当前位置: 仪器信息网 > 行业主题 > >

芯片波分析仪

仪器信息网芯片波分析仪专题为您提供2024年最新芯片波分析仪价格报价、厂家品牌的相关信息, 包括芯片波分析仪参数、型号等,不管是国产,还是进口品牌的芯片波分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芯片波分析仪相关的耗材配件、试剂标物,还有芯片波分析仪相关的最新资讯、资料,以及芯片波分析仪相关的解决方案。

芯片波分析仪相关的资讯

  • 博奥晶典推出恒温扩增微流控芯片核酸分析仪
    [仪器信息网讯] 2014年3月19日,CBIFS第七届中国北京国际食品安全技术论坛于北京国家会议中心召开。本次论坛为期两天,共邀请到了60余位业内专家就食品安全的相关话题进行深入的探讨,展会吸引了700余名业内人士参加,40余家企业参展并展示自己的成果。在本次大会举办的食品安全快速检测专题论坛上,北京博奥晶典生物有限公司(以下简称:博奥晶典)的张岩博士对此次展出的微流控恒温扩增平台在论坛上作了技术演讲,向大家介绍这套平台在食品安全快速检测领域应用状况,为更好地了解其技术原理及优势,仪器信息网编辑在现场对博奥晶典的张岩博士进行采访。北京博奥晶典生物有限公司张岩博士  仪器信息网:贵公司这套快速检测平台主要采用什么技术?  张岩博士:恒 温扩增技术以及微流控芯片技术。博奥是国内唯一具备国际先进的微加工生产工艺的公司,微流控碟式芯片是博奥的专利技术,恒温扩增仪是我们第一款应用微流控芯片技术的扩增产品,微流控碟式芯片具有多指标并行检测、样品及试剂用量少的特点。博奥采用恒温扩增技术,因为恒温扩增反应不需要90度以上的高温变性过程,只是在50-60度之间反应,并且微流控芯片的结构设计有液封的效果,反应液的挥发并不严重,因此具有各检测孔反应均一、结果可控的优势。  晶芯RTisochipTM-A恒温扩增微流控芯片核酸分析仪及其微流控蝶式芯片  仪器信息网:此款微流控恒温扩增仪是否专门定位食品安全监测领域?相对传统实时荧光定量PCR技术,微流控恒温扩增仪在食品安全检测领域有何应用优势?  张岩博士:这个平台能够很好的满足食品安全快速检测的需要,是一个基于检测微生物的平台,同样也应用在临检,如呼吸道病原微生物检测,以及农业、奶制品、水质等病原微生物的检测。   大家都知道,传统方法检测食源性微生物呢,一次只能检一个指标,而微流控碟式芯片上的24个检测通道,可以进行多指标的并行检测。并且通道之间完全隔离,不接触空气,因此避免了交叉污染。另外,从实验成本控制角度来讲,碟式芯片上每个样品反应量仅需1.4&mu L,相应的试剂用量也减少到了几微升,更符合目前快速检测领域的需求。  恒温扩增技术在食品安全检测方面的实际应用主要都是用来定性,其多个引物的设计能带来更高的特异性,反应快, 实验操作也非常简单,因此很适合快速检测。关于这两种技术的优劣势比较,行业内人士也都比较了解,我这里就不多作介绍,我们的技术创新主要是微流控芯片, 或者说微流控与恒温扩增技术的结合。  仪器信息网:碟式芯片不同通道的多个引物之间是否会产生干扰?  张岩博士:每个反应池是独立的,微流控碟式芯片的设计能有效的避免交叉污染,在不同指标之间不存在干扰。对于同一个指标来说,不是多重PCR,而是针对一个序列的检测,当然在引物的设计过程中,我们必须要考察的就是待测序列的菌种特异性。  仪器信息网:引物是否存在变性的可能?在检测中是否有质控?  张岩博士:在检测中,我们有设定阳性和阴性对照,由于所有反应池里引物的包埋都是同时以同样的方式进行的,因此我们认为,如果阳性对照可以得到阳性结果,那么其他的引物也是能正常工作的。当然,也可以针对每一个反应池设置阳性对照,但根据我们的大量实验验证结果,这种设置不是必要的。   关于北京博奥晶典生物技术有限公司:   北京博奥晶典生物技术有限公司是依托于博奥生物集团有限公司/生物芯片北京国家工程研究中心成立的一家全资子公司,整合了旗下系统化生物芯片相关的仪器 平台、技术力量、服务团队等优质资源,致力于为生命科学领域的实验室建设提供创新、完善的整体解决方案。公司主营方向:从事以微流控技术为核心的生物芯片 相关仪器平台的搭建及服务,提供领先创新性的技术应用思路、实验室建设及运营、技术支持及培训的整体方案,涵盖了生命科学研究、生物(含食品)安全、临床 诊断等领域。  (撰稿人:傅晔)
  • 视频采访:博奥晶典恒温扩增微流控芯片核酸分析仪亮相CISILE
    仪器信息网讯 2014年5月21-23日,由中国仪器仪表行业协会主办,北京朗普展览有限公司承办的第十二届中国国际科学仪器及实验室装备展览会(CISILE 2014)在中国国际展览中心开幕。作为CISILE 2014的战略合作媒体,仪器信息网也参加本次展会。   在本届CISILE上,北京博奥晶典生物有限公司展出了晶芯RTisochipTM-A恒温扩增微流控芯片核酸分析仪及其微流控蝶式芯片。据该公司科学仪器事业部市场部经理王永贵介绍,传统方法一次只能检测一个食源性微生物指标,而微流控碟式芯片拥有24个检测通道,一次可以实现24个指标的高通量检测,特别适用于质监系统、出入境单位的常见致病微生物检测,医院检验科的呼吸道细菌检测等,目前这款恒温扩增微流控芯片核酸分析仪已在北京、广东的多家单位有所试用。
  • 捷报频传 又一数字PCR系统生物芯片分析仪获批
    p  近日,经北京市食品药品监督管理局审批,strong新羿生物/strong数字PCR系统的生物芯片分析仪获医疗器械注册批文,注册证编号:京械注准 20192220517。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 857px " src="https://img1.17img.cn/17img/images/201909/uepic/b50d16e1-0138-4d2c-a15d-65797875d2e4.jpg" title="新翌生物获证.jpg" alt="新翌生物获证.jpg" width="600" height="857" border="0" vspace="0"//pp  此前,新羿生物数字PCR系统的样本制备仪和微液滴数字PCR反应预混液(不含UNG及含UNG两种类型)已获医疗器械备案,本次生物芯片分析仪喜获批文,意味着新羿生物自主研发的微液滴数字PCR系统的全套仪器及通用试剂、耗材均可正式进入临床市场应用!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/95161afc-6020-4791-b8e8-1f1f117ba8b2.jpg" title="企业微信截图_15677652687651.png" alt="企业微信截图_15677652687651.png"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 257px " src="https://img1.17img.cn/17img/images/201909/uepic/a76ffa23-9574-4f19-ba56-36661969a804.jpg" title="新羿微液滴数字PCR系统.jpg" alt="新羿微液滴数字PCR系统.jpg" width="600" height="257" border="0" vspace="0"//pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "特点:/span/strongspan style="font-weight: bold color: rgb(0, 112, 192) "超敏 便捷 可靠 开放br//span/ppstrongspan style="color: rgb(0, 112, 192) "  超敏:灵敏度低至0.01%/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  便捷:操作简单,无须手动移液/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  可靠:多重防污染,避免假阳性/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  开放:支持个性化检测项目开发/span/strong/pp  微液滴数字PCR是一种单分子水平的核酸定量分析技术,具有超高的灵敏度,在PCR扩增反应后的任何开放式操作都可能造成微液滴内容物的挥发和逸出,导致扩增产物的气溶胶污染。目前商业化微液滴数字PCR仪器多涉及PCR反应后的开放式操作,比如微液滴的吸取和转移等,这在临床应用中可能导致样本假阳性的严重后果。/pp  新羿生物自主研发的微液滴数字PCR系统由样本制备仪、生物芯片分析仪及相应反应试剂耗材组成,与其他微液滴数字PCR系统不同的是,采用新羿数字PCR平台,液滴直接于8联排管中生成,生成之后无须手工移液,盖上新羿生物专利开发的8联排管盖可直接放入普通PCR扩增仪进行扩增,扩增完成后,直接放入生物芯片分析仪中,即可进行信号读取与分析。液滴扩增、检测流程无开盖操作,且检测后液滴储存于芯片内置废液槽中,不流经仪器内部,完全避免气溶胶污染,符合临床对检测安全性的要求。/pp  重大疾病检测试剂产品/pp  新羿生物基于自主研发的TD-1数字PCR平台,目前已开发肿瘤液体活检、感染性疾病诊断、出生缺陷疾病筛查等三大类数十项试剂产品,并于15个省市近百家单位进行试用,试剂质量受到用户单位的好评。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 1141px " src="https://img1.17img.cn/17img/images/201909/uepic/23e14496-df93-46cf-a42c-c1ffb3bf0eff.jpg" title="新羿.jpg" alt="新羿.jpg" width="600" height="1141" border="0" vspace="0"//pp  关于数字PCR/pp  微滴数字PCR是一种单分子水平的核酸检测和定量分析技术,被认为是继荧光定量PCR和NGS之后,基因检测领域最引人瞩目的创新之一。与其他传统分子诊断技术相比,数字PCR技术吸引人之处包括:高灵敏度,可实现单分子级检测 绝对定量,不依赖标准品和参考曲线 高稳定性和较高的抗干扰能力,适用于多种复杂样本。数字PCR技术在痕量核酸样本检测、复杂背景下稀有突变检测和表达量微小差异鉴定方面具有极大的优势。随着数字PCR的发展,业内普遍认为在如下领域具有广泛应用前景:/pp  strong基因表达差异研究/strong/ppstrong  拷贝数变异(CNV)研究/strong/ppstrong  低丰度DNA模板分子的精确定量/strong/ppstrong  甲基化含量鉴定/strong/ppstrong  二代测序辅助建库/strong/ppstrong  CRISPR-Cas9基因编辑结果验证/strong/ppstrong  肿瘤治疗的伴随诊断/strong/ppstrong  肿瘤治疗的实时监控/strong/ppstrong  无创产前筛查/strong/ppstrong  移植排斥监控/strong/ppstrong  致病微生物(病毒、细菌等)的检测/strong/pp  span style="color: rgb(0, 112, 192) "strong关于新羿生物/strong/span/pp  新羿生物成立于2015年,位于北京中关村科技园区,是一家由核心技术驱动并具有全球竞争力的生物高科技公司。在中关村科技园拥有高标准的生物医学仪器、耗材和体外诊断试剂生产基地。新羿生物已申请七十余项微液滴技术相关专利,在数字PCR研发领域拥有从芯片、仪器、软件到原料、试剂、耗材全系统开发能力。/pp  新羿生物所提供不仅是一套数字PCR系统或一个诊断项目解决方案,更愿以我们的研发能力与用户进行更广范围的科研及诊断合作,秉承“创新精准,用心为您”的发展理念,为用户提供更优服务,共同推动数字PCR技术的发展,造福社会。/p
  • 安捷伦科技公司与珀金埃尔默续签生物分析仪芯片协议
    安捷伦科技公司与珀金埃尔默续签生物分析仪芯片协议 2016年 1月 21日,北京——安捷伦科技公司(纽约证交所:A)日前宣布与其畅销的 2100 生物分析仪系统的芯片供应商珀金埃尔默续签长期协议。 2100 生物分析仪系统自 1999 年上市以来,已经成为世界各地分子生物学实验室中的必备产品。 该系统可用于 DNA 测序、基因表达研究、DNA 片段分析,及蛋白质类药物的质控、,也可用于其他多种应用。 “此协议可确保分子生物学家在未来能够继续依赖 Agilent 2100 生物分析仪系统获得高样品质量与高保真度数据。”安捷伦微流控领域营销与支持经理 Knut Wintergerst 博士表示。关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。 安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。 在 2015 财年,安捷伦的净收入为 40.4 亿美元,全球员工数约为 12000 人。 如需了解安捷伦公司的详细信息,请访问www.agilent.com.cn/go/news。 编者注: 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com/go/news。
  • 为国产芯片保驾护航!ACAIC 2023“集成电路技术发展与分析仪器创新论坛”成功召开
    仪器信息网讯 2023年11月29-30日,第八届中国分析仪器学术大会(ACAIC 2023)在浙江杭州成功举办。本届大会由中国仪器仪表学会分析仪器分会主办,吸引了全国500余位科技管理人员、专家学者和和仪器企业相关人员齐聚杭州,并组织了11个分论坛,聚焦分析仪器、生命科学仪器、电镜、半导体,以及核心零部件、临床诊断等主题。论坛现场分析仪器在集成电路技术发展中具有非常重要的地位。它们在材料分析、工艺监控、失效分析和研发支持等方面都发挥着不可或缺的作用,为推动集成电路技术的进步提供了强有力的支持。11月30日上午,由中国仪器仪表学会分析仪器分会、中国科学院半导体所集成技术中心共同主办的“集成电路技术发展与分析仪器创新论坛”成功召开。中国科学院半导体研究所研究员 王晓东 主持会议上海精测半导体技术有限公司 周涛博士 致辞本次会议由中国科学院半导体研究所王晓东研究员主持,上海精测半导体技术有限公司周涛为会议致辞。致辞结束后,会议进入报告环节。报告人:杭州士兰微电子股份有限公司先进功率系统研究院院长 刘慧勇报告题目:芯片行业用到的量测和检测设备概览芯片制造过程必须经历多次量测(Metrology)和检测(Inspection)以确保产品质量,其中量测设备用于工艺控制和良率管理,要求快速、准确且无损;检测设备则对不同工艺后的晶圆进行无损的定量测量和检查,用以保证关键物理参数(如膜厚、线宽、槽/孔深度和侧壁角度等) 满足要求,同时发现可能出现的缺陷并对其分类,及时剔除不合格晶圆。报告中,刘慧勇院长介绍了芯片行业用到的量测和检测仪器分类标准、常用仪器介绍、行业全球情况和行业本土情况,并表示,芯片生产全程需要各种量测和检测仪器为其保驾护航,国产替代前景广阔。此外,刘慧勇还提到诸如椭偏仪、四探针测试仪、薄膜应力测试仪、热波仪、扩散浓度测试仪、少子寿命测试仪、拉曼光谱仪、二次离子质谱仪等工业上用量较少的仪器缺少关注。报告人:上海集成电路材料研究院性能实验室总监 王轶滢报告题目:提升分析检测能力,助力集成电路材料发展全球已将半导体产业视为战略资源,各国政府如美国、日本、韩国、欧盟与中国等纷纷推动半导体产业振兴相关政策,试图扶持本土半导体制造业以及加强与海外半导体企业合作。除先进半导体技术的研发投资外,供应链安全也是各国高度关注的重点。材料创新支撑集成电路发展,材料性能严重影响芯片质量,集成电路材料国产替代正当时。提升分析检测能力对集成电路材料的发展具有重要意义。王轶滢认为,集成电路产业发展历程中,分析检测技术在各里程碑时刻也发挥了重要作用。我国集成电路产业国产化进程逐渐向上游深入,集成电路材料目前自给率有所提升,但仍需要持续研发并提升质量。当前迫切需要完善系统全面科学的材料分析与检测体系,助力集成电路材料国产化打破基础制约因素。报告人:上海精测半导体技术有限公司产品经理 罗浒报告题目:FIB/SEM双束电镜在集成电路失效分析中的应用据介绍,聚焦离子束FIB是通过把离子束聚焦成纳米级光束 (5nm),实现材料微纳加工的一种新技术。1978 年美国加州休斯研究所建立了世界上第一台镓液态金属离子源的FIB 加工系统,距今己有40多年的历史。FIB优异的加工性能搭配上SEM高分辨成像能力,其组成的双束电镜在材料形貌表征、微纳米结构加工、TEM样品制备、材料辐照改性、定点微区分析、3D微结构重构和IC芯片缺陷分析、修复等领域得到了广泛的应用。报告中,罗浒主要介绍了上海精测半导体技术有限公司电子光学部门相关产品,重点介绍了公司自主研发AeroScan Duo系列FIB/SEM双束电镜研发进展以及在科研、工业领域的应用情况。报告人:北京聚睿众邦科技有限公司市场总监 朱震报告题目:半导体检测与SEMI认证技术当前,半导体芯片已成为各行各业的核心“粮食”。而高集成度和高性能需要超高强度研发,其中检测技术是关键。半导体检测服务在产业链中至关重要,而半导体检测认证对良率提升价值巨大,决定成败。报告中,朱震分享了半导体检测技术概况、SEMI认证技术概况和项目情况介绍。报告人:中国科学院半导体研究所高级工程师 颜伟报告题目:测试分析仪器在半导体器件与芯片研发中的应用半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体的导电性能通过“掺杂”的方式人工调控。半导体内部有电子和空穴两种导电的载流子,从而可以将半导体分为P型半导体和N型半导体,它们之间可以形成PN结。报告中,颜伟介绍了半导体研发中用到的关键测试分析仪器以及飞秒激光时域热反射测试技术,并表示飞秒激光时域热反射测试技术有力支撑了热电相关的前沿和应用科学探索。报告人:中国科学院微电子研究所 屈芙蓉学生代讲报告题目:集成电路先进制程关键装备随着集成电路先进制程工艺的快速发展、器件尺寸的缩小以及新结构的采用,都将对制备工艺提出更高的要求,同时也对集成电路装备提出新的需求。集成电路先进制程关键工艺及设备主要包括了光刻设备、薄膜沉积和刻蚀工艺设备。其中原子层沉积(ALD)作为一种薄膜沉积技术具有优秀的台阶覆盖率、表面粗糙度和厚度控制能力,原子层刻蚀(ALE)相比于其他刻蚀工艺可以实现优秀的线宽、表面粗糙度、刻蚀均匀性、刻蚀深度和成分控制。报告主要介绍了课题组在ALD、ALE工艺及装备的研究进展及展望。本次“集成电路技术发展与分析仪器创新论坛” 将助力集成电路产业发展、探索国产仪器在半导体产业中的应用前景,激发创新思维,促进合作共赢,为分析仪器行业发展注入新的动力。随着技术的不断发展,国产分析仪器的种类和性能也在不断提高和完善,将为集成电路技术的持续创新提供了有力保障。
  • 博奥生物生物芯片数据分析专题培训讲座开班
    博奥生物信息培训班第一期生物芯片数据分析专题培训讲座开班啦! 本次博奥生物举办的生物芯片数据分析培训讲座,以最优惠的价格为学员提供最实用的数据分析解决方案! 博奥生物芯片数据分析案例剖析及方案分享,让您思路更清晰! 为您提供免费软件应用等公共资源及操作指导,实用才是硬道理!培训讲座内容安排:2013.09.05课程描述上午:9:00-10:00生物芯片技术及应用简介1、生物芯片技术介绍及发展现状2、博奥生物芯片平台及相应的典型案例介绍上午:10:45-12:00生物芯片数据分析解决方案1、生物芯片常用数据分析手段介绍2、数据分析典型案例剖析及整体解决方案培训3、常用软件及公共资源分享下午:1:30-4:00常用生物信息软件实际操作培训1、生物芯片平台给出数据介绍2、实践培训:Mev、cytoscape、coexpress等经典的数据分析软件及绘图软件的培训下午:4:00-5:00参观博奥生物,探讨交流1、博奥生物芯片平台展厅介绍2、邀您探讨数据分析疑问,拓宽新的科研思路培训对象需要使用高通量技术特别是芯片技术进行科研的老师需要加强生物信息分析思路,并能使用常用软件进行数据分析的老师讲师介绍:赵建晴博士:博奥生物微阵列服务部研究科学家张杨工程师:博奥生物科技事业部生物信息应用工程师培训费用:800元/人(含午餐)优惠措施:1:在2013年08月25日前报名,可享受8折优惠。2:博奥生物的仪器用户可享受1名免费培训名额。3:相同单位报名超过1人的,从第2人起享受5折优惠。缴纳注册费账户信息:用户名:博奥生物有限公司开户行:中国银行北京上地支行 帐号:3376 5602 2586培训资料:包括培训教材、培训证书(生物芯片北京国家研究中心印)、培训学员通讯录、精美礼品一份。注意事项:学员自备笔记本电脑,为保证教学质量,每期仅招收20位学员。报名方式:请您填写客户培训回执表,发送到qiandu@capitalbio.com邮箱中,我们收到回执表后3天内给予回复。报到时间及住宿安排:请于2013年9月5日9点前报到,如需住宿请在回执表中注明,公司可代为安排宾馆,费用自理。具体路线:1、北京站-博奥生物:地铁2号线到东直门换乘城铁13号线到西二旗站下车,坐521路/205路/112路到生命科学园站下车。2、北京西站-博奥生物:步行至地铁军事博物馆馆站,地铁1号线复兴门站换乘地铁2号线,地铁2号线到西直门换乘城铁13号线到城铁西二旗站下车,坐521路/205路/112路到生命科学园站下车。3、机场大巴至回龙观下车,乘出租车到生命科学园。联系方式:联系人:杜倩电话:010-80726868转8246 15910764175邮箱:qiandu@capitalbio.com客户培训回执表:姓名:E-mail:单位:电话:地址:邮编:是否需要住宿: 是 否备注:如果需要住宿,请注明入住时间您感兴趣的领域:
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 直播预约:零距离云参观芯片失效分析实验室
    现代社会的日常生活已经离不开半导体,任何电子产品都要用到半导体!简单的如发光二极管,复杂的比如电脑手机的计算芯片存储芯片都属于半导体产业!半导体行业是一个资金密集型、技术密集型的行业,其生产工艺复杂,设备精密度要求高,整体流程涉及到成百上千道工序。随着半导体制造工艺越来越高,其制造难度及品质管控也在呈指数级增长。半导体制造工艺的复杂性在于:生产步骤多达上千步,每道工序工艺参数多达上千,每道工序良率要求极高。以上特点使得半导体制造成为了不折不扣的高端制造业。试想,对于一种包含1000道工序的半导体工艺技术来说,若是每一道工序产品良率为99.9%,则最终的产品良率仅为36.7%。也因此,半导体每一道工艺都几乎要求达到零失误。因此,半导体行业呈现出来材料纯度要求高、制造精度要求高,制作过程复杂等特点。而这也对企业的污染检测、失效分析等技术水平都提出了极高的要求。工程师如何寻找芯片中的缺陷?8月17日下午,仪器信息网走进宝藏实验室第12站,将带领广大网友走进北京软件产品质量检测检验中心,零距离感受半导体如何进行失效分析。报名方式扫描下方二维码预约视频号直播:本期看点• 芯片失效分析工作如何进行(主要工作方法、主要工作流程等)• 对话资深失效分析工程师、仪器企业工程师、集成电路编审,圆桌探讨行业前景!嘉宾平台简介智能产品检测实验室主要提供安全检测、可靠性检测、智能产品失效分析等服务,致力于电子半导体、芯片制造、集成电路、新材料、航空航天等领域。平台拥有包括聚焦离子束系统(FIB/SEM/EDS)、X射线检测系统(2D/CT)、InGaAs微光显微镜(EMMI)、超声波扫描显微镜(SAT)、点针工作台等多种分析加工设备。
  • 博奥生物晶芯基因芯片分析系统等产品亮相“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,博奥生物有限公司的晶芯 ArrayCompassTM基因芯片分析系统、晶芯 LuxScanTMDx/HT24高通量微阵列芯片扫描仪、晶芯 ExtractorTM36 核酸快速提取仪及博奥生物晶芯医学产品亮相国家“十一五”重大科技成就展。晶芯ArrayCompassTM基因芯片分析系统  该产品是博奥生物有限公司与Affymetrix公司经过3年的合作,共同推出的基于PEG Strip芯片(原位合成技术)的超高密度微阵列芯片反应与检测一体化系统,可用于高密度、中低通量的表达谱芯片、重测序芯片的分析,为进行此类研究的用户提供了一个高性价比的技术平台。其工业造型更是在2010年获得了具有工业设计“奥斯卡”之称的德国“红点奖”。晶芯LuxScanTMDx/HT24高通量微阵列芯片扫描仪  晶芯 LuxScanTMDx/24高通量微阵列芯片扫描仪是一款具有高通量、高自动化、高灵敏度和高分辨率的芯片扫描仪,可应用于临床检验、食品安全检测和生命科学研究等多个领域。此产品在晶芯LuxScanTM10K微阵列芯片扫描仪优质性能基础上,提高了产品自动化和扫描通量,进一步提高了产品的性价比。晶芯 ExtractorTM36 核酸快速提取仪  晶芯ExtractorTM36核酸快速提取仪适用于批量快速核酸提取,可方便快速地一次性提取36份细菌核酸样品。与配套的晶芯核酸快速提取试剂盒一起使用,可使核酸提取操作稳定可靠、简单快捷。简单两步操作即可完成核酸提取,操作时间在10min左右。博奥生物晶芯医学产品  左为晶芯九项遗传性耳聋基因检测试剂盒(微阵列芯片法),右为晶芯分枝杆菌菌种鉴定试剂盒(DNA微阵列芯片法)。  关于博奥生物有限公司:  博奥生物有限公司暨生物芯片北京国家工程研究中心成立于2000年9月30日,注册资金现为3.765亿元人民币。目前,公司拥有数十项具有自主知识产权,已研制开发出生物芯片(包括基因、蛋白、细胞芯片和芯片实验室等)及相关仪器设备、试剂耗材、软件数据库等四个系列的产品,可以为广大客户和合作伙伴提供先进的高通量生物芯片技术服务和行业应用整体解决方案。
  • 博奥生物第三期生物芯片数据分析专题培训讲座(广州站)
    本次博奥生物举办的生物芯片数据分析培训讲座,以最优惠的价格为学员提供最实用的数据分析解决方案!博奥生物芯片数据分析案例剖析及方案分享,让您思路更清晰!为您提供免费软件应用等等公共资源及操作指导,实用才是硬道理!培训讲座内容安排:2013.12.12课程描述 (学员需自备电脑)上午:9:00-10:00生物芯片技术及应用简介1、生物芯片技术介绍及发展现状2、博奥生物芯片平台及相应的典型案例介绍上午:10:15-12:00生物芯片数据分析解决方案生物芯片常用数据分析手段介绍4、数据分析典型案例剖析及整体解决方案培训下午:1:30-2:30常用生物信息软件介绍生物芯片平台给出数据介绍常用软件介绍及资源分享下午:2:45-4:00软件实际操作培训Mev、cytoscape、coexpress等经典数据分析软件及绘图软件的培训培训对象:需要使用高通量技术特别是芯片技术进行科研的老师需要加强生物信息分析思路,并能使用常用软件进行数据分析的老师培训费用:800元/人(含午餐)优惠措施:1:博奥生物的仪器用户所在单位可享受1名免费培训名额2:相同单位报名超过1人的,从第2人起享受5折优惠缴纳注册费账户信息(学员也可现场缴费):用户名:博奥生物有限公司 开户行:中国银行北京上地支行 帐号: 3376 5602 2586 【请在转账单备注中注明: × × (姓名)交付培训费3106】联系人:15910764175(杜女士),需要发票请说明。培训资料:包括培训课件、培训软件及操作视频、精美礼品。注意事项:学员自备笔记本电脑,为保证教学质量,每期仅招收20位学员培训地点及路线:地点:广东省农科院创新大楼一楼西厅会议室 (广州市天河区金颖路20号)路线:地铁3号线天河客运站方向至华师站E出口,在师大后门公交站2乘坐813路在农科院站下车,经过街天桥至马路对面,即为广东省农科院大院,进入大门左手边即为创新大厦报到时间及联系方式(博奥生物广州办事处):请您于2013年12月12日8点半前到会议室报到联系人:15918524295(于女士) 电话:020-34282504 报名方式:请您填写客户培训回执表,发送到邮箱:xinyu@capitalbio.com,我们收到回执表后2天内给予回复。客户培训回执表:姓名:E-mail:单位:电话:地址:邮编:您感兴趣的领域:是否需要住宿: 备注:如果需要住宿,请注明入住时间,公司可代为安排,费用学员自理
  • 怀宁县人民医院1100.00万元采购微流控芯片,基因测序仪,核酸蛋白分析,液质联用仪,生物芯片,PC...
    详细信息 怀宁县人民医院采购质谱仪、测序仪等设备 安徽省-安庆市-怀宁县 状态:公告 更新时间: 2023-01-29 怀宁县人民医院是一所集医疗、教学、科研、预防、保健为一体的“二级甲等综合性医院”。医院配置了神经外科手术显微镜、关节镜手术系统、椎间孔镜手术系统、眼科激光诊断仪、眼底激光治疗仪、超乳玻切一体机、C臂全数字化平板探测器心血管造影系统Optima IGS530等设备。 近日,怀宁县人民医院就“安庆市精准医学中心设备采购(二次)项目”发布公开招标公告,预算金额为1100万元。该项目的潜在投标人应在安庆市公共资源交易中心平台获取招标文件,并于2023年02月06日10点00分(北京时间)前递交投标文件。 1 项目基本情况 项目编号:CG-HN-2022-177 FS34082220220785号 项目名称:安庆市精准医学中心设备采购(二次)项目 资金来源:财政资金 预算金额:1100.00万元 最高限价:1100.00万元 采购需求:高通量基因测序仪、单通道微阵列芯片扫描仪、双通道微阵列芯片扫描仪、基因分析仪、恒温扩增微流控芯片核酸分析仪、三重四级杆质谱分析系统、数字PCR平台、全自动医用PCR分析系统等配套设备。 包别划分:一个包 评标办法:综合评分法 合同履行期限:设备采购安装自合同签订之日起20日历天,试剂、耗材采购期限5年。 本项目不接受联合体投标。 2 申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:本项目符合财政部、工业和信息化部制定的《政府采购促进中小企业发展管理办法》第六条第(二)因确需使用不可替代的专利、专有技术,基础设施限制,或者提供特定公共服务等原因,只能从中小企业之外的供应商处采购的; 3.本项目的特定资格要求:投标人如为生产厂家,应具备《医疗器械经营许可证》、《医疗器械生产许可证》(须在有效期内);如为代理商或经销商投标,应具有《医疗器械经营许可证》(须在有效期内); 4.具有合法有效的营业执照。 3 获取招标文件 时间:2023年01月13日至2023年01月20日, 每天上午8:00至12:00,下午14:30至17:30(北京时间,法定节假日除外) 地点:安庆市公共资源交易中心平台(aqggzy.anqing.gov.cn) 方式:(1)投标人须登录安庆市公共资源交易中心平台查询、获取招标文件。首次登录须在安徽省公共资源交易市场主体库( http://61.190.70.20/ahggfwpt-zhutiku/dengludenglu)办理入库手续,办理入库不收取任何费用。安徽省公共资源交易市场主体库使用相关问题(如系统登录、信息登记、录入及提交、数字证书关联等)请拨打服务电话:010-86483801 转 5-2(工作日)。 CA 数字证书有关问题请拨打服务电话:安徽 CA 客服400-880-4959(工作日)。 市场主体招标环节和投标环节系统使用服务电话:400-998-0000(8:00-21:00)。 (2)投标人登录安庆市公共资源交易中心平台获取招标文件及其它资料(含澄清和补充说明等)。如在招标文件获取过程中遇到系统问题,请拨打技术支持服务热线400-9980000,QQ:4008503300。 售价:免费。 1 提交投标文件截止时间、开标时间 和地点 2023年02月06日10点00分(北京时间) 地点:安庆市公共资源交易平台 开评标方式:全流程电子化交易,在线开标 1 对本次招标提出询问,请按以下 方式联系 1.采购人信息 名 称:怀宁县人民医院 地 址:怀宁县高河镇独秀大道166号 联 系 人:陈海军 联系方式:0556-46484192 2.采购代理机构信息 名 称:怀宁县项目咨询管理有限公司 地 址:怀宁县高河镇育儿路143号 联 系 人:凌晨晨 联系方式:0556-4967801 3.项目联系方式 项目联系人:陈海军 电 话:0556-46484192 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:微流控芯片,基因测序仪,核酸蛋白分析,液质联用仪,生物芯片,PCR 开标时间:2023-02-06 10:00 预算金额:1100.00万元 采购单位:怀宁县人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:怀宁县项目咨询管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 怀宁县人民医院采购质谱仪、测序仪等设备 安徽省-安庆市-怀宁县 状态:公告 更新时间: 2023-01-29 怀宁县人民医院是一所集医疗、教学、科研、预防、保健为一体的“二级甲等综合性医院”。医院配置了神经外科手术显微镜、关节镜手术系统、椎间孔镜手术系统、眼科激光诊断仪、眼底激光治疗仪、超乳玻切一体机、C臂全数字化平板探测器心血管造影系统Optima IGS530等设备。 近日,怀宁县人民医院就“安庆市精准医学中心设备采购(二次)项目”发布公开招标公告,预算金额为1100万元。该项目的潜在投标人应在安庆市公共资源交易中心平台获取招标文件,并于2023年02月06日10点00分(北京时间)前递交投标文件。 1 项目基本情况 项目编号:CG-HN-2022-177 FS34082220220785号 项目名称:安庆市精准医学中心设备采购(二次)项目 资金来源:财政资金 预算金额:1100.00万元 最高限价:1100.00万元 采购需求:高通量基因测序仪、单通道微阵列芯片扫描仪、双通道微阵列芯片扫描仪、基因分析仪、恒温扩增微流控芯片核酸分析仪、三重四级杆质谱分析系统、数字PCR平台、全自动医用PCR分析系统等配套设备。 包别划分:一个包 评标办法:综合评分法 合同履行期限:设备采购安装自合同签订之日起20日历天,试剂、耗材采购期限5年。 本项目不接受联合体投标。 2 申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:本项目符合财政部、工业和信息化部制定的《政府采购促进中小企业发展管理办法》第六条第(二)因确需使用不可替代的专利、专有技术,基础设施限制,或者提供特定公共服务等原因,只能从中小企业之外的供应商处采购的; 3.本项目的特定资格要求:投标人如为生产厂家,应具备《医疗器械经营许可证》、《医疗器械生产许可证》(须在有效期内);如为代理商或经销商投标,应具有《医疗器械经营许可证》(须在有效期内); 4.具有合法有效的营业执照。 3 获取招标文件 时间:2023年01月13日至2023年01月20日, 每天上午8:00至12:00,下午14:30至17:30(北京时间,法定节假日除外) 地点:安庆市公共资源交易中心平台(aqggzy.anqing.gov.cn) 方式:(1)投标人须登录安庆市公共资源交易中心平台查询、获取招标文件。首次登录须在安徽省公共资源交易市场主体库( http://61.190.70.20/ahggfwpt-zhutiku/dengludenglu)办理入库手续,办理入库不收取任何费用。安徽省公共资源交易市场主体库使用相关问题(如系统登录、信息登记、录入及提交、数字证书关联等)请拨打服务电话:010-86483801 转 5-2(工作日)。 CA 数字证书有关问题请拨打服务电话:安徽 CA 客服400-880-4959(工作日)。 市场主体招标环节和投标环节系统使用服务电话:400-998-0000(8:00-21:00)。 (2)投标人登录安庆市公共资源交易中心平台获取招标文件及其它资料(含澄清和补充说明等)。如在招标文件获取过程中遇到系统问题,请拨打技术支持服务热线400-9980000,QQ:4008503300。 售价:免费。 1 提交投标文件截止时间、开标时间 和地点 2023年02月06日10点00分(北京时间) 地点:安庆市公共资源交易平台 开评标方式:全流程电子化交易,在线开标 1 对本次招标提出询问,请按以下 方式联系 1.采购人信息 名 称:怀宁县人民医院 地 址:怀宁县高河镇独秀大道166号 联 系 人:陈海军 联系方式:0556-46484192 2.采购代理机构信息 名 称:怀宁县项目咨询管理有限公司 地 址:怀宁县高河镇育儿路143号 联 系 人:凌晨晨 联系方式:0556-4967801 3.项目联系方式 项目联系人:陈海军 电 话:0556-46484192
  • 8月30日09:30直播|类器官与器官芯片专场-第六届细胞分析大会
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)仪器信息网将于2023年08月30日-09月01日举办第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。大会首日8月30日,特设【类器官与器官芯片】专题会场,12位嘉宾在线分享类器官的构建及流式、细胞成像等表征分析技术的应用!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023 (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 8月30日|类器官与器官芯片主题日程 精彩报告 速览《细胞(类器官)力学芯片研究进展》熊春阳 北京大学工学院 教授【摘要】越来越多的研究表明,物理力学微环境是机体生长发育、结构重建以及功能维持的重要因素,也与疾病的发生发展密切相关。微流控技术既可以在体外精确构建细胞(类器官)的物理力学微环境,也可以实现对细胞(类器官)表型的高通量、精确检测,为类器官和器官芯片研究与应用提供了强有力的工具。本次报告将介绍近期我们在细胞(类器官)力学芯片方面的一些研究进展。安捷伦细胞分析技术在类器官领域的应用林鹤鸣 安捷伦科技(中国)有限公司 产品应用专家【摘要】类器官作为更接近体内真是水平的研究模型,近年来受到越来越多研究者的青睐。类器官的拍照成像,是质控类器官,了解类器官生长情况的最直接手段。 安捷伦提供了长时间,高通量自动化的成像分析方法,同时配合微孔板检测,流式细胞术以及细胞能量代谢等手段,让科研工作者更为深入全面的分析类器官模型背后的科学问题。干细胞与类器官王凯 北京大学 研究员【摘要】干细胞衍生的类器官能够复现人体组织的三维结构和特征,能够用于研究人胚胎发育的过程,构建疾病模型和作为替代性的细胞治疗疗法。Hamilton自动化解决方案在细胞高通量筛选的应用潘晓 哈美顿(上海)实验器材有限公司 应用工程师【摘要】目前有多种细胞培养类型和基于细胞的系统用于基于细胞的试验;从传统的二维(2D)单层细胞到基于支架的3D培养(例如类器官),以及最近的器官芯片Organs-On-A-Chip (OOAC)。在基于细胞的高通量筛选试验中,在培养细胞的同时需要评估大量化合物/条件。这些试验的效率及标准化通常是通过自动化得以实现。自动液体处理系统可以通过控制关键因素确保整个过程的标准化,例如吸液和分液的速度、吸头在孔内的位置、移液步骤中板的倾斜、试剂在板上的温度和工作区域的无菌性。此外,自动化液体处理工作站可以通过96和384移液头显著提高通量,并整合第三方设备进行细胞成像。 在本次网络会议中,主要讨论如何使用Hamilton自动化液体处理工作站满足基于细胞的高通量筛选要求。Application of organoid technology in prostate stem cell and cancer research蔡志伟(Chua Chee Wai) 上海交通大学医学院附属仁济医院 研究员【摘要】In the recent years, we have witnessed the emergence of androgen receptor (AR)-independent prostate cancer (AIPC) with the clinical use of second-generation androgen deprivation therapy. Upon the progression to AIPC, the remaining treatment options are mainly palliative but not curable. Therefore, understanding the cellular origins and dynamics involved in AIPC evolution is crucial for identifying timely treatment strategies for these patients. In this presentation, I will first share with you the invention of prostate organoid technology, which facilitates novel discoveries in prostate stem cell and cancer research. Subsequently, I will talk about how we integrate organoid technology and single-cell transcriptomic analysis to identify novel AR-independent prostate luminal progenitor and cancer subsets. Our findings have highlighted the capability of organoid technology in preserving progenitor potential and tumor heterogeneity. Consequently, continual investigations using organoid technology should yield novel insights into the emergence of AIPCs and identify novel therapeutic targets for AIPC patients.复杂皮肤类器官构建及其应用冷泠 中国医学科学院北京协和医院 正高级/教授【摘要】冷泠研究团队基于空间基质组学技术及其研究成果,创建了一种具有表皮及毛囊附属器、真皮及神经系统的完整细胞极性的皮肤类器官。利用该类器官进行病毒的体外感染,首次为新冠肺炎和脱发后遗症之间的关联提供了证据;进行罕见病治疗研究,实现了该疾病表皮附属器和血管的新生,推动类器官在罕见病治疗和药物筛选中的应用。实时活细胞成像分析在3D器官细胞模型中的应用陆叶舟 赛多利斯(上海)贸易有限公司 生物分析产品应用科学家【摘要】 1. 实时活细胞成像与分析技术介绍 2. 实时活细胞分析促进3D细胞模型培养及应用 应用案例解析:神经肌肉类器官、食管类器官、胰腺导管癌类器官、肾脏类器官、胶质母细胞瘤球体、直肠癌类器官等基于微流控的细胞无标记分选和打印研究陈华英 哈尔滨工业大学(深圳) 副教授【摘要】 微流控芯片在单细胞操控、培养和分析领域具有独特优势,已被广泛用于单细胞分析。本文主要介绍课题组在利用微流控芯片进行单细胞打印、克隆扩增、弹性模量测量和形貌分选方面的最新研究进展。课题组开发的一款集成两个气动微阀门的芯片,可以通过气压控制阀门的闭合程度,进而在单细胞尺度实现细胞大小的动态筛选。前后两个阀门分别控制细胞的尺寸上限和下限,符合尺寸要求的细胞可以在压力泵的驱动下被快速打印到384孔板内,实现每孔一个细胞。打印后的单细胞活性为97.2%。与对照组相比,打印过程未对细胞活性造成影响。此外,课题组还开发了一款集成颗粒分离和压力传感器以进行单细胞弹性模量精密测量的微流控芯片。该芯片可将细胞悬浮液中的杂志分离到侧通道,并使单个细胞在微流道中受挤压变形,同时由压力传感器记录导致细胞变形的压力。通过研究细胞变形量和对应的压力,并结合幂律流变模型,可以计算出细胞的弹性模量和粘度数据。利用该芯片获得了K562和人脐静脉细胞的弹性模量分别是64.2 ± 33.3 Pa 和383.4 ± 226.7 Pa。基于上述技术课题组开发了利用图像实时处理进行细胞大小、形貌和弹性分选的微流控系统,实现了混合细胞群体的无标记高通量分选打印。上述工作为微流控芯片在高通量单细胞分析领域的创新应用提供了实验基础。流式细胞术在类器官研究中的应用于化龙 贝克曼库尔特 高级应用专家【摘要】1流式用于类器官构建 2流式用于类器官质控 3流式用于类器官免疫监测 4流式用于类器官药物筛选TOPMOS类器官高通量药物筛选系统杨根 北京大学 副教授【摘要】本团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。类器官多维度多模态显微成像应用游换阳 徕卡显微系统(上海)贸易有限公司 应用专员【摘要】针对类器官成像复杂性,Leica提供全流程需要的设备,从类器官获取,日常培养观察,高清宽场和共聚焦成像再到最后的人工智能大数据分析,徕卡提供全流程成像分析解决方案,助力类器官科研。类器官与器官芯片在细胞分析中的应用与发展陈早早 江苏艾玮得生物科技有限公司/东南大学 副总经理/副研究员【摘要】人体器官芯片并非电子产品,而是一种‘体外的活的人体器官’,简单的说,即科研人员利用人体自身的干细胞,在U盘大小的芯片上制作出微缩的人体器官,以模拟人体相应器官的功能,制造出要用显微镜才能观察到的体外迷你的‘心脏’、‘肝脏’、‘肾脏’等等。人体器官项目正逐渐从研发端走到应用端的“最后一公里”。不仅在药物发现、细胞分析、环境评估、精准医疗、航天医学方面都有器官芯片的应用。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 国产高端科学仪器新突破!海恩迈成功开发芯片式热重分析仪
    近日,致力于原创国产高端科学分析仪器研发和产业化的创业公司——海恩迈科技,成功开发出基于悬臂梁上的实验室(Lab on a CantileverTM)技术的创新性仪器——芯片式热重分析仪。这个基于全新原理的仪器,将传统热重分析仪天平称重+炉管加热+热电偶测温的结构,用一个尺寸仅为2mm2.5mm的MEMS谐振式微悬臂梁芯片替代,实现了片上热失重分析功能。得益于芯片微小的体积,每次分析所消耗的样品量,由传统仪器的数十毫克降低至几纳克,而且极大的改善了传统仪器的热滞后效应,升降温速率也可以获得数十倍的提升。7月初,海恩迈科技携芯片式热重分析仪等创新仪器产品参加了在厦门举办的2021中国材料大会暨展览会,获得了参会专业人士的一致好评。那么,这项Lab on a Cantilever技术的背后有着怎样的故事?海恩迈科技开发的芯片式热重分析仪1.血统高贵的悬臂梁1981年扫描隧道显微镜(STM)的发明,为在苏黎世(Zurich)的IBM实验室工作的科学家盖尔德宾尼(Gerd Binning)和海因里希罗雷尔(Heinrich Rohrer)赢得了1986年诺贝尔物理学奖。原子力显微镜 (AFM) 是 STM 的后代产品,由 Binnig 在1986年开发出来,它通过对非导电材料进行成像而开辟了显微镜的全新应用领域。AFM的核心即为一根精细的微悬臂梁(Micro-cantilever)。1995年,美国橡树岭国家重点实验室的T. Thundat等人发表了表面吸附对微悬臂梁谐振频率影响的文章,为谐振式悬臂梁用于生化检测做了开创性的研究。之后,基于谐振式悬臂梁的生化传感器研究如雨后春笋般涌现。海恩迈科技的创始人兼CEO于海涛博士于2009年,开发出了国内首款激励/检测元件片上集成的谐振式微悬臂梁,摆脱了传统的光学杠杆检测方式,有效减小了系统的体积与成本。之后,在时任传感技术国家重点实验室主任的李昕欣研究员的支持和指导下,与研究伙伴许鹏程博士共同合作,从悬臂梁结构、电路、敏感材料等多方开展深入研究,开发出了一系列气体探测器。(左)宾尼与罗雷尔;(右)诺贝尔奖牌2.国产科学仪器的困境工欲善其事必先利其器。科学仪器是科研人员的重要工具,位于科技创新链的源头。科研的竞争,往往也是科学仪器的竞争。然而,在这个领域,现状让人唏嘘:中国被卡脖子到离开国外供应,就寸步难行的境地。按照中国科学院电工研究所副所长韩立的说法,我国高端科学仪器现状惨淡——多种科学仪器基本被国外厂商垄断,某些类型的仪器国内厂商市场占有率甚至趋近于零。虽然国家一直鼓励自主研发,但当前成果还是主要集中于中低端领域,越高端依赖性越严重。以材料领域的通用仪器热重分析仪为例,进口仪器价格在30万元左右,部分可超过50万元,而国产仪器价格在10万元左右,相差数倍。这一方面是由于国产企业规模较小、名气不足、市场占有率不高,只能靠性价比抢占低端市场;而更重要的是技术上进口厂商占据先发优势,国产仪器基本上是仿制进口仪器,进行一些微改进,缺少原理性和方法论的创新,很难在性能上超越进口仪器。根据仪器信息网统计的“2020年全球仪器公司市值TOP20排行榜”,美国有11家科研仪器厂商上榜,日本上榜4家,德国和瑞士各上榜2家,英国上榜1家。中国作为GDP世界排名第二,工业总产值独霸全球的国家,没有一家。3.“中国制造”or“中国智造”?在中国的很多经济领域,依靠仿制进口产品,主打性价比,是可以获得成功的,比如纺织品、白色家电等。然而,这个方法在科学仪器领域很难行得通。这是因为在这个领域,用户第一追求的永远是高性能,为了追求极致的性能,用户愿意支付高价。因此,如果国产仪器仅靠仿制进口仪器,缺少关键性的创新,性能无法达到或者超越进口仪器,用户往往是不愿意为之买单的。科学仪器领域更需要的是在关键技术上拥有自主知识产权的“中国智造”。Lab on a CantileverTM系列科学仪器就是“中国智造”的一个典范。目前,这一系列仪器包括气体吸附热力学动力学参数分析仪、微悬臂梁气敏测试仪以及芯片式热重分析仪。顾名思义,这一系列仪器的核心就是谐振式微悬臂梁。Lab on a Cantilever技术来源于于海涛博士团队一次逆向思维的头脑风暴。谐振式微悬臂梁之前一直被用作气敏传感器,受关注的是传感器的灵敏度、选择性、响应速度等参数,更多的是由敏感材料决定,谐振式微悬臂梁处于从属地位。而反向思考的话,可以通过微悬臂梁气敏传感器为主导,反过来研究敏感材料,去探究敏感吸附表象背后蕴藏着的科学本质。基于此想法,气体吸附热力学动力学参数分析仪首先被开发出来,利用世界首创的“变温微称重法”,定量测量功能材料与气体分子发生吸附时,焓变、熵变、吉布斯自由能、活化能等表界面分子作用的热力学和动力学参数。这些参数作为材料吸附的“基因参数”,决定了材料吸附的表象特征,可被用于材料吸附的机理研究以及指导新材料的调控,摆脱传统“试错法”研发新材料的盲目性。作为一款拥有完全自主知识产权的原理性创新的科学仪器,气体吸附热力学动力学参数分析仪得到专家的认可和国家的大力支持。其研发过程受到了自然科学基金重大科研仪器研制项目和国家重点研发计划项目的支持,仪器的检测方法也成功获得国家标准立项。目前,该仪器的用户包括清华大学未来实验室、上海交通大学、复旦大学、福建嘉庚创新实验室等多家国内顶级科研单位。海恩迈科技开发的气体吸附热力学动力学参数分析仪近期,随着微悬臂梁气敏测试仪以及可以实现片上热失重分析的芯片式热重分析仪的亮相,海恩迈科技公司成功踢出了高端科学仪器产品创新的“前三脚”。这三种仪器均拥有自主知识产权,全部具有原理及方法论上的创新,国内外没有类似的竞品,是国产高端科学仪器的新突破,“中国智造”的新典范!值得指出的是,在提出Lab on a Cantilever技术的时候,于海涛博士还在中国科学院上海微系统与信息技术研究所担任研究员。当他发现这个技术的商业价值之后,便毅然决然的放弃了体制内的“金饭碗”,离岗创业与合作伙伴共同创立了厦门海恩迈科技有限公司,并通过有偿技术转让的形式将相关知识产权转移到公司。这项创新性技术也获得了投资机构的看好,厦门半导体投资集团为海恩迈科技提供了千万级别的天使轮融资,为公司发展加注了“助推燃料”。做有独立思想的研发,做有技术灵魂的产业!秉承着“创新引领,追求卓越”的宗旨,海恩迈科技将继续在“中国智造”高端科学仪器的大道上披荆斩棘、一往无前。
  • “波分复用之父”厉鼎毅院士逝世
    “波分复用之父”厉鼎毅院士于近日不幸去世,享年81岁。  美国光学学会(OSA)官网显示,厉先生于2012年12月27日在美国犹他州雪鸟岛滑雪度假时,突发心脏病去世。厉先生是OSA前任主席,OSA官网已经发布了一篇纪念文章。中国工程院官网上“已故外籍院士名单”也在近日更新,厉鼎毅是中国工程院第十位去世的外籍院士。  厉先生是世界著名的光通信专家,被业界尊称为“波分复用之父”。早在1961年,厉先生在激光器谐振模式方面的工作奠定了激光器的操作基础,已成为国际公认的经典理论。1980年代末期,厉先生和他的团队在贝尔实验室开发出了世界第一套WDM波分复用系统,这套系统在1992年每通道速率达2.5Gbps。1990年代厉先生世界首先提出在波分复用系统中使用光放大器,在光通信的历史上具有革命性的意义。  根据OSA和中国工程院官网上的介绍,厉鼎毅(Tingye Li),美籍华人,美国著名光纤通信专家,在世界光纤通信有重大贡献。1931年出生,1953年毕业于南非Witwatersrand大学,1958年在美国西北大学获博士学位。1957年加入AT&T贝尔实验室,曾任贝尔实验室光纤通信部主任,通信基础结构实验室主任,1998年退休。厉先生是美国光学学会会员,美国电子电气工程师学会会员,美国先进科学协会会员,中美光学学会会员,国际工程师协会会员。他还是美国国家工程院院士,台湾中央研究院院士,中国工程院外籍院士,并于1995年就任美国光学学会主席。  由于突出的研究成果,厉先生获得了众多奖项。其中主要有IEEE 1975年 W. R. G. Baker 奖,IEEE 1979年 David Sarnoff奖,OSA/IEEE 1995年 John Tyndall奖,OSA 1997年 Frederic Ives 勋章/Jarus Quinn贡献奖,1997年 AT&T 科技勋章,IEEE 2004年 Photonics奖,IEEE 2009年 爱迪生奖西北大学1981年杰出校友奖,1978年美国华裔工程师学会杰出贡献奖,1983年中美学会杰出贡献奖,1998年中美光学学会杰出贡献奖。  厉先生对中国光通信的发展非常关注,是国内多所知名大学的名誉教授,曾多次来中国讲学,并多次介绍高水平的外国科学家来中国讲学,为中国光通信产业的发展做出了不可磨灭的贡献。
  • 微流芯片将液态物质分析时间缩至几秒
    近日,在最新一期《芯片实验室》杂志的封面上,刊登了化学方面一项新的世界纪录:德国莱比锡大学分析化学研究所的科学家运用微流芯片技术,使液态化学物质分离与质谱检测得以同时进行,从而将整个分析过程缩短到几秒钟。  莱比锡大学分析化学研究所德特勒夫贝尔德教授领导的工作团队完成了这项研究,他们专门研究微缩成芯片大小的化学分析系统,用微电子在较短的时间内完成复杂的过程。贝尔代教授说:“当化学过程发生在这样的微管中,而不是在大试管和烧杯中时,不仅可以减少化学品的用量,还可以将这一过程的时间从几十分钟或几个小时缩短到几秒钟。”  这项新的世界纪录仅在一个小玻璃芯片上就得以实现,其上有着非常细的、人头发丝大小的沟槽。分析芯片里有微量的液体(微流),莱比锡的研究人员将一个纳米喷针与之集成在一起。这个极细的纳米喷针尖端只有人头发直径的十分之一,是该研究最吸引人的地方之一,这项成果成功将芯片技术和质谱分析直接耦合在一起。  通过高速电泳分离与快速质谱结合,研究人员首次成功使物质在一秒钟内彼此分离,然后几乎同时就进行质谱分析鉴定。这个集成了纳米喷针的微流玻璃芯片以100赫兹的工作频率采集数据。  研究人员表示,这项技术对于制药业特别有吸引力,因为该行业需要在最短的时间内对物质库中大量潜在药物进行高通量筛选测试。而用质谱法来进行化学物质的鉴定早已在该领域得到广泛应用。(
  • 芯片集成度越来越高,故障后失效分析该如何“追凶”?
    随着科技进步,智能化产品与日俱增。从电脑、智能手机,再到汽车电子、人工智能,如今在我们的生产生活中已随处可见。它们之所以能够得以发展,驱动内部收发信号的半导体芯片是关键。 我们这里讲的半导体为IC(集成电路)或者LSI(大规模集成电路)。制造的芯片可以分为逻辑芯片、存储芯片、模拟芯片、功率器件。根据摩尔定律,每18-24个月,集成电路上可以容纳的器件数目就会增加一倍,这将让更多的科技应用逐步实现,并得以优化。应用场景和市场的扩大,半导体芯片的需求无疑也会随之增长,对其质量则有了更高的要求。 比如汽车行业,除了传统的汽车电子,目前也有许多目光投向了自动驾驶。像这样高度涉及人身安全的车用芯片,在高温、低温、受潮、老化、长期工作等因素下,性能都必须保持稳定。所以,无论从半导体芯片的研发设计,再到前道工序,后道工序,甚至最终投入使用,每一个流程都需要有必要的检测来护航。 芯片制作流程概括性示意 对于芯片制造商来说,单纯知道芯片是否达标,以此来淘汰坏品保证输出产品质量,是远不够的。还需要“知其所以然”,保证良率,追根溯源,节约成本的同时给企业创造更高的效益。所以围绕着这个主题,将进行一系列的检测,我们将此称为半导体失效分析。它的意义在于确定半导体芯片的失效模式和失效机理,以此进行追责,提出纠正措施,防止问题重复出现。失效分析检测简直就像一场“追凶”之旅。通过初步证据锁定嫌疑范围,再通过各种方法获得更多证据,步步锁定,拨开层层“疑云”去获得最终的真相。检测流程上,一般来说,制造商会首先对待测半导体晶圆(wafer)或裸片(die)实施传统的电性测量。一方面来确定芯片是否有故障的情况存在;一方面,若故障确切存在,也可以为后续失效分析提供必要的信息。 已经过诸多工艺处理后的晶圆(wafer),裸片(die)即从其切割而来 但想达到溯源的目的,仅凭传统的电性测试是远不够的。还需要进一步了解缺陷具体存在的位置,甚至还原出失效的场景、模式,用以了解失效机理。这也就是在半导体失效分析中重要而困难的一项,缺陷定位。失效分析工程师结合测试机测得的失效模式以及其他故障信息,可以初步判断需要采取的定位方法,然后不断结合获得的新数据,逐步推测出失效发生在芯片的哪层结构中,及其根本缘由。缺陷定位 而半导体工艺日新月异发展飞速,制程上,从70年代的微米级芯片早已经提升至纳米级芯片。芯片层数增加和晶体管数量的急剧增加,让失效点越来越难以发现。不断提升的集成度,对检测设备的性能提出了更多的挑战。1971年到2000年,英特尔芯片的发展 挑战 1:更高的弱光探测能力 首先,芯片集成化程度越来越高,芯片的层数也将逐渐增多,电路会变得越来越细,电压要求也随之降低。因此,在检测过程中,故障处可能发出的光信号就变得微弱,再加上层数的叠加,光信号将再次被削弱,这要求检测仪拥有更高的弱光探测能力。挑战 2:更多检测功能 不断提高的集成度在带来了日趋强大的芯片功能外,也让可能出现的故障风险变得更多。一旦出现失效,其故障原因亦可能更加复杂。因此,在失效定位时,需要发展出更多、更细化的测试方法和功能模块,去对应这样的变化。 挑战 3:无损检测技术的推进 对于出现问题返厂的成品芯片,一般会在完成一系列无损检测(如X射线检测),以及打开封装后的显微镜检查后,再进入到传统电性测试这一步。对于愈加高集成化、紧凑的芯片来说,打开封装时内部裸片受损的可能性会增大,而这一步亦是不可逆的。受损后,失效模式将难以还原,继而无法得出失效的真正原因。因此,需要时,可以尽量达到无损检测,也是给失效定位提出的又一挑战。 早在30余年前,滨松就开始了在半导体失效分析应用中的研究。1987年,推出了第一代微光显微镜,并在此后逐渐组建起了专门针对半导体缺陷位置定位的PHEMOS系列产品。针对应用中呈现出的诸多要求,滨松亦在技术上做出了进一步的开发。 滨松半导体失效分析系统PHEMOS系列 为了增强微光探测能力,滨松开发了C-CCD、Si-CCD、InGaAs等多类高端相机。用户可根据样品制程和结构,选择不同的相机加装在设备中。 IPHEMOS-MP的信号侦测示意 除了相机以外,滨松还不断为PHEMOS系列开发出了新的功能模块,实现更多元、更深入的检测,以应对越来越复杂的故障原因: 可通过Probing的方式给样品加电,广泛适用于从prober card到12英寸wafer的测试; 可搭载波长为1.3 μm的激光,实现OBIRCH(Optical beam induced resistance change 激光诱导电阻改变测试)。也可选配其他光源,将样品连接测试机进行DALS, EOP/EOFM测量,实现样品的动态缺陷检测分析。通过这些诱导侦测方法,能有效的截获因温度、频率、电压的改变而导致sample时好时坏的困扰; 可选配Laser marker功能,方便后续分析。Laser marker为脉冲激光,可自定义设置打点位置、次数、能量强度、打点形状等; 可选配Nano lens & Sil cap,从样品背面观察内部结构。Nano lens & Sil cap在工作时会与样品表面完全接触,增加了图像的清晰度,提升了分辨率便于观察更细的线路。搭配Nano lens的使用,用户还可以选配tilt stage,将样品调平,增强信号侦测强度 除了Emission功能外,PHEMOS系列还具备Thermal的功能模块。通过配备InSb材料的高灵敏度热成像相机,可探测发射热点源,方便用于package样品侦测,不需要给待测品去除封装,实现无损检测。设备可以同时满足给样品加多路电,有效降低噪声提升信号敏感度。(可提供单独拥有此功能的Thermal-F1)高灵敏度热成像相机 C9985-06 半导体制造涉及众多工序,过程复杂。除了失效分析以外,滨松还有众多产品都被应用在了其中,以保证生产制造的顺利进行以及产品的质量。以沉淀了60余年的光子技术,为半导体制造提供支持。
  • 电泳微流控芯片:生物分析的里程碑
    电泳微流控芯片是一种结合了电泳和微流控技术的创新型生物分析工具。该技术整合了微流体学的优势,通过微小尺度的通道、电场和高度灵活的流动控制,实现了对生物分子的高效分离、检测和分析。——技术原理——电泳原理:在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象。电泳微流控芯片技术可以分为两种主要类型:毛细管电泳和芯片上电泳。毛细管电泳利用单根毛细管作为分离通道,而芯片上电泳则将电泳所需的缓冲液、电极等组件集成到一个微流控芯片上,实现设备的微小化和自动化。这种集成化设计使得电泳微流控芯片具有高通量、高效率、低样品消耗和快速分离等优点。电泳微流控芯片的原理主要基于电场驱动下的带电粒子在微尺度流道中的迁移与分离。具体来说,电泳微流控芯片利用微加工技术在芯片上构建微米级的流道,这些流道用于容纳电泳缓冲液。当在芯片两端施加电场时,缓冲液中的带电粒子(如DNA、蛋白质等)会根据其电荷和电场方向发生迁移。不同带电粒子由于其电荷、质量和形状的差异,在电场中的迁移速度会有所不同,从而实现粒子的分离。——应用领域——电泳微流控芯片的应用领域非常广泛,涵盖了多个重要的科学和工业领域。以下是其主要的应用领域:1、生物医学:在生物医学领域,电泳微流控芯片技术主要用于DNA片段、多肽、蛋白质等生物分子的分离和分析。它被认为是后基因时代中最有希望攻克蛋白质研究、基因临床诊断等科学难题的分离分析手段之一。此外,电泳微流控芯片技术也被用于PCR反应,可以大大简化操作步骤,显著提高检测效率。2、新药物合成与筛选:电泳微流控芯片技术在新药研发过程中发挥着重要作用。它可以用于药物分子的分离和筛选,从而加速新药的研发进程。3、食品和商品检验:电泳微流控芯片技术可以用于食品中添加剂、污染物等的检测和分析,确保食品的安全和合规性。同时,它也可以用于商品的质量控制和检验。4、环境监测:在环境监测领域,电泳微流控芯片技术可用于水、土壤、空气等环境样本中有害物质的检测和分析,为环境保护和污染治理提供科学依据。5、刑事科学:电泳微流控芯片在法医学中具有重要的应用,特别是在DNA分离、检测和分析方面,对于个体身份的鉴定和犯罪现场的物证分析具有重要意义。6、其他科学领域:此外,电泳微流控芯片技术还广泛应用于军事科学、航天科学等其他重要科学领域,为这些领域的研究和发展提供了强大的技术支持。——优势——1、高分辨率和快速分离:微流控芯片中的通道尺寸小,因此具有较高的分辨率和更快的分离速度。这使得它能够在短时间内准确地分离和识别出各种生物分子,如DNA、蛋白质等。2、低样品和试剂消耗:由于微流控芯片中的流体通道尺寸微小,所需的样品和试剂量大大减少。这既降低了分析成本,也减少了生物样本的浪费,对于珍贵的生物样本尤其重要。3、高通量分析能力:微流控芯片可以并行处理多个样品,实现高通量分析。这大大提高了分析效率,使得在短时间内能够处理更多的样本,适用于大规模的生物分子分析任务。4、易于集成和自动化:电泳微流控芯片可以与其他技术(如质谱联用)实现联合分析,进一步提高分析的准确性和灵敏度。此外,微流控芯片技术易于实现自动化,减少了人为操作的误差,提高了分析的准确性和可靠性。5、微型化和便携性:电泳微流控芯片采用微型化设计,使得整个分析系统更加紧凑和便携。这使得它可以在现场进行实时分析,无需复杂的实验室设备,为现场检测和即时分析提供了便利。保利微芯公司简介保利微芯科技有限公司隶属中国保利集团公司,由保利置业集团有限公司投资,设计研发微流控生物芯片,公司具备技术先进的微流控生物芯片设计制造能力,已形成创新性的、技术领先的微流控芯片整体解决方案。可以承接国内外芯片设计、应用公司的微流控芯片生产订单,为即时诊断(POCT)、基因测序、环境保护、食品安全和科学研究等应用领域的客户提供有核心竞争力的高性价比芯片产品。
  • 博奥生物信息培训班第二期生物芯片数据分析专题培训讲座(上海站)开班了
    本次博奥生物举办的生物芯片数据分析培训讲座,以最优惠的价格为学员提供最实用的数据分析解决方案! 博奥生物芯片数据分析案例剖析及方案分享,让您思路更清晰!为您提供免费软件应用等公共资源及操作指导,实用才是硬道理!培训讲座内容安排:2013.10.30课程描述 上午:9:00-10:00生物芯片技术及应用简介1、生物芯片技术介绍及发展现状2、博奥生物芯片平台及相应的典型案例介绍上午:10:15-12:00生物芯片数据分析解决方案3、生物芯片常用数据分析手段介绍4、数据分析典型案例剖析及整体解决方案培训下午:1:30-2:30常用生物信息软件介绍5、生物芯片平台给出数据介绍6、常用软件介绍及资源分享下午:2:45-4:00软件实际操作培训7、Mev、cytoscape、coexpress等经典数据分析软件及绘图软件的培训培训对象:需要使用高通量技术特别是芯片技术进行科研的老师需要加强生物信息分析思路,并能使用常用软件进行数据分析的老师培训费用:800元/人(含午餐)优惠措施:1:博奥生物的仪器用户所在单位可享受1名免费培训名额2:相同单位报名超过1人的,从第2人起享受5折优惠缴纳注册费账户信息:用户名:博奥生物有限公司 开户行:中国银行北京上地支行 帐号: 3376 5602 2586 【请在转账单备注中注明: × × (姓名)交付培训费3106】联系人:杜倩 010-80726868转8246 15910764175培训资料:包括培训教材、培训软件及操作视频、精美礼品。注意事项:学员自备笔记本电脑,为保证教学质量,每期仅招收20位学员培训地点及路线:地点:复旦大学上海医学院枫林校区(上海市医学院路138号)明道楼2楼第一会议室路线:地铁7号线、9号线至肇家浜路下步行约5分钟即到附图: clip_image002报到时间及联系方式(博奥生物上海办事处):请您于2013年10月30日8点半前到会议室报到电话:021-64280760 13524761043(王莹) 邮箱:ywang@capitalbio.com报名方式:请您填写客户培训回执表,发送到邮箱:qiandu@capitalbio.com,我们收到回执表后2天内给予回复。第一期培训班回顾(北京站): 详情请点击:http://science.capitalbio.com/yndt/21307.shtml
  • 新芯片实验室技术让单细胞基因分析更高效
    据美国物理学家组织网近日报道,最近,加拿大英属哥伦比亚大学与英属哥伦比亚癌症研究所、转化与应用基因组学中心合作,开发出一种硅酮材料的芯片实验室技术,能让每个细胞像弹球机里的球一样各就各位,然后进行基因检测。这种“单细胞基因分析”技术使基因检测更加灵敏迅速,有助于肿瘤分析和临床疾病的诊断。本周出版的《美国国家科学院院刊》对该芯片实验室进行了详细介绍。  这种芯片实验室大小跟一个9伏电池相当,能同时分析300个细胞。研究人员设计了一种路线,用液体载运细胞通过显微管道和一个个小阀门,当细胞挨个进入各自的小空位时,它们的RNA就会被提取出来,经过复制用于进一步分析。  标准基因检测要求使用大量细胞,才能得出由上千万不同细胞平均化以后的“综合图像”,这会掩盖细胞的真实属性和它们之间的相互作用。“这就好比用混合水果慕丝来研究草莓和树莓为什么不一样。”领导该研究的高通量生物中心副教授卡尔汉森介绍说,而单细胞分析正在成为基因研究中的黄金手段,因为即使是从同一肿瘤组织中采集的样本,也包含了正常细胞和多种癌细胞类型,而单细胞分析显出极微小的差异。  此外,这种芯片实验室几乎将所有细胞分析过程整合在了一起,不仅能分离细胞,还能用化学试剂将细胞混合起来,通过检测反应过程中的荧光发射获得它们的基因编码。所有这些都能在芯片上完成,不仅操作简单,而且成本效益高。
  • 微流控芯片的产业化:坚持中迎来曙光——访浙江大学微分析系统研究所所长方群教授
    微流控芯片分析是当前的科技前沿领域之一,其目标是通过对芯片微通道网络内微流体的操纵和控制,完成化学实验室中取样、预处理、反应、分离和检测等分析功能,实现分析装备的微型化、集成化和自动化,最终实现芯片化,即所谓“芯片实验室”(Lab-on-a-chip)。微流控芯片已被列入21世纪最为重要的前沿技术的行列。  浙江大学微分析系统研究所是国内建立较早的专门从事微流控芯片相关技术研究的科研机构,建所十年来取得了许多研究成果。2010年8月21日,在第三届全国生命分析化学学术报告与研讨会上,仪器信息网编辑(以下简称“Instrument”)就该研究所的情况与微流控芯片的研究现状、技术发展、产业化等问题采访了浙江大学微分析系统研究所所长方群教授。浙江大学微分析系统研究所所长 方群教授  Instrument:方教授,您好!首先请您介绍下浙江大学微分析系统研究所的相关情况,以及贵所建立以来在微流控技术方面取得了哪些成绩?  方群教授:浙江大学微分析系统研究所是我国已故的著名分析化学家方肇伦院士于2000年1月创建,其目标是借助浙江大学学科比较齐全、综合交叉优势明显的特点,发展具有中国特色的微流控芯片分析技术与系统。目前,研究所有教师11名,研究生40余名。  研究所的研究主要围绕微流控芯片展开,研究方向涉及:微纳流控芯片加工和表面处理技术、工艺 微流体操控技术、方法和理论;微流控芯片取样、试样引入和前处理、反应技术;微流控芯片光谱、电化学、质谱检测技术研究;基于微流控原理的液滴分析、毛细管电泳、流动注射分析、生物传感器分析系统研究,以及纳米技术和仿生技术在微流控系统中的应用;基于微流控技术的微型化分析仪器研制;微流控系统在生物分析、单细胞分析、蛋白质组研究、临床检验、高通量筛选中的应用。  目前,研究所在微流控芯片简易加工技术、微流控试样引入技术、微流控单细胞分析的集成化、微流控荧光和光度检测系统的微型化等方面,取得了具有国际先进水平的研究成果。十年间,研究所发表了140余篇高水平的SCI论文,共承担和参与省部级以上项目50余项,申请国家发明专利40余项,其中20余项已获授权。2003年科学出版社出版了由方肇伦院士主编,研究所全体老师参加撰写的国内第一部有关微流控芯片的专著“微流控分析芯片”。研究所还研制了多种具有自主知识产权的微流控分析仪器装置或样机,为相关仪器的产业化创造了有利基础。  Instrument:您是973项目“微流控学在化学和生物医学中的应用基础研究”中“高速及多通道阵列微流控分离检测新方法的研究”课题的负责人,请谈谈该课题的进展情况,以及到目前为止取得了哪些成果?遇到了哪些困难?  方群教授:由复旦大学杨芃原教授任首席科学家,由全国11家单位参加的973项目“微流控学在化学和生物医学中的应用基础研究”分为6个课题,我所负责的是其中第三课题,参与单位有浙江大学、中科院大连化学物理研究所、东北大学和中科院长春应用化学研究所,主要进行高速及多通道阵列微流控分离检测新方法的研究。目前,该课题研究进展顺利,已取得一些出色的研究成果,预计能够完成既定目标。  我的研究组主要进行了微流控系统的试样引入技术研究,将微流控芯片与缺口管阵列结合,进样通量最快可以达到6000个样品/小时,这是目前文献报道中单通道通量最高的芯片进样方法。同时,我们通过将自发进样技术与基于短毛细管和缺口管阵列的毛细管电泳(CE)系统相结合,建立了一种微流控平移自发进样方法,将进样量减少至低于100pL的水平,并进一步将该方法应用于高速毛细管电泳(HSCE)分析,建立了一种通用型的HSCE系统。该系统应用于氨基酸试样的电泳分离,其分离速度和效率等性能已经达到甚至优于芯片HSCE系统。在此基础上,研究组还将皮升级平移自发进样方法及其HSCE系统成功地应用于基于胶束电动色谱模式的氨基酸手性分离和基于凝胶电泳模式的DNA片段和蛋白质分离中。  近期,我们研究组还研制了一种用于纳升级试样测定的全集成微型化手持式光度计。该光度计所有部件包括双波长紫外发光二极管(LED)光源、光电二极管检测器、长光程液芯波导检测池、微量试样驱动装置、控制电路、液晶显示器和电池均集成于12cm×4.5cm×2.1cm 的仪器内。该仪器成功应用于微量DNA 试样的纯度和含量测定,以350nL的试样消耗获得了约15mm的有效光程。对比商品化的微消耗光度计,手持式光度计以其1/3的试样消耗量获得了其15倍的检测光程,且价格低廉,在现场分析和即时检验等领域具有很好的应用前景。此外,我们还将该光度计与缺口管阵列结合,成功用于血清中总胆固醇含量的快速自动分析。浙江大学微分析系统研究所方群教授研究组研制的手持式光度计  在研究中,我们确实遇到了一些困难。首先,寻找能产生原创性成果的研究方法和思路是一个难点。其次,微流控芯片的研究是多学科综合性交叉的研究,需要生物、医学、光学、机械、电子等其他研究领域人员的参与,但我们现在缺乏这方面的人才。再有,微流控芯片的研究成果产业化困难。实验室的研究出来的装置距离市场上出售的产品有相当大的距离,这里面还涉及到与企业之间的合作等诸多问题,所以比较困难。  Instrument:下一步微分析系统研究所的工作将主要集中在哪些方面?  方群教授:研究所成立之初,当时的浙江大学校长潘云鹤院士对我们的期望是“顶天立地”。“顶天”即要做好原创性的基础研究,“立地”就是要把研究成果实现产业化,做成商品化仪器,应用于各种实际应用领域。微流控芯片的研究已有近二十年的历史,目前,在某种意义上,其研究已处于一个“十字路口”的阶段了。所以根据建所之初的规划,以及微流控芯片技术当前的发展状况,我们研究所明确了下一个“十年”的工作方向:  (1)坚持进行原创性的研究。  研究所建立之时,方肇伦院士就一直强调要做有创新性的研究工作和要有“小米加步枪”的创业精神。近些年来,我们更是把工作的原创性和系统性放在首位。我们试图走通这样一条道路,即从新现象的发现,到新方法的提出,新系统的建立,一直到新仪器的产业化和实际应用的道路。微流控芯片因其结构微型化,因而具有许多宏观系统不具有的特点。这些特点使其在研究中能够产生一些新现象,基于这些新现象建立的新方法新技术则具有较强的原创性,而基于此研制出的仪器装置和系统是全新的,研究者可以拥有自主知识产权,然后可以将其产业化。所以,原创研究是后续应用和产业化的基础工作,一定要做好。  (2)研究所将在微流控芯片的应用和产业化方面投入更多精力。  让微流控芯片产业化,是我们研究所的更高目标。在原创研究的基础上,我们试图将现有的微流控技术研究成果进行整合,构建出完整的仪器,然后将这些仪器推广到多个应用领域,尤其是化学、生物医学、药学、临床检验和现场分析等一些重要领域,希望能够产生重要的影响,对微流控芯片的产业化产生一些推动作用。这方面的工作难度很大,我们将尽力而为。  Instrument:您前面所说的“微流控芯片技术的研究已处于‘十字路口’阶段”,其具体涵义是什么?能否为我们解释下?  方群教授:这里我是用“十字路口”这四个字来形容当前微流控芯片技术的研究现状。以在分析化学中的情况为例,微流控芯片出现之初,研究者众多,大家在分析化学的各个领域都进行了普遍地尝试。然而,十多年已过去,微流控芯片分析领域内相对容易研究的领域已基本了解清楚,而剩下的领域和任务都是“硬骨头”。这些“硬骨头”研究难度大、耗费时间长、不易出成果且成果产业化难度大,这需要研究者具有极大的毅力、耐力以及坚持的信心。  在这样的情形下,研究者们面临着多种选择,也即处在“十字路口”。坚持还是放弃,这是不容易决定的。而我们研究所不会轻易改变研究方向,一定会坚持啃“硬骨头”。  Instrument:能否谈谈当前我国微流控芯片研究的情况以及在国际上所处的地位?该领域当前的研究热点与难点是什么?未来发展趋势如何?  方群教授:我国科学家们对微流控芯片的研究大部分从2000年以后开始。2001年,国家自然科学基金委启动了题目为“微流控生化分析系统的基础研究”的重大研究项目,这个项目对我国微流控芯片技术的发展起到很大的推动和促进作用。到2006年,相关的研究几乎是“遍地开花”。到目前为止,我国学者发表的以“微流控(microfluidic)”为主题词的SCI论文数目仅次于美国,位居世界第二。可以说,我国的微流控技术的研究水平在国际上处于较先进的地位,在部分研究领域已具有一定的国际领先优势。  从已发表的论文来看,目前微流控芯片研究的热点主要集中在以下几个方面:(1)纳流控或微-纳流控;(2)微流控芯片在细胞生物学中的应用;(3)液滴微流控系统。  我个人认为,未来的五到十年,微流控芯片研究可能会有以下几个发展趋势:  (1)微流控芯片研究将向极限发展:从微米到纳米,从多细胞到单细胞,从大量分子到单分子,从单一通道到多通道阵列,分析通量越来越高;  (2)微流控技术不断向其它相关学科渗透,相互间的结合将更为紧密;  (3)微流控液滴分析将得到很好的发展,尤其在分析化学和高通量筛选领域;  (4)微流控芯片的应用领域将继续拓展,将有可能成为科学研究的工具;  (5)微流控芯片将实现产业化,相关仪器将得到推广。  Instrument:微流控芯片目前的应用领域是哪些?将来可能向哪些领域拓展?目前科学家们是否已经找到微流控芯片的“Killer Application(关键性应用)”?  方群教授:目前,微流控芯片的应用领域非常广阔,已超出了其创始人原先预料的那些领域。微流控芯片出现后,其应用领域很快从分析化学扩展到医学、药学、生物化学、细胞生物学、分子生物学、合成生物学、环境分析、化工、材料科学,甚至物理光学、计算机学等领域,而且目前还在持续拓展中。  就目前的情况看,国际上对具体什么是微流控芯片的“Killer Application”,还未形成一致的看法。甚至有科学家认为微流控芯片可能没有“Killer Application”,而是有很多“Application”。通常我们认为微流控芯片分析系统比较适用于药物筛选、疾病诊断,这主要是针对微流控芯片的快速、高通量和低消耗的特点来说的。因为在这两个领域,所要筛选的样品的数量非常之大,并且要求筛查速度快、样品和试剂的消耗量低,而这正好是微流控芯片系统的特点,所以其在这方面将会大有可为。此外,微流控芯片系统微型化、集成化和自动化的特点使得它很适合应用于现场和个体分析。我个人认为:微流控芯片的“Killer Application”最有可能出现在POCT(即时检验,Point-of-Care Testing)领域。  Instrument:至今为止,国内外仪器厂商只有少数几家公司推出过微流控芯片的仪器,微流控芯片的产业化进程发展比较缓慢。您认为当前微流控芯片产业化的困难在哪里?以及应当如何推进其产业化?  方群教授:目前,微流控芯片的产业化确实进行得较为缓慢,相关仪器的销售也不尽如人意。追溯微流控芯片产业化的历程,或许我们可以从中得到一些启示。  微流控芯片出现之初,大家都非常看好它,很多的风险投资蜂拥而至,所以在这个领域,一下子建立了许多的公司,并有相关产品推出。但随后不久,投资企业发现这个领域不能立竿见影,所以就转向了,这就形成了微流控芯片这个领域产业化的低谷。究其原因,我想可能是:最开始大家都看到了这个领域的广阔前景和光明前途,但却低估了该领域研究的难度和技术的复杂性。但是,伴随着产业化的低谷,微流控芯片的基础研究却蓬勃发展起来,进行得如火如荼,这就说明当初人们对这个领域的认识还不够透彻,研究还不够深入,这直接影响了其产业化的进程。  而先前推出的产品在市场定位上并不明确,这些产品虽有一定的应用领域,但其介于通用与专用之间,难以打开广阔的市场。微流控芯片产业化的困难就在于其相关技术还不是很成熟,科学家们也还没有找到一致公认的“Killer Application”。而促进其产业化,就是要加强相关研究,在技术和应用上寻求突破。目前,微流控芯片历经十几年的基础研究积累,已经到了一个可以出一些重要的产业化成果的阶段。最近,已经出现了一些好苗头,一些公司又推出一些新的产品,利用微流控芯片完成样品的前处理,然后与其他仪器联用。这些仪器可以手提,可以做现场检测,将会有广阔的应用前景。  这说明微流控技术的产业化虽然还有较长的路要走,但已曙光初现。我们希望有远见和有实力的企业能够加入到这一进程中,与科学家们一起合作努力,以早日实现微流控技术的全面产业化和广泛的普及应用。  后记  在近两个小时的采访之中,方群教授一直强调:“微流控芯片的研究目前主要是基础研究为主,微流控技术的产业化需要较长时间来解决一些基本问题。”也许正是因为如此,微流控芯片的产业化之路才走得如此艰难。但即便如此,方群教授以及他所在的浙江大学微分析系统研究所一直“顶天立地”,从未放弃过在微流控芯片科研与产业化方面的努力,他们这种坚持不懈、勇攀高峰的精神让人着实敬佩。  采访编辑:杨丹丹  附录1:方群教授简历  方群,浙江大学化学系教授,浙江大学微分析系统研究所所长。辽宁大学分析化学学士(1985年-1989年),沈阳药科大学药物分析学硕士(1989年-1992年)和博士(1994年-1998年)。目前主要从事微流控分析的研究工作,研究方向包括微流控高通量试样引入和前处理技术、微流控液滴分析和毛细管电泳分析、微流控光谱和质谱检测技术、微型化分析仪器研制,以及微流控系统在生化分析、临床检验、药物筛选、蛋白质组和单细胞分析中的应用。发表研究论文60余篇,参加出版专著2部,申请国家发明专利18项,其中9项获得授权。主持国家和省部级科研项目10项,2006年获得教育部新世纪优秀人才支持计划资助,2008年获国家自然科学基金委杰出青年基金资助。目前担任中国化学会有机分析专业委员会委员。担任“Analytica Chimica Acta”、“Analytical and Bioanalytical Chemistry”、“色谱”、“分析化学”、“分析科学学报”和“化学传感器”的编委。  附录2:浙江大学微分析系统研究所介绍  浙江大学微分析系统研究所由我国著名分析化学家方肇伦院士创建于2000年初,目标是发展具有中国特色的微流控芯片(Microfluidic chip)分析技术和系统。微流控芯片分析是当前的科技前沿领域之一,其目标是通过对芯片微通道网络内微流体的操纵和控制,完成化学实验室中取样、预处理、反应、分离和检测等分析功能,实现分析装备的微型化、集成化和自动化,最终实现芯片化-即所谓“芯片实验室”(Lab-on-a-chip),使分析效率成百倍、千倍地提高。  研究所现有教授5名,副教授5名,实验技术人员1名,博士和硕士研究生40余名。研究所每年在化学一级学科和分析化学二级学科招收博士和硕士研究生10余名,并接受博士后人员和访问学者,同时欢迎生物、医学、药学、生物医学工程、光学、电子学、流体力学等相关专业的同学报考研究生。  研究所研究方向涉及微纳流控芯片加工和表面处理技术、工艺,微流体操控技术、方法和理论,微流控芯片取样、试样引入和前处理、反应技术,微流控芯片光谱、电化学、质谱检测技术研究,基于微流控原理的液滴分析、毛细管电泳、流动注射分析、生物传感器分析系统研究,以及纳米技术和仿生技术在微流控系统中的应用,基于微流控技术的微型化分析仪器研制,微流控系统在生物分析、单细胞分析、蛋白质组研究、临床检验、高通量筛选中的应用。同时,在此基础上积极寻求微流控分析仪器的产业化之路。  研究所成立近十年来,在全所师生的共同努力下,取得了可喜的成绩,探索出了一条有中国特色的发展微流控芯片分析的有效途径。在该领域的研究取得一系列重要突破,部分成果,包括:微流控玻璃芯片的简易加工技术、微流控芯片高通量试样引入技术、微流控单细胞分析的集成化、微流控吸收光度和激光诱导荧光检测系统的微型化等在相关学术领域已具备一定国际领先优势。研究所成立以来,共承担和参加省部级以上项目50余项,其中主持国家自然科学基金重大项目1项,国家杰出青年基金1项,国家自然科学基金面上项目11项,主持国家科技部863项目课题1项,973项目课题1项,主持省部级科研项目10余项。发表SCI论文140余篇。申请国家发明专利40余项,其中21项已获授权。2003年科学出版社出版了由方肇伦院士主编,研究所全体老师参加撰写的国内第一部有关微流控芯片的专著“微流控分析芯片”。此外,研究所还研制了多种具有自主知识产权的微流控分析仪器装置或样机,为相关仪器的产业化提供了有利基础。
  • 清华大学、岛津中国联合举办第四期微流控芯片质谱联用细胞分析讲习会
    p  2018年6月25日,由清华大学-岛津中国联合举办的第四期微流控芯片质谱联用细胞分析讲习会在岛津成都分析中心举行。本期讲习会展示了采用由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪进行细胞共培养及其药代动力学模拟研究最新成果。在此之前,该系列讲习会已经成功举办三期。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/fe102d1e-a43f-49e6-b316-a35c55095f13.jpg" title="1.jpg"//pp  清华大学化学系林金明教授做题为“ 微流控芯片上的细胞共培养及其药代动力学模拟研究”。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/bdd58fc2-d315-4079-8bea-b48b1185e50d.jpg" title="3.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong清华大学化学系林金明教授/strong/pp  西南大学药学院黄承志教授做题为“纳米光谱探针用于增强显微生物成像”的学术报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/1b0c3c4e-a2e7-4770-8baf-5a0d71f1d96a.jpg" title="4.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong西南大学药学院黄承志教授/strong/pp style="text-indent: 2em "span style="text-indent: 2em "岛津中国事业战略本部长端裕树博士对参加讲习会的专家代表莅临岛津成都分析中心表示热烈的欢迎。他介绍,2016年岛津公司与林金明教授课题组合作,成功研制了用于细胞及其代谢物分析的微流控芯片质谱联用细胞分析仪。/span/pp style="white-space: normal text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/bee1a67f-ebf4-40c7-b19b-decb4455d203.jpg" title="2.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="white-space: normal text-align: center "strong岛津中国事业战略本部长端裕树博士/strong/pp style="text-indent: 2em "清华大学化学系博士研究生张婉玲同学为参会代表进行了“微流控芯片质谱联用实验方法介绍”并进行了仪器现场演示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/66bbe157-ca08-434d-ad1d-00abc8cafdb7.jpg" title="6.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong仪器现场演示/strong/pp style="text-indent: 2em "span style="text-indent: 32px "微流控芯片质谱联用细胞分析仪可广泛应用于疾病诊断、药物筛选、细胞识别、细胞定量、细胞代谢、细胞生理过程和细胞相互作用等研究。/span/p
  • 清华大学-岛津中国联合举办首期微流控芯片质谱联用细胞分析讲习会
    p style="text-indent: 2em "2017年9月26日,清华大学和岛津中国联合举办的首期微流控芯片质谱联用细胞分析讲习会(The First Workshop on Chip-MS for Cell Analysis)在岛津中国质谱中心举行。讲习会展示了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用的接口技术以及芯片上细胞培养与观察研究的最新成果,同时也展示了岛津高性能质谱检测仪器与多通道微流控芯片联用的广阔发展前景。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/130e3014-8846-414d-b449-a86e3999d5a8.jpg" title="1.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "讲习会现场/span/strong/pp style="text-indent: 2em "岛津中国事业战略室产品企划部部长端裕树博士致欢迎词。他表示,多通道微流控芯片-质谱联用(Chip-MS)系统是清华大学林金明教授长期攻克的研究课题,获得多项的中国发明专利,2016年这项成果与岛津公司合作,结合岛津现有的高性能质谱,成功地研制了具有多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能的分析仪器。虽然还没有正式对外发售,但是该系统的功能、性能已经基本达标。因此,采用workshop这种非正式的形式来和大家进行交流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/e0550fe2-1703-4e06-a0c7-ca82fa599559.jpg" title="2.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "岛津中国事业战略室产品企划部部长 端裕树/span/strong/pp style="text-indent: 2em "林金明教授向与会者介绍,细胞是生命体最基本的结构和功能单元。对细胞及其代谢物的分析对于疾病诊断、药物筛选、细胞识别、细胞定量、细胞代谢、细胞生理过程和细胞相互作用等研究的意义重大。细胞分析的难点在于:细胞尺寸微小(微米级),难于操纵;细胞内待测物含量少,需高灵敏度检测;细胞内生物学容量大,需高通量分析。为此,林金明课题组开始了采用微流控芯片系统和质谱系统进行细胞共培养和细胞分析的研究,并于2012年开始陆续发表了一系列高水平相关论文,先后在国内外重要学术期刊上发表研究论文50多篇,申请国家发明专利12项,获得授权发明专利6项。2016年,林金明课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津中国质谱研发中心开展合作,开发Chip-MS细胞分析系统。该系统有三大难点:多通道芯片与质谱联用;细胞共培养;细胞形态观察。目前,第一代Chip-MS系统已经基本完成,预计明年初正式发售。该系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成。该系统还可用于细胞的药物代谢、环境污染物对细胞成长过程的影响、营养物质对细胞培养过程的影响、疾病机理、细胞的分选和检测等研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/58b3d4f8-888c-4169-bf38-570ceb54f2cf.jpg" title="3.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "清华大学教授 林金明/span/strong/pp style="text-indent: 2em "清华大学化学系博士研究生张婉玲对微流控芯片质谱联用系统的实验方法做了详细介绍。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/f273b176-a05c-48d8-b154-76e45661cb68.jpg" title="4.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "清华大学化学系博士研究生 张婉玲/span/strong/pp style="text-indent: 2em "岛津中国质谱中心中心长滨田尚树向与会者介绍了岛津中国质谱中心的定位、仪器、研究项目等情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/c8c2a041-e2cd-47b4-9c4a-37c6b69cd394.jpg" title="5.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "岛津中国质谱中心中心长 滨田尚树/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/33e66341-fd0f-4461-b079-a0f2b057ce43.jpg" title="6.jpg"//pp style="text-align: center "span style="text-indent: 2em "strong博士生张婉玲与岛津工作人员在为与会者演示Chip-MS系统的实验方法/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/6745bfe1-0529-4245-ac90-3ace0a1b1a72.jpg" title="14.png"//pp style="text-align: center "strongspan style="text-indent: 2em "微流控芯片-质谱联用细胞分析系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/27909020-b8b0-4e8c-82e6-1fd1d0644b2b.jpg" title="8.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "岛津中国质谱中心工作人员向与会者介绍岛津质谱产品和技术/span/strong/pp style="text-indent: 2em "span style="text-indent: 2em "据悉,第二期微流控芯片质谱联用细胞分析讲习会将于今年12月下旬举办,举办地点初步确定在上海。/span/p
  • 超高灵敏度芯片半导体器件失效分析显微镜
    新一代超高灵敏度半导体芯片失效分析热成像显微镜日前在美国问世,于2014年3月18日慕尼黑上海电子展上在大中华区发布并在中国大陆,台湾和香港同步上市,由孚光精仪公司负责该区域销售和售后服务。新一代热发射显微镜采用锁相热成型技术,可探测到1mK (0.001°C) 的器件温度变化,可探测到 100 μW 的功率变化。据悉,这种热发射显微镜可快速定位半导体器件的温度异常点,从而找到漏电等失效点位置。这种热发射显微镜不需要对器件表面处理,可对裸器件和封装器件失效分析,也可定位SMD器件的低功率位置,比如电容泄露测试。除了失效分析之外,这套热发射显微镜还具有器件的真实温度测量功能,以及结点温度,热阻和芯片黏着 Die Attach分析功能。详情浏览:http://www.f-opt.cn/rechengxiang/hongwaixianweijing.html应用领域:器件漏电分析栅极和漏极之间的电阻短路分析封装器件的复合模具短路分析Latch-up点定位金属性短路分析缺陷晶体管和二极管定位分析氧化层击穿SMD元件漏电分析特色和功能超高灵敏度失效点定位堆叠芯片的缺陷深度分析真实温度测量结点温度测量封装和裸露器件分析正面和背面分析检测芯片粘接问题
  • 安捷伦科技推出外显子基因芯片,扩展基因表达分析市场
    安捷伦科技推出外显子基因芯片,扩展基因表达分析市场 2010 年 11 月 3 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日宣布推出基于 SurePrint G3 外显子基因芯片的外显子分析解决方案。该解决方案大大扩展了安捷伦基因表达试剂、芯片和生物信息学软件产品的市场。这套全新的系统将于 11 月中旬面世,研究人员使用该系统将能够分析目前已知的选择性表达外显子,从而拥有对RNA 表达的全面认知。 &ldquo 我们不断推出性能强大且经济有效的工具来充实我们的基因表达工作流程,从 RNA 提取试剂盒到数据解析和验证工具一应俱全。&rdquo 安捷伦的基因表达产品经理 Sharoni Jacobs 博士说道,&ldquo 我们去年 12 月推出了低上样量快速扩增标记试剂盒,仅需 10 纳克总 RNA 的起始量。另外,今年 5 月我们推出了第三代 SurePrint G3 基因表达芯片,该产品将编码和非编码 RNA 探针整合在单个芯片上。&rdquo Agilent G3 外显子基因芯片 安捷伦正是利用性能强大、高密度的 SurePrint 平台开发全外显子解决方案,帮助研究人员发现大约 30000 个基因和 100000 多种蛋白质之间的关系。 借助安捷伦 SurePrint G3 外显子芯片,研究人员只需一次实验就可以鉴别出基因水平和外显子水平的表达改变,从而捕捉到微小但至关重要的生物变化。RNA样品使用安捷伦低上样量快速扩增全转录组标记试剂盒进行处理,实现全转录本标记,用于随后的杂交。安捷伦 GeneSpring GX 11.5 生物信息学系统帮助研究人员同时分析基因水平的表达数据和剪切标记,极大地提高了实验室的工作效率。 &ldquo 外显子级芯片的推出标志着我们分析能力的显著提升。与传统的依赖于 3&rsquo 端的芯片相比,我们现在可以更为详细地分析基因组,&rdquo 英国曼彻斯特大学帕特森癌症研究所分子生物学中心主任 Stuart Pepper(早期用户之一)说道,&ldquo 我们己尝试着将这些芯片用于研究项目,初步实验结果表明,得到的数据十分清晰;这些数据有助于对选择性转录本表达的检测和定量。&rdquo 安捷伦的人、小鼠和大鼠外显子芯片目录产品包括 4× 180K(每张玻片四个芯片,每个芯片 180000 种特征序列)和 2× 400K 两种格式,使用户能够在实验成本、通量和覆盖完整度间作出选择。与安捷伦的其他芯片类似,安捷伦也提供定制格式的人、小鼠和大鼠 SurePrint G3 外显子芯片。定制格式包括:8× 60K、4× 180K、2× 400K 和 1× 1M。 与所有安捷伦芯片一样,SurePrint G3 外显子解决方案能够在很宽的动态范围内检测低丰度和高丰度的表达产物,准确反应整体的表达水平,从而保证结果高度可信。 安捷伦提供业内最全面的基因表达解决方案;集高芯片灵敏度,成熟可靠的 qPCR 平台和综合分析软件于一身,有效简化工作流程,确保获得最高质量的结果。关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18500 名员工在 100 多个国家为客户服务。2009 财政年度,安捷伦的业务净收入为 45 亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn
  • 宁波大学研发“海上芯片实验室”
    日前,宁波大学教授苏秀榕主持的国家海洋公益性行业科研专项&ldquo 重要海域致病性细菌基因芯片检测技术研究开发与示范&rdquo 项目,成功研发出&ldquo 海上芯片实验室&rdquo ,能直接从海水中快速、高通量检测出多种致病菌,可用于海水养殖场、海水浴场、陆源排污口、港口航道等海洋环境致病菌的实时监控。  该产品由芯片、试剂盒、检测软件、便携式检测仪等部分组成,拥有检测低浓度致病菌能力,检测数据可靠、携带方便。采样后约6~8小时即可完成致病菌的检测和鉴定,并通过网络实时将数据传到岸上实验室分析。目前,该产品正处于业务化示范阶段。
  • 玻璃芯片:使用注意事项、清洗步骤、堵塞检查及常规处理方法
    玻璃芯片使用注意事项1. 玻璃芯片及玻璃芯片夹具如图所示,安装时需按夹具使用说明操作。2. 生成微滴粒径大小取决于玻璃芯片结构十字剪切口的下游宽度,客户依据需要选择合适玻璃芯片。3. 通入的液体必须经过0.45 μm滤膜过滤以防止芯片堵塞。4. 使用完毕后必须按照规定步骤对玻璃芯片进行清洗和干燥。5. 玻璃芯片为玻璃材质,使用过程中需避免磕碰损坏。6. 硅胶塞使用时须定期更换,如通二氯甲烷溶液(需每次更换)。清洗步骤1.在A和C口处连接液体排出管,在B口中通入2 mL分散相溶剂(这里特指水包油实验,如易析出的溶质PLGA,可通入二氯甲烷溶剂溶解且必须滤膜过滤),以此将易析出的溶质快些排出;2.在B口中,通入60s空气,将1中通入的溶剂排出;3.在B口中,通入5 mL去离子水滤膜过滤,将易溶于水的物质排出;4.在B口中,通入5 mL异丙醇滤膜过滤 5.在B口中,通入60s空气干燥。玻璃芯片堵塞检查及常规处理方法1.在使用或清洗过程中,发现流道中有杂质,需及时处理,如改变液体进入口冲出流道中的杂质;若仍无法解决,可参考“堵塞的玻璃芯片处理方法”。2.若从一个端口通入液体时,发现液体无法从另外两个端口流出:① 需要从夹具中取出玻璃芯片,检查三个端口(A、B和C)是否堵塞;②若端口堵塞,需用尖嘴镊子取出杂质;若三个端口无堵塞现象,则需要把芯片放置在显微镜下观察,检查流道内是否有较大杂质堵塞;若仍无法解决,可参考“堵塞的玻璃芯片处理方法”。堵塞的玻璃芯片处理方法1.若杂质可溶于油相溶剂(水包油实验,如溶于二氯甲烷)且芯片未完全堵死,如PCL、PLGA和PLA(由于二氯甲烷的挥发而析出),可直接通入二氯甲烷以溶解流道中的杂质;若芯片完全堵死,可将芯片泡于二氯甲烷中,使得杂质被慢慢溶解;2.若玻璃芯片中的杂质是水相中的PVA(水包油实验,PVA为表面活性剂),或者加热易溶解于水(如海藻酸钠,油包水实验)的杂质:可直接将玻璃芯片置于90°C水浴锅中,一段时间后,取出并用洗耳球或从芯片的一端口将溶解后的杂质吹出;3.若杂质为长条纤维状,卡在十字剪切口且与BC线垂直,在B口和C口交替通入水或异丙醇(此外溶液需0.45 μm滤膜过滤),以此将杂质通过A口排出;4.若杂质为块状,可视情况从一个端口(或水等其他溶剂)加大压力将块状杂质排出;此方法仅作参考,不一定完全能将杂质排出;5.若玻璃芯片被堵但未完全堵死(不符合方法1),可以选择在芯片中通入浓硫酸(浓硫酸腐蚀硅胶塞,用完需立即更换)以碳化杂质;若玻璃芯片已被完全堵死,可将芯片泡在浓硫酸中以碳化杂质;此方法仅针对于有机物,其他无机物不适用;6.若芯片已完全堵死,可将玻璃芯片上放置于电热板上200 °C(温度过高易损坏玻璃芯片)加热,用于碳化杂质疏通流道;此方法仅针对于有机物,其他无机物不适用。以上方法仅供参考,具体问题需视情况而定。
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对 10 μm的样品测试灵敏度较低、坚硬的金属界面可能会在接触样品表面时损坏ATR探针,以及污染可能在凹凸的区域,甚至在狭窄的缝隙内,使得ATR接触式测量难以实现。所以,如何在亚微米分辨率别和非接触条件下,实现芯片/半导体器件的有机缺陷和污染物的识别和表征是非常重要以及创新的一种手段。此外,许多样品的厚度小于100 nm,这在传统的FTIR测量中也是不可能实现的。 仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
  • 兰伯艾克斯|类器官与微流控芯片的“医工结合”
    器官芯片是由光学透明的塑料、玻璃或柔性聚合物等构成的微流控细胞培养设备,包括由活细胞组成的灌注空心微通道,通过体外重建组织器官水平的结构功能,再重现体内器官的生理和病理特征。器官芯片在类器官的基础上,更加有效的模拟药物代谢、器官之间的相互作用。器官芯片完美诠释FDA微生理系统概念 如下图中的肺器官芯片,是目前模拟肺部体外生理功能的最优模型,其上下两层被生物膜所分开。上层为肺细胞,流通的是空气;下层为肺毛细血管细胞,流通的是培养液。两边为真空侧室,通过循环吸力来使得两侧的真空通道进行伸缩,从而带动膜上细胞的收缩,实现传统培养皿不可能实现的呼吸功能。开发新药的研发成本模型 器官芯片的核心技术之一微流控,是指精确控制微量流体,甚至创建浓度梯度,利用微流体技术使营养物质和其它化学信号以可控的方式运动和传递,可构建和模拟人体组织微环境。美国NIH、FDA和国防部曾在2011年牵头推出 “微生理系统” 计划,把器官芯片技术的开发和应用上升到国家战略层面。来源:Vunjak-Novakovic, et al., (2021). Organs-on-a-chip models for biological research. Cell 微流控芯片的常用材料包括PDMS(聚二甲基硅氧烷)、玻璃、硅、PMMA等。PDMS材料无毒透明、成本低廉,但存在非特异性地吸收小分子的问题。玻璃和硅材料可达纳米级加工精度,但成本较高。目前学界已围绕各种热塑性塑料展开相关探索,如聚氨酯、环烯烃聚合物和共聚物等。来源:Organs-on-Chips Market and Technology Landscape 2019✦ 类器官的培养✦ 类器官培养是一种模拟人体器官结构和功能的培养技术,具有广阔的应用前景。然而,类器官培养的过程比较漫长且试剂昂贵,需要借助专业的设备才能实现。 兰伯艾克斯的LAB-MI二氧化碳摇床式培养箱是一种适用于类器官培养的设备,具有独特的优势。该设备采用先进的摇床技术,能够更好地适应类器官3D生长的特性,促进细胞增殖和分化。此外,该设备还具有稳定的二氧化碳环境控制功能,能够为细胞提供更加真实的生长环境。 兰伯艾克斯作为一家研发制造能力强的公司,可以配合微流控、器官芯片、组织工程等应用定制开发,为类器官培养提供更加专业的解决方案。
  • 清华大学-岛津中国成功举办第十期微流控芯片质谱联用细胞分析讲习会
    自2017年9月起,清华大学联合岛津中国在北京、广州、上海、成都、沈阳、武汉等地陆续举办了九期 “微流控芯片质谱联用细胞分析讲习会”,将微流控芯片质谱联用技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者。2021年10月25日,由清华大学-岛津中国联合举办的第十期微流控芯片质谱联用细胞分析讲习会成功在中国科学院深圳先进技术研究院举办,有来自高校、科研所和企业等近30位用户参加。2016年,清华大学林金明教授课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津合作,开发了新一代细胞微流控芯片-质谱联用细胞分析系统(Cellent CM-MS,Cell Microfluidics-Mass Spectrometry)。该系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成,能够实现多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能。CM-MS的应用领域主要集中在科研、临床、新药开发、环境有毒有害物质与食品营养物质研究等领域。微流控芯片在线分析全过程会议由岛津中国研发中心副中心长国広沖之致辞。他首先感谢清华大学林金明教授与岛津联合举办此次讲习会,并感谢中国科学院深圳先进技术研究院罗茜博士在使用细胞微流控芯片-质谱联用细胞分析系统后,给岛津提了很多建议和意见。岛津旨在为用户提供更便利更高效的分析手段,今后也会在仪器改进的道路上继续提高技术。岛津中国研发中心副中心长国広沖之本次讲习会首先由清华大学林金明教授做了《微流控芯片质谱联用仪器及其细胞药物代谢研究》专题报告。林教授详细介绍了微流控芯片的研发历程,实现了从传统培养皿到微流控芯片培养细胞的重大转变;带来了新应用分享:基于CM-MS技术的红景天苷减轻BV2小胶质细胞缺氧炎症损伤代谢机制分析;并向大家介绍了开放式微流控单细胞分析方法的建立。清华大学 林金明教授中国科学院深圳先进技术研究院罗茜研究员带来了《MC-MS研究尼古丁暴露与戒断对小鼠海马神经元细胞的代谢影响》专题报告。详细分享了使用岛津细胞微流控芯片-质谱联用细胞分析系统CM-MS研究尼古丁的实验流程及分析结果。罗茜研究员特别提到岛津LCMS-8060非常适合与微流控芯片仪器联用,用于小分子代谢物分析。中国科学院深圳先进技术研究院 罗茜研究员岛津中国开发中心部长岡户孝夫带来了《微流控芯片质谱联用仪器的结构和基本性能介绍》,本次CM-MS开发的主要概念是“功能整合、自动化操作、具灵活性以对不同研究目的支持”,而自动化是本次开发最主要的概念,在今后也会继续研究开发支持客户自主设计不同流路的仪器,以满足不同研究目的的需求。岛津中国开发中心部长岡户孝夫中国农业科学院许柠博士带来了《微流控芯片质谱联用仪器的实验操作和细胞代谢分析》,介绍了微流控芯片细胞分析仪器的新应用成果,并对应用前景进行了预测。中国农业科学院许柠博士讲习会后,与会人员参观了中国科学院深圳先进技术研究院的实验室,许柠博士现场演示了CM-MS微流控芯片质谱联用仪器的操作。与会人员参观实验室休息时间与会人员沟通交流第十期CM-MS讲习会全体人员合影本次讲习会将微流控芯片-质谱联用细胞分析技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者,与会者纷纷表示受益匪浅。该系统还具备多通道芯片与质谱联用、细胞共培养、细胞形态分析三大特点,有望成为目前最有效的细胞研究手段之一。
  • 清华大学-岛津中国 成功举办第十期微流控芯片质谱联用细胞分析讲习会
    导语自2017年9月起,清华大学联合岛津中国在北京、广州、上海、成都、沈阳等地陆续举办了九期 “微流控芯片质谱联用细胞分析讲习会”,将微流控芯片质谱联用技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者。2021年10月25日,由清华大学-岛津中国联合举办的第十期微流控芯片质谱联用细胞分析讲习会成功在中国科学院深圳先进技术研究院举办,有来自高校、科研所和企业等近30位用户参加。 2016年,清华大学林金明教授课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津合作,开发了新一代细胞微流控芯片-质谱联用细胞分析系统(Cellent CM-MS,Cell Microfluidics-Mass Spectrometry)。该系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成,能够实现多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能。CM-MS的应用领域主要集中在科研、临床、新药开发、环境有毒有害物质与食品营养物质研究等领域。微流控芯片在线分析全过程 会议由岛津中国研发中心副中心长国広沖之致辞。他首先感谢清华大学林金明教授与岛津联合举办此次讲习会,并感谢中国科学院深圳先进技术研究院罗茜研究员在使用细胞微流控芯片-质谱联用细胞分析系统后,给岛津提了很多建议和意见。岛津旨在为用户提供更便利更高效的分析手段,今后也会在仪器改进的道路上继续提高技术。 岛津中国研发中心副中心长国広沖之 本次讲习会首先由清华大学林金明教授做了《微流控芯片质谱联用仪器及其细胞药物代谢研究》专题报告。林教授详细介绍了微流控芯片的研发历程,实现了从传统培养皿到微流控芯片培养细胞的重大转变;带来了新应用分享:基于CM-MS技术的红景天苷减轻BV2小胶质细胞缺氧炎症损伤代谢机制分析;并向大家介绍了开放式微流控单细胞分析方法的建立。 清华大学林金明教授 中国科学院深圳先进技术研究院罗茜研究员带来了《MC-MS研究尼古丁暴露与戒断对小鼠海马神经元细胞的代谢影响》专题报告。详细分享了使用岛津细胞微流控芯片-质谱联用细胞分析系统CM-MS研究尼古丁的实验流程及分析结果。罗茜研究员特别提到岛津LCMS-8060非常适合与微流控芯片仪器联用,用于小分子代谢物分析。 中国科学院深圳先进技术研究院罗茜研究员 岛津中国开发中心部长岡户孝夫带来了《微流控芯片质谱联用仪器的结构和基本性能介绍》,本次CM-MS开发的主要概念是“功能整合、自动化操作、具灵活性以对不同研究目的支持”,而自动化是本次开发最主要的概念,在今后也会继续研究开发支持客户自主设计不同流路的仪器,以满足不同研究目的的需求。 岛津中国开发中心部长岡户孝夫中国农业科学院许柠博士带来了《微流控芯片质谱联用仪器的实验操作和细胞代谢分析》,介绍了微流控芯片细胞分析仪器的新应用成果,并对应用前景进行了预测。中国农业科学院许柠博士 讲习会后,与会人员参观了中国科学院深圳先进技术研究院的实验室,许柠博士现场演示了CM-MS微流控芯片质谱联用仪器的操作。 与会人员参观实验室休息时间与会人员沟通交流第十期CM-MS讲习会全体人员合影 本次讲习会将微流控芯片-质谱联用细胞分析技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者,与会者纷纷表示受益匪浅。该系统还具备多通道芯片与质谱联用、细胞共培养、细胞形态分析三大特点,有望成为目前最有效的细胞研究手段之一。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制