当前位置: 仪器信息网 > 行业主题 > >

电伴热液位计

仪器信息网电伴热液位计专题为您提供2024年最新电伴热液位计价格报价、厂家品牌的相关信息, 包括电伴热液位计参数、型号等,不管是国产,还是进口品牌的电伴热液位计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电伴热液位计相关的耗材配件、试剂标物,还有电伴热液位计相关的最新资讯、资料,以及电伴热液位计相关的解决方案。

电伴热液位计相关的资讯

  • 科威尔液位计|进口液位计特价促销中
    德国科威尔专业生产导杆型浮球液位计、磁翻柱液位计、超声波液位计等工业仪器仪表。在中国上海设立了总代理商&mdash 高准国际贸易(上海)有限公司,所经营的所有产品为德国原装进口的,技术领先,市场占有率高。  垂询电话:021-54430662 传真:021-54707123  更多液位计|进口液位计详细信息参考:http://www.ywkg.cn/
  • 国产超声波液位计的优胜劣汰的发展趋势
    超声波液位计是一种非接触式的液位测量仪表,实际工作时由探头发射脉冲波,达到液位表面后返回被传感器接收,通过声波发射和接收的时间差来计算被测液位计的高度,因为是非接触测量,被测介质几乎不受限制,目前超声波液位计被广泛应用于各种固体物料和液体液位的测量;  当前国内超声波液位计生产企业的数量众多,超声波液位计产业的发展也相对比较成熟,尤其是超声波液位计产品得到了很好的发展。我国超声波液位计产业发展势头正猛,但在产业形势一片大好的背景下,有些问题也是值得担忧的,尤其是国内超声波液位计生产企业主要以低层次、小规模、家庭作坊式企业为主。这对于我国超声波液位计产业未来发展是一个很大的限制和瓶颈。 近年来我国超声波液位计优越劣汰,推陈出新,是仪器产业健康发展的标志。尽管仪器仪表行业的整体水平有了很大程度的提高,但质量上仍然不够稳定,比如跑、冒、滴、漏现象在国产超声波液位计产业中经常出现。产品饱和相伴的是仪器仪表持续走高,超声波液位计走向是国际的影响。在当前的形势下,仪器仪表企业应及时对超声波液位计进行产品结构调整,控制投资规模,压缩非生产性开支,这无疑也是有积极意义的。 另外,我国超声波液位计产业与发达国家相比尚存在一定的差距。超声波液位计产业市场竞争日趋白热化,部分普通超声波液位计产品市场已经趋于饱和,出现供大于求的局面,这使得中小型企业发展越来越艰难。而即使是技术含量比较高的产品在国际市场中的竞争也十分的激烈。 我们的超声波液位计生产企业久战沙场,可谓历尽艰辛,自10年进世以来,在海外屡屡受挫,吃尽苦头,虽小有成绩,但依然无法摆脱&ldquo 消化不良&rdquo 、&ldquo 外不敌手&rdquo 的尴尬境地,关键题目是国际标准化战略。 一直以来国内的超声波液位计企业对自身的定位并不是很明确,盲目生产,缺少与主机企业之间产品配套的对接与合作。可以说国内尽大多数紧固件企业的产品都只是按照同一的标准批量生产,并不关心自身产品能否满足市场上主机产品的配套性,一味追求的是自身的出厂量,与国外仪器品牌产品相比,我们缺少的是&ldquo 专一&rdquo 的&ldquo 奉献精神&rdquo ,在仪器仪表行业发展中同样适用发展模式,可以是一对一,甚至一对多配套生产。 固然国内一些企业已经开始意识到了这一点,纷纷开发了新产品的规定,但这仅仅是前进过程中的一小步,超声波液位计国际标准有待在整个行业进行推广与完善在竞争如此残酷的今天,超声波液位计在市场独立的确不是件轻易的事情,更多是由于外部竞争的加剧和市场的变化所致。产品要在国内成功拓展,必须在发挥自己产品上风的基础上,加强营销治理体系的建设,提升营销执行力,才能使自己的优质产品为国内市场所接受。 当前中国在在超声波液位计市场中,高端超声波液位计的国产化之路就变得十分的艰难。当前基础件已经成为制约国内制造业向高端化发展的短板,十二五期间我国对高端装备零部件的国产化力度将进一步的加大。我国各子行业中的超声波液位计进口替代可行性差别十分大,高端超声波液位计产业亟待更多的政策引导及科研扶持,未来国内超声波液位计产业呈现良好的发展前景。
  • 宁夏计质院新建液位计检定装置计量标准
    近期,宁夏计质院新建的液位计检定装置通过自治区市场监管厅考核,取得《计量标准考核证书》。   液位计是物位仪表的一种,广泛应用于化工、食品加工、制药、电力、水处理等领域工业生产过程中罐、釜、塔、瓶、炉以及渠内部液位或界面的测量,其按测量原理可分为联通式、浮力式、压力式、反射式、电特性式等类型,具有调试方便、高精度、读数直观、可靠性好等特点。宁夏计质院通过新建该项检定装置,具备开展浮力式、压力式、反射式液位计的检校工作的能力,其浮力式液位计测量范围为(0~3000)mm,压力式液位计测量范围为(-100~200)kPa,反射式液位计测量范围为(0~50)m。   在工业生产过程中,准确监测和控制液位至关重要。宁夏计质院该项计量标准的新建,将为全区重点工业企业安全生产和高质量发展提供有力的技术支撑。
  • 德国科威尔开通进口液位计|进口液位开关400全国销售热线
    今日,德国科威尔中国办事处正式开通进口液位计、进口液位开关400全国销售热线:400-6021-188 ,021-54430662 仍然作为我公司总部的客服热线。  德国科威尔原装进口液位开关、液位计产品质量可靠、性能稳定,1993年通过了ISO9001国际认证,1999年发明了热传温差技术并成功运用到流量检测领域并已成为行业标准。我公司液位计、液位开关性价比高,售后服务好,公司在中国区全国范围内建立40多个售后服务站点,专业的技术团队为您第一时间解决问题。   智能型超声波液位计优点:非接触测量、免维护、高精度、长寿命;先进的检测技术,丰富的软件功能适应各种复杂环境;自动功率调整、增益控制、温度补偿;光电隔离4-20mA电流输出;故障报警输出电流22mA;大电流双继电器上下限报警输出(可选);LCD液晶显示窗,外形美观精致;灵活的支架、法兰安装(可选);双通道多点液位测量。   文章来源:德国科威尔中国办事处 更多进口液位开关信息http://www.ywkg.cn
  • 西北油田加热炉玻璃管液位计法兰改造获成功
    p/pp  日前,西北油田采油二厂采油管理三区对加热炉玻璃管液位计法兰改造获得成功。改造后可调节法兰,在更换玻璃管液位计时,既方便快捷,又节约生产成本。/pp  该采油管理区所管理的231口生产油井均为稠油井,需要安装加热炉加温输送原油。其加热炉玻璃管液位计是便于职工观察水位,及时补水,确保加热炉正常运行。然而,原来加热炉玻璃管液位计法兰均为固定法兰,不便于更换玻璃管液位计,工序繁多麻烦,还易把液位计损坏。尤其在冬季中,玻璃管液位计非常冻裂,更换频次增多。有时,如法兰固定螺丝锈蚀,又要动用电气焊切割,更换起来更费时费力,一次还要增加1000元至2000元的生产成本。/pp  日前,该采油管理设备技术人员经过潜心研究,把法兰与加热炉结合部增加一个长度约3公分的内丝扣短接,将原来的固定法兰,改造为可以调节法兰。这样,在更换安装玻璃管液位计时可随意调节法兰,既方便快捷,又不会损坏液位计,还不用动用电气焊切割增加生产成本。截止目前,该采油管理区已在18台加热炉改用了这种可调节法兰。下步,全厂667台加热炉将全部推广应用。/ppbr//p
  • “川仪造”1E级磁浮子液位计模拟件鉴定试验顺利完成
    3月12日,由川仪自主设计制造的1E级磁浮子液位计模拟件鉴定试验顺利完成,这标志着由川仪股份牵头承担的国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题研究成果即将进入应用阶段,表明我国已拥有CAP1400 1E级磁浮子液位计自主研制能力,打破国外厂商在技术和价格上的垄断,为加快我国核电装备自主化发展和中国核电“走出去”战略提供有力支撑。1E级磁浮子液位计包含堆芯补水箱用1E级磁浮子液位计(CMT液位计)及安全壳淹没用1E级磁浮子液位计(CFU液位计)。CMT液位计用于堆芯补水箱热态液位测量及报警、控制自动卸压系统(ADS)爆破阀开启以缓解LOCA事故、事故后堆芯补水箱内液位监测等功能;CFU液位计可提供事故后监测安全壳内水位,提供安全壳内水位指示及报警等功能。两款1E级磁浮子液位计均为CAP1400非能动堆芯冷却系统中重要测点的专用仪表,对核电站的安全运行起着至关重要的作用。是核电站安全运行的关键设备。全球各大核电强国背后,均有强大的设计研发能力及装备制造业作为支撑。与核电建设速度和规模相比,衡量一国核电实力和产业竞争力的更核心指标是自主化能力。如今,三代核电自主化成果“国和一号”,即CAP1400压水堆技术,将实现100%的设备国产化能力,在这背后是600余家单位、3.1万名技术人员,历时十几年科研攻关,可以说,“国和一号”集中了中国三代核电技术和产业创新之大成。此前,通过核电重大专项及引进技术AP1000项目中,1E级磁浮子液位计从前期采购到中期调试使用再到后期的维护,均由国外厂商垄断,导致产品成本居高不下高、供货周期长,不利于核电厂稳定运行。解决“卡脖子”问题,开发出功率更大、具有自主知识产权的CAP1400已迫在眉睫,核电厂1E级磁浮子液位计国产化研制也提上了议事日程。川仪股份始终心怀国之大者,坚持锻造川仪所长、服务国家所需,以“川仪造”助力我国重大装备自立自强。2018年,川仪股份联合上海核工程研究设计院有限公司(以下简称:上海核工院)承担国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题。川仪股份作为课题责任单位,牵头组织、统筹制定项目整体方案与实施计划,并负责堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的设计、制造、鉴定工作;上海核工院作为课题联合单位,开展核电厂用1E级磁浮子液位计的功能需求及鉴定验证相关研究工作。该课题根据CAP1400堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的使用需求,提出两种1E级磁浮子液位计的研制和鉴定要求,历经四年产学研联合攻关,在鉴定方法的研究、浮子适应不同介质测量研究、密封性能研究、永磁材料的研究、使用寿命要求研究等关键核心技术上取得突破,先后攻克大型先进压水堆核电站中堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位在结构设计、制造工艺、精度测量、性能试验验证等方面的技术难题,完成堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的研制和鉴定。通过本课题研究工作的开展,全面掌握了CAP1400 1E级磁浮子液位计设计、制造和鉴定试验的核心技术,形成了一套CAP1400 1E级磁浮子液位计的设计制造流程、试验/验证方法、企业标准,满足CAP1400核电机组对1E级磁浮子液位计的抗震、耐高温、耐高压、耐辐照、高密封性、长寿命、快响应等应用要求,技术指标达到同类产品先进水平,将有力保障我国核电厂运行的安全性和可靠性。 核电厂1E级磁浮子液位计的研制成功,打破国外厂商在技术和价格上垄断,摆脱了对进口核电仪表的依赖,降低了核电站的设备成本,缩短了供货周期,后期维护稳定可靠,满足国内核电高质量发展要求,表明川仪股份具备了向CAP1400示范工程提供具有自主知识产权的民族品牌关键仪表设备的能力,为我国三代核电自主化成果“国和一号”实现全面国产化能力,加速我国核电站的海外出口贡献了力量。川仪股份勇担使命,以助力核电装备自主可控的实际行动践行“两个维护”。核电厂1E级磁浮子液位计的研制成功,是川仪股份坚持科技自立自强,持续对标赶超、攻坚克难的成果缩影,“川仪造”背后是对“中国制造”的坚守,承载了一代代川仪人产业报国的心血,也传递着“星星之火”的红色信仰。下一步,川仪股份将以习近平新时代中国特色社会主义思想为指导,认真学习贯彻党的二十大精神,心系“国之大者”,深入贯彻落实习近平总书记“四个面向”重要指示,心无旁骛聚焦主业,持续对标赶超、攻坚克难,在助力国民经济关键领域高端装备自主可控上体现更大担当!
  • 德国科威尔进口液位开关|进口液位计2013年最后一次促销活动即将举行
    继上次“双十一”购物狂欢节科威尔推出特价优惠活动取得不错的成绩后,适逢2013年最后一个月,科威尔又推出了“双十二”特价活动,这将是科威尔在2013年的最后一次促销活动,欢迎广大客户来电咨询:全国统一服务热线:4006 021 188 电话:021-54430662  参加本次促销活动的产品有:  ●导杆型液位开关LV系列  ●侧装式磁翻柱液位计LMS系列  ●机械式温度开关TK10系列  ●电磁流量计FE20系列  ●柱塞式流量开关FP53系列  更多关于科威尔液位开关|液位计等促销信息:http://www.ywkg.cn
  • 中科院成功研制出深海热液冷泉观测仪器
    中国科学院海洋地质与环境重点实验室科学家成功研制出用于测量深海热液或冷泉喷口区温度、盐度和压力等参数的观测潜标,并于近日海试成功。  据介绍,这一潜标能够根据预定程序或外部指令下潜到热液或冷泉区,利用其携带的传感器对热液或冷泉喷口区的温度、盐度、压力等参数进行现场测量,及时将测量数据传送回控制中心。  日前,科研人员在三亚海域对其自行研制的深海热液冷泉观测潜标进行了海试,实验海域位于西沙海槽水深1548米处,潜标下潜至1300米深度,对潜标的平衡、下潜定深、定位、数据传输以及上浮5个部分进行了测试,结果证明这一潜标系统声通讯效果好、定位精度高、测量数据可靠,具有很强的实用性和环境适应能力。  据介绍,潜标在海流流速2节的海水中能够保持平衡,姿态稳定,无倾斜和旋转;下潜过程中潜标数据测量、实时数据声通讯传输、超短基线系统对潜标的跟踪定位运行正常。  据了解,深海热液冷泉观测潜标的成功研制将为我国深海热液和冷泉的调查提供最直接的观测平台,潜标所获数据将为海流模拟计算、涡流特征直接观测和厄尔尼诺现象观测等一系列科学问题的研究提供有力支持。
  • 原位拉曼光谱定量探测深海高温热液喷口流体获新突破
    p  近日,中国科学院海洋大科学研究中心研究员阎军团队、李超伦团队在深海热液系统原位拉曼光谱定量探测研究中获得进展,基于自主研发的深海原位激光拉曼光谱探测系统(Raman insertion probe-RiP)对冲绳海槽中部热液区的高温热液流体进行了原位拉曼光谱定量探测,在国际上首次获得高温热液流体中溶解二氧化碳及硫酸根离子的原位浓度。相关研究成果以封面论文的形式,发表在Geochemistry,Geophysics,Geosystems上。/pp  深海热液系统作为20世纪地球科学重大发现,沟通了不同圈层之间的物质能量交换。近年来,高温热液喷口流体理化性质及其对大洋环境影响已成为热液活动新的研究热点。温度、压力变化以及海水混入的影响会明显改变热液喷口流体的化学成分或浓度,尽管科学家使用保真取样方法进行实验室分析取得了较为贴近的数据,但由于取样方法的限制而一直无法获取高温热液喷口内流体的准确样本,造成分析数据与实际仍有明显差异。研究团队攻克了光学镜头耐高温和高浓度颗粒附着对光学系统的影响等国际技术难题,成功研制了国际首台耐高温(450℃)的热液流体拉曼光谱探针-RiP(Xin Zhang et al.,DSR-I, 2017)。该系统自2015年以来依托“科学”号科考船和“发现”号深海缆控潜器(ROV)对马努斯热液区、冲绳海槽热液区的高温热液喷口进行了原位拉曼光谱探测,采集到大量原位光谱数据。/pp  该研究基于2016年“科学”号热液冷泉综合航次获得的冲绳海槽中部热液区三个高温热液喷口流体的原位拉曼光谱(最高273℃),结合实验室内大量高温模拟实验建立的CO2、SO42-的拉曼光谱定量分析模型(Lianfu Li, Xin Zhang*, et al., Applied Spectroscopy, 2018 Shichuan Xi, Xin Zhang*, et al.,Applied Spectroscopy, 2018),成功确定了冲绳海槽中部热液喷口流体中CO2、SO42-的浓度(Lianfu Li, Xin Zhang*, et al.,G-cubed, 2018)。研究发现,硫酸根含量作为海水混入程度的指标,在所测高温热液流体中的含量几乎为零,证明原位拉曼探测系统采集的热液流体中并未发生海水混入,即所测样本代表原始的热液流体喷出物。通过对比ROV在同一热液喷口保压取样方法测量的二氧化碳浓度发现,原位测量的浓度可高出保压取样实验室测试浓度的三倍以上。基于该成果可以认为热液活动对全球碳循环以及气候变化的影响很有可能被大大低估。该研究对于推动原位光谱探测技术在深海极端环境下的应用具有重要意义,有助于重新认识热液活动对全球海洋环境的影响。/pp  该研究得到了国家自然科学基金、中科院海洋先导专项、中科院前沿科学重点研究项目的资助。博士研究生李连福为论文第一作者,研究员张鑫为通讯作者。/pp  论文链接/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/19da6824-497c-4fb2-9d20-5fe1a3483365.jpg" title="W020180803573736486382.jpg"//pp style="text-align: center "原位拉曼光谱数据获得的二氧化碳、硫酸根离子浓度数据与传统保压方式获得的数据对比/pp style="text-align: center "(红色符号代表二氧化碳,黑色符号代表硫酸根)/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/9f6f2c0d-ba2c-411d-8b06-829b5dd26482.jpg" title="W020180803573560140519.png"//pp style="text-align: center "刊物封面/p
  • 《共赢共辉煌》 -- 暨2016年春季LAUDA合作伙伴产品培训及市场战略会议
    2016丙申猴年,在希望的田野上,处处盛开着鲜艳的杜鹃,值此春意盎然、LAUDA成立60周年的大好时节,LAUDA中国在上海松江成功举办了“LAUDA合作伙伴之产品培训及市场战略会议”,来自天南海北的20多位精英济济一堂、同船共渡,学习产品、交流经验,集思广路、献计献策。4月19和20日两天的培训日程紧凑纷呈,公司总经理吝俊友先生、常规实验室恒温产品CTE销售经理张金良先生为与会合作伙伴代表从LAUDA公司发展历程、恒温浴槽基础知识、制冷原理、导热液体等方面做了扎实的铺垫,让与会者了解了液体恒温产品的工作原理,对接受众多产品系列的性能特点和技术参数,十分受益。公司60年的发展历程,众多产品为了适应市场和客户的不同需求,每隔一段时间都会推陈出新,今年新的亮点就是全新5.7寸彩色触屏LAUDA PRO加热制冷恒温器系列的隆重推出:LAUDA PRO控制器分为两种,一种是高对比度明亮的OLED BASE显示屏:具有操作灵活、菜单导航、磁力吸合可拆卸、360度旋转、摄氏华氏可选、最远50米控制等特点。一种是5.7”彩色触摸大COMMAND显示屏:除了BASE的功能外,还具有多重触控操作、可戴实验室乳胶手套操作、温度曲线图可自由缩放、独立的20个用户权限、可编辑100个程序每个50程序段、周计时和倒计时等众多功能。LAUDA PRO按照客户应用进行了优化,为恒温浴槽和恒温循环器两种。恒温浴槽又分为加热型和加热制冷一体型:加热型从30℃ 到250℃通过3组加热盘管快速安全地加热,加热制冷一体型可以实现-100℃到200℃的温度控制。嵌入式的冷却盘管和蒸发器设计理念,确保用户将浴槽空间最大限度地使用,即使30L的大浴槽也能达到 ±0.01K 的温度稳定性。满足用户浴槽内部的不同温度控制需求。LAUDA PRO恒温循环器针对客户不同的外部应用,分为加热型和加热制冷一体型:加热型从35℃ 到250℃快速加热,加热制冷一体型可以实现-45℃到200℃的快速温度控制。最小填充体积仅有2.4L,可容许的体积变化达2L。不管是内部控温的制冷恒温浴槽,还是外部应用的制冷恒温器,PRO均采用了混合式的制冷方式,风冷和水冷同时进行,有效减少废热的产生。 相信PRO系列在化工和生物反应的热量控制、结晶工艺的准确温度控制、以及测量测试装置、热交换器、蒸馏工厂等温度控制应用方面,大有用武之地。培训又分别从Aqualine实验室普及型恒温水浴、Alpha基础型加热制冷恒温器、ECO经济型加热制冷恒温器、PRO + Proline Edition X增强型加热制冷恒温器、Integral T半密闭工艺过程恒温器、Integral XT密闭型工艺过程恒温器、Microcool + Variocool 实验室用冷却水循环器、Ultracool工业级冷却水循环器、KHS 中试小型生产用标准化工业级工艺过程恒温器、Lauda专用的计算选型模拟软件等方面在为期2天的培训中深入浅出、生动形象地,互动传授给了各位合作伙伴。4月20日下午,分别与众位精英深刻分析了当前的市场方向、销售策略、配合他们自己的其他产品强强组合,相信在以后的各行各业能够看到越来越多的Lauda恒温产品为用户带来实实在在的收益。2天的培训会议一晃而过,不过与各位合作伙伴的情谊却日渐弥深。大家有缘走到一起,共同携手辛勤耕耘,共享灿烂美好明天。LAUDA China/劳达中国
  • 客户案例 | 在物料输送中测量其电特性确保输送正确的化工物料
    客户:土耳其-Organik Kimya问题:客户遇到了难点有6种不同的化工物料输送。它们的物理特性非常接近,很难防止输送出错。那些液体都是无色的,非常相似的粘度和密度。用 Drexelbrook 射频导纳UIV就能检测出每种物料的介电常数。当装载或卸载物料到过程储罐时,会常发生错误。一次错误的装卸就是一次昂贵的代价。✔ 需要测量:介电常数✔ 测量点:装载管道到储罐管道上✔ 介质:化工液体单体✔ 过程温度:-20度到+70度✔ 过程压力:0-65bar✔ 介电常数:1-10✔ 能力:能测量非常小的电容变化 解决方案尽管它的物理特性很接近,但是介质的电特性有点偏差。Ametek Drexelbrook 就利用UIV 射频导纳技术来测量。测量其很小的电容变化,小于0.1PF。这些偏差是正比于介电常数变化。这介电常数变化在流动的管道里被实际测量出来。客户Organik Kimya,安装了2台 Drexelbrook UIV射频导纳管道介电常数分析仪在他们的卡车装卸平台上,他们成功的检测小于5PF电容偏差在他们化工液体之间。这台分析仪能确保合适的物料进入反应容器。这减少废品产出,给客户每年节约很多很多费用。基于这个成功应用,客户在他们所有物料输入管线都应用我们UIV射频导纳液位计。
  • 商用液氢储运关键装备实现突破
    日前,查特中国国内首批商用液氢储罐发运,我国商用液氢储运领域关键装备技术实现重大突破。查特工业公司总部位于美国俄亥俄州的克里弗兰,是全球深冷和低温设备行业的领导者,为广泛的深冷和低温设备用户提供标准化及客户定制的产品和系统方案。在美国的九个州设有工厂,并在澳大利亚、中国、捷克、德国、英国有分公司。查特中国应用美国查特公司总部的先进设备、技术和管理,按照国际相关标准及中国压力容器现行规范和标准进行深冷设备的生产制造,为国内及亚洲地区的客户提供高品质的焊接绝热气瓶、真空绝热管道、大型深冷贮罐、低温液体槽车等各种深冷设备。查特中国拥有AR2,CR2,DR2等设计许可证及制造许可证,并已获得美国机械工程师学会ASME锅炉压力容器规范产品U和U2钢印标志授权。“氢气的液化温度为-253℃,所以液氢储罐对真空绝热保温和安全性都提出了极大挑战,此前国内在商用领域一直是空白。”查特中国技术总监杨坤表示,历经4年半,国内首批商用液氢储罐终于发运,这是查特中国发展的一个里程碑。据了解,2019年以来,查特中国针对氢气液化及液氢储存系统的关键技术进行研究,在2021年12月牵头并参与编写了团体标准《固定式真空绝热液氢压力容器专项技术条件》,2022年完成了国内首台60立方米固定式液氢容器样罐型式试验,并先后完成《固定式真空绝热液氢压力容器》《真空绝热液氢汽车罐车》《真空绝热液氢罐式集装箱》企业标准认定。杨坤介绍说:“我们在实现商用液氢储罐开发的同时,还对运输过程中需要的罐式集装箱、槽车、液态加氢站、车载燃料瓶等进行了研发。结合大数据、人工智能等新领域,我们正在研发一个全新的加氢站,预计今年3月样站将建成。”
  • “二十载风雨伴东润,策马扬鞭大发展”——东润集团20周年庆
    今天(2018年3月3日)是东润仪表20岁的生日。 20年前的今天,东润仪表逆势创立,公司从三五人起步,到如今已拥有包括战略决策、市场营销、技术研发、集成、生产供应等高水平、专业化员工团队;20年来,公司从租住一隅办公起步,到如今拥有固定资产2400多万,自有建筑面积超过2万平方米的办公、生产、试验场所。20年来,公司的产品从最初的液位计和水质分析仪产品生产销售,到如今拥有包括七项发明专利在内的60多项知识产权;自主开发水环境监测分析仪、物液位仪表、物联网软件三大系列产品;目前主要有地表水自动监测站、黑臭河监测分析仪、多参数水质分析仪、水环境监测管理平台、水资源管控平台等软硬件产品;并可根据客户特殊要求提供个性化软硬件设计服务,为用户提供全系列的自动化控制信息化管理的整体解决方案。20年,东润仪表已发展成为以技术创新为核心竞争力的国家高新技术企业。20年来,公司的服务对象和业务伙伴已遍及全国,并迈出国门服务全球。在东润仪表20周岁华诞到来之际,公司开展了主题为“二十载风雨伴东润,策马扬鞭大发展”的庆典活动。 2018年3月3日8时整,东润全体员工举行了升国旗仪式,感恩祖国强大为公司带来的发展机会。国旗下,董事长给东润仪表10年金牌员工颁发了金牌奖章,感谢他们十多年的坚守不渝、默默耕作。之后董事长马正做了重要讲话,回顾了东润20周年艰辛的发展历程,感谢全体员工的信任与奉献,愿与全体员工风雨兼程、同舟共济、再创佳绩。20年的成长历程已经让东润长大,我们精力充沛,正进入发展的快轨道,我们要立足现在,深耕细作,紧紧围绕企业的战略发展目标,锐意进取、不断超越、创新发展,抓住当前良好的发展机遇,科技创新、高速发展,努力成为行业一流的百年企业。 东润仪表20年的征程,离不开全体东润人的艰苦奋斗;感谢你们与东润一起走过风风雨雨,铸就了东润的辉煌与精彩;东润员工一起举行植树、比赛、包饺子等活动,为东润的发展感到由衷的自豪。 20年,245次月圆月缺,7305次日升日落,东润人一直在努力,公司业绩稳步增长。东润仪表真诚的感谢社会各界和合作伙伴的信任与支持,感谢全体员工的勤勉付出,感谢员工家属的全力支持!东润仪表将继续致力于环境监测系统解决方案及产品的设计、开发与服务,在不断改善人类生存环境的道路上,心怀感恩,砥砺前行!
  • 厉害了我的国--国产成果获国际权威认可!
    p  据央视报导,中科院海洋研究所的“科学”号考察船执行中科院海洋先导专项期间,通过其配备的“发现”号无人潜水器携带自主研发的RiP拉曼光谱探针,在我国南海海域首次发现了裸露在海底的天然气水合物,并证实其为标准的I型水合物。昨日,这一成果在国际权威学术期刊《地球化学、地球物理学、地球系统学》在线发表,标志着其获得了国际权威认可。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201709/noimg/6a5a6d46-e024-493c-9cd5-d3d24a1a7133.jpg" title="图片4.jpg"//pp  我们的星球超过一半的区域被2000米以上的深海海水所覆盖。深海海底不但蕴藏着丰富的石油、天然气、天然气水合物、金属结核、热液和硫化物等矿产资源,还存在着极端生命现象(深海生物基因资源),这些资源具有重大的经济和战略价值。随着陆地能源的日趋紧张,深海探测与资源开发技术在海洋环境研究和深海资源的开发进程中发挥了不可替代的作用。可以说,谁先掌握了深海调查探测与资源开发的先进技术,谁就掌握了世纪海洋战略发展的主动权。/pp  从19世纪末英国“挑战者号”第一次实现环球海洋科学考察以来,深海一直是国际海洋科学研究的前沿和孕育重大科学发现的摇篮。特别是第二次世界大战以后,以美国为代表的世界强国高度重视“蓝海战略”,极大增加了对深海研究的投入。/pp  受制于深海探测装备的落后,我国在深海探索与研究中长期处于“望洋兴叹”地步,与海洋大国地位不符。/pp 2000 年以前我国主要是围绕地质构造和海底矿产资源开展了部分勘查工作。进入21 世纪以来,随着我国国力的增强,深海研究也逐步实现由单一资源调查(多金属结核)向探测与科学研究相结合的综合科学考察的战略性转变。2005 年我国首次在西南印度洋发现热液喷口,2007 年证实了天然气水合物在南海的大量存在并进而启动“南海深部过程演变计划”,以及后续启动的“973”计划“西南印度洋洋中脊热液成矿过程与硫化物矿区预测”、“典型弧后盆地热液活动及其成矿机理”等,推动了我国深海研究的发展。而“蛟龙”号7 000 m 载人深潜器的研制成功,标志着我国在深海研究方面的实力提升。特别是,随着“科学”号海洋综合考察船的投入使用和中科院 A 类战略性先导科技专项“热带西太平洋海洋系统物质能量交换及其影响”的实施,实现了我国深海大洋科考能力跨越式发展。/pp  据中科院海洋所研究员张鑫介绍,此次重要发现就是自2013年我国启动中科院战略性先导科技专项“热带西太平洋关键区域海洋系统物质能量交换”五年以来,在深海冷泉和可燃冰原位探查方面积累的丰富经验和成果的集中体现。/pp  天然气水合物俗称“可燃冰”,一般分布在深海沉积物或者大陆永久冻土中,而裸露在海底表面的可燃冰需要大量的深海冷泉流体作为气源,因此极难存在,在全球也鲜有报道。/pp  2014年—2015年,利用长基线水下定位技术和深海超高清视频技术,我国科研人员在南海圈定了裸露在海底的疑似可燃冰精确水下位置,但苦于没有相关的原位探测技术,无法验证此猜想。2015年—2016年,我国科研人员自主研发了世界首台可以直接插入高温热液喷口(450℃)进行原位探测的系列化strongspan style="color: rgb(0, 112, 192) "RiP拉曼光谱探针/span/strong,成为我国南海海域首次发现了裸露在海底的天然气水合物发现的主要高技术手段。“有了这枚探针,我们无须取样,直接让‘发现’号水下机器人带着探针下海,就可以当场进行化学成分分析,探测出可燃冰。”/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201709/noimg/aabfdd5a-23cf-4609-9f8d-59d6f3a73418.jpg" title="图片2.png"//pp  2016年9月,张鑫作为首席科学家,带领科考队员在我国南海约水深1100米处发现了两个站点存在裸露于海底的可燃冰,一个站点分布在冷泉化能极端生物群落中,成为这些生物的能量源,另一个站点位于一个活动的冷泉喷口内壁。而且,科研人员在国际上首次使用原位拉曼光谱数据,证实快速生成的可燃冰并非单一的笼型结构,其内部存在大量的甲烷、硫化氢等自由气体。/pp  原位拉曼分析是一种原位或远程分析样品的方法,无需把样品提取出来,也不需要把样品带到拉曼光谱仪所在现场。据了解,远程原位拉曼常常通过光纤来实现,由光纤把拉曼探头耦合到拉曼光谱仪上(可以距离分析点几百米远)。一束光纤用于把激光传输到样品上,另一束光纤则把样品的拉曼信号传到标准的拉曼光谱仪和探测系统。两束光纤都连接到一个小巧紧凑的拉曼探头上,探头把激光聚焦到样品上,并收集拉曼信号。/pp  此次深海探测“可燃冰”使用的拉曼光谱原位定量探测系统(RiP系统)由中科院海洋所自主研制,依托深海ROV平台开展近海底原位探测,在突破激光拉曼光谱仪及探针等关键器件技术攻关后,进行了系统轻型化改造和双控制系统的升级。RIP系统采用的拉曼光谱具有非接触、无损并且可多组分同时探测的优点,尤其适用于深海热液喷口、海底冷泉等极端环境下的原位物质成分探测与分析。/pp  再探海斗深渊,屡破世界纪录。我国南海“可燃冰’的探测发现证实,海斗深渊不再是中国科学家的禁区,中国科学家有能力在这一世界前沿科学领域开创性地开展科研工作,为人类科技进步作出应有贡献。/p
  • 从原理入手!让我们走进这款WIGGENS红外加热板
    红外线加热板具有操作模式多样化、简单,耐腐蚀,清洁容易等特点,可应用于农业、土壤、环保、食品、科研院所、大专院校等实验、化验室,用于样品加热、烘烤、消化、赶酸等工作。红外线加热的原理:利用物体对光的吸收。红外线的传热形式是辐射传热,由电磁波传递能量。在远红外线照射到被加热的物体时,一部分射线被反射回来,一部分被穿透过去。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吸收远红外线,这时,物体内部分子和原子发生“共振”——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热的目的。WIGGENS红外线加热板SLK 1/2/2-T产品介绍* WIGGENS 红外线加热板采用微晶玻璃面板 (Glass Ceramic), 表面光滑 , 无 细孔 , 不易磨损 , 抗化学腐蚀 , 清洁容易, 导热效率高, 均匀度好, 可以承受热震700℃剧烈温度变化, 大幅度满足实验室快速加热与安诠考虑的双重要求* SLK1 / SLK2 红外线加热板具有 24 段温度设定 ,飞梭式设定旋钮 ,大屏幕液晶显示设定温度及实际温度* 旋钮定时功能,设定工作时间及实际工作时间大屏幕液晶显示,工作状态一目了然,可以定时:0-1800s* SLK2-T 可以外接温度传感器,直接控制待加热液体的温度, 控制温度范围: +40~+300℃;温度控制稳定性: ±2℃ ~±5℃ ( 决定于待加热液体物化性质及容器材质形状)* 前面板顶部导流槽设计,确保意外情况下液体不会浸入前面板电源部分茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多WIGGENS产品,Welcome to consult~
  • 氢能行业重大进展:国内首台民用液氢罐车研制成功
    国内首台民用40立方米液氢罐车研制成功,这标志着我国在液氢制取、储运与加注等关键技术装备及安全性研究方面取得重大进展,对促进我国民用液氢储运装备发展具有重要意义。液氢罐车是实现液氢上路运输的关键装备,也是实现氢能大规模应用的关键卡点之一。据悉,该民用液氢罐车由张家港中集圣达因低温装备有限公司设计制造,北京特种工程设计研究院以及西安交通大学共同参与完成。研究团队克服了研制周期短、基础数据缺乏、设计与制造标准缺失等困难,依次攻克了40立方米液氢罐车总体工艺流程及安全结构设计、高性能绝热材料高效配比应用、超低温材料焊接、高真空获取及长效维持技术等核心关键技术。其中,张家港中集圣达因低温装备有限公司制定的移动式真空绝热液氢压力容器企业标准是我国首个液氢罐车企业标准,该标准已经由全国锅炉压力容器标准化技术委员会移动压力容器分技术委员会备案通过;同时,相关工作还为移动式真空绝热液氢压力容器专项技术要求团体标准的制定作出重要贡献。
  • 霍尼韦尔收购气体测量领先企业RMG集团
    霍尼韦尔收购气体测量及控制领域领先企业RMG集团  2009年7月7日,霍尼韦尔宣布签署协议,将以4亿美元收购RMG集团(RMG Regel + Messtechnik GmbH以及RMG所有子公司)。RMG是德国的天然气测量与控制产品、服务及解决方案供应商,它将整合至霍尼韦尔自动化控制集团下属的过程控制部,该交易已提交法律审批。  RMG集团位于德国卡塞尔,成立于1931年,专注于设计和生产天然气控制、测量以及分析设备,包括针对石油天然气公司的流量计量技术、调节产品以及安全设备。 RMG 2009年营业额预估约2.9亿美元。  这次收购将提升霍尼韦尔在天然气运输、存储、配送以及工业消耗领域的能力与地位。RMG与霍尼韦尔现场仪表以及控制解决方案关联紧密。举例来说,RMG气体流量计和调节设备同霍尼韦尔压力和温度变送器以及天然气液位计互为补充。同时,收购RMG也支持了霍尼韦尔提供增强能源效率解决方案的战略。近50%的霍尼韦尔现有技术实现了能源节约和效率。天然气作为可替代清洁能源,在全球成熟和新兴市场中的应用日益广泛。
  • 2020版药典专辑 液相色谱方法转换工具重磅上线
    0512高效液相色谱法“方法转换” 2015版与2020版药典中“色谱参数调整”比较2015年版《中国药典》0512通则规定:品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等可适当调整。 2020版药典全面增订“色谱参数允许调整的范围”,品种项下条件不再是固定的,本次增订内容提供了“使用不同粒径、内径色谱柱的液相色谱方法转换的操作准则”,用户可依据通则进行HPLC法向UHPLC法转换,可有效较少单针分析时间,提高分析通量,减少仪器用电耗能、人工成本、废液处理成本、试剂成本。注:表格来自《中国药典》2020年版四部 0512通则 可通过相关软件计算表中流速、进样体积和梯度洗脱程序的调整范围,并根据色谱峰分离情况进行微调。 岛津方法转换应对方案 面对标准变化和用户需求,岛津提供“方法转换工具”、超高效液相色谱仪、色谱柱整体解决方案助力用户应对方法转换。 岛津方法转换工具 岛津方法转换工具特点• 全中文界面,操作简便,既支持独立运行,亦可嵌入LabSolutions工作站运行,可兼容不同的岛津机型,产品系列、型号和产品图可视化。• 内置ChP(中国药典2020年版)计算公式,自动计算流速、进样体积、梯度洗脱程序;内置流速自定义输入框,如调整,软件自动同步计算调整后的梯度程序。• 内置梯度模式、混合器体积、最大进样体积、死体积及检测池体积选择项目,方便用户进行系统匹配。• 可实现梯度开始时间或梯度程序的调节,梯度表折线图及转换前后梯度叠加图显示可视化;速度提升倍数、节约溶剂量显示可视化,助力成本核算。• L/dP值自动计算,自动计算参考范围(0512通则色谱参数允许调整的范围),自动检查是否超范围与超出参考范围提示(红色标记,评价区文字提示)。• 仪器系统压力预测,自动提示是否超出型号耐压限值并给出提示,指导选择合适型号仪器与色谱柱可为仪器选型和色谱柱规格选择提供参考。 使用方法1点击初始方法和目标方法下对应系列按键,进入设置界面,选择转换前后的仪器型号,梯度模式和混合器体积。2先后输入当前HPLC使用色谱柱和计划转换后UHPLC使用色谱柱规格,需注意L/dp 值应在原有数值的-25%~+50%范围内。3左侧输入转换前HPLC色谱方法条件,软件自动计算转换后条件数值。4左侧梯度表输入当前HPLC梯度程序,右侧即会自动转换为UHPLC梯度。5评价区智能提示超限项目。 使用注意事项为获得良好方法转换效果及高匹配色谱图表现,建议使用同一品牌同一系列(如Shim-pack系列)或者性能相近的色谱柱。 对于梯度分析, 系统延迟体积对于分析影响较大,需要注意HPLC和UHPLC使用仪器混合器体积差异,并在软件设置模块输入相应参数。 不同LC平台选择和对应色谱柱选择岛津多系列HPLC可以满足用户不同分析需求,选择和 LC 液相系统更为匹配的色谱柱可以获得更高的分离效率,如下表格总结了针对不同的液相系统配置如何选择色谱柱。 应用案例 赤芍配方颗粒HPLC转化为UHPLC法 转换成UHPLC法后,分析效率提升至原来的3倍以上。转换成UHPLC法后,特征峰顺序、数量、RRT、相对峰面积均符合标准规定。 银杏叶提取物UHPLC法转化为HPLC法 转换前后,各色谱峰出峰顺序和个数保持一致,指纹图谱相似度均达到0.90以上。
  • 【案例】innoCon6800D荧光法溶氧仪和innoCon6800S污泥浓度计现场案例-延吉污水处理厂
    安装时间:2019年8月安装地点:延吉污水处理厂仪表品牌:英国Jensprima(杰普)仪表型号:innoCon6800D溶解氧+innoCon6800T污泥浓度 延吉污水处理厂是延吉重要的一项民生改造工程,项目投资1.6个亿,该厂设计日处理污水能力5万吨,采用CASS工艺,进水、搅拌、沉淀、曝气、出水等流程都将在一个2000平方米的曝气池中完成,预计2019年10月前后完成全面的通水测试,投入运营后将会为当地居民和企业污水处理提供有力保障!(美丽的延吉污水厂外观图)(现场安装图一)项目采购了6套innoCon6800D在线荧光法溶氧仪和6套innoCon6800S在线污泥浓度分析仪,还有innoLev100超声波液位计和innoMag300电磁流量计,分别对该厂曝气池中的溶解氧、污泥浓度以及水池的液位和管道流量进行实时在线监测,很大程度上节省了厂区工作人员和环保监督部门的检测时间和人工成本。仪表采用原装进口的数字化电极,测量更加稳定和准确。(现场安装图二)通过此次双方合作,用户对杰普(Jensprima)的产品和现场服务非常认可满意,这对杰普公司一直以来坚持做产品和努力做服务又增加了一份信心,同时感谢客户的支持,相信杰普公司有你们的支持会越做越好。
  • 造纸业、天然气等行业标准发布及实施日期公布
    中华人民共和国国家标准批准发布公告(2010年第3号),公布了163项工业行业标准的发布及实施日期,其中造纸业、天然气等行业与科学仪器相关的分析检测标准共有51项,现摘录如下。序号标准号标准名称代替标准号发布日期实施日期1GB/T 11060.1-2010 天然气 含硫化合物的测定 第1部分:用碘量法测定硫化氢含量 GB/T 11060.1-19982010-8-92010-12-12GB/T 11060.3-2010 天然气 含硫化合物的测定 第3部分:用乙酸铅反应速率双光路检测法测定硫化氢含量 GB/T 18605.1-20012010-8-92010-12-13GB/T 11060.4-2010 天然气 含硫化合物的测定 第4部分:用氧化微库仑法测定总硫含量 GB/T 11061-19972010-8-92010-12-14GB/T 11060.5-2010 天然气 含硫化合物的测定 第5部分:用氢解-速率计比色法测定总硫含量 GB/T 19207-20032010-8-92010-12-15GB 12476.10-2010 可燃性粉尘环境用电气设备 第10部分:试验方法 粉尘与空气混合物最小点燃能量的测定方法 2010-8-92011-8-16GB 12476.8-2010 可燃性粉尘环境用电气设备 第8部分: 试验方法 确定粉尘最低点燃温度的方法 2010-8-92011-8-17GB 12476.9-2010 可燃性粉尘环境用电气设备 第9部分:试验方法 粉尘层电阻率的测定方法 2010-8-92011-8-18GB/T 14633-2010 灯用稀土三基色荧光粉 GB/T 14633-20022010-8-92011-5-19GB/T 14634.1-2010 灯用稀土三基色荧光粉试验方法 第1部分:相对亮度的测定 GB/T 14634.1-20022010-8-92011-5-110GB/T 14634.2-2010 灯用稀土三基色荧光粉试验方法 第2部分:发射主峰和色度性能的测定 GB/T 14634.2-20022010-8-92011-5-111GB/T 14634.3-2010 灯用稀土三基色荧光粉试验方法 第3部份:热稳定性的测定 GB/T 14634.3-20022010-8-92011-5-112GB/T 14634.5-2010 灯用稀土三基色荧光粉试验方法 第5部分:密度的测定 GB/T 14634.5-20022010-8-92011-5-113GB/T 14634.6-2010 灯用稀土三基色荧光粉试验方法 第6部分:比表面积的测定 GB/T 14634.6-20022010-8-92011-5-114GB/T 14634.7-2010 灯用稀土三基色荧光粉试验方法 第7部分:热猝灭性的测定 2010-8-92011-5-115GB/T 16716.2-2010 包装与包装废弃物 第2部分:评估方法和程序 2010-8-92011-1-116GB/T 16716.3-2010 包装与包装废弃物 第3部分:预先减少用量 2010-8-92011-1-117GB/T 16716.4-2010 包装与包装废弃物 第4部分:重复使用 2010-8-92011-1-118GB/T 16716.5-2010 包装与包装废弃物 第5部分:材料循环再生 2010-8-92011-1-119GB/T 16781.2-2010 天然气 汞含量的测定 第2部分:金-铂合金汞齐化取样法 GB/T 16781.2-19972010-8-92010-12-120GB/T 23595.7-2010 白光LED灯用稀土黄色荧光粉试验方法 第7部分:热猝灭性的测定 2010-8-92011-5-121GB/T 24916-2010 表面处理溶液 金属元素含量的测定 电感耦合等离子体原子发射光谱法 2010-8-92010-12-3122GB/Z 24978-2010 火灾自动报警系统性能评价 2010-8-92010-12-123GB/Z 24979-2010 点型感烟/感温火灾探测器性能评价 2010-8-92010-12-124GB/T 24980-2010 稀土长余辉荧光粉 2010-8-92011-5-125GB/T 24981.1-2010 稀土长余辉荧光粉试验方法 第1部分:发射主峰和色品坐标的测定 2010-8-92011-5-126GB/T 24981.2-2010 稀土长余辉荧光粉试验方法 第2部分:相对亮度的测定 2010-8-92011-5-127GB/T 24982-2010 白光LED灯用稀土黄色荧光粉 2010-8-92011-5-128GB/Z 24987-2010 纸、纸板和纸浆 测试方法不确定度的评定 2010-8-92010-12-129GB/T 24990-2010 纸、纸板和纸浆 铬含量的测定 2010-8-92010-12-130GB/T 24991-2010 纸、纸板和纸浆 铅含量的测定 石墨炉原子吸收法 2010-8-92010-12-131GB/T 24992-2010 纸、纸板和纸浆 砷含量的测定 2010-8-92010-12-132GB/T 24993-2010 造纸湿部Zeta电位的测定 2010-8-92010-12-133GB/T 24994-2010 造纸湿部溶解电荷量的测定 2010-8-92010-12-134GB/T 24995-2010 铸涂原纸 2010-8-92010-12-135GB/T 24996-2010 纸张中脱墨回用纤维的判定 2010-8-92010-12-136GB/T 24997-2010 纸、纸板和纸浆 镉含量的测定 原子吸收光谱法 2010-8-92010-12-137GB/T 24998-2010 纸和纸板 碱储量的测定 2010-8-92010-12-138GB/T 24999-2010 纸和纸板 亮度(白度)最高限量 2010-8-92010-12-139GB/T 25001-2010 纸、纸板和纸浆 7种多氯联苯(PCBs)含量的测定 2010-8-92010-12-140GB/T 25002-2010 纸、纸板和纸浆 水抽提液中五氯苯酚的测定 2010-8-92010-12-141GB/T 24957-2010 冷冻轻烃流体 船上膜式储罐和独立棱柱形储罐的校准 物理测量法 2010-8-92010-12-142GB/T 24958.1-2010 冷冻轻烃流体 船上球形储罐的校准 第1部分:立体照相测量法 2010-8-92010-12-143GB/T 24959-2010 冷冻轻烃流体 液化气储罐内温度的测量 电阻温度计和热电偶 2010-8-92010-12-144GB/T 24960-2010 冷冻轻烃流体 液化气储罐内液位的测量 电容液位计 2010-8-92010-12-145GB/T 24961-2010 冷冻轻烃流体 液化气储罐内液位的测量 浮子式液位计 2010-8-92010-12-146GB/T 24962-2010 冷冻烃类流体 静态测量 计算方法 2010-8-92010-12-147GB/T 24967-2010 钢质护栏立柱埋深冲击弹性波检测仪 2010-8-92010-12-148GB/T 3780.14-2010 炭黑 第14部分:硫含量的测定 GB/T 3780.14-19952010-8-92011-5-149GB/T 6073-2010 LT 型高弹性摩擦离合器 GB/T 6073-19852010-8-92010-12-150GB/T 9345.5-2010 塑料 灰分的测定 第5部分:聚氯乙烯 GB/T 13453.3-19922010-8-92011-5-151GB/T 10682-2010 双端荧光灯 性能要求 GB/T 10682-20022010-8-92010-12-1
  • 核电审批重启 仪器行业受益几何?
    10月24日,国务院总理温家宝主持召开国务院常务会议,再次讨论并通过《核电安全规划(2011-2020年)》和《核电中长期发展规划(2011-2020年)》。国务院常务会议称,在建设节奏上要“合理把握”、“稳步推进”,“稳妥恢复正常建设” 在准入门槛上按照全球最高安全要求新建核电项目”。这些信号释放表明,日本福岛核电事故之后,冻结近20个月的中国核电审批闸门再度开启。  核电审核开闸  中国是目前全球第一大核电在建国,在建核电占到了全球的40%左右。但在2011年3月16日,即日本福岛核事故发生后的第五天,国务院总理温家宝主持召开国务院常务会议时要求,调整完善核电发展中长期规划,核安全规划批准前,暂停审批核电项目包括开展前期工作的项目。此次政策松动,无疑给核电行业发展打了一阵强心剂。作为与核电行业密切相关的仪器仪表行业,又有哪些受益?  核电与仪器行业密切相关  从上世纪50年代第一座商用核电站问世以来,核电站的仪表和控制系统就是核电站的重要组成部分,核电站机组的安全、可靠,经济运行很大程度上取决于I&C(仪表与控制)系统的性能水平。在《国家中长期科学与技术发展规划纲要(2006-2020年)》和《“十一五”国家经济发展规划纲要》制定过程中,核仪器仪表行业都被列入重点领域的优先主题。  核电站最常规测量使用的仪表有温度、流量、压力、液体等四大仪表。比如核电使用的标准热电偶温度计是镍铬-镍铝(镍铬-镍硅)EU-2K以及镍铬-考铜(EA-2)(XK),同时,铠装热电偶、薄膜热电偶等也被广泛使用。压力作为一个物理量描述,能掌控限定核电场地设备的工况,液柱式、应变式等压力表和差压计都是其中常用的。此外,液位仪表中的浮子式液位计、差压式液位计、液体静力液位计、雷达液位计,流量仪表中的差压式流量计、转子流量计、电磁流量计都被广泛应用。  常规测量的四大仪表以外,核电站还需要振动测量、位移测量等机械量参数测量仪表,氧计、密度测量传感器、PH值测量传感器等分析测量仪表,硼浓度的测量与硼表。此外,为了监控和保护核电站的运行,大型的仪表控制系统更是必不可少。由此可见,核电的建设与仪表仪表行业密不可分。  福岛核泄漏事故前的核电仪器市场  截止2010年,中国有14台在建机组,装机容量达到14.28GW,另外还有35个项目将要开工,两部分合计达到了51.72GW,约为目前装机容量的6倍。这些在建项目都给仪器仪表行业带来巨大的商机。 随着国家对核电设备国产化率要求的目标越来越高,国内很多民营仪器仪表企业也逐渐投入到这个领域中去,尤其是一些核电辅助设备。  从市场趋势分析,仪器仪表各分行业的订货和需求状况逐年上升。一些企业在核电建设中为核电站生产研制了数万台(套)的仪器仪表和设备,初步形成了综合研发能力,建立了较完整的制造体系和质量保证体系。  比如2006年通过验收的秦山二期,300多个系统、20多万台设备、上百万张设计图纸,科技人员和建设者们反复验证、反复剖析、反复实践,最终使秦山二期取得了反应堆堆芯设计、反应堆厂房及安全壳设计、延长压力容器寿命等300多项核心技术创新和改进 两台机组的设备国产化率达到55%,55项关键设备中有47项实现了国产化,其中包括高技术含量的压力容器、蒸汽发生器等,这些都极大带动了国产仪器仪表的研发应用。  但是,我国核电站用很多原材料还需要依赖进口,如果关键材料都依赖进口,将受制于国外。中国核电仪器仪表的自主创新能力仍世界三流水平,70%的行业利润被进口的零部件吃掉,对外技术依存度达到了50%。  核电用仪器市场发展仍任重道远  作为工业生产的“倍增器”、科学研究的“先行官”、国防建设的“战斗力”,核仪器仪表行业是体现国家科技、经济发展水平的高精尖行业。要想在信息化时代实现产业结构快速、有序、高效地合理化发展,仪器仪表行业担负着艰巨的历史使命。  核电仪器仪表被广泛用于核电、核工业中,核电的加快发展和提高核电设备国产化率的要求为设备制造企业创造了良好的外部环境。据悉,在核电建设中,设备费用占工程总费用的50%左右。因而,把握机遇、拓展能力、适应新的核电建设模式、使核仪器仪表设备制造形成产业化成为重要的内容。  我国核仪器仪表生产行业还处于成长阶段,其表现特征也与成长期行业的市场变现相同。起步初期行业一般仅限于几家企业,产品市场集中度高竞争程度低,成熟行业则表现出集中度中等偏下,竞争十分激烈的特点。核用仪器仪表生产行业显然处于低集中度、低竞争程度的成长阶段。  另一方面,新核电审核开闸,核电在安全标准升级至三代,这将会导致国产率降低,仪器仪表本土厂商分食蛋糕缩小。而且核电项目建设进程严重依赖外企供货进度,为项目进程带来巨大不确定性,同时本土企业能够参与的核电设备市场份额也会有所减少,可谓双重打击。
  • 济南市计量检定测试院120.01万元采购核酸提取仪,硬度计,大分子作用仪
    详细信息 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 山东省-济南市 状态:公告 更新时间: 2022-07-29 招标文件: 附件1 附件2 附件3 附件4 附件5 附件6 附件7 附件8 附件9 附件10 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 发布时间:2022年7月29日15时41分 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 项目概况: 济南市计量检定测试院仪器设备采购招标项目的潜在投标人应在相应公告界面获取招标文件,并于2022-08-23 13:30 (北京时间)前递交投标文件。 一、采购项目基本情况: 采购项目编号(建议书编号):SDGP370100000202202001027 采购项目名称:济南市计量检定测试院仪器设备采购 采购需求: 济南市计量检定测试院实验仪器设备采购,具体要求详见招标文件第四章。 预算金额: 本项目预算金额为 1200100.00 元,其中:A包 液位计检定装置 341500.00 元, B包 核酸提取仪校准装置、数字压力计 355000.00 元, C包 0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计 503600.00 元。 合同履行期限: 签订合同后30日内交货(交付)且检测验收合格。 本项目(是/否)接受联合体投标:否 二、申请人的资格要求: 1、具备《中华人民共和国政府采购法》第二十二条规定的条件,并按《政府采购法实施条例》第十七条的规定提供相关证明材料;2、通过“信用中国”网(www.creditchina.gov.cn)、“信用山东”网(www.creditsd.gov.cn)(非山东企业请提供所属省或市的信用查询)、中国政府采购网(www.ccgp.gov.cn)查询,未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单;3、单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一包号的项目投标;4、本项目执行具体政府采购政策详见招标文件;5、本项目各包均不接受联合体投标;6、本项目可兼投兼中。 三、获取招标文件: 时间2022-08-01 09:00至2022-08-06 17:00 地点:济南公共资源交易中心网站(http://jnggzy.jinan.gov.cn/) 方式:①招标公告下方的招标文件仅供查看,投标人须在济南市公共资源交易中心网站(http://jnggzy.jinan.gov.cn)本项目招标公告页面下载电子招标文件。②本项目全流程执行济南公共资源电子招投标系统,请参与本项目单位及时办理新 CA 证书。具体办理、咨询方式详见济南公共资源交易网。电子投标咨询电话:13306426582、15335322953、0532—55572211、0532-85871505 客服 QQ: 103755480,1374539720。 售价:0元 四、投标截止时间、开标时间及地点: 投标截止时间、开标时间:2022-08-23 13:30 开标地点:济南公共资源交易中心 五、公告期限: 招标公告发出之日起5个工作日。 六、其他补充事宜: 无 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 联系人(采购人):济南市计量检定测试院 地址:龙奥北路1311号 联系方式:0531-89738291 2.采购代理机构信息 联系人(代理机构):石拓项目管理有限公司 地址:济南市高新区舜华路2000号舜泰广场2号楼4-C2 联系方式:0531-88257927 3.项目联系方式 项目联系人(代理机构):丁莉 联系方式:0531-88257927 附件 PDF版招标文件(液位计检定装置) PDF版招标文件(核酸提取仪校准装置、数字压力计) PDF版招标文件(0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计) 请登录“济南公共资源交易中心”个人空间,通过“政府采购入口”进行招标文件下载。 链接地址:http://jnggzy.jinan.gov.cn/jnggzyztb/new_flogin/login.do 发 布 人:石拓项目管理有限公司 发布时间:2022-07-29 15:36 请点击此处下载供应商下载采购文件的操作说明 CA证书服务电话:68967522,68967524,18661977312 电子投标咨询电话:13306426582、15335322953、 客服QQ: 2881295775 附件: A包对应的采购文件一册: A包对应的采购文件二册: B包对应的采购文件一册: B包对应的采购文件二册: C包对应的采购文件一册: C包对应的采购文件二册: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:核酸提取仪,硬度计,大分子作用仪 开标时间:2022-08-23 13:30 预算金额:120.01万元 采购单位:济南市计量检定测试院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:石拓项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 山东省-济南市 状态:公告 更新时间: 2022-07-29 招标文件: 附件1 附件2 附件3 附件4 附件5 附件6 附件7 附件8 附件9 附件10 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 发布时间:2022年7月29日15时41分 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 项目概况: 济南市计量检定测试院仪器设备采购招标项目的潜在投标人应在相应公告界面获取招标文件,并于2022-08-23 13:30 (北京时间)前递交投标文件。 一、采购项目基本情况: 采购项目编号(建议书编号):SDGP370100000202202001027 采购项目名称:济南市计量检定测试院仪器设备采购 采购需求: 济南市计量检定测试院实验仪器设备采购,具体要求详见招标文件第四章。 预算金额: 本项目预算金额为 1200100.00 元,其中:A包 液位计检定装置 341500.00 元, B包 核酸提取仪校准装置、数字压力计 355000.00 元, C包 0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计 503600.00 元。 合同履行期限: 签订合同后30日内交货(交付)且检测验收合格。 本项目(是/否)接受联合体投标:否 二、申请人的资格要求: 1、具备《中华人民共和国政府采购法》第二十二条规定的条件,并按《政府采购法实施条例》第十七条的规定提供相关证明材料;2、通过“信用中国”网(www.creditchina.gov.cn)、“信用山东”网(www.creditsd.gov.cn)(非山东企业请提供所属省或市的信用查询)、中国政府采购网(www.ccgp.gov.cn)查询,未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单;3、单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一包号的项目投标;4、本项目执行具体政府采购政策详见招标文件;5、本项目各包均不接受联合体投标;6、本项目可兼投兼中。 三、获取招标文件: 时间2022-08-01 09:00至2022-08-06 17:00 地点:济南公共资源交易中心网站(http://jnggzy.jinan.gov.cn/) 方式:①招标公告下方的招标文件仅供查看,投标人须在济南市公共资源交易中心网站(http://jnggzy.jinan.gov.cn)本项目招标公告页面下载电子招标文件。②本项目全流程执行济南公共资源电子招投标系统,请参与本项目单位及时办理新 CA 证书。具体办理、咨询方式详见济南公共资源交易网。电子投标咨询电话:13306426582、15335322953、0532—55572211、0532-85871505 客服 QQ: 103755480,1374539720。 售价:0元 四、投标截止时间、开标时间及地点: 投标截止时间、开标时间:2022-08-23 13:30 开标地点:济南公共资源交易中心 五、公告期限: 招标公告发出之日起5个工作日。 六、其他补充事宜: 无 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 联系人(采购人):济南市计量检定测试院 地址:龙奥北路1311号 联系方式:0531-89738291 2.采购代理机构信息 联系人(代理机构):石拓项目管理有限公司 地址:济南市高新区舜华路2000号舜泰广场2号楼4-C2 联系方式:0531-88257927 3.项目联系方式 项目联系人(代理机构):丁莉 联系方式:0531-88257927 附件 PDF版招标文件(液位计检定装置) PDF版招标文件(核酸提取仪校准装置、数字压力计) PDF版招标文件(0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计) 请登录“济南公共资源交易中心”个人空间,通过“政府采购入口”进行招标文件下载。 链接地址:http://jnggzy.jinan.gov.cn/jnggzyztb/new_flogin/login.do 发 布 人:石拓项目管理有限公司 发布时间:2022-07-29 15:36 请点击此处下载供应商下载采购文件的操作说明 CA证书服务电话:68967522,68967524,18661977312 电子投标咨询电话:13306426582、15335322953、 客服QQ: 2881295775 附件: A包对应的采购文件一册: A包对应的采购文件二册: B包对应的采购文件一册: B包对应的采购文件二册: C包对应的采购文件一册: C包对应的采购文件二册:
  • 沃特世色谱柱2010版中国药典高效液相色谱图有奖征集
    2010年版《中国药典》及增补是新中国成立60年来组织编制的第九版药典,注重创新与发展,全面提升了我国药物质量控制的要求与水准,是国家药品标准体系的核心。作为色谱行业的领导者,沃特世(Waters)公司长期以来得到广大制药行业用户的支持与厚爱,其提供的优质色谱柱及消耗品为药品质量控制提供了强有力的保障和技术支撑。为答谢广大用户对沃特世公司的支持与帮助、进一步增进用户之间的交流,特向广大沃特世色谱柱制药领域用户征集2010版中国药典高效液相色谱图,并将汇编成册回馈客户。 一、征集对象 所有沃特世色谱柱制药领域终端用户。 二、征集要求1、所用的Waters色谱柱规格型号、色谱条件完整准确;图谱真实、清晰,基线稳定,目标成分峰型良好,分离度、保留时间、理论塔板数符合要求。三、评审与奖励1、沃特世将邀请专家为本次征集活动进行评审,所有被录用图谱的作者均将获得沃特世特制U盘一个。2、活动将选出前十名对图谱征集贡献最大的单位或个人成为VIP客户,将给予更低的优惠折扣。 四、征集时间及联系方式 征集时间:2013年1月1日-2013年5月31日 Word文件请电邮至info_chemistry@waters.com(请将附件粘贴到邮件中) 联系人:Anne 联系电话:021-61562630 五、附件 该活动解释权归沃特世科技(上海)有限公司所有作者姓名:单位名称:部门/科室:联系电话:E-mail:邮编:通讯地址:样品名称:色谱条件: 色谱图(若提供数个图谱数据,可另附页面)
  • 大连依利特与国家药典委合作项目:中国药典(一部)高效液相色谱图集》正式出版
    日前,由国家药典委员会组织并实施的《中国药典》一部新增液相方法采用国产液相验证工作成果之一—《中国药典(一部)高效液相色谱图集》已经由国家药典委员会联合大连依利特分析仪器有限公司正式出版并发行。 本图集是对《中国药典》2010年版一部新增修订的高效液相色谱图和色谱条件验证结果的汇总。验证使用的样品全部由承担《中国药典》2010年版相关品种起草单位收集提供,颇具代表性和可信度。图集中部分品种的供试品制备方法和色谱条件根据实验有所优化与调整。 国家药典委员会周福成秘书长对本次验证工作及谱图集的出版给予了很高的评价的。周秘书长在前言中说到:“本卷图谱的实验工作得到了解放军总后卫生部药品仪器检验所、北京市药品检验所、黑龙江省药品检验所、湖南省药品检验所、上海市食品药品检验所、江西省药品检验所和大连市药品检验所各中药室及大连依利特分析仪器有限公司的大力支持与密切配合,使这项工作得以顺利完成,在此向他们以及提供样品的单位一并表示感谢。我们有理由期待和相信本图集的面世,必将在促进中药标准化发展,不断提升国产检验仪器的水平等方面发挥应有的作用。通过这项工作,首先证明了药典的科研和组织管理是完全可靠和行之有效的,绝大多数方法都能得到很好的重现;其次,经7家药典起草科研单位对大连依利特分析仪器有限公司生产的高效液相色谱仪的验证,证明了国产液相色谱仪完全适用于药典需求,满足按照药典标准进行日常检验的要求,这是我们开展这项工作最可取的一项收获和意义所在。” 中国科学院张玉奎院士也在充分肯定本次验证工作的基础上,同时对国产分析仪器应用在药品检验领域提出了更高的期望:“愿此谱图集能为相关研究与操作人员提供参考与帮助,并以此为契机促进药品质量不断提高、国产仪器制造水平再上新台阶! 附:中国药典(一部)新增液相色谱检测品种的色谱柱选择指南,请参阅。 点我下载。
  • 看“潜龙二号”如何勘探深海矿产资源
    日前,中科院沈阳自动化所作为技术总体单位研制的“潜龙二号”自主水下机器人(AUV)圆满完成了中国大洋第40航次试验性应用任务。  在本次海上作业中,“潜龙二号”团队实现了多个重要突破。如实现了深海近海底高精细地形地貌快速成图,发现多处热液异常点,获得洋中脊进海底高分辨率照片300多张,取得我国大洋热液探测的重大突破。可以说,“潜龙二号”西南印度洋试验性应用的成功,填补了我国深海硫化物热液区自主探测技术装备的空白。  那么,“潜龙二号”圆满返航的背后,有哪些不为人知的秘密呢?在为期三个多月的海上科研中,发生了哪些故事?日前,《中国科学报》记者到中科院沈阳自动化所,对“潜龙二号”团队成员进行了采访。  从淡水到深海  “潜龙二号”,是我国自主研发的“4500米级深海资源自主勘查系统”的代称。它是“十二五”国家“863”计划——深海潜水器装备与技术重大项目的课题之一。  中科院沈阳自动化所研究员、水下机器人研究室总工刘健告诉《中国科学报》记者,该课题总体目标为自主研制一套4500米级AUV系统,并以此为平台,集成热液异常探测、微地形地貌探测、海底照相和磁力探测等技术,形成一套实用化的深海探测系统,并培养一支装备操作维护队伍,进行多金属硫化物等深海矿产资源勘探作业。  “这项工作由中国大洋矿产资源研究开发协会作为用户单位组织实施,我们所与国家海洋局第二海洋研究所等单位共同研制。”刘健介绍,2012年初科研人员开始进行研制。2014年10月,“潜龙二号”完成了总装联调和检测工作。“之前‘潜龙一号’也是由我们来完成。多年技术的积淀,使我们的研发任务能够迅速推进。”  2014年11月,“潜龙二号”在浙江千岛湖先后开展了两次湖上试验,累计下水147潜次。  2015年夏季,“潜龙二号”从淡水试验走向南海海试,国家“863”组织6名专家全程跟随,对其性能、指标进行全面考核,最终以高分过关。  2015年12月中旬,“潜龙二号”团队从三亚起航前往西南印度洋,参加中国大洋第40航次试验性应用任务。在这项为期近3个月的航程中,“潜龙二号”团队完成了两个阶段的作业。  “一个是验收试验,另外一个是试验性应用。在第一航段的验收试验中,潜水器共8次下潜,完成了验收试验规定的所有考核项目,高分过关。”刘健说,“一般而言,科研人员的任务就到此为止了,但我们马上又让水下机器人直接进入应用阶段,这在众多‘863’任务中还是首次。”  多项突破性进展  验收试验阶段和试验性应用阶段有什么区别呢?中科院沈阳自动化所副研究员赵宏宇告诉《中国科学报》记者,在第一阶段的西南印度洋中脊热液区大洋探测中,“潜龙二号”获得的断桥、龙旂热液区的近海底精细三维地形地貌数据等,和以往数据相对比都很吻合,这证明了“潜龙二号”的可靠性。  而在第二阶段的8次下潜中,“探索的完全是未知海域,人类在此之前完全没有涉足过,地形复杂,难度极大”。尽管如此,“潜龙二号”团队依然取得了多项重大突破。  在第一阶段,“潜龙二号”首次使用我国自主知识产权的AUV进行洋中脊热液区大洋探测任务,发现断桥、龙旂热液区多处热液异常点,获得300多张洋中脊近海底高分辨率照片,取得我国大洋热液探测的重大突破。  在第二阶段,“潜龙二号”完成了7个长航程探测任务,累计航程近700公里,探测面积达218平方公里,同时发现多处热液异常点。其中,单次下潜最大探测时间达到32小时13分钟,最大航行深度超过3200米。本航段“潜龙二号”连续4个长航程成功探测成绩也创下了我国深海AUV之最。  “这次海上应用中,我们实现了很多技术上的首次。”刘健介绍。如“潜龙二号”首次采用全新非回转体立扁形设计和推进器布局,增强了潜水器的机动性能 首次采用基于前视声呐的避碰控制方法,大大提高了障碍物的有效识别能力,实现了复杂海底地形条件下的有效避碰控制 国内首次在AUV上安装了磁力探测传感器,实现了近海底高精度磁力探测等等。  “‘潜龙二号’为我国开展深海资源大范围精细探测提供了重要技术装备,标志着我国深海资源勘查装备已达到实用化水平,使我国自主水下机器人技术及产品跨入了国际先进行列。”刘健说。  难忘的深海之旅  “潜龙二号”西南印度洋试验队共有17人,核心研发人员约10人,其他以应用人员为主。从2015年12月到2016年3月10日,“潜龙二号”团队在茫茫大海上度过了近三个月难忘的时光。  这是一支年轻的队伍,平均年龄在35岁以下。除了刘健在多年以前有过类似的深海航行,其他队员在此次航行之前并没有在大洋上待过这么久。  科研人员的海上之旅,绝大部分时间都处于忙碌状态。在“潜龙二号”没有下水作业的时候,大家要负责进行设备维护和数据分析工作 “潜龙二号”在水中作业期间,大家轮流值班,通过显示屏监测水下机器人的举动 “潜龙二号”上船后,大家下载其获得的数据并及时分析,同时进行机器人的电池更换等工作。  三个月的时光,对于年轻人来说,其实最难的是通讯不畅。“这些‘80后’的小伙子,基本都是独生子女,上有老下有小。一走这么长时间,家里很多事情都没法管,其实挺不容易的。”赵宏宇说,为了完成“潜龙二号”的海试,大家都牺牲了很多。  “长期以来,我们对于海洋权益的关注度不够,开发也落后于他国。”刘健说,随着经济的发展,海洋权益、海底矿藏对中国的发展将会越来越重要,这也需要我国有与之配套的科研研发实力与深海装备。在向深海进军的道路上,中科院的科研人员将会继续努力。
  • 红外热成像科创板企业【富吉瑞光电】成功“摘星脱帽”
    北京富吉瑞光电科技股份有限公司(*ST富吉,688272)6月6日晚间公告,公司股票将于6月7日停牌一天,自6月11日起复牌并撤销退市风险警示,撤销后A股简称为富吉瑞,撤销后A股扩位简称为富吉瑞光电此前,公司因2022年经审计的扣除非经常性损益前后的净利润孰低者为负值,且扣除与主营业务无关的业务收入和不具备商业实质的收入后的营业收入低于1亿元,根据《上海证券交易所科创板股票上市规则》第 12.4.2 条 第一款的规定,公司股票于2023年4月27日起被实施退市风险警示(*ST)。2023年度,公司的营业收入为20,933.41万元,扣除与主营业务无关和的业务收入后营业收入为19,555.83万元,归属于母公司所有者的净利润为9,631.87万元,归属于母公司所有者的扣除非经常性损益的净利润为-9,755.42万元。按照相关规定,*ST富吉能够在符合规定的情况下向交易所申请撤销对其股票实施的退市风险警示。据悉,上海证券交易所于2024年6月6日同意公司股票撤销退市风险警示。北京富吉瑞光电科技股份有限公司是一家主要从事红外热成像产品和系统的研发、生产和销售,并为客户提供解决方案的高新技术企业。公司以红外热成像技术为基础,以图像处理为核心,逐步向固态微光、短波、紫外、可见光等方向拓展。公司的产品应用于军用和民用领域。在军用领域主要应用于通用军械、单兵、地面装备、空中装备和水上装备等;在民用领域主要应用于工业测温、气体检测、石油化工、电力检测、安防监控、医疗检疫和消防应急等。
  • LA-ICPMS和SIMS硫化物微量元素和硫同位素原位分析
    p style="text-align: justify "  硫化物(特别是黄铁矿)可形成于各类地质环境中,在金属矿床的成矿早期一直延续到成矿后期。在观察原生硫化物及其在成岩后的变质作用、热液交代作用下生成的增生边、重结晶的次生硫化物时,通过光学显微镜和背散射图像,根据矿化、蚀变期次及矿物共生组合,可将不同结构的硫化物划分为不同期次的产物,再与LA-ICPMS硫化物原位微量元素点分析数据和面扫描图像相对应,就可知悉不同期次的硫化物各自的地球化学特征,即硫化物的地球化学分带性,这对研究沉积作用、变质作用、岩浆作用、热液交代作用如何影响硫化物中微量元素(例如Au元素)的富集行为至关重要。/pp style="text-align: justify "  对于金矿床来说,通过研究硫化物中不同微量元素与Au富集行为的耦合程度,有助于探讨Au在硫化物中的赋存形式及Au在硫化物晶体中的置换反应。藉由LA-ICPMS点分析的时间分辨(time-resolved)信号谱图,还可以获得硫化物样品在同一位置不同深度上的元素丰度分布,进一步讨论Au在硫化物中的赋存状态。/pp style="text-align: justify "  微量元素在硫化物中主要有三种赋存形式:/pp style="text-align: justify "  (1)以固溶体的形式赋存在硫化物晶格中,不可见 /pp style="text-align: justify "  (2)纳米级的矿物包裹体(包裹体直径 0-1μm,如自然金或硫化物Fe-As-Sb-Pb-Ni-Au-S),不可见 /pp style="text-align: justify "  (3)微米级的矿物包裹体,可见。/pp style="text-align: justify "  值得注意的是,这里的“可见”与“不可见”是相对于1930年的显微镜观测水平界定的,“不可见金”/pp style="text-align: justify "  这一表述最早是由Bü rg在1930年使用的。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和高分辨率透射电子显微镜(HR-TEM),直径数十纳米级的矿物包裹体现在已经可以被直接观测。若微量元素以固溶体形式赋存在硫化物晶格中,原来硫化物的晶格将被扭曲变形,通过特定区域的电子衍射谱图(SAED)可以直接观测晶格是否发生扭曲。/pp style="text-align: center "img title="640.webp.jpg" alt="640.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/d7a67cbc-2c52-40d4-805a-59ef459693bd.jpg"//pp style="text-align: center "  俄罗斯某金矿 层状黄铁矿-石英脉中赋存的黄铁矿核部LA-ICPMS时间分辨输出信号谱图/pp style="text-align: justify "  在LA-ICPMS的时间分辨信号谱图上,若某微量元素的信号强度随剥蚀时间的增加而保持平缓或近似平缓,显示束斑剥蚀的纵深线上成分保持均匀性,一般认为该元素可能以固溶体的形式赋存在晶格中 抑或以微米级的硫化物包裹体存在,包裹体中该元素总量少于LA-ICPMS的检测限,信号也不会随时间发生大的波动。/pp style="text-align: justify "  若某微量元素的信号强度随剥蚀时间的增加而出现峰值,则指示着富含该元素的微米级矿物包裹体的存在。Large et al. (2007)采用这种方法确定了微米级的富含Bi-Ag-Au-Te的方铅矿包裹体(图)和富含Au-Te-Ag矿物包裹体(图4b)的存在。这种方法的缺点是不能区分微量元素在硫化物中上述第(1)和第(2)种赋存方式。尽管如此,该方法现被广泛应用于Au在硫化物中的赋存形式的判断。/pp style="text-align: justify "  节选自:范宏瑞等. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496/pp style="text-align: justify " 附件:/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf" style="color: rgb(0, 102, 204) font-size: 12px " href="https://img1.17img.cn/17img/files/201901/attachment/c92b9c13-20c7-4160-b0e4-a9dd0b888c02.pdf"www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf/a/pp /p
  • 关注生产安全,江苏省应急管理厅印发《化工(危险品)企业常见安全隐患警示清单》
    p style="text-indent: 2em "近年来,实验室火灾、化工厂爆炸等事故频发,造成的人员伤亡、财产损失等后果严重,引起人们对实验室安全问题的高度关注。为进一步指导化工(危险化学品)企业扎实开展隐患排查治理工作,增强企业隐患排查治理的可操作性,推动企业主动落实安全生产主体责任,有效防范和化解安全风险,近日,江苏省应急管理厅办公室印发了《化工(危险品)企业常见安全隐患警示清单》的通知。该警示清单中一共有244条,其中人的不安全行为86条,物的不安全状态102条和管理缺陷56条。通知中提到,这些清单主要是化工企业工作人员在日常工作中经常性、重复性发生的不符合安全生产要求的问题,也是日常安全生产工作中必须或避免发生的事情。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/99eee99c-0e89-43af-9e68-749b47ba8cd0.jpg" title="1_副本.png" alt="1_副本.png"//pp style="text-indent: 2em "strong附件/strong:/pp style="text-align: center text-indent: 2em "strong化工(危险化学品)企业常见安全隐患警示清单/strong/pp style="text-indent: 2em "strongspan style="color: rgb(84, 141, 212) "一、人的不安全行为(86条)/span/strong/pp style="text-indent: 2em "(一)劳动纪律(7条)/pp style="text-indent: 2em "1.酒后上岗、班中饮酒。/pp style="text-indent: 2em "2 .串岗、脱岗、睡岗,在岗期间从事与岗位工作无关的事。/pp style="text-indent: 2em "3.未经批准私自顶岗、换岗。/pp style="text-indent: 2em "4 .上班迟到、早退,未按规定履行请假手续。/pp style="text-indent: 2em "5 .未按规定着装和佩戴安全帽进入生产、施工现场。穿易产生静电的服装或穿戴铁钉的鞋进入易燃、易爆装置或罐区。/pp style="text-indent: 2em "6 .在禁烟区域内吸烟。/pp style="text-indent: 2em "7 .主要负责人长期脱岗不履职。/pp style="text-indent: 2em "span style="text-indent: 2em "(二)工艺纪律(17条)/span/pp style="text-indent: 2em "8.未按规定要求进行巡回检查,发现的隐患和问题未及时报告和处理。/pp style="text-indent: 2em "9 .未按规定要求填写操作记录和交接班记录,交接班人员未签名。/pp style="text-indent: 2em "10.对出现的工艺报警未及时处置和记录。/pp style="text-indent: 2em "11.未按操作规程进行操作;不清楚或不熟悉工艺控制指标和操作规程。/pp style="text-indent: 2em "12.改进工艺或操作程序,未进行安全评估。/pp style="text-indent: 2em "13.使用压缩空气进行易燃易爆物料的加料、压料操作。/pp style="text-indent: 2em "14.常压贮槽带压使用;带压开启反应釜、容器盖子。/pp style="text-indent: 2em "15.在可燃气体爆炸极限内进行工艺操作。/pp style="text-indent: 2em "16.采用氮封或输送物料时,氮气管道未设置止回阀,存在高压串低压的风险。/pp style="text-indent: 2em "17.离心机分离可燃有机溶剂时,未采取氮气保护措施。/pp style="text-indent: 2em "18.操作中遇到突发异常情况时不及时报告,擅自变更操作。/pp style="text-indent: 2em "19.外来人员代替本岗位人员操作。/pp style="text-indent: 2em "20.现场盲板未编号和挂牌。/pp style="text-indent: 2em "21.取样完毕未及时关闭取样阀。/pp style="text-indent: 2em "22.危险化学品装卸、罐区脱水(切水、切碱等)时操作人员离开现场。/pp style="text-indent: 2em "23.未经许可擅自修改DCS系统、安全仪表系统中相关工艺指标、报警和联锁参数。/pp style="text-indent: 2em "24.启动皮带输送机前,没有检查确认、没有启动警告铃。/pp style="text-indent: 2em "(三)其他纪律(26条)/pp style="text-indent: 2em "25.在易燃易爆区域用汽油、易挥发溶剂擦洗设备、衣物、工具及地面等。/pp style="text-indent: 2em "26.在易燃易爆区域用黑色金属等易产生火花的工具敲打、撞击和作业。/pp style="text-indent: 2em "27.在易燃易爆区域使用非防爆通讯、照明器材、非防爆工具等。?/pp style="text-indent: 2em "28.擅自停用可燃、有毒、火灾声光报警系统和安全联锁系统。/pp style="text-indent: 2em "29.擅自关闭或调整视频监控设施或关闭各类报警声音。/pp style="text-indent: 2em "30.堵塞消防通道及随意挪用或损坏消防设施。/pp style="text-indent: 2em "31.未按规定检查维护应急防护设施、器材。/pp style="text-indent: 2em "32.不能正确熟练使用应急防护装备、器材。/pp style="text-indent: 2em "33.不佩戴专用防护用品(具)从事有毒、有害、腐蚀等介质和窒息环境下的危险作业。/pp style="text-indent: 2em "34.不按规定静电接地进行危险化学品车(船)装卸作业。/pp style="text-indent: 2em "35.转动设备未停机、带电设备未停电进行检维修。/pp style="text-indent: 2em "36.车辆进入生产区域未安装阻火器或车辆进入生产区域超速行驶。/pp style="text-indent: 2em "37.管理人员违章指挥、强令冒险作业。/pp style="text-indent: 2em "38.未为从业人员配备适用有效的个体防护用品。/pp style="text-indent: 2em "39.现场未设置或者缺少禁止、警告、指令、提示等安全标志。/pp style="text-indent: 2em "40.无故不参加安全培训、班组安全活动。/pp style="text-indent: 2em "41.未按规定要求参加或组织开展安全检查。/pp style="text-indent: 2em "42.设备、工艺变更后,没有及时修订制度、规程。/pp style="text-indent: 2em "43.未按国家标准分区分类储存危险化学品,超量、超品种储存危险化学品,相互禁配物质混放混存。/pp style="text-indent: 2em "44.危险化学品灌装时超过核定装载量。/pp style="text-indent: 2em "45.危险化学品装卸作业前,车轮未固定,车钥匙未交岗位人员保管。/pp style="text-indent: 2em "46.液化石油气、液氨或液氯等的实瓶露天堆放。/pp style="text-indent: 2em "47.危险化学品仓库物品存放时,顶距、灯距、墙距、柱距、垛距“五距”不符合要求。/pp style="text-indent: 2em "48.员工“三级”安全教育低于72学时。/pp style="text-indent: 2em "49.员工“三级“安全教育、承包商员工入厂安全教育考试卷未批改或批改不认真,随意给分。/pp style="text-indent: 2em "50.未按规定参加“三级”安全教育培训或未经岗位技能培训考核合格。/pp style="text-indent: 2em "(四)特殊作业(36条)/pp style="text-indent: 2em "51.未按规定办理动火、进入受限空间等特殊作业许可证。/pp style="text-indent: 2em "52.动火、进入受限空间作业等特殊作业前未开展风险识别。/pp style="text-indent: 2em "53.特殊作业安全作业证有缺漏项,超过规定有效期,签批人不符合要求,签批时间未填写到分钟,提前审批作业许可证。/pp style="text-indent: 2em "54.动火、进入受限空间作业部位与生产系统采用关闭阀门实施隔离、隔绝,未采取加装盲板或断开一段管道的隔离措施。/pp style="text-indent: 2em "55.未进行动火安全分析或分析结果不合格进行作业。/pp style="text-indent: 2em "56.进入受限空间作业前,未分析可燃气体浓度、氧含量、有毒气体浓度。/pp style="text-indent: 2em "57.动火和进入受限空间中断作业超过1小时后未重新进行安全分析。/pp style="text-indent: 2em "58.采样分析部位与动火作业部位不一致,采样检测点没有代表性。/pp style="text-indent: 2em "59.受限空间未设置安全警示或采取硬隔离措施。/pp style="text-indent: 2em "60.同一作业涉及动火、进入受限空间、盲板抽堵、高处作业、吊装、临时用电、动土、断路中的两种或两种以上时,未按规定同时办理相应的作业审批手续。/pp style="text-indent: 2em "61.动火、进入受限空间作业安全措施未确认落实或安全措施由同一人确认签字。/pp style="text-indent: 2em "62.动火、进入受限空间作业现场未设专人监护。/pp style="text-indent: 2em "63.一级、特级动火作业未做到“一票一录像”。/pp style="text-indent: 2em "64.动火人未持有效特种作业资格证。/pp style="text-indent: 2em "65.降级办理或签批动火安全作业证。/pp style="text-indent: 2em "66.动火作业未做到“一点(处)一证一人”,未经许可,擅自变更作业范围。/pp style="text-indent: 2em "67.动火、进入受限空间等特殊作业未进行完工验收签字。/pp style="text-indent: 2em "68.动火、进入受限空间等特殊作业安全作业证上填写的作业人员与现场实际作业人员不一致。/pp style="text-indent: 2em "69.氧气、乙炔气瓶无防震圈、瓶帽等安全附件,乙炔气瓶未安装回火器。氧气、乙炔气管道老化、皲裂。/pp style="text-indent: 2em "70.受限空间照明电压大于?36V,在潮湿容器、狭小容器内作业电压大于12V。/pp style="text-indent: 2em "71.在受限空间内进行清扫和检修时,没有紧急逃生设施或措施。/pp style="text-indent: 2em "72.釜内检修时,没有切断电源并拴挂“有人检修、禁止合闸”的警示牌。/pp style="text-indent: 2em "73.高处作业未系安全带,安全带未做到“高挂低用”。/pp style="text-indent: 2em "74.使用未经验收合格的脚手架,脚手板未绑扎牢固。/pp style="text-indent: 2em "75.高处作业抛掷材料、工具及其他杂物。/pp style="text-indent: 2em "76.擅自拆改脚手架、钢格板、护栏、盖板、防护网等防护设施。/pp style="text-indent: 2em "77.使用未安装漏电保护器装置的电气设备、电动工具。/pp style="text-indent: 2em "78.火灾爆炸危险场所未使用相应防爆等级的电源及电气元件。/pp style="text-indent: 2em "79.使用不合格的绝缘工具和专用防护器具进行电气操作和作业。/pp style="text-indent: 2em "80.现场临时用电配电盘、箱没有电压标识和危险标识,没有防雨措施,盘、箱、门不能牢靠关闭或未上锁。/pp style="text-indent: 2em "81.超过安全电压的手持式、移动式电动工器具未逐个配置漏电保护器和电源开关,做到“一机一闸一保护”。/pp style="text-indent: 2em "82.起重机械吊钩缺少防钢丝绳脱落装置。/pp style="text-indent: 2em "83.起重吊装作业存在违反“十不吊”的行为。/pp style="text-indent: 2em "84.利用管道、管架、电杆、机电设备等作吊装锚点。/pp style="text-indent: 2em "85.吊装现场未设置安全警戒标志或拉设警戒绳,没有专人监护。/pp style="text-indent: 2em "86.施工、检修工机具存在缺陷或隐患,未粘贴检查合格证。/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) "strong二、物的不安全状态(108条)/strong/span/pp style="text-indent: 2em "(一)工艺专业(27条)/pp style="text-indent: 2em "87.温度、压力、液位等超控制指标运行。/pp style="text-indent: 2em "88.设定的工艺指标、报警值、联锁值等不符合工艺控制要求。/pp style="text-indent: 2em "89.内浮顶罐低液位报警或联锁设定值低于浮盘支撑的高度,存在浮盘落底的风险。/pp style="text-indent: 2em "90.重大危险源未配备温度、压力、液位、流量、组份等信息的不间断采集和监测系统,不具备信息远传、连续记录、事故预警、信息存储等功能。信息储存时间少于1个月。/pp style="text-indent: 2em "91.反应设备、储罐等未按规定要求设置温度、压力、液位现场指示。/pp style="text-indent: 2em "92.紧急切断设施的旁路没有采取管控措施,紧急切断设施未投用或使用旁路。/pp style="text-indent: 2em "93.同一可燃液体储罐未配备两种不同类别的液位检测仪表。/pp style="text-indent: 2em "94.涉及重点监管危险化工工艺的装置未实现自动化控制,系统未实现紧急停车功能,装备的自动化控制系统、紧急停车系统未投入正常使用。/pp style="text-indent: 2em "95.不同的工艺尾气或物料排入同一尾气收集或处理系统,未进行风险分析。/pp style="text-indent: 2em "96.使用多个化学品储罐尾气联通回收系统的,未经安全论证合格。/pp style="text-indent: 2em "97.使用淘汰落后安全技术工艺、设备目录列出的工艺、设备。/pp style="text-indent: 2em "98.装置可能引起火灾、爆炸等严重事故的部位未设置超温、超压等检测仪表、声光报警、泄压设施和安全联锁装置等设施。/pp style="text-indent: 2em "99.在非正常条件下,可能超压的设备或管道未设置可靠的安全泄压措施或安全泄压设施不完好。/pp style="text-indent: 2em "100.较高浓度环氧乙烷设备的安全阀前未设爆破片。爆破片入口管道未设氮封,且安全阀的出口管道未充氮。/pp style="text-indent: 2em "101.氨的安全阀排放气未经安全处理直接放空。/pp style="text-indent: 2em "102.火炬系统的能力不能满足装置事故状态下的安全泄放,未设置长明灯,没有可靠的点火系统及燃料气源,未设置可靠的防回火设施,火炬气的分液、排凝不符合要求。/pp style="text-indent: 2em "103.操作室没有工艺卡片或工艺卡片未定期修订。/pp style="text-indent: 2em "104.安全联锁不完好或未正常投用。/pp style="text-indent: 2em "105.摘除联锁没有审批手续,摘除期间未采取安全措施。/pp style="text-indent: 2em "106.因物料爆聚、分解造成超温、超压,可能引起火灾、爆炸的反应设备未设报警信号和泄压排放设施,以及自动或手动遥控的紧急切断进料设施。/pp style="text-indent: 2em "107.有氮气保护设施的储罐,氮封系统不完好或未投用,没有事故泄压设备。/pp style="text-indent: 2em "108.丙烯、丙烷、混合C4、抽余C4及液化石油气的球形储罐、全压力式液化烃储罐未设置防泄漏注水措施,注水压力、注水方式不符合要求。/pp style="text-indent: 2em "109.液体、低热值可燃气体、含氧气或卤元素及其化合物的可燃气体、毒性为极度和高度危害的可燃气体、惰性气体、酸性气体及其他腐蚀性气体未设独立的排放系统或处理排放系统。/pp style="text-indent: 2em "110.液化烃、液氨等储罐的储存系数超过0.9。/pp style="text-indent: 2em "111.生产或储存不稳定的烯烃、二烯烃等物质时未采取防止生产过氧化物、自聚物的措施。/pp style="text-indent: 2em "112.用易产生静电的塑料管道输送易燃易爆有机溶剂及物料。/pp style="text-indent: 2em "113.操作规程、应急预案等未发放到岗位。/pp style="text-indent: 2em "(二)设备专业(37条)/pp style="text-indent: 2em "114.安全阀、爆破片等安全附件未正常投用,安全阀、爆破片等手阀未常开并铅封。/pp style="text-indent: 2em "115.压力容器和压力管道的安全附件(含压力表、温度计、液面计、安全阀、爆破片)不齐全、完好、未按期校验、未在有效期内。/pp style="text-indent: 2em "116.压力容器、压力管道的本体、基础、紧固件、外观、静电接地等不完好。/pp style="text-indent: 2em "117.泄爆泄压装置、设施的出口朝向人员易到达的位置。涉及可燃或有毒介质的安全阀、爆破片出口设在室内。/pp style="text-indent: 2em "118.可燃气体直接向大气排放的排气筒、放空管的高度不符合规范要求。/pp style="text-indent: 2em "119.可燃气体、可燃液体设备的安全阀出口未连接至适宜的设施或系统。/pp style="text-indent: 2em "120.可燃气体压缩机、液化烃、可燃液体泵使用皮带传动。/pp style="text-indent: 2em "121.转动设备的转动部位没有可靠的安全防护装置。/pp style="text-indent: 2em "122.在设备和管线的排放口、采样口等排放部位,未采取加装盲板、丝堵、管帽、双阀等措施。/pp style="text-indent: 2em "123.机泵润滑不符合“五定”、“三级过滤”要求,油视镜有渗油现象,油位线不清楚、油杯缺油。/pp style="text-indent: 2em "124.生产装置、储存设施存在跑冒滴漏现象。/pp style="text-indent: 2em "125.未按国家标准规定设置泄漏物料收集装置和对泄漏物料进行妥善处置。/pp style="text-indent: 2em "126.重点防火、防爆作业区的入口处,未设置人体导除静电装置。/pp style="text-indent: 2em "127.罐区、生产装置、建筑物等防雷、防静电接地不符合要求,防雷、防静电接地未进行定期检测。/pp style="text-indent: 2em "128.用电设备和电气线路的周围没有留有足够的安全通道和工作空间,或堆放易燃、易爆和腐蚀性物品。/pp style="text-indent: 2em "129.火灾爆炸危险区域内电缆未采取阻燃措施,电缆沟防窜油汽、防腐蚀、防水措施不落实。/pp style="text-indent: 2em "130.液化烃、液氨、液氯等易燃易爆、有毒有害液化气体的充装未使用万向节管道充装系统。/pp style="text-indent: 2em "131.可燃材料仓库配电箱及开关设置在仓库内。/pp style="text-indent: 2em "132.两端阀门关闭且因外界影响可能造成介质压力升高的液化烃、甲B、乙A类液体管道未采取泄压安全措施。/pp style="text-indent: 2em "133.储罐的进出管道未采用柔性连接。罐区防火堤有孔洞。/pp style="text-indent: 2em "134.防爆电气设备设施固定螺栓未全部上齐。/pp style="text-indent: 2em "135.有可燃液体设备的多层建筑物或构筑物的楼板未采取防止可燃液体泄漏至下层的措施。/pp style="text-indent: 2em "136.散发比空气重的甲类气体、有爆炸危险性粉尘或可燃纤维的封闭厂房未采用不发生火花的地面。/pp style="text-indent: 2em "137.散发有爆炸危险性粉尘或可燃纤维的场所未采取防止粉尘、纤维扩散、飞扬和积聚的措施。/pp style="text-indent: 2em "138.甲、乙、丙类液体仓库未设置防止液体流散的设施,遇湿会发生燃烧爆炸的物品仓库未采取防止水浸渍的措施。/pp style="text-indent: 2em "139.操作室、控制室、厂房、仓库等建筑物安全疏散门未朝外开启。/pp style="text-indent: 2em "140.设备、管道高温表面没有采取防护措施。/pp style="text-indent: 2em "141.管道物料及流向、标识不清。/pp style="text-indent: 2em "142.设备、容器等未有效固定,直接浮放在地面上。/pp style="text-indent: 2em "143.带式输送机未设置紧急拉绳停机设施。/pp style="text-indent: 2em "144.电气线路的电缆或钢管在穿过墙或楼板处的孔洞,未采用非燃烧性材料封堵。/pp style="text-indent: 2em "145.盛装甲、乙类液体的容器放在室外时未设防晒降温设施。/pp style="text-indent: 2em "146.操作、巡检等平台、护栏、楼梯等有缺损或腐蚀严重。/pp style="text-indent: 2em "147.化工生产装置未按国家标准要求设置双重电源供电。/pp style="text-indent: 2em "148.爆炸危险场所未按国家标准安装使用防爆电气设备。/pp style="text-indent: 2em "149.电气设备未落实防漏电触电的安全措施,接地线敷设不规范。/pp style="text-indent: 2em "150.配电室未落实防小动物进入的措施。/pp style="text-indent: 2em "(三)仪表专业(23条)/pp style="text-indent: 2em "151.涉及可燃和有毒气体泄漏场所未按国家标准安装泄漏检测报警仪。/pp style="text-indent: 2em "152.未编制可燃、有毒气体检测器检测点分布图。/pp style="text-indent: 2em "153.可燃、有毒气体报警仪未按规定周期进行校准和检定。/pp style="text-indent: 2em "154.可燃、有毒气体检测报警仪一级、二级报警值设定错误。/pp style="text-indent: 2em "155.可燃和有毒气体检测报警仪不具有就地声光报警功能。/pp style="text-indent: 2em "156.固定式可燃和有毒气体检测报警仪检测报警信号没有发送至有操作人员常驻的控制室、现场操作室。/pp style="text-indent: 2em "157.可燃气体和有毒气体报警系统未设置UPS电源。/pp style="text-indent: 2em "158.爆炸危险场所的仪表、仪表线路的防爆等级不满足区域防爆要求。/pp style="text-indent: 2em "159.机柜间防小动物、防静电、防尘及电缆进出口防水措施不落实。/pp style="text-indent: 2em "160.联锁系统设备、开关、端子排的标识不齐全、准确、清晰。/pp style="text-indent: 2em "161.紧急停车按钮没有防误碰防护措施。/pp style="text-indent: 2em "162.可燃气体检测报警器、有毒气体报警器传感器探头不完好;声光报警不正常,故障报警不完好。/pp style="text-indent: 2em "163.安全仪表系统的现场检测元件、执行元件没有联锁标志警示牌。/pp style="text-indent: 2em "164.仪表系统维护、防冻、防凝、防水措施不落实,仪表不完好。/pp style="text-indent: 2em "165.放射性仪表现场未设置明显的警示标志。/pp style="text-indent: 2em "166.涉及毒性气体、液化气体、剧毒液体的一级、二级重大危险源的危险化学品罐区未配备独立的安全仪表系统,未投入正常使用。/pp style="text-indent: 2em "167.紧急切断阀为非故障-安全型。/pp style="text-indent: 2em "168.构成一级、二级重大危险源的危险化学品罐区未实现紧急切断功能或紧急切断设施未处于投用状态。/pp style="text-indent: 2em "169.自动化控制、安全仪表系统未设置不间断电源。/pp style="text-indent: 2em "170.气柜未设置上、下限位报警装置及进出管道自动联锁切断装置。/pp style="text-indent: 2em "171.全压力式液氨储罐未设置液位计、压力表和安全阀;低温液氨储罐未设置温度指示仪。/pp style="text-indent: 2em "172.站内无缓冲罐时,在距汽车装卸车鹤位10m以外的装卸管道上未设置便于操作的紧急切断阀。/pp style="text-indent: 2em "173.现场压力表、温度表、液位计等未标注上下限。玻璃管液位计没有防护措施。/pp style="text-indent: 2em "(四)设计专业(15条)/pp style="text-indent: 2em "174.地区架空电力线路与生产区距离不符合国家标准要求。/pp style="text-indent: 2em "175.涉及光气、氯气、硫化氢气体管道穿越除厂区(包括化工园区、工业园区)外的公共区域。/pp style="text-indent: 2em "176.甲、乙类火灾危险性装置内设有办公室、操作室、固定操作岗位或休息室。/pp style="text-indent: 2em "177.甲、乙类仓库与办公室、休息室贴邻,或库内设有办公室、休息室等。/pp style="text-indent: 2em "178.火灾危险性类别不同的储罐设在同一罐组,常压储罐与压力储罐布置在同一罐组。/pp style="text-indent: 2em "179.控制室或机柜间面向具有火灾、爆炸危险性装置一侧不满足国家标准关于防火防爆的要求。/pp style="text-indent: 2em "180.涉及“两重点一重大”的生产装置、储存设施外部安全防护距离不符合国家标准要求。/pp style="text-indent: 2em "181.企业生产及储存设施总平面布置防火间距不满足规范要求。/pp style="text-indent: 2em "182.企业设施与相邻工厂或设施的防火间距不满足规范要求。/pp style="text-indent: 2em "183.气柜没有布置在人员集中场所、明火或散发火花地点的全年最小频率风向的上风侧。/pp style="text-indent: 2em "184.生产、经营、储存、使用危险物品的车间、仓库等与员工宿舍在同一座建筑物内,与员工宿舍的安全距离不符合要求。/pp style="text-indent: 2em "185.未经正规设计或履行变更程序随意增加设备、设施、建构筑物。/pp style="text-indent: 2em "186.未按规范要求对承重钢结构采取耐火保护措施。/pp style="text-indent: 2em "187.布置在爆炸危险区的在线分析仪表间设备为非防爆型时,在线分析仪表间未采取正压通风。/pp style="text-indent: 2em "188.罐组的专用泵区未布置在防火堤外。/pp style="text-indent: 2em "strongspan style="color: rgb(84, 141, 212) "三、管理缺陷(58条)/span/strong/pp style="text-indent: 2em "(一)合法合规性(19条)/pp style="text-indent: 2em "189.危险化学品生产企业未取得安全生产许可证。安全生产许可证超过有效期内,许可范围与企业现状不一致。/pp style="text-indent: 2em "190.未取得危险化学品登记证,登记内容与企业现状不一致。/pp style="text-indent: 2em "191.未按规定组织危险化学品建设项目安全设施竣工验收。/pp style="text-indent: 2em "192. 未按规定每3年由符合国家规定资质的评价单位进行安全评价。/pp style="text-indent: 2em "193.危险化学品重大危险源未按规定评估、建档、备案。/pp style="text-indent: 2em "194.未按照国家规定提取和使用安全生产费用。/pp style="text-indent: 2em "195.应急救援预案未报应急管理部门备案。/pp style="text-indent: 2em "196.易制毒化学品未取得合法资质或备案证明。/pp style="text-indent: 2em "197.主要负责人、安全管理人员未经依法培训合格。/pp style="text-indent: 2em "198.未按规定设置安全生产管理机构,专职安全生产管理人员数量不符合要求。/pp style="text-indent: 2em "199.未配备注册安全工程师、安全总监从事安全生产管理工作。/pp style="text-indent: 2em "200.新建、改建、扩建生产、储存危险化学品的建设项目(含长输管道)未通过安全审查进行建设。/pp style="text-indent: 2em "201.在用或新增压力容器未在规定的期限内取得使用证。/pp style="text-indent: 2em "202.危险化学品安全作业等特种作业人员未持证上岗。/pp style="text-indent: 2em "203.锅炉、压力容器操作人员、厂(场)内机动车辆驾驶人员、电工、电气焊等作业人员未取得特种作业操作资格证。/pp style="text-indent: 2em "204.装运危险化学品车辆的驾驶证、危险品准运证、危险品押运证失效。/pp style="text-indent: 2em "205.未按规定编制危险化学品安全技术说明书,未在包装上粘贴、悬挂与化学品相符的安全标签。/pp style="text-indent: 2em "206.未按导则要求编制生产安全事故应急预案。/pp style="text-indent: 2em "208.工艺、设备等变更未进行风险评估和履行变更程序。/pp style="text-indent: 2em "208.化工企业主要负责人不具有3年以上化工行业从业经历并不具备大学专科以上学历。/pp style="text-indent: 2em "(二)制度、规程(16条)/pp style="text-indent: 2em "209.未制定操作规程和工艺指标。/pp style="text-indent: 2em "210.操作规程的编制及内容不符合《化工企业工艺安全管理实施导则》的要求。/pp style="text-indent: 2em "211.装置开停工未编制开停工方案。/pp style="text-indent: 2em "212.试生产方案未组织专家审查,试生产前未组织安全生产条件检查确认。/pp style="text-indent: 2em "213.未建立设备检维修、巡回检查、防腐保温、设备润滑等设备管理制度。/pp style="text-indent: 2em "214.未制定仪表自动化控制系统、安全仪表系统安全管理制度。/pp style="text-indent: 2em "215.未建立与岗位匹配的全员安全生产责任制,主要负责人的安全生产责任制不符合法定职责要求。/pp style="text-indent: 2em "216.未制定实施隐患排查治理制度。/pp style="text-indent: 2em "217.未制定实施动火、进入受限空间等特殊作业管理制度。/pp style="text-indent: 2em "218.未制定实施危险化学品重大危险源安全管理制度。/pp style="text-indent: 2em "219.未制定实施变更管理制度。/pp style="text-indent: 2em "220.未制定实施事故(未遂事故)管理制度。/pp style="text-indent: 2em "221.未制定实施承包商安全管理制度。/pp style="text-indent: 2em "222.剧毒化学品、易制爆化学品未建立“双人验收、双人保管、双人发货、双把锁、双本账”等“五双”制度。/pp style="text-indent: 2em "223.未建立实施领导干部带班值班制度。/pp style="text-indent: 2em "224.制度、规程不切实际,没有可操作性。/pp style="text-indent: 2em "(三)风险评估与隐患治理(8条)/pp style="text-indent: 2em "225.未定期对作业活动和设备设施进行危险、有害因素识别和风险评估,未建立风险清单和实行风险分级管理。/pp style="text-indent: 2em "226.主要负责人未每天实行风险研判和承诺公告。/pp style="text-indent: 2em "227.未按规定要求开展危险与可操作性分析(HAZOP),HAZOP分析提出的对策建议未落实整改。/pp style="text-indent: 2em "228.安全仪表系统未进行安全完整性等级评估,评估提出的建议措施未落实整改。/pp style="text-indent: 2em "229.精细化工企业未按规范性文件要求开展反应安全风险评估。/pp style="text-indent: 2em "230.新开发的危险化学品生产工艺未经小试、中试、工业化试验直接进行工业化生产;国内首次使用的化工工艺未按规定进行安全可靠性论证。/pp style="text-indent: 2em "231.工艺技术来源不可靠,没有合规的技术转让合同或安全可靠性论证。/pp style="text-indent: 2em "232.隐患整改未落实“五定”要求,未做到闭环管理。/pp style="text-indent: 2em "(四)计划与台账(12条)/pp style="text-indent: 2em "233.未制定实施年度安全生产教育培训计划。/pp style="text-indent: 2em "234.未制定实施年度应急预案演练计划。/pp style="text-indent: 2em "235.未制定实施年度设备检维修计划。/pp style="text-indent: 2em "236.未制定实施年度压力容器、压力管道检验计划。/pp style="text-indent: 2em "237.未建立安全生产教育和培训档案。/pp style="text-indent: 2em "238.未建立班组安全活动记录。/pp style="text-indent: 2em "239.未建立压力容器、压力管道台账和技术档案。/pp style="text-indent: 2em "240.未建立安全附件台账、爆破片更换记录。/pp style="text-indent: 2em "241.未建立仪表自动化控制系统、安全仪表系统有关安全联锁管理台账。/pp style="text-indent: 2em "242.危险化学品仓库未建立出入库登记台账,账物不符。/pp style="text-indent: 2em "243.未与承包商签订安全生产管理协议。/pp style="text-indent: 2em "244.未建立承包商安全管理档案和年度评价记录。/p
  • 仪器技术助力我国科学家首次在自然界发现金属铀
    最新一期的地质学报(英文版)刊载封面文章介绍,核工业北京地质研究院院长李子颖带领的研究团队首次在自然界发现金属铀。这一发现不仅为揭示热液型铀成矿作用本质提供了关键性依据,而且对研究铀的来源、地球热的形成和演化均具有重大意义。  核地研院研究团队采用光电能谱方法,对产于我国典型热液型铀矿床中沥青铀矿的成分和价态进行了系统研究,发现沥青铀矿中铀不仅有四价和六价形式,还以金属铀(零价)形式存在。  铀是核军工的基石,也是重要的核能原料。长期以来,人们认为在自然界没有金属铀。最新的一项研究打破了这一惯常认识。  铀广泛分布于地球中,但由于它的不稳定性和变价性,总是以化合物状态存在着,之前人们在自然界中还未发现有金属铀。  热液型铀矿床中铀来自地球深部,由于地球内部的强还原环境,铀在地球内部以金属态或低价态形式存在。当成矿流体将铀带至近地表时,由于氧逸度不断提高,其中大部分铀与氧结合成四价或六价化合物,只有部分铀仍然保持金属态。李子颖认为,通过零价、四价或六价铀在热液铀矿床矿石中所占的比例,可以反映矿石形成的深度。这一重大发现为揭示热液铀成矿作用本质机理和控矿要素提供了关键性依据,且具有重要实际价值。  此次研究的沥青铀矿样品采自我国著名贵东330铀矿床和诸广302铀矿床。两矿床均产于广东省北部,属于重要的南岭铀成矿带。光电能谱方法是重要的表面分析技术,不仅能探测物质表面的化学组成,而且可以确定元素的化学价态。
  • 川仪协办中石化重大工程仪表控制技术高峰论坛
    4月16日,由中国科协、中国机械工业联合会、重庆市政府指导,中国石油和石化工程研究会、中国仪器仪表学会主办,重庆川仪自动化股份公司协办的第五届中国石油化工重大工程仪表控制技术高峰论坛在渝开幕,中国工程院院士孙优贤,来自中石化、中石油、中海油、中国仪 器仪表学会的有关领导、主要用户和设计院约300人参加了此次论坛。川仪自动化股份公司总经理吴朋作为大会技术专家委员会副主席在开幕式上致辞,副总经理王道福在紧随开幕式之后的主论坛上作了《川仪石化行业整体解决方案》报告,总工程师王刚担任大会专家委员会委员和化工(煤化工)自动化技术专题副主席。在论坛现场参观了川仪、耐德展台后,当天下午,孙优贤和一批与会贵宾还专程莅临公司蔡家工业园产品展示厅和调节阀新工厂参观,对川仪近年来取得的可喜发展成就,以及仪器仪表及解决方案参与石化重大工程建设的实力予以充分认可,并结下了深厚友谊。  &ldquo 近年来,面对国家转变经济发展方式、安全生产和节能减排、两化融合,推动&lsquo 智能化工厂&rsquo 、&lsquo 数字油气田&rsquo 建设和产业升级等发展新要求,我国石油天然气、炼化、煤化工等化工工程正向着大型化、基地化、一体化以及智能化和清洁化方向发展,这对仪表与控制技术提出了新的、更高的要求。&rdquo 吴朋在致辞中 首先阐述了当前行业走向,并指出,&ldquo 举办此次论坛,恰逢国家处于深化改革时期,工业自动化仪表行业发展进入了转型期,为各企业和用户提供了一个良好的沟通 交流平台。论坛邀请到了石油石化等方面的专家与会,大家建言献策,为促进行业成功转型,蓬勃发展提供了有力支持。同时还促进了石油天然气、炼化、煤化工以及其它化工工程设计新理念、新思路、新标准的交流应用,将加快推动我国石油天然气、炼化、煤化工工程仪表自动化技术与世界先进水平接轨。&rdquo   王道福在主论坛发言中,深入阐述了川仪是如何做好石化行业解决方案的。近年来,经过战略转型的川仪,石化行业所占份额已替代钢铁行业,成为最大 市场版块。通过大力实施&ldquo 对标赶超,针对性加大自主研发力度,为满足煤化工、煤制油、煤制气市场需求,研制出高温高压、耐磨、耐冲刷高等级特殊工况下的高 性能调节阀,打破国外技术垄断;取得&ldquo 矢量变频执行机构&rdquo 技术突破,满足高精度调节阀需求,替代进口;PDS智能变送器实现工程应用产品系列化;以PA- 300为代表的分析仪已占据市场高度;经修造后的进口阀可恢复原有状态;携整体水平达国际领先的全系列仪器仪表,可做到全方位、专业化的一体式总包服务; 并具有对备品备件实施规范化、系统化、长周期服务的能力。同时,还推出与客户联合研制的新技术、新产品的合作新思路,以客户实际应用需求为导向,以企业为主体,以科研院所为支撑,与客户共同解决生产经营中的难题,实现共赢发展。  重庆耐德工业股份公司相关领导在主论坛上做了《储运自动化信息化--为客户创造最大价值》报告。接下来的一天半时间里,还举办了多个主题的分论 坛,重庆耐德工业股份公司相关技术负责人还在&ldquo 炼油和储运自动化专题论坛&rdquo 上做了《伺服液位计在灌区液位管理系统中的应用》报告,也获得了良好反响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制