生变:行业“老大”欲20亿吞并“老二”
    p style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"近日,云南恩捷新材料股份有限公司(以下简称“恩捷股份”)发布公告称,公司已与苏州胜利精密制造科技股份有限公司(以下简称“胜利精密”)签订《股权转让框架协议》(以下简称《框架协议》),拟以20.20亿元收购其全资子公司——苏州捷力新能源材料有限公司(以下简称“苏州捷力”)100%股权,包括以9.50亿元对价受让股权和苏州捷力拖欠胜利精密的不超过10.7亿元其他应付款。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"此次《框架协议》的签订,被业界人士称为“湿法隔膜领域‘老大’对‘老二’的收购”,这意味着恩捷股份将进一步巩固其行业寡头地位。该人士分析指出,目前,湿法隔膜行业正处于“一超多强”的格局之下,企业间的竞争正愈演愈烈,随着行业集中度的不断提升,行业整体盈利水平将得到提升。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"恩捷股份并购苏州捷力是锂电池隔膜行业的头等“大戏”,必将令隔膜市场迎来新的一轮变局。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong“老大”20亿元收购“老二”/strongstrong/strong/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"根据《框架协议》,本次交易总额为20.20亿元,包括以9.50亿元对价受让标的股权和苏州捷力拖欠胜利精密的不超过10.70亿其他应付款总额。交易款将分四次付清,资金来源为公司自有资金及自筹资金,最后一笔尾款4.00亿元作为本协议业绩对赌条款约定的押金。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"公告显示,苏州捷力成立于2009年9月,注册资本为4.22亿元,经营范围包括锂离子电池隔膜、塑料软包装新型多功能膜(太阳能电池用EVA塑料多功能软包装热封膜)、PI光伏电池绝缘材料的生产等。2018年度,公司实现营收4.28亿元,期末净资产为2.76亿元。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者查阅资料发现,以湿法隔膜出货收入计算,2018年恩捷股份锂电池隔膜收入13.28亿元,苏州捷力2018年锂电池隔膜收入4.12亿元。根据GGII(高工产研锂电研究所)数据显示,在纯湿法隔膜企业排名中,2018年恩捷股份与苏州捷力的出货量分别位列行业前两位。/span/ppspan style="FONT-FAMILY: times new roman"  国盛证券某分析师认为,恩捷股份目前是国内湿法隔膜行业绝对龙头,国内市场占有率已经超过40%,苏州捷力在行业排名第二,两者合计市场占有率近60%,收购完成后,恩捷股份的行业寡头地位将得到进一步巩固。此外,通过兼并可避免重资产模式下耗尽现金流的恶性价格竞争,行业格局将进一步优化,后续价格降幅将有望大幅收窄。/span/ppspan style="FONT-FAMILY: times new roman"  对此,恩捷股份某高管回应称:“若本次交易顺利完成,将有利于公司进一步扩大锂电池隔离膜业务的产能,促进行业整合,也能够对公司在锂电池隔离膜领域的战略布局起到支撑作用。”/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong优势互补抢占3C新市场/strongstrong/strong/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  胜利精密2018年报显示,苏州捷力为锂电池行业龙头客户提供湿法基膜和涂覆膜,已达产的湿法基膜产线共有8条,产能规模每年可达4亿平米左右,月均出货量超3000万平米,产品良品率稳定在90%以上。湿法隔膜被广泛运用于三元电池,在下游3C和新能源汽车领域得到了广泛应用。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  同时,苏州捷力不仅为动力电池行业龙头客户,如CATL(宁德时代新能源科技有限公司)等,提供9-12μm 湿法膜(月供应量超千万平方米),还为国际客户,如日本、韩国等客户批量生产5-7μm的用于消费类电池的高端超薄隔膜。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  就收购苏州捷力一事,恩捷股份相关负责人在接受《证券日报》记者采访时表示:“目前, 恩捷股份的产品以动力电池为主,而苏州捷力在3C方面具有显著优势,目前客户包括ATL(宁德新能源科技有限公司)、LG、村田等,其4-5μm超薄膜产品也已实现批量化生产。收购完成后将对公司的产品种类形成有益的补充”。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"“此外,对苏州捷力而言,由于其产品以基膜为主,涂布优势不明显,恩捷股份将会在涂布方面为其提供协同 另一方面,恩捷股份对成本把控能力强,有利于降低苏州捷力成本,二者强强联合,优势互补,协同效应显著,公司龙头地位将得到进一步稳固。”上述负责人说。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  前述国盛证券分析师认为,恩捷股份客户主要集中于动力电池领域,目前以9u隔膜产品为主,在消费电池领域积累相对薄弱。而苏州捷力则在动力电池、消费领域并举,已成为苹果电池供应商ATL的核心供应商之一,其提供的5u产品,超薄产品全球领先。据介绍,进入ATL供应体系需要长认证周期,从0到实现大批量供应将至少耗费1-2年时间,收购完成后,恩捷股份将把全球最大的消费电池龙头客户ATL收入囊中。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong行业整合加速谋变/strongstrong/strong/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者查阅资料了解到,2018年全球新能源汽车产业发展迅猛,全球新能源乘用车年销量已突破180万辆,国内首次突破100万辆,锂电池行业正迎来快速增长期,对应的隔膜市场需求旺盛。而国内多起隔膜企业间的整合预示着隔膜产能集中度的进一步提升,企业间竞争正进一步加剧。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"相关统计数据显示,现阶段国内真正有出货量的隔膜企业已不到40家,与2017年底统计的近60家(含干法、湿法)相比,数量大幅锐减,未来这一数量还将进一步减少。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"GGII认为,从2019年的趋势来看,隔膜行业的整合正在加快,隔膜龙头企业正在扩大产能、提升内部管理、增加功能隔膜开发投入,以进一步降低成本并拉开与三四线企业的差距。隔膜属于重资产行业,在企业间分化加剧的情况下,中小规模企业将面临更大的经营压力,预计到2019年底将有更多的隔膜企业倒闭或者停产。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者了解到,除此次恩捷股份收购江苏捷力外,2018年中材科技与湖南中锂两者的兼并整合也有望在产能规模、技术联动、资源整合方面提升一定市场竞争力。/span/ppspan style="FONT-FAMILY: times new roman"  恩捷股份相关负责人还透露:“本次交易若能顺利完成,将对公司在锂电池隔离膜领域的战略布局起到支撑作用,这也意味着公司与其他湿法隔膜企业在市场份额及产能规模上的距离将进一步拉大。”(见习记者 顾贞全)/span/pp style="TEXT-ALIGN: right TEXT-INDENT: 0em"span style="FONT-FAMILY: times new roman" span style="FONT-FAMILY: times new roman FONT-SIZE: 14px"原标题:湿法隔膜市场生变:行业“老大”欲20亿元吞并“老二”/span/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"/span /pp /p
  • 工信部:适时开展钠离子电池标准制定 统筹引导钠离子电池产业高质量发展
    工信部近期发布《关于政协第十三届全国委员会第四次会议第4815号(工交邮电类523号)提案答复的函》,答复高亚光委员提出的《关于在我国大力发展钠离子电池的提案》:您提出的《关于在我国大力发展钠离子电池的提案》收悉,经商科技部和财政部,现答复如下:中国提出碳达峰、碳中和宏伟目标,是全球应对气候变化的里程碑事件,将对绿色低碳发展产生深远影响。实现碳达峰、碳中和的关键任务是实施可再生能源替代行动、大幅提升新能源在能源结构中的比重、构建以新能源为主体的新型电力系统。锂离子电池、钠离子电池等新型电池作为推动新能源产业发展的压舱石,是支撑新能源在电力、交通、工业、通信、建筑、军事等领域广泛应用的重要基础,也是实现碳达峰、碳中和目标的关键支撑之一。一、国家有关部门积极推动新型电池发展国家有关部门高度重视新型电池产业发展,从加强行业管理、统筹产业规划、支持技术创新、加快标准建设等角度出发,采取一系列措施促进新型电池产业健康有序发展。我部长期以来积极推动新型电池产业发展。一是制定发布《信息产业发展指南(2016—2020年)》,推动新型电池技术进步和创新升级,支持钠离子电池、液流电池等新型电池产业发展。二是积极开展电池领域相关标准研制工作,推动将先进技术创新成果转化为标准,规范和引领产业高质量发展。三是支持电池检测平台建设,指导组建国家动力电池制造业创新中心,统筹资源推动产业技术进步,支持新型正极材料等关键技术攻关和产业化。“十三五”期间,科技部通过国家重点研发计划“智能电网技术与装备”重点专项,对电池储能相关技术进行了系统部署。其中,钠基储能电池技术作为重点支持方向之一,在“高安全长寿命和低成本钠基储能电池的基础科学问题研究”等项目系列成果推动下进步显著。近年来,财政部通过新能源汽车推广应用补助等政策,带动了新能源汽车动力电池产业蓬勃发展,推动新型电池产品技术水平迅速提高、成本迅速下降。二、钠离子电池在资源丰富度、成本等方面具有优势钠离子电池与锂离子电池摇椅式工作原理类似,主要依靠钠离子在正极和负极之间移动来工作。近几年,钠离子电池开始逐步进入规模化试验示范阶段。2018年6月,首辆钠离子电池低速电动车问世;2021年6月,中科海钠发布世界首个1MWh钠离子电池储能系统。这意味着,继铅蓄电池、锂离子电池等电化学储能体系后,钠离子电池开始在储能领域崭露头角,有望推动新能源产业的进一步发展和变革。钠离子电池在资源丰富度、成本等方面具有一定优势。一是钠元素储备更丰富,钠是地壳中储量第六丰富的元素,地理分布均匀,成本低廉;而锂资源在地壳中储量仅为0.002%,不到钠的千分之一,且全球分布具有地域性。二是钠离子化合物可获取性强,价格稳定且低廉。此外,在低电压下铝不会和钠合金化,因此钠离子电池负极可使用铝集流体而不必像锂电池使用铜集流体,从而降低电池的成本和重量。三是钠元素和锂元素有相似的物理化学特性及储存机制,钠离子电池有相对稳定的电化学性能和安全性。另一方面,目前钠离子电池在产业化进程中尚存在能量密度较低、循环寿命较短、配套供应链与产业链不完善等问题,仍处于商业化探索和持续改进中。预计未来随着产业投入的加大,技术走向成熟、产业链逐步完善,高性价比的钠离子电池有望成为锂离子电池的重要补充,尤其是在固定式储能领域将具有良好发展前景。三、对有关意见建议的考虑根据您提出的将钠离子电池纳入有关发展规划和重点科技支持计划、推动市场化应用、推动标准建立、给予政策扶持等建议,我部会同有关部门认真吸纳,将积极采取切实有效的措施,在下一步工作中深入研究落实。一是关于将钠离子电池纳入有关发展规划和重点科技支持计划的建议。我部将在“十四五”相关规划等政策文件中加强布局,从促进前沿技术攻关、完善配套政策、开拓市场应用等多方面着手,做好顶层设计,健全产业政策,统筹引导钠离子电池产业高质量发展。科技部将在“十四五”期间实施“储能与智能电网技术”重点专项,并将钠离子电池技术列为子任务,以进一步推动钠离子电池的规模化、低成本化,提升综合性能。二是关于尽快推动钠离子电池市场化应用的建议。有关部门将支持钠离子电池加速创新成果转化,支持先进产品量产能力建设。同时,根据产业发展进程适时完善有关产品目录,促进性能优异、符合条件的钠离子电池在新能源电站、交通工具、通信基站等领域加快应用;通过产学研协同创新,推动钠离子电池全面商业化。三是关于尽快推动钠离子电池标准建立的建议。我部将组织有关标准研究机构适时开展钠离子电池标准制定,并在标准立项、标准报批等环节予以支持。同时,根据国家政策和产业动态,结合相关标准研究有关钠离子电池行业规范政策,引导产业健康有序发展。四是关于对初期进入市场的钠离子电池产品或企业给予扶持的建议。我部将梳理能源电子产业链,统筹资源支持锂离子电池、钠离子电池等新型储能电池发展。相关部门将继续大力支持相关领域科技创新,并以市场化手段为主,推动更加合理、更加高效的商业模式形成,通过建立良性发展机制解决产业发展过程中面临的共性问题。感谢您对钠离子电池产业发展的关心,希望今后能得到您更多的支持和帮助。
  • 一层隔膜两重天:国产锂电池尚需拨云见日
    p  “也不知道这辆车的电池能坚持多久?”/pp  6月15日上午,望着窗外驶过的又一辆新能源汽车,南开大学新能源材料化学研究所所长、博士生导师周震习惯性地自语道。/pp  从事新能源材料研究20多年,看着日渐增多的新能源汽车,周震欣喜之余,仍存忧虑,“锂电池的基础材料研究,我们与世界一流水平还有差距,尤其高端电池隔膜材料仍然依赖进口”。/pp  在周震等业内专家看来,作为新能源车的“心脏”,国产锂离子电池(以下简称锂电池)目前“跳”得还不够稳。/pp style="text-align: center "strong  跨越太平洋的“四国游戏”/strong/pp  去年全球动力电池销量前10的企业中,中国企业就占了7席,在市场份额上超越日本,占据了世界第一位 预计到2020年,我国在全球电池市场所占的份额将达七成以上 目前我国电池生产企业已超过了200家,是全球拥有锂电池生产企业最多的国家……然而这一串的数字,并没有让业内人士觉得骄傲,不少人接受采访时指出,虽然我国已经形成了比较完善的动力电池产业链,电池产业规模够大,但是还远称不上强。/pp  在锂电池领域存在着一个跨越太平洋的“四国游戏”。“从行业角度来看,美国有比较强的研发设计能力,目前仍然引领锂电池原始创新、核心材料研发 日本作为电池材料制造大国,生产规范严格,能够最先制造出新的成品电池 我国和韩国作为第二梯队,后续跟进……”周震解释说,“相较日、韩,我国的低端锂电池产品更有优势,主要是由于人工和原始材料相对便宜,但是在部分高端产品,尤其是事关电池安全性的核心材料和制造工艺,仍有较大的差距。”/pp  据了解,电池四大核心材料中,正、负极材料、电解液都已实现了国产化,唯独隔膜仍是短板。国产隔膜主要供应低端3C类电池市场,高端隔膜目前依然大量依赖进口。核心专利缺乏,隔膜等关键材料不给力,不仅成了国产锂电池难以承受之痛,也拖了国产锂电池企业“走出去”的后腿。/pp  天津力神电池一位负责人在接受科技日报记者采访时表示,锂电池最前沿的三元材料,核心专利掌握在美国3M公司和阿贡国家实验室的手中,3M公司持有常规化学计量比的NMC材料的专利,阿贡国家实验室拥有层状富锂材料专利。目前,松下、三星、LG等主流厂商都要花钱购买相关专利授权。“国内锂电池企业众多,未来进入国际市场,面对国际巨头竞争,缺乏核心专利和材料技术是中国电池企业未来最大的隐忧和短板。”该负责人表示。/pp style="text-align: center "strong  一层薄膜两重天/strong/pp  采访中,有电池材料专家告诉记者,隔膜是锂电池的关键组件之一,隔膜主要材质为多孔质的高分子膜,包括聚乙烯及聚丙烯。锂电池用的隔膜对安全性、渗透性、孔隙度及厚度都有严苛的要求。/pp  “在锂电池内部,带有电荷的离子,在正负极间流动穿梭,才能形成电流,而隔膜位于电池内部正负极之间,既要防止正、负极直接接触,又要确保电解质离子顺利通行。”周震形象地解释说,电池电解液犹如河流,锂离子好比河上行驶的小船,隔膜是拦腰而建的大坝,一个个隔膜孔就像是大坝上的闸门,正常情况下,离子自由穿梭到达正负极,完成充放电的循环。/pp  “高端的隔膜一般附带有陶瓷材料,如果电解液温度过高,材料膨胀,孔隙会像闸门一样关闭,切断离子交流,从而避免电池因温度过高而起火爆炸。”周震介绍说,隔膜是锂电材料中技术壁垒最高的一种材料,其技术难点在于造孔的工程技术、基体材料,以及制造设备。“技术要求高,价格自然也就贵,差不多占到了电池总成本一成以上。”/pp  目前,世界上最好的锂电池隔膜材料出自旭化成和东燃化学两家日本公司,而国内锂电池铝塑膜市场九成份额也被昭和电工等日本厂商垄断。天津力神公司的工程师告诉记者,与日本相比,我国的高端隔膜差距明显。国产隔膜产品一致性不高,存在孔隙率不达标,厚度、孔隙分布以及孔径分布不均等问题。/pp  隔膜的品质直接影响电池容量、充放电循环寿命、阻燃止爆安全性能等指标。业内人士感慨:“一层隔膜两重天,迈过去就是晴天!”/pp style="text-align: center "strong  国产隔膜急需突破/strong/pp  目前锂电池隔膜制造工艺主要分湿法和干法。记者采访中了解到,我国在干法工艺上已迈入了世界第一方阵,但在湿法隔膜领域,国内企业虽掌握方法,但整体仍难以与外国巨头抗衡,此外,核心生产设备也主要依赖进口。/pp  数据显示,2017年,国内锂电市场规模达到了1130亿元左右,其中动力锂电池规模大约600亿元。而国家工信部印发的《节能与新能源汽车产业发展规划(2011—2020年)》也显示,到2020年我国纯电动汽车和插电式混合动力汽车生产能力达200万辆/年。有电池行业协会据此估算,我国未来每年需要的高品质车用动力电池隔膜材料需求量将达到数亿平方米。/pp  “锂电池发展要想不受制于人,隔膜等高端材料无法回避!”天津巴莫股份有限公司总经理吴孟涛认为,如此巨大的市场需求,完全依赖外国厂商,不仅不现实,也将是国产动力锂电池最大隐忧。/pp  高端隔膜技术具有相当高的门槛,不仅要投入巨额的资金,还需要有强大的研发和生产团队、纯熟的工艺技术和高水平的生产线。“对于湿法制造工艺来说,树脂材料与添加剂的挤出混合过程以及拉伸过程是两大核心难点。”周震认为,国内隔膜企业要想有更大的作为,必须要在基础材料表面处理工艺、胶粘剂配方工艺、产品冲压拉伸等涉及材料、设备和工艺控制等三大领域“补课”,此外,在隔膜产业链上游,包括国产涂布机等在内核心生产装备也需要迎头赶上,尽快实现国产化更大突破。/pp  “好比登山,离山顶越近成功登顶的希望就越大,而这时需要付出的努力也多!”周震说道。/ppbr//p
  • 可用于稳定一创纪录高容量锂离子电池性能的潜在材料
    p  strong美国西北大学的研究人员发现了可稳定创纪录高储电量电池性能的新方法。/strong/pp style="text-align: center "img title="1-1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/e211e33e-7d72-40e5-911f-ee1ef1fbcc48.jpg"//pp style="text-align: center "电池正极结构示意图,红色为锂,绿色为氧,紫色为锰,深蓝色为铬,浅蓝色为钒。(来源:美国西北大学)/pp  在锂锰氧化物正极基础之上,这一创新可以使span style="color: rgb(255, 0, 0) "智能手机/span和span style="color: rgb(255, 0, 0) "电动汽车/span的电量增加至span style="color: rgb(255, 0, 0) "两倍/span以上。/pp  “span style="color: rgb(31, 73, 125) "i这一电池电极已达到某一有记载最高的过渡金属氧化物基电极的容量。它的容量已超过你现用手机或电脑的两倍。/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) "i美国西北大学McCormick工程学院,材料科学与工程专业Jerome B. Cohen教授Christopher Wolverton/i/span”/i/span/pp  span style="color: rgb(31, 73, 125) "i“这种电极的高容量表明其在用于电动车辆锂离子电池的目标上有了巨大提升。”/i/spanChristopher补充道。/pp  这一研究已于5月18日在科学发展杂志上在线报道。/pp  锂离子电池以在正负极间往复迁移锂离子的方式而工作。正极使用含有锂离子、过渡金属和氧的化合物制取。过渡金属,通常为钴,当锂离子在正负极间来回迁移时有效地储存和释放电能。正极容量因而受到参与反应的过渡金属中的电子数量的限制。/pp  一个法国研究团队于2016年首次鉴别出大容量锂锰氧化物的性能。span style="color: rgb(32, 88, 103) "strong通过使用成本更低的锰替代传统用的钴,研究人员开发出一个成本更低廉且具有之前两倍容量的电极。/strong/span但它也并非完美无瑕。strongspan style="color: rgb(32, 88, 103) "由于电池性能在头两个循环过程中会大大削减,科学家们认为它无法应用于市场。与此同时,他们并未完全理解电池性能衰退及其拥有大容量的化学根源。/span/strong/pp  在绘出一个综合的,原子间相接的正极图像之后,Wolverton的团队发现了材料具备高性能背后的原因:span style="color: rgb(255, 0, 0) "strong它驱使氧参与到反应过程中来。通过使用氧及过渡金属来储存与释放电能,电池具有了更大的容量来储存及利用更多的锂。/strong/span/pp  随后,西北大学的团队将他们的研发重点转向如何稳定电池性能并阻止它的迅速衰减。/pp  span style="color: rgb(31, 73, 125) "i“通过充电过程理论的辅助,我们运用高速计算彻底检索元素周期表,以寻找合金化该含有其它元素化合物的方法,从而去增强电池的性能。/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "i文章共同第一作者,Wolverton 实验室的前博士生Zhenpeng Yao”/i/span/pp  strongspan style="color: rgb(255, 0, 0) "计算鉴别出两种可能有效的元素:钒和铬。研究团队预估将锂锰氧化物与其中的一种混合将会产生可维持正极无与伦比高性能的稳定化合物。随后,Wolverton和他的搭档将在研究室中对这些理论上的化合物进行实验检测。/span/strong/pp  该研究作为电化学能源科学中心,这一由美国能源部科学局资助的能源前沿研究中心的一部分,受到了其基础能源科学项目(项目编码:DE-AC02-06CH11357)的支持。哈佛大学的博士后研究人员Yao,与麻省理工学院的博士后研究人员Soo Kim,均为Wolverton实验室的前成员,并作为文章的共同第一作者。/p
  • 专题约稿|加州大学圣地亚哥分校-致力于打造未来的电池
    p style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" text-align:=""span style="margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "专题约稿|/strong/i/spanspan style="margin: 0px padding: 0px color: rgb(255, 0, 0) "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: sans-serif "span加州大学圣地亚哥分校-致力于打造未来的电池/span/span/strong/i/span/pp style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" text-align:=""strong style="margin: 0px padding: 0px "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-size: 18px color: red "/span/i/strongbr style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "——“锂电检测技术系列——形貌分析技术”专题征文/span/i/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(作者:赛默飞世尔科技)/span/i/pp  随着世界努力减少对化石燃料的依赖,新一代的电池将发挥关键作用。通过使用合适的电池,我们将能够平衡太阳能和风能生产和消费的高峰和低谷,从而存储由太阳和风产生的可再生能源。我们将能够为电动汽车配备更安全,更耐用的电池,使驾驶者一次充电可以长距离行驶,然后也可以更快地为这些电池充电。除此之外,我们也能够将手机,计算机和手表等便携式消费电子设备的使用时间增加,无需频繁充电。/pp  为了实现这些目标,全球许多大学和企业都致力于材料科学的创新。其中一个专注于尖端电池研究的中心是加州大学圣地亚哥分校的可持续能源和能源中心 (Sustainable Power and Energy Center)。 在那里的研究人员正在探索使用新材料来实现电池突破。科学家们在进行研究时,利用电子显微镜来探索电池材料之间在纳米尺度上的相互作用,从而更好地理解电池性能随时间衰减的原因。/pp  锂离子电池的工作方式很简单:电池在充电状态时,锂离子填充石墨晶格形成阳极,氧化物构成阴极。阳极和阴极由液体电解质隔开,当电池放电时,液体电解质允许离子从阳极流到阴极,并且当电池再充电时,锂离子再从阴极回到阳极。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/201905/uepic/2f4729d5-2032-4ba1-b117-9eee3b26fa75.jpg" title="1.jpg" alt="1.jpg" width="450" height="300" border="0" vspace="0"//pp  在锂离子电池中,当电池充放电时,锂离子通过液体电解质在阳极与阴极之间传输。/pp  strong寻求更持久,更高能量密度的电池/strong/pp  加州大学圣地亚哥分校的研究人员正在改变电池不同部分所用的材料,目的是生产更高能量密度,更长使用寿命,并能在恶劣天气条件下继续使用的安全电池。/pp  其中的一个研究方向是通过利用硅材料做为阳极来增加锂离子电池的能量密度。硅的容量比石墨的容量大一个数量级,因此使用硅做为阳极材料可以使整体电池能量密度增加。不幸的是,因为硅材料在充放电过程中会产生巨大体积变化从而导致SEI膜不稳定以及材料粉化等问题,电池容量衰减很快。这些问题使得研究人员在设计充放电可逆的硅电极结构方面具有困难的工程挑战。 目前纯硅阳极材料尚未商业化。通过利用Thermo Fisher Scientific电子显微镜在纳米尺度上观察硅颗粒在循环过程中结构变化以及性能衰减的关联性,研究人员正致力于设计能够存储更高能量密度的电动汽车电池。/pp  strong制造在零下的低温环境工作的电池/strong/pp  另一个研究领域涉及开发一种在零下的温度下继续工作的电池。通过用液化气体氟甲烷代替液体电解质,研究人员能够制造出在华氏-76 ° F 的低温下工作的电池,然而锂离子电池则为华氏-4 ° F。在研发这个电池的过程中,研究人员使用了包括Thermo Fisher Scientific扫描电子显微镜和FTIR等几种材料表征方法。研发出的新的电池带来了新的商机。 目前初创公司,South 8 Technologies,正在研发这样的电池产品,使得在未来有可能制造出在极端寒冷的条件下运行的电动汽车。同时也预计它还将带来海洋和太空探索的进步。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/a363a695-19f6-4150-8f57-741ed5e8f12a.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "上图:Thermo ScientificTM Scios扫描电子显微镜/span/pp  以上都是通过电子显微镜等表征手段来帮助推进电池研究前进的几个例子。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(68, 68, 68) "  /span/strongstrong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 255, 255) text-decoration-line: none background-color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "【征集申报链接】/span/a /ptable border="0" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"系列序号/span/strong/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"专题上线时间/span/strong/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"电性能检测技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian1" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"成分分析技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian2" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"形貌分析技术/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size:12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian3" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"4/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"晶体结构分析技术/span/p/tdtd rowspan="3" style="border: 1px solid rgb(0, 0, 0) padding: 5px "br//td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——X/spanspan style="font-size:12px font-family:宋体 color:#444444"射线光电子能谱分析技术/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"6/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablebr/pbr//p
  • OPTON的微观世界|第13期 锂离子电池隔膜的显微世界
    概 述在上期里,我们借助扫描电子显微镜对锂电池负极材料进行了细微结构的表征和组成元素的分析,让我们对于电子显微技术在电池负极材料中的应用有了相应的理解。本期小编继续带领大家了解扫描电子显微镜技术在电池隔膜研究中扮演的角色。在包括锂离子电池的二次电池中,隔膜是不可或缺的重要组分。其作用在于:一、隔膜本身不导电,将电池正极和负极分隔开来,防止电池出现内部短路;二、隔膜具有微观程度上的孔洞结构,利于电极液中离子的传递,保证了充电与放电过程中离子的有效迁移。一、样品制备小编所选用的样品为聚丙烯(polypropylene,PP)型锂离子电池隔膜,为了了解锂离子电池隔膜的相关结构,小编决定从表面和截面两种状态下进行分析。对样品进行喷金处理后,直接固定在碳导电胶上从而进行平面样品的观测,截面样品的制备同样借助了 Gatan 的氩离子抛光仪(PS:具体制备方法,请查看上期内容,容小编偷个懒)。二、锂离子电池隔膜表面的 SEM 分析利用ZEISS扫描电子显微镜观察锂离子电池隔膜的表面如图1,与隔膜宏观上光滑的表面不同,放大后可以发现,隔膜表面存在着大量的孔洞结构。将样品进一步放大可以发现,隔膜表面的孔洞孔径介于100至200纳米,且由表面延伸至隔膜内部。图1. 锂离子电池隔膜表面的SEM图像三、锂离子电池隔膜截面的 SEM 分析锂离子电池隔膜的多孔程度直接影响着电解液的扩散速率,对电池的性能有很大的影响,因此分析隔膜内部的孔洞结构具有重要意义。图2为隔膜的截面扫描图像。由图像可知,采用 Gatan氩离子抛光仪抛光处理过后的表面平整光滑,其相对于普通剪切处理得到的截面更易获得理想的图像。隔膜内部的孔洞相互贯通,并且由隔膜表面延伸至内部。由放大图像可知,隔膜的孔洞是由数十纳米的纤维形成的。图2. 锂离子电池隔膜截面的SEM图像结 论通过扫描电镜对隔膜细微结构的分析,可知锂离子电池隔膜的内部存在着大量的无序孔洞结构,孔洞的尺寸在100至200纳米之间。二次电池发展至今,大量新型电池涌现,对于电池隔膜的需求也变得多样,对于功能性隔膜的报道不断发表。具有强大功能和普适性的扫描电子显微镜作为一种直观的、有效的表征手段,将在新型材料的探究中将扮演重要的角色。下期有什么精彩内容呢?敬请期待吧!
  • 锂云科技突破电池快速检测与分选技术,助力电池梯次利用行业革新
    随着电子设备和电动汽车的普及,锂电池的需求量迅猛增长。然而,伴随而来的大量报废电池问题也日益严峻。如何高效、安全、环保地处理这些报废电池,成为当前亟待解决的难题。面对这一挑战,锂云科技团队通过技术创新,成功开发出行业首创的电池机理孪生驱动的数字孪生运维模型,深度刻画电池机理、实现电池快速分选,为电池回收及梯次利用行业提供全新的解决方案。技术创新:高效精准的锂电池检测与分选技术 锂云科技团队开发的机理孪生驱动的退役电池快速检测技术,实现了检测效率提高20倍的突破。传统的满充满放方法不仅耗时,导致企业电费成本、厂房成本、人工成本等居高不下,而该团队的创新技术大幅缩短了检测时间,有效降低企业的成本,帮助企业大幅降本增效。同时,他们开发的高置性电芯一致性快速分选技术,使大规模退役电池筛选的一致性提高80%。通过先进的算法和检测手段,这项技术能够快速、准确地对退役电池进行检测和分类,大大缩短了检测时间,并有效降低了电池成组后的安全性隐患。团队精神:科研实力与环保热情的结合 锂云科技团队的成功离不开每一位成员的努力和奉献。团队负责人表示:“我们非常高兴能够取得这一重要突破,这是团队成员们长期以来刻苦钻研和不懈努力的结果。我们相信,这项技术将为解决锂电池回收和分选难题提供一种全新的思路和方法,强力助力该行业的发展!”未来展望:推动环保事业,助力可持续发展 锂云科技团队的创新成果在锂电池回收和分选领域具有广泛的应用前景。随着技术的不断完善和推广,这项技术将被广泛应用,为解决报废电池带来的环境和资源问题提供有效解决方案。通过这项技术的应用,不仅能减少资源浪费和环境污染,还能极大地提高锂电池回收和再利用的效率,推动我国绿色产业的升级。 锂云科技团队的努力和成就展示了技术创新在环保领域的重要性和巨大潜力。未来,随着更多创新技术的出现和应用,我们有理由相信,电池回收及梯次利用行业将迎来更加光明的未来!
  • 有“锂”走天下,兰格智能泵助力新能源锂电池行业
    最近,国内成品油价一直在变动,成为街头巷尾的谈资。与此同时,锂电池作为新能源汽车的动力来源行业也面临材料价格上涨,相关话题频上热搜。受益于新能源汽车行业飞速发展,锂电池新材料的研究也愈发火热。其中,全固态锂离子薄膜电池由于安全性更高等优点,日益受到重视。薄膜型全固态锂电池是在传统锂离子电池的基础上发展起来的一种新型结构的锂离子电池。其基本工作原理与传统锂离子电池类似,即在充电过程中Li+从正极薄膜脱出,经过电解质在负极薄膜发生还原反应;放电过程则相反。过程中电解质起着至关重要的作用,直接影响到薄膜电池的充放电倍率、循环寿命、自放电、安全性以及高低温性能。以某个全固态薄膜锂电池生产试验线的实际应用为例:兰格某客户在电解质试验工艺中,需要三个泵为一组,在不同的时间点输送试剂,一个小时为一个循环,一天连续工作8小时。挑战对于这种复杂的进样体系,常规的实验室人工管理显然无法满足要求,需要使用PLC、电脑等实现设备的自动化管理。对于常规的化学、材料实验室,这就大大增加了试验的难度,需要通过自动化工程来完成。尤其,研究人员想要随时改变实验参数,也难以灵活实现。兰格解决方案对于实验的过程进行模块化分解,兰格智能型蠕动泵可提供9种运行控制模块(匀速、匀加速、匀减速、阶梯加、阶梯减、正弦、均匀分配、减量分配、增量分配)和8种逻辑控制模块(方向、暂停、循环、事件触发、延时、跳转、外控输出、结束)。研究人员可以像搭建乐高积木一样,来使用智能蠕动泵。例如上述的电解质试验工艺,兰格智能泵程序可以做如下设定:更多优势:如果研究人员需要改变其中的步骤,只需插入或删除相应模块即可。如果要修改某个模块的运行参数,直接进入模块进行修改即可。同时整个工作过程可以保存为方法,在后续的试验中可以直接调用。新能源车行业是我国战略性新兴产业,而且锂电池和5G、化学储能、碳中和等等也都息息相关,未来仍将有“锂”走天下。兰格智能蠕动泵应对不同需求,可提供多种运行/逻辑控制模块的灵活选择,助力科学家与工程师实现更便捷的操作,提高有效性、可靠性和智能体验,为全球碳中和事业作出贡献!
  • 梅特勒托利多 | 热分析在锂电池隔膜测试中的应用
    锂电系列 | 热分析在锂电池隔膜测试中的应用近期《经济参考报》发表了《新基建提速带动锂电池产业逆势上扬》的报道。文章称,进入2020年,在促进汽车消费和“新基建”等政策的推动下,国内动力锂电池产业显示出逆势上扬的态势。近日,工信部也召开专题会,研究部署加快5G网络等新型基础设施建设,对锂电池产业发展起到了重要推动作用。由于5G使用更大规模的阵列天线、更高的带宽,能量密度更高的锂电池就成为新基建的必然选择。锂电池市场需求巨大,但行业竞争日趋激烈,行业整合正在持续进行中,已经进入快速洗牌阶段。拥有核心技术和提高产品质量是生产厂家在激烈的竞争中生存的关键。热分析技术可以帮助企业更好地了解电池材料的受热稳定性,提高研发效率和质量控制,下面小梅就以热分析技术对电池隔膜的热力学分析为例进行详细解析。锂离子电池主要由正极、负极、电解液、隔膜以及集流体、外壳和安全元件等组成。其中电池隔膜起着隔离阴阳极、吸收电解液、同时具备微孔结构并允许某些导电离子和气体顺利通过的作用。锂电池隔膜的质量直接影响到电池的充放电性能、容量和使用寿命。目前,市场上主流的隔膜生产工艺有两种,一种是熔融拉伸法(干法),另外一种是热致相分离法(湿法),且目前主要的隔膜材料都是高分子材料,而电池由于不当使用而导致内部温度剧烈上升会使隔膜孔隙率和收缩率等重要指标发生剧烈改变,因此,在使用过程中,隔膜的热稳定性就显得尤为重要。热分析技术可以检测隔膜的熔融行为、玻璃化转变、热稳定性、失效温度、热收缩率等参数,帮助我们更好的了解隔膜的受热稳定性。用DSC测试隔膜的熔融行为DSC主要是用来测试样品在升降温过程中的热量变化情况,因此用DSC可以很好地测定高分子隔膜的熔融过程,下图是PP隔膜的测试图谱,测试结果显示,一次升温时,由于薄膜状的样品在熔融时易发生卷曲,所以往往在第一次升温曲线上容易出现假象,这对熔融温度的测定可能有一定影响。为了消除热历史对熔融温度测定的影响,我们可以采用二次升温的方式消除热历史,此时测定的熔融温度为样品本身的熔融温度。目前市面上的高分子隔膜大都是PP/PE的复合隔膜,因此,在隔膜的DSC测试中,往往会出现两个熔融峰,下图是PP/PE隔膜的测试图谱,PE和PP的熔融峰分别出现在130℃和166℃。用TGA测试隔膜的热稳定性TGA测试结果可以分析样品在升温过程中的质量变化情况,以此来反映样品的热稳定性,下图是PP隔膜的TGA测试图谱,结果显示,该PP隔膜的热分解温度是437℃,且隔膜的成分较为单一。用TMA测试隔膜的膨胀系数及收缩率高分子隔膜材料在受热时会发生一定量的收缩,这对隔膜的孔隙率会有较大的影响,进而影响锂电池的性能。例如,PE隔膜在90℃条件下等温60min收缩率应小于5%。目前,常见的隔膜收缩率的测试方法为悬挂法,即将一定长度的隔膜悬挂于特定温度的烘箱中,一段时间后拿尺子测量隔膜的尺寸,比较烘烤前后隔膜的尺寸来计算收缩率,这种方法的优点是快速,可大批量测试,但缺点也很明显,测试精度较低,且若收缩率处于临界值时难以判断,因此,使用TMA可很好地测定隔膜的收缩率。下图是PP隔膜在升温过程中的收缩率和膨胀系数的测试图谱,结果显示,PP在加热至175℃时的收缩率达到了60%。同理,也可测试不同类型的隔膜材料在恒定温度下特定时间的收缩率。用DMA测试隔膜的实际失效温度为了提升隔膜材料的耐高温性能和力学性能,目前市面上一般都都采用陶瓷粉末增强PE/PP的方法制备陶瓷隔膜或使用PI增强PE/PP隔膜,若对陶瓷隔膜进行DSC测试,其熔融温度往往与纯 PE/PP隔膜一致,但其实这时陶瓷隔膜往往还能保证一定的形貌及力学强度,并没有失效。此时,采用DSC表征隔膜的失效温度往往是不准确的,而通过DMA可较好地表征隔膜实际失效温度。下图是PE隔膜的DMA测试图谱,结果显示,其失效温度为135℃。★了/解/更/多/应/用 ★想了解梅特勒托利多其它产品在锂电行业的应用信息?您可以点击“阅读原文”查看梅特勒托利多全价值链解决方案。欢迎大家在评论区留言,告诉我们你还想学习哪方面的知识~
  • 脱颖而出——岛津携手三星SDI天津工厂锁定锂电池元素分析
    为了确保材料性能和电池安全性,元素分析一直是锂电企业的重点检测项目。等离子体发射光谱(ICP-OES)作为兼具灵敏度和基体耐受性的多元素分析技术,是锂电企业元素分析的顶梁柱。天津三星视界有限公司,也称三星SDI天津工厂,于2019年10月导入了岛津ICPE-9820用于正负极材料的分析。两年多来,小I(ICPE-9820)在三星SDI工厂鉴比例、控杂质,严把质量关。今天,我们来聊聊小I与三星SDI的结缘故事。 三星SDI之天津三星视界有限公司 目前,全球锂离子电池行业(本文中所提到锂电池均指锂离子电池)呈现中、日、韩三足鼎立的格局。作为韩国锂电池三强之一,三星SDI在锂电领域的成绩颇为突出。根据韩国市场研究机构SNE Research制作的2021年11月全球动力电池企业榜数据,三星SDI动力电池装机量排名第六。 图1 三星SDI天津工厂 三星SDI天津工厂,成立于1996年9月,由三星SDI和天津市电子仪表工业总公司合资成立。作为成熟的锂离子电池生产企业,天津工厂业务涵盖显示和电池领域,尤其消费电池多年居全球前列。 小I与三星SDI之缘起 为了保证电池安全性和性能,生产中对材料和工艺均有严格的监控指标。电池材料中,正极、负极、隔膜和电解液是关键组成部分,直接影响电池安全、寿命和能量密度。其中主体元素配比和杂质含量对产品质量控制与产品性能具有重要影响。因此,元素分析是锂电池企业日常检测的重要项目。 在三星SDI天津工厂,电池产线参考韩国总部配套了两台ICP用于主量元素和杂质元素的分析。由于样品量大,小I的两台同行有时会出现故障,所以迫切需要新成员来分担检测压力。 小I与三星SDI之结缘 灵敏度和精密度评估 2019年8月,三星SDI天津工厂启动了新的仪器评估计划。小I(ICPE-9820)代表岛津参加了本轮比对测试,对给定溶液中的Cr、Fe、Ni和Zn元素进行测试,评估灵敏度和精密度。 表1 灵敏度评估结果 在灵敏度和精密度评估中,小I的各项数据均优于客户现有仪器:标液回收率为98.8%-101%,优于97.2%-103%;RSD值<0.99%,优于<3.67%. 表2 精密度评估结果 注:带*的数据由已有品牌ICP-OES测定,标液浓度为0.25mg/L. 图2 岛津ICPE-9800系列电感耦合等离子体发射光谱仪 未知样测试评估 在两个未知样品的测试中,两台仪器所得结果相近,但小I仍表现出更好的精密度。 表3 样品分析结果注:带*的数据由已有品牌ICP-OES测定。2#样品Ni的分析结果偏高,可能是样品运输中污染导致。N.D.代表未检出。 出色的表现让小I在本轮评估中脱颖而出。2019年10月,三星SDI天津工厂与岛津完成合作,小I入驻天津,开始承担起锂电正负极材料的品质监控任务。 小I与三星SDI之驻厂体验 初一入厂,小I就迅速进入角色,与其它两位ICP伙伴一同分担正极中主量元素、正负极和电解液中杂质的检测,丝毫不显新人的青涩,在主量元素和P、S等深紫外杂质元素的分析上甚至承担了更多的工作量。 不过,厂内的工作确实很辛苦,小I和小伙伴们都是24h连轴转,因为不管白天还是晚上,产线上的样品都是间隔一段时间就送来一批。小I因为是真空光室,轻装上阵不需要吹扫,晚间的样品常常以它作为主力军,小I从不挑拣拉胯,照单全测,体现出应对复杂基体的耐受性。更难能可贵的是,小I的状态很好,入厂至今,“身体”一直倍儿棒,测嘛嘛香。 小I优秀背后的坚持 小I出色的表现,得益于它的自身条件,独特的真空光室,赋予了它对P、S等深紫外区元素的高灵敏度和稳定性,更无需吹扫,运行起来经济又方便。而垂直炬管和CCD检测器的设计则让它对各种基体都能适用,而且数据处理上十分灵活。 图3 岛津ICPE-9800性能特点 当前锂电行业发展如火如荼,小I系列在锂电材料检测上的应用也越来越广泛,例如以标准加入法测试三元材料元素杂质和内标法测试主量成分(表4),在对正负极材料中S元素的测试上表现尤其出色(图4)。 表4 三元材料中杂质元素检测备注:*样品结果浓度单位%;N.D.-未检出。 图4 负极材料中S元素分析稳定性 用户心声 2019年10月至今,两年多的时间里,小I在三星SDI天津工厂坚守岗位,稳定发挥,获得了用户的一致好评。让我们听听来自用户的声音—— “我们以前有两台其它品牌的ICP,但有时候会出故障。我们这儿是24h三班倒的,仪器一坏就麻烦了。所以19年导入新ICP的时候,我们也经过了全面的考察,比如标准曲线线性、检出限、稳定性、测样速率等,最后选择了参数更好的岛津ICPE-9820。但故障率还是用久了才能体现,所以刚安装时候也担心。现在两年多用下来,都没出过什么问题,而且数据比那两台还稳定,我们很满意。现在主要就用这台的数据,它还有一点挺方便的,不用吹扫,稳定得很快,我们都爱用!” 图5 三星SDI天津工厂的岛津ICP-9820运行中 结语 ICP-OES作为兼具灵敏度和基体耐受性的多元素分析技术,对锂电池行业原材料和正负极材料、电解液等主量成分和杂质元素检测分析均具有良好适用性。岛津ICPE-9800系列在性能比对中脱颖而出,顺利入驻三星SDI天津工厂,更在两年多的使用中表现出优越的稳定性和耐受性,为锂电产品保驾护航,助力锂电行业稳健发展。 撰稿人:张敏 *本文内容非商业广告,仅供专业人士参考。
  • 对欧盟出口电动工具应注意欧盟《电池指令》修订动向
    欧盟电池指令(2006/66/EC)于2008年9月26日实施。指令主要目标是“将电池、蓄电池、废弃电池和蓄电池对环境的负面影响最小化。”该指令的关键条款对含有害物质的电池和蓄电池上市给予了限制,并对电池收集、回收、处理作了专门规定。  该指令第4(1)(b)条规定,按重量计镉含量超过0.002%的便携式电池和蓄电池不得在欧盟上市。但指令第4(3)条规定,该要求并不适用于(a)应急和警报系统,包括应急灯 (b)医疗设备 (c)无线电动工具的便携式电池和蓄电池。  指令同时要求欧洲委员会定期对豁免条件进行调研,以适应最新的科技要求。2010年12月,相关专家调查组就无线电动工具的豁免提交了最终报告,报告表明,禁止在电动工具中使用镍镉(Ni-Cd)电池在技术上、经济上均可行,因为:1.可为欧洲卫生和环境带来实质性益处 2.不涉及实质性技术难题(除了在温度低于0℃的环境下使用时,启动前需用额外设备预热锂电池) 3.不会引起不可接受的经济和社会影响 4.可支持经济发展更具竞争性,并获得更高的利润。此外,禁止无线电动工具(CPTs)使用镍镉电池的预期收益应会超过其成本。  鉴于此,2012年3月26日,欧委会采纳了有关修订电池指令取消对无线电动工具豁免的提案。从2016年1月1日开始,将禁止在无线电动工具内使用镍镉电池。也就是说,自2016年1月1日起,供无线电动工具使用的便携电池及蓄电池中,镉含量将不得超过重量的0.002%。被采纳的提案将于不久后通过欧盟官方公报发布。  修订提案相关情况可参见2012年第9期《国外信息专报》。  建议:  此次欧盟发布提案修订电池指令(2006/66/EC)以取消对无线电动工具的豁免,是对其“将电池、蓄电池、废弃电池和蓄电池对环境的负面影响最小化”目标的进一步细化实施。该提案规定自2016年1月1日起,供无线电动工具使用的便携电池及蓄电池中,镉含量将不得超过重量的0.002%。  江苏,尤其是苏州地区,电动工具生产企业较多,出口批次和金额较大,其产??不齐。此提案的发布将迫使无线电动工具生产商在未来调整其产品以适应欧洲市场,相关出口产品生产商应对此给予高度重视。
  • 硅基超亲电解液锂电池隔膜研究获进展
    能量型锂金属电池作为下一代电化学储能技术,是电动汽车、航空航天等领域发展的基础。然而,在构建高比能锂金属电池的条件下,锂枝晶不可控生长和中间产物穿梭等问题严重制约了其产业化进程。近日,中国科学院兰州化学物理研究所环境材料与生态化学研发中心和淮阴师范学院合作,在硅基超亲电解液锂电池隔膜研究取得新进展。一种仿树叶结构的锂电池隔膜,用于解决高能量密度锂金属电池中不可控的锂枝晶生长等问题。相关论文发表于Small。据了解,课题组受树叶分级结构及其精细流体通道的启发,研究人员结合液体/温度诱导相分离和原位聚合反应,设计了一种具有分级多孔结构和离子选择性的凹凸棒石/聚合物复合隔膜。研究表明,该隔膜可有效、快速传递锂离子,同时能抑制锂盐阴离子的通过,从而实现了锂离子在锂金属负极表面均匀、定向沉积,改善了电池的界面稳定性和循环稳定性。此外,该隔膜展示了超亲电解液性能、高的电解液吸液率和保留率、良好的热稳定性和阻燃性能。研究人员将其应用于锂-硫电池和锂-磷酸铁锂电池时,在室温或高温条件下均表现出优异的循环稳定性和倍率性能等。仿树叶结构凹凸棒石/聚合物复合隔膜的制备及表征。兰州化物所供图。
  • 伪劣手机电池成“手雷” 专家呼吁出台通用标准
    2010年12月上旬,由国家质检总局和工信部联合召开的全国“手机用电池产品质量分析会”公布了2010年第三季度手机用电池质量国家监督抽查结果。在抽查的76批次产品中有8批次不合格,抽样合格率89.47%。其中广东为手机用电池质量重灾区,不合格产品占了7批次。  据了解,目前,我国手机用户有7.4亿多,而且很多用户不止拥有一部手机,有人说:“手机已经成为吃、穿之外最重要的消费品。”然而,因手机质量问题尤其是手机电池质量问题而引起的消费事故却时有发生。  质量投诉每年都不少  最近有媒体报道,2010年6月,甘肃一位名叫肖金鹏的工人在工厂作业时,因装在胸前衣兜的手机突然爆炸而死亡。经查,肖金鹏是由于手机电池在高温下发生爆炸,被炸断肋骨刺破心脏身亡的。  根据不完全统计,2009年手机用电池的合格率是83.8%,更早的1999年首次手机用电池国家监督抽查合格率仅为74.1%。工信部科技司副司长沙南生表示,这只是反映了制造领域正规企业的水平,并不代表流通领域的总体水平,在每年的“315”活动中,手机投诉量都是最大的,平均达13%,其中一部分就包括手机用电池。国内手机检测权威机构、信产部电信研究院泰尔实验室表示,假冒伪劣电池出现危险的概率几乎是真品电池的100至1000倍。如果以手机用户7.4亿的基数来计算的话,每年不合格的手机用电池数量巨大,那也就是说,它们隐藏的事故隐患也是巨大的。  假冒伪劣电池危害大  假冒伪劣电池尤其是假冒名牌电池的问题已成为潜伏在消费者身边的一个不定时炸弹。真品电池和假冒电池的差别也远不止一般消费者认识的电量、寿命等使用上的差异,不容忽视的是其安全性和环保性的差别。  据悉,假冒伪劣电池通常采用劣质材料,比如,大多数伪劣电池的关键性原料——电解质溶液的质量不过关。由此而产生的质量问题,不仅会造成用户在使用时出现待机时间严重不足、开机后黑屏、低温或高温下手机“罢工”等状况,更为严重的是可能引发重大的安全事故。某著名手机企业的一位工程师表示,大部分假冒电池在电路设计上偷工减料,这样就使原本十分复杂的电路简化为只有两三个元器件,就连关键性的设计——泄压阀和IC安全保护电路也被省略掉了。如果没有了这两项保护,电池会在过度充放电情况下造成安全阀破裂,直接引发电池起火甚至爆炸。  此外,假冒伪劣电池还会对机主的人身安全和环境等产生重大危害。  对此,中国泰尔实验室提醒消费者,禁止在以下四种情况下使用电池:一是发现电池充电后使用时间严重不足 二是充不上电 三是使用中电池过热 四是出现外型鼓胀破裂等现象。  呼吁通用标准快出台  网上曾有帖子称“人是拴在手机上的一条狗”,由此可见手机对现代人是多么重要。但在近年来针对手机和手机电池的几次抽查中,质量亮起了红灯,由质量问题而引发的安全事故也时常见诸报端。  业内专家认为,目前我国手机用电池行业存在的问题主要是行业准入门槛较低,生产缺乏标准化,产品检验方面部分厂家忽视产品质量监控环节 杂牌企业与品牌企业并存,流通领域夸大产品性能,假冒名牌电池充斥市场 产品质量良莠不齐,没有制定强制性标准,未列入3C强制性认证等。  为什么手机用电池的质量问题迟迟得不到解决呢?一位手机用电池生产企业的负责人告诉记者,水货和山寨机的泛滥,以及手机规格标准的不统一是导致手机用电池常抽检常不合格的罪魁祸首。从根本上解决手机用电池的质量问题,还需制定出台电池产品强制通用标准。  这位负责人介绍说,手机电池涉及到关键零部件,其统一标准的推出将会给各个企业的新产品研发和创新上造成一定冲击。但是,从另一个角度来看,统一标准的出台还将会加速企业之间的技术交流与融合,推动我国企业在手机产品技术创新和技术研发上的进步。  因此,快速出台电池产品强制通用标准,实施强制认证或生产许可证制度,避免不合格产品流入市场,才是切实提高手机用电池质量的根本所在,也是抽查一批企业,整顿一个行业的目的所在。
  • 兰光发布BTY-B3P锂电池隔膜透气度测定仪新品
    BTY-B3P锂电池隔膜透气度测定仪,采用压差法测试原理,专业适用于电池隔膜、透气膜等各种高透气量材料及相关聚合物产品的气体渗透性能测试。产品特点:电脑控制,自动完成试验触控操作,易学更易用进口高精度压力传感器,确保测试精度和重复性气动夹持试样,力度一致,省时省力,避免人为操作误差进口气动控制系统,具有超低故障率和超长使用寿命,确保系统整体密封良好试验环境温湿度实时监控,智能统计并记录三腔均值设计,单次试验出具三个试样的平均值实时显示压力曲线,便于观察分析渗透过程支持多单位转换功能,满足用户对于特殊计量单位的要求试验功能、试样面积、试验压力可灵活定制测试原理:在一定温度和湿度下,使试样两侧保持一定的气体压差,通过测量试样低压侧气体压力的变化,从而计算出气体透过率等参数。参照标准:ISO 5636、SJT 1071.9、GB/T 36363-2018测试应用:基础应用——适用于电池隔膜、透气膜等各种材料及相关聚合物产品的气体渗透性能测试技术参数:测量范围:10~10,000 s/in2• 100 mL• 1.21KPa压差范围:0~20KPa (其他压力可定制)高压分辨率:0.01KPa高压精度:±0.05KPa低压分辨率:0.1Pa低压精度:±0.3Pa试样尺寸:≥12 mm×12 mm透过面积:0.019平方英寸(12.56 mm2)(其他面积可定制)试样件数:3或2或1(件)试验气体:N2、O2、CO2、空气等纯度99.9%之干燥气体(气源用户自备)气源压力:0.6MPa(87psi)接口尺寸:Φ4 mm聚氨酯管电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一外形尺寸:390mm(L) × 433mm(W) × 410mm(H)净重:27kg产品配置:标准配置:主机、电脑、专业软件、Φ4 mm聚氨酯管(2.5 m)备注:本机气源接口系Φ4 mm聚氨酯管;气源用户自备创新点:BTY-B3P透气性测试仪采用压差法测试原理,专业适用于电池隔膜、透气膜等各种高透气量材料及相关聚合物产品的气体渗透性能测试。2019年7月上市的一款新型号产品,专业适用于锂电池隔膜行业检测使用。(1)采用压差法测试原理,电脑控制,自动完成试验,触控操作,易学更易用;(2)进口高精度压力传感器,确保测试精度和重复性;进口气动控制系统,具有超低故障率和超长使用寿命,确保系统整体密封良好BTY-B3P锂电池隔膜透气度测定仪
  • 如何让您的锂电池发挥更大效能?试试Forge Nano 原子层沉积(ALD)技术!
    如何让您的锂电池发挥更大效能?试试先进原子层沉积(ALD)技术!当今世界正处于转变期,全力迈向电动社会——一个节能减排、实现气候目标并抵御严峻气候变化的社会。为了实现这一转变,我们需要新的材料和技术,而锂已成为这一转变的标志性元素。 可持续、可预测的锂供应链对于电动汽车(EV)、储能和电力网络的重要性日益明显。据国际能源协会 (IEA) 称,到 2040 年,锂将成为需求量zui大的矿物质。并且到 2030 年,对锂的需求量预计将达到 200 万吨,才能满足quan球 2000 GWh 的能源需求。这在十年内增长了 4 倍,而电动汽车的快速普及甚至可能使实际的需求量超过这一预测。 图 1. 与 2020 年相比,2040 年清洁能源技术对特定电池相关矿物的需求增长。STEPS 和 SDS 代表与气候政策相关的两种不同情景,用于估算需求,其中 STEPS 是国际能源机构提出的有可能的情景。指数单位是任意的,以显示增长。 01/地球上有多少锂? 据美国地质调查局估计,地壳蕴含约 880 亿吨锂,其中约四分之一(220 亿吨)可开采,即储量。根据每辆电动汽车需要 8 千克锂的数量估计,我们可以生产近 30 亿辆电动汽车,这约为目前道路上汽车数量的两倍。 这样的锂储量可以支撑到本世纪中叶。值得庆幸的是,随着我们发明出更好的开采方法,锂储量也会随着时间的推移而增加。 从供应角度来看,这或许是个好消息,但利润率远低于应有的水平。尽管目前的锂储量可能满足当前的电动转型需求,但主要问题之一是锂的生产能力。 未来十年必须扩大锂产量,以满足增长四倍的需求。因此,即使有足够的锂,如果生产速度和工厂产量无法满足需求,人为短缺和供应链问题将会一直存在。 02/能否缓解这种关键材料短缺的情况? 也许你还记得电影《无限》中,布莱德利库珀服用了一颗药丸,让他能够充分发挥大脑的潜力。那么,如果我们能用锂做同样的事情呢? 我们可能会错误地认为电池在工作时会耗尽其全部电量。然而,由于界面不稳定性以及与电解质的寄生反应,大多数先进的锂离子电池正极只能在电压小于等于 4.2V 时工作。因此,为了避免活性材料的大量损失和晶体结构的重新排列,正极只能使用约 50% 的板载锂含量。 目前研究人员一直在努力制造稳定的高电压正极、稳定的负极和互补电解质,但已出现的少数材料仍然存在库仑效率低和结构退化的问题。如果不能保持较高的可逆容量,那么它们在较高电压下工作也是徒劳的。 值得注意的是,以 Wh 为单位测量的能量容量等于电池的标称容量(以安培小时 (Ah) 为单位)乘以电压 (V)。在较小的电压下运行,我们只能使用电池潜在能量容量的一小部分。 但如果像《无限》中那样,我们能设计出一种获得更多电池能量的方案吗?也许解决方法只是几纳米的材料。 03/ 使用Forge Nano ALD 原子层沉积技术提升电池效能 Forge Nano 推出了一种名为 Atomic Armor&trade 的解决方案,以解决电极结构不稳定的问题并从电池中释放更多容量。 该方法采用原子层沉积(ALD) 技术,在电池电极材料表面包覆薄膜,可实现厚度可控、均匀致密的纳米涂层。该技术可保护活性材料免受与电解质的寄生反应的影响,当电池在更高的电压和温度下工作时,电解质的化学性质会变得不稳定。 但更重要的是,Forge Nano 的 原子层沉积(ALD)工艺还可以防止过度反应。 图 2.电化学循环前未包覆的 NCA (a) 和 Al2O3 包覆的 NCA (b) 的 TEM 图像,以及在 3-4.8 V 电压下(1C/1C 充放电率)循环 100 次后分别从电池中提取的相同正极(c,d)的 TEM 图像。 图 2 很好地展示了 ALD 涂层在高电压下保持正极颗粒结构完整性的能力。TEM 图像显示,在 3.0 – 4.8V 的电压窗口下循环 100 次 1C/1C 循环后,未进行包覆的 NCA 颗粒出现了明显的裂纹和晶体结构退化。然而, Al2O3 ALD 涂层不仅防止了晶格的重大变化,还阻止了表面裂纹向颗粒内部的扩展。 事实上,通过防止这些失效机制,ALD 可以大幅提高电池的di一周期库仑效率,使电池可以在更高的电压下工作。这不仅意味着初始容量更高,而且可逆容量也更高,从而使相同的电池能够提供比以前更多的能量。 让我们来看看使用 Forge Nano 的 Atomic Armor&trade 技术升级电极材料的一些测试数据。 图 3. 使用原始石墨负极和涂有 Atomic Armor&trade 涂层的石墨负极的电池在 4.2V 电压下循环的相对容量。 图 3 比较了在 4.2V 电压下未包覆涂层的石墨负极的电池和使用 Forge Nano ALD技术包覆涂层的负极的电池的相对容量。通过使用该技术保护电极,我们的可逆容量增加了 11%,甚至无需在更高电压下循环。由于电极表面的反应不会损失锂,我们可以来回移动的锂量大大增加,从而从电池中获得更多能量。 图4 .未包覆涂层的 LCO 电池在 4.4V 电压下工作时的放电容量,耐久性循环为 0.5C/1C,而使用相同配方进行涂层包覆的电池在 4.5V 电压下运行时的放电容量。 图 4 则进一步提高了这一性能。图 4 显示了未进行涂层包覆的电池在 4.4V 电压下循环时的放电容量,以及使用 Forge Nano ALD 技术进行电极涂层包覆的电池在 4.5V 电压下循环时的放电容量。更高的电压运行与受保护的电极相结合,电池的初始放电容量提高了 18%。此外,更高的工作电压不会影响电池的使用寿命,这意味着使用原子盔甲技术,可以从电池中获得更多能量,而不会牺牲电池的使用寿命。 图 4 中的电池是可用于消费电子应用的电池示例,其目标循环次数为 200 次。如果这是一部手机,较高的放电容量意味着一次充电可以使用两天,而不是一天。 04/减少锂需求 虽然我们不一定能改变未来对锂的需求,但我们肯定能更有效地利用锂,从而较大限度地减轻锂的开采负担。随着电池能够在更高电压下工作,可逆容量增加 10-18% 不等,我们在不改变电池中锂含量的情况下输出更多的能量。 例如,北美电池制造生态系统计划到 2030 年输出 1000 GWh 的容量。如果每块电池的容量只提高 10%,那么现在这 1000 GWh 的工厂产出额定值为 1100 GWh,这将减少对多个新千兆工厂的需求,并每年节省 10 万吨加工锂的原料需求,相当于每年节省 100 万吨矿石开采过程中开采出的地下材料。这也相当于每年节省 110 万至 370 万吨二氧化碳排放量和 180 万至 800 万立方米用水量。 事实上,根据麦肯锡公司对锂供应的研究,虽然我们可以在短期内满足锂的需求,但预计到 2030 年,锂的供应将出现约 40 万吨的缺口。图 5 显示了目前到 2030 年的能源和锂需求预测。如果所有电池都使用 Forge Nano 的 ALD 技术包覆涂层,容量的提高将减少锂的需求量,以目前已知的供应量,足以满足到 2030 年的所有能源需求。在zui好的情况下,即所有电池都使用 Forge Nano ALD 技术提升电池容量,到 2030 年,锂可能仍然过剩。 图 5. 到 2030 年的锂和能源需求以及已知的锂供应量。Atomic Armor&trade 基础方案显示了千兆工厂产量增加 10% 后的锂需求。Atomic Armor&trade 高方案显示了产量增加 18% 后的锂需求。 通过使用 Forge Nano 的 Atomic Armor&trade 技术可以有效地利用锂,大大减轻锂生产的负担。使得公司可以安全地提供更高的产能产出,而不必担心供应链短缺;作为消费者,我们也不必担心锂供应短缺时会支付天价。 让 Forge Nano 的 Atomic Armor&trade 技术成为锂电池发挥更大效能的良药!
  • 利好科学仪器!欧盟电池法正式生效:电池回收、碳足迹要求升级
    仪器信息网讯 8月17日,欧盟官方公示满20天的《欧盟电池和废电池法规》(下称《欧盟电池法》,法规全文见文末附件)正式生效。核心要点:谁生产谁回收、谁进口谁回收。《欧盟电池法》对生产者责任延伸、电池回收管理、数字电池护照等提出更高要求,明确自2027年起,动力电池出口到欧洲必须持有符合要求的“电池护照”,记录电池的制造商、材料成分、碳足迹、供应链等信息。这将对中国动力电池企业出口欧洲产生重大影响。《欧盟电池法》生效利好科学仪器行业。新法规对电池回收、碳足迹、电池护照要求升级背后,科学仪器测试技术支撑作用突显,新法规文件中,“测试”一词出现达82次。如法规文件附件五的安全参数部分,依次对热冲击和循环、外部短路保护、过冲保护、过放电保护、过温保护、热传导保护、外力引起机械损伤、内部短路、热滥用、着火试验、气体排放等相关测试项目进行了描述。且多个测试项目明确要求需采用最先进的测试技术或测试仪器设备。《欧盟电池法》对于投放到欧盟市场的所有类型电池(除用于军事、航天、核能用途电池)提出了强制性要求。这些要求涵盖可持续性和安全、标签、信息、尽职调查、电池护照、废旧电池管理等等。同时,新电池法详细规定了电池以及含电池产品的制造商、进口商、分销商的责任和义务,并建立了符合性评估程序和市场监管要求。据华泰证券分析,《欧盟电池法》对我国产业链或将带来三方面影响:第一,碳排放的相关要求或将强制出口企业进行零碳转型,在生产技术上将向着高效低能耗、环保低碳等方向进行革新 第二,有望倒逼国内回收体系完善,长期将带动国内产业链的绿色转型,推进行业的可持续发展。回收要求趋严或利好已和海外厂商合作布局回收的企业 第三,电池护照旨在确保供应链的透明度,出口企业将面临护照数据库建设、护照管理系统维护及国际统一标准构建等挑战。《欧盟电池法》目录一览:第1章 一般规定第2章 可持续性和安全性要求第3章 标签、标记和信息要求第4章 电池一致性第5章 合格评定机构的通知第6章 第七、八章以外经营者的义务第7章 经济运营商在电池尽职调查政策方面的义务第8章 废电池管理第9章 数字电池护照第10章 第十章联合市场监督和欧盟保障程序第11章 绿色公共采购和修订限制的程序第12章 授权和委员会程序第13章 修正案第14章 最后条款附件1对物质的限制附件2碳足迹附件3通用便携式电池的电化学性能和耐久性参数附件4 LMT电池、容量大于2kWh的工业电池和电动汽车的电化学性能和耐久性要求附件5安全参数附件6标签、标记和信息要求附件7确定电池健康状态和预期寿命的参数附件8合格评定程序附件9欧盟一致性声明编号(申报的识别号)附件10原材料和风险类别清单附件11废旧便携式电池和废旧LMI电池收集率的计算附件12储存和处理,包括回收,要求附件13电池护照中应包含的信息附件14废旧电池装运的最低要求附件15相关表附:欧洲电池法规Battery regulation approved by EU Parliament.pdf
  • 岛津原子力显微镜-锂电池隔膜观测
    岛津原子力显微镜锂离子电池锂电池的结构由正极、负极、隔膜材料构成。 对于隔膜而言,其作用是分隔正极和负极,避免内部短路;同时,隔膜具有孔隙,可以吸附电解液使锂离子在充放电过程中可以双向通过。 目前常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜非常合适的观察工具。 以上三张图片是用原子力显微镜对不同制作工艺的隔膜材料进行成像的图,范围为5μm×5μm。因为原子力显微镜获得的形貌图像为三维图像,因此隔膜多孔结构可被很显著的表现出来。 对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,希望隔膜可以在快速产热温度(120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。 岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状,范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。 本文内容非商业广告,仅供专业人士参考。
  • 日本拟制定太阳能电池耐久性检测标准
    据国外媒体16日报道,近日,日本经济产业部宣布,该机构将和新加坡、马来西亚、印度尼西亚以及泰国等国家的政府组织等亚洲东南部的一些国家共同合作,制定一项关于太阳能电池的标准。该标准制定后,可向日本生产的太阳能电池提供一项检测太阳能电池的质量、耐久性以及寿命的方法,已应对中国等国家生产的价格低廉的太阳能电池。   据报道,此举可能跟日本政府近年来失去了在全球太阳能电池市场的王冠有关。数据显示,日本2005年在全球太阳能电池市场的占有率为47%,2008年时该数字已下滑到14%,而中国对全球太阳能电池市场的占有率则由原来的7%上升到36%。  日本经济产业部相信,其指定的标准将会使其在全球太阳能电池市场的占有率超过中国。日本政府认为,如果日本政府制定的标准能够被采纳为国际标准,那么日本生产的太阳能电池将因其质量良好闻名世界,到那时,日本将成为各大制造商和进口商购买太阳能电池的首选之地。  据估计,该检测标准有望于明年年初出台。届时,所有的太阳能电池必须接受其检测。该标准发布之后,将会于明年被提交至国际电工技术委员会,但是,有消息称,欧盟明年也准备制定与日本政府计划制定的相类似的标准,因此,日本政府制定的标准是否会被国际电工技术委员会采纳仍然未知。
  • 材料晶格研究加速新型锂离子电池电解质发展
    p  研究人员表示,分析和设计新离子导体的新方法为可充电电池提供了关键部件。新方法的应用可能会加速高能锂电池以及其他能量存储和传输装置(如燃料电池)的发展。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/3477e76a-b550-4f8f-87c2-f756b0769936.jpg" title="201803300842364192.png"//pp  该图揭示了意向电池电解质材料Li 3 PO 4的晶格结构。 研究人员发现,声波能够穿过固体材料,通过声音振动可以揭示离子带电荷的原子或分子如何通过晶格移动 ,以及它们如何在电池中实际的工作原理。在该图中,氧原子显示为红色,紫色金字塔形状为磷酸盐(PO4)分子。 橙色和绿色的球体是锂的离子。/pp  新方法依赖于对振动通过锂离子导体晶格方式的理解。新方法与抑制离子迁移的方式相关联。这提供了一种方法来发现具有增强离子迁移性的新材料,允许快速充电和放电。同时,该方法还可以降低材料与电池电极的反应性,材料与电池电极的反应会缩短电池的使用寿命。更好的离子迁移率和低反应性这两个特性——往往是相互排斥的。/pp  这个新概念是由W.M领导的一个团队开发的。该团队包括Keck能源教授Yang Shao-Horn,研究生Sokseiha Muy,最近毕业的年仅17岁的博士John Bachman,研究科学家Livia Giordano以及麻省理工学院,橡树岭国家实验室以及东京和慕尼黑的其他9所院校人员。他们的研究结果在 Energy and Environmental Science杂志上报道。/pp  Shao-Horn说,新的设计原则已经有五年的时间了。最初的想法始于她和她的团队用来了解和控制催化水分解,并将其应用于离子传导 - 这一过程不仅是可充电电池的核心,而且也是其他应用的技术关键,如在燃料电池和海水淡化系统中的应用。当带有负电荷的电子从电池的一极流向另一极(从而为装置提供电力)时,正离子以另一种方式流过电解质或夹在这些极之间,以完成流动。/pp  典型地,电解质以液体形式存在时,溶解在有机液体中的锂盐是当今锂离子电池中常见的电解质。但该物质易燃,有时会导致这些电池着火。通过新方法寻找一个可靠的材料来取代锂盐将消除这个问题。/pp  Shao-Horn说,存在多种有前景的固体离子导体,在与锂离子电池的正极和负极接触相比都具有不稳定性的特点。因此,寻找既具有高离子电导率又具有稳定性的新的固体离子导体是至关重要的。但是,通过对许多不同的结构族和成分进行分类,找到最有前途的结构无疑是一项大海捞针的工作。这就是新的设计原则的用武之地。/pp  我们的想法是寻找离子电导率与液体相当的材料,但必须具有固体的长期稳定性。Shao-Horn说研究人员被问到“基本原则是什么”,“在一般的结构层次上,是什么设计原则来控制所需属性的”。研究人员回应理论分析和实验测量相结合的方法现在已经有了一些结果。/pp  该论文的第一作者Muy说:“我们意识到有很多材料可以被发现,但是没有理解或者共同的原则让我们能够合理化发现过程。我们想出了一个可以封装我们的理解并预测哪些材料将处于最佳状态的想法。”/pp  Shao-Horn 说,关键是要观察这些固体材料的晶格性质。这决定了诸如热波和声子之类的振动是如何通过材料的。这种观察结构的新方法最终证明能够准确地预测材料的实际性能。一旦你知道了某物质的振动频率,你就可以用它来预测新的化学性质或解释实验结果。/pp  研究人员观察到使用该模型确定的晶格特性与锂离子导体材料的导电性之间具有良好的相关性。她说,“我们做了一些实验来实验性地支持这个想法”,并发现结果非常吻合。/pp  他们特别发现,锂的振动频率本身可以通过调整晶格结构、使用化学取代或掺杂剂来微妙地改变原子的结构排列来进行微调。/pp  研究人员表示这个新概念现在可以提供一个强大的工具,用于开发新的性能更好的材料,从而可以大幅度提高可存储在给定尺寸或重量的电池中的功率量,并提高安全性。他们已经用这个新方法筛选出了一些新的材料。而且这些技术还可以适用于分析其他电化学过程的材料,如固体氧化物燃料电池,基于膜的脱盐系统或产生氧气的反应。/pp  该团队包括麻省理工学院的张浩勋, Douglas Abernathy,Dipanshu Bansal和Oak Ridge的Olivier Delaire 东京工业大学的Santoshi Hori和Ryoji Kanno 以及宝马集团位于慕尼黑的研究电池技术公司的Filippo Maglia,Saskia Lupart和Peter Lamp。这项工作得到了宝马,国家科学基金会和美国能源部的支持。/pp  文章来自azonano网站,原文题目为Design principles could point to better electrolytes for next-generation lithium batteries/ppbr//p
  • 由我国牵头修订的氢燃料电池电动汽车动力性国际标准发布
    国家市场监督管理总局(国家标准委)发布公告:由我国牵头修订的国际标准《使用压缩氢气的燃料电池电动汽车动力性试验方法》近日发布。近年来,燃料电池电动汽车因为零排放,成为各国汽车行业的发展重点,也是国际标准化组织的重要工作方向。试验方法在完善最高车速测试方法的基础上,进一步增加了加速能力试验以及爬坡试验,从而形成了完整的燃料电池电动汽车动力性测试方法。试验方法的发布,促进了国内国际标准相互促进融合机制的形成,提高了中国参与国际标准协调的贡献度,同时将助力中国燃料电池电动汽车产业走出去。
  • 苹果召回63000个Macbook Pro电池!快去官网查序列号!
    p style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/201907/uepic/f27fa55d-866d-46f7-91ec-c45ea25be22f.jpg" title="image001.jpg" alt="image001.jpg" style="max-width: 100% max-height: 100% "/br//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai "日前,苹果电脑贸易(上海)有限公司向国家市场监督管理总局备案了召回计划,将自2019年6月20日起,strongspan style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(227, 108, 9) "召回部分苹果笔记本电脑MacBook Pro/span/strong(Retina,15英寸,2015年中期型号)。本次召回涉中国大陆地区的电池数量约为strongspan style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(227, 108, 9) "63,000个/span/strong。据悉本次召回范围内的产品已经发生了strongspan style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(227, 108, 9) "6起发热事件/span/strong报告,暂未发生人员伤亡事故。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/bece72f2-ca81-4b8c-9307-e8cb4e78c829.jpg" title="image002.jpg" alt="image002.jpg"//pp style="text-align: justify text-indent: 2em "苹果官网目前已上线召回计划并且表明受影响设备的售出时间主要在2015年9月至2017你那2月之间,苹果根据产品序列号来确定产品是不是符合这项计划的条件。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 255, 255) font-size: 18px background-color: rgb(227, 108, 9) "strong多家主流厂商召回笔记本锂电池/strong/span/pp style="text-align: justify text-indent: 2em "小编在质量监督管理局网站查询到,strong中国惠普/strong(先后发布两次召回,数量共计strongspan style="color: rgb(227, 108, 9) "1538块/span/strong)和strong宏碁电脑(/strong共涉及多个型号笔记本共计strongspan style="color: rgb(227, 108, 9) "25620/span/strongstrongspan style="color: rgb(227, 108, 9) "台/span/strong)在今年2月和去年8月分别向国家市场监督管理总局备案了召回计划,strongspan style="color: rgb(227, 108, 9) "这些要被召回的电池都存在过热起火的安全隐患/span/strong。/pp style="text-align: justify text-indent: 2em "strong中国惠普/strong召回锂电池的主要原因是电池芯在生产过程中正负极重叠不足,可能导致卷芯边缘镀层发生短路,在使用过程中存在过热起火的安全隐患。strong style="text-indent: 2em "宏碁电脑/strongspan style="text-indent: 2em "召回的电脑锂离子电池可能发生内部短路,在极端情况下,可能会出现热失控现象,存在过热起火安全隐患。/span/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(227, 108, 9) "好在这些企业都能积极主动开展召回计划,尽可能去降低事故的发生概率。/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="background-color: rgb(227, 108, 9) color: rgb(255, 255, 255) "与其召回问题产品,不如防患于未“燃”/span/strong/span/pp style="text-align: justify text-indent: 2em "笔记本电脑锂电池如果存在过热燃烧安全隐患是很危险的,尤其现在的笔记本电脑体积越来越轻巧、易携带,成为很多上班族包中常见产品。如果大家携带存在安全隐患的电脑进行上下班通勤,就好像一颗移动的 strong“span style="color: rgb(227, 108, 9) "不定时炸弹/span”/strong,万一在人群密集处发生燃烧事故,后果将不堪设想。/pp style="text-align: justify text-indent: 2em "这些企业进行积极召回产品的做法固然可取,但如果实验室人员能够在大规模生产前对锂电池进行充分测试,或许能极大程度避免后续的安全隐患问题。仪器信息网推出了3期锂电池检测技术专题分别为:strong《锂电池检测技术系列盘点之span style="color: rgb(0, 112, 192) "电池性能检测技术/span》/strong、strong《锂电池检测技术系列专题之span style="color: rgb(0, 112, 192) "成分分析/span》/strong和strong《锂电池检测技术系列专题之span style="color: rgb(0, 112, 192) "形貌分析/span》/strong供大家参考学习。span style="text-decoration: underline color: rgb(0, 112, 192) "i点击下方图片进入相应专题了解更多锂电池检测技术。/i/span/pp style="text-align: justify text-indent: 2em "span style="background-color: rgb(227, 108, 9) color: rgb(242, 242, 242) font-size: 18px "strong锂电池检测技术大盘点/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/zt/lidian1" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/d4b1baed-3e99-4f1b-9dc6-be7224d91299.jpg" title="image003.jpg" alt="image003.jpg"//a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "锂离子电池电极过程一般经历复杂的多步骤电化学反应,并伴随化学反应,电极是非均相多孔粉末电极。为了获得可重现的、能反映材料与电池热力学及动力学特征的信息,需要对锂离子电池电极过程本身有清楚的认识。/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "电化学测量方法在锂离子电池研究中有着广泛的应用,常用于电极过程动力学基本信息的测量。常见的电化学测量方法包括strong循环伏安,电化学阻抗谱、恒电流间歇滴定、电位弛豫技术/strong等。/span/pp style="text-align: center"a href="https://www.instrument.com.cn/zt/lidian2" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ae00d360-1c8c-4990-ab2d-4f870722b6d1.jpg" title="image004.jpg" alt="image004.jpg"//a/pp style="text-align: justify text-indent: 2em "电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能可能与材料的多种性质有关,每一类性质也可能影响多项性能,具体问题需要具体分析,没有特别统一的规律,这给电池的研究带来了很大的挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。锂电检测系列专题报道第二期,将聚焦“成分分析”。/pp style="text-align: justify text-indent: 2em "锂电成分分析的技术手段主要有strong能量散射X射线谱(EDS)、能量弥散X射线谱(EDX)、电感耦合等离子体(ICP)、质谱仪(MS)、二次离子质谱(SIMS)、X 射线荧光光谱仪(XRF)/strong等,若含 Fe、Sn 元素,还可以通过穆斯鲍尔谱(Mö ssbauer)来研究,杂质测量也有专门的分析技术。/pp style="text-align: center"a href="https://www.instrument.com.cn/zt/lidian3" target="_blank" title="锂电池检测技术之形貌分析"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/88fa881b-0558-4a2f-8555-b2f0abbf8a7c.jpg" title="image005.jpg" alt="image005.jpg"//a/pp style="text-align: justify text-indent: 2em "电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能可能与材料的多种性质有关,每一类性质也可能影响多项性能,具体问题需要具体分析,没有特别统一的规律,这给电池的研究带来了很大的挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。锂电检测系列专题报道第三期,将聚焦“形貌分析”。/pp style="text-align: justify text-indent: 2em "锂电形貌分析技术手段在此归结为两类,一类是传统意义对材料微纳形貌的形貌表征,相关技术手段包括:strong扫描电镜(SEM)、透射电镜(TEM)、X射线显微镜(STXM)、扫描探针显微镜(SPM)(含原子力显微镜AFM)/strong等。另一类是对颗粒粒径、粒型、比表面等形貌分析,对应技术手段包括:粒度仪、比表面吸附仪等。/p
  • 科学岛团队设计出一种高效修复镉污染且同时输出电能的原电池系统
    近期,中科院合肥物质研究院智能所吴正岩和张嘉团队与东华大学蔡冬清教授合作,设计出一种可同时去除水土中镉(Cd2+)及向外输出电能的原电池系统,实现了零耗能条件下环境重金属污染的高效、绿色、低成本修复。相关研究成果已被权威期刊Fundamental Research接收发表。环境中Cd2+具备高溶解性及快速迁移特征,易通过食物链进入人体,严重危害生态及人类健康。以电动修复为代表的传统修复技术虽在水、土重金属污染修复方面均有成效,但高能耗、操作不便的特点很大程度制约了其实际应用。因此,迫切需要开发经济、操作简便、环境友好的Cd2+修复技术。课题组利用Cd2+污染介质(Cd2+污染水体或土壤)作为电解质构建了一种可有效去除环境中Cd2+的新型原电池系统。该系统通过电池内部伽凡尼反应(galvanic reactions)还原溶解氧产生OH与受电场驱动的Cd2+结合,实现对水土中Cd2+的高效固化及去除。同时,通过对多个原电池系统的串联构建输出电源,能持续点亮LED灯。该修复技术表现出成本低、绿色节能且易于操作的优良性能,具有较为广阔的市场应用前景。该研究工作得到国家自然科学基金和安徽省科技重大专项的资助与支持。基于Cd2+污染水体(a)及土壤(b)的原电池研制及修复、产电机理
  • 电动革命掀起热潮:IPB中国粉体展揭示电芯及电池材料生产的前沿解决方案
    燃油车看“发动机”,新能源汽车看“电池”。锂离子电池作为21世纪新能源汽车产业运行体系中不可或缺的“核心部件”,正极大影响人们的生活。电池原料的选择、浆料的制备过程决定着电池性能的高低。锂离子电池的生产工艺流程主要包括:浆料制备、涂布、辊压、制片、卷绕、注液、化成、分容、测试、包装等。每个工序都会影响电池的一致性及安全性等各项性能指标。浆料制备作为锂离子电池生产的第一步,其重要性不容小觑。目前,在锂离子电池行业中,电极浆料的混料工艺分为湿法混料和干法混料两种。为改善锂离子电池的续航能力不足、电芯一致性差、生产成本高等方面的缺点,研究并制定关于电芯及电池材料的解决方案显得尤为重要。IPB 2023中国粉体展将于2023年7月31日-8月2日在上海世博展览馆举办。新一届展会展馆面积预计达到15,000平方米,200+展商参展,12,000名观众参观,展会规模增扩30%。IPB中国粉体展,作为“为粉体行业提供解决方案的一站式综合服务平台”,今年将举办“IPB中国国际粉体加工及应用论坛”,重点包括“电芯及电池材料生产解决方案专场”。论坛将于2023年7月31日13:00-15:30在展会现场大会论坛区 9001举办,会议专场将邀请布勒,耐驰,琥崧,恩威雅,新帕泰克,申克等“新能源电池”领域的行业知名解决方案专家,为行业同仁提供“电芯及电池材料生产”等解决方案”,分享最前沿的行业资讯,并为现场行业人士答疑解惑。更多演讲嘉宾正在邀请中,更多精彩活动,敬请期待!电芯及电池材料生产解决方案专场时间:2023年7月31日 13:00-15:30地点:大会论坛区 9001主办方:中国颗粒学会、纽伦堡会展(上海)有限公司协办单位:马里亚纳锂电部分专场主题电池匀浆系统的生产与应用湿法超细研磨技术在锂电生产工艺中的应用锂离子电池创新生产工艺锂电池行业固相计量监测解决方案工业在线粒度仪在锂电材料行业的应用探索(* 话题持续更新中,以现场公布为主)主办单位中国颗粒学会纽伦堡会展(上海)有限公司海外支持日本粉体工业技术协会(APPIE)展会联系:廖女士纽伦堡会展(上海)有限公司电话: +86 (0) 21 60 36 12 25传真: +86 (0) 21 52 28 40 11邮箱: jessie.liao@nm-china.com.cn王先生纽伦堡会展(上海)有限公司电话: +86 (0) 21 60 36 12 29传真: +86 (0) 21 52 28 40 11邮箱: Leslie.wang@nm-china.com.cn官网:http://www.ipbexpo.com/IPB 2023 观众预登记 通道IPB中国粉体展 官方微信公众号
  • 仪器市场新极新突破:锂离子电池容量骤升
    p style="text-indent: 2em "据美国《科学进展》杂志29日消息称,美国西北大学研究团队研发出一种全新材料,可用于制造性能稳定的大容量锂离子电池,从而大幅提升智能手机、电动汽车等的续航时间,甚至可以延长到目前的两倍多。/pp style="text-indent: 2em "锂离子电池已是现代高性能电池的代表,应用最为广泛,其主要依靠锂离子在正极和负极之间移动来工作。而今消费电子和动力电池对能量密度提升的需求,推动着正极材料不断进步——通常,人们采用的是锂、氧和一种过渡金属的化合物为电池正极,这其中,正是过渡金属负责储存和释放电能,其性质也是电池容量的关键。/pp style="text-indent: 2em "现阶段最常用的过渡金属是钴,而此前科学家研究发现,如果用镁取代钴,可以在提高容量的同时降低成本,但镁也有一定缺陷——电池性能退化太快,仅两轮充放电后就出现大幅下降。/pp style="text-indent: 2em "据美国西北大学官方网站介绍,此次团队研发的新材料是掺有铬和钒元素的锂镁氧化物,其用作锂离子电池的正极,电池容量出现了大幅提高,同时兼具性能稳定、不会迅速退化的优点。/pp style="text-indent: 2em "西北大学研究小组先是为锂镁氧化物材料建立了一个结构模型。该模型详细到了单个原子,团队借此分析了全部充放电过程,发现其中的氧也会参与存储电能,因而容量比以往要大。/pp style="text-indent: 2em "随后,研究人员尝试了将不同元素掺入锂镁氧化物的方案,以期计算出不同混合物各自的储能效果。最终他们发现,掺入铬和钒能在保持电池大容量的同时实现最稳定性能。/pp style="text-indent: 2em "研究人员表示,下一步他们将在实验室中检验该新材料的实际应用表现。/p
  • 精彩案例 | 钙钛矿太阳能电池应用于光伏屋顶和光伏幕墙
    3月22日,国家发改委发布关于印发《“十四五”现代能源体系规划》的通知,提到积极推动工业园区、经济开发区等屋顶光伏开发利用,推广光伏发电与建筑一体化应用。光伏发电与建筑一体化是少数同时符合“稳增长”和“减碳”的发展方向,未来有望受到政策支持,从而迎来快速发展。光伏屋顶和光伏幕墙是光伏建筑一体化两大细分方向。光伏屋顶是具有承重隔热防水功能、并叠加电池板形成的屋顶,并能有效提供工业厂房用电需求的绿色建筑类型。光伏幕墙则是将幕墙(比如石材幕墙、玻璃幕墙)和光伏发电功能相结合的幕墙,相较于屋顶,建筑幕墙表面积更大,能有效提高发电量。更适用于高楼大厦安装光伏发电的需求。接下来我们通过两个案例来更直观的了解:案例1. 广州美术馆,具有世界唯一的全建筑光伏组件发电幕墙项目,整体幕墙面积达到7万㎡。案例2. 北京世园会中国馆,整个光伏系统装机容量80kW,年发电量约8.3万度。显而易见,发电玻璃光伏幕墙的一项核心科技为太阳能电池。布劳恩一家位于波兰的客户-SAULE Technologies,其联合创始人兼首席技术官 Olga Malinkiewicz 发明了一种在柔性箔上印刷钙钛矿太阳能的方法并获得了专利。该项技术目前应用在光伏屋顶和光伏幕墙等方向。接下来我们通过视频来详细了解吧~自2014年SAULE Technologies公司成立以来,就一直在使用布劳恩手套箱研究开发钙钛矿太阳能电池。SAULE Technologies公司实验室布劳恩提供的稳定的水、氧含量 1ppm的惰性气体氛围支持着每一个需要惰性气体氛围的应用。在钙钛矿太阳能电池行业,我们不仅为行业用户提供手套箱,还可以根据客户具体需求开发出智能的交钥匙设备解决方案,提供用于惰性气体环境的镀膜、封装以及表征分析等一系列工艺设备。工欲善其事,必先利其器,如果您想了解更多产品详情,欢迎致电我们!
  • AI+自动化助力新能源电池材料研发,晶泰科技与研一签订战略合作
    近日,以 AI 和机器人实验驱动创新的晶泰科技与聚焦在锂电功能材料领域的研一新材料达成战略合作。双方将充分发挥各自在技术研发、市场拓展等方面的优势,基于第一性原理,以 AI 和自动化实验赋能,共同推进新一代锂电池新材料的研发。近年来,随着电动汽车产业的大规模高速发展,市场对效率更高、安全性更好、寿命更长的电池材料需求也日益增加,为新能源产业带来巨大的发展机遇与迫切的创新需求。动力电池领域迎来行业突破点,行业需要能量密度、循环寿命、充电速度、安全性等关键性能更高的动力电池材料,并降低生产和研发成本、突破资源瓶颈,让新一代技术更快获得行业应用,从而满足下游产业在更丰富应用场景中的供能需求。然而传统新能源电池市场研发依赖大量实验探索,面临研发成本高、周期长的难题,急需更加高效的研发技术驱动新一代储能材料的创新突破、工业落地。作为一家长期深耕于量子物理、计算化学以及人工智能方法在生物医药领域开拓的科技企业,晶泰科技在分子生成、晶体结构搜索、分子/材料物理化学性质预测等诸多领域都有深厚的积累,并在复杂体系的跨尺度模拟中有独特的见解。其自主研发的大规模自动化实验机器人集群能高效并行地完成化学实验与测试,并为 AI 算法实时收集、反馈高精度的研发数据,进一步提高研发人员的创新效率,赋能算法模型的优化与迭代升级。晶泰科技与研一的合作将充分发挥两家企业的技术优势。晶泰科技将迁移生物医药领域中人工智能及自动化的成功经验,并与研一在新能源电池研发领域的资深经验与专业见解结合,实现技术外溢,共同探索新能源电池研发新模式。晶泰与研一将会对电池微观机理认知、新型电池材料的开发、复杂结构设计、以及电池一体化模拟等方向展开合作,结合晶泰的自动化技术,共同发展成为新型电池设计研发新模式的开拓者,为实现新型动力电池、储能电池中的关键材料、关键技术从 “0” 到 “1” 的突破和现有材料升级提供有力支持,从而加速传统能源向新能源转换,推动我国新能源领域取得更加突破性颠覆性的进展。晶泰科技联合创始人、董事长温书豪表示:“晶泰科技与研一都是以第一性原理切入高价值新材料研发的创新平台型公司,技术优势与专业领域高度匹配互补。研一在锂电池材料领域的技术水平与产能规模都处于行业领先水平,我们非常期待与研一强强联合,将晶泰经过多年打磨优化的智能研发平台应用于新一代储能材料的开发,为新能源下游产业的蓬勃发展注入能量,打造一个更加可持续、更高效的智能未来。”研一新材董事长、总裁岳敏表示:“研一和晶泰科技的合作开创了一种全新的锂电新材料开发模式,结合 AI 和自动化实验平台,将完全颠覆传统材料开发的桎梏,极大提升锂电新材料迭代速度,为新能源下游客户提供更多创新独特、简单高效的材料解决方案,必将推动未来新能源产业的快速高质量发展”。● 关于晶泰科技 ● 晶泰科技是一家世界前沿的以人工智能(AI)和机器人驱动创新的科技公司。2014 年创立于美国麻省理工学院(MIT),致力于实现生命科学和新材料领域的数字化和智能化革新。公司基于量子物理、人工智能、云计算及大规模实验机器人集群等前沿技术与能力,为全球生物医药、化工、新能源、新材料等产业提供创新技术、服务及产品。 ● 关于研一 ● 深圳市研一新材料有限责任公司是一家新能源、新材料领域的独角兽企业,创始人岳敏先生是锂电材料全球头部企业贝特瑞原总经理、总工程师,在锂电领域耕耘近30 载。公司总部位于深圳市龙华区,在广州、杭州、无锡、南京、成都和日本大阪设有创新平台,在浙江衢州、四川眉山和江苏无锡建有大型生产基地,在安徽宣城及深圳龙华建有中试基地。深圳研一坚持以 “颠覆性、独特性、唯一性、经济性、量产性” 为产品开发理念,借助电动汽车渗透率加速上升、新能源产业迎来爆发性增长的契机,面向未来进行战略布局,加速推进产能建设,推动企业迅速发展。自 2019 年初成立以来,深创投、晨道资本、红杉资本、高瓴资本、赛富投资基金等对公司进行了多轮股权投资,累计融资金额超过十几亿元。截止 2022年12月,员工总数超过 650 人。晶泰科技是一家怎样的企业?欢迎点击下面这条视频并关注晶泰科技视频号,随时掌握 AI 药物研究领域的前沿技术与最新动向其他相关文章阅读:晶泰科技荣获世界人工智能大会最高奖项SAIL大奖世界人工智能大会开幕,晶泰科技入选“镇馆之宝”AI+自动化破局生物基材料发现,晶泰子公司新生泰取得突破进展
  • 氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
    为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制