当前位置: 仪器信息网 > 行业主题 > >

地下水质检测

仪器信息网地下水质检测专题为您提供2024年最新地下水质检测价格报价、厂家品牌的相关信息, 包括地下水质检测参数、型号等,不管是国产,还是进口品牌的地下水质检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地下水质检测相关的耗材配件、试剂标物,还有地下水质检测相关的最新资讯、资料,以及地下水质检测相关的解决方案。

地下水质检测相关的资讯

  • 17省(区、市)国家地下水监测工程地下水水质监测项目开启招标
    日前,水利部信息中心2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告发布(项目编号:OITC-G220320263-8)。信息显示:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。根据中国政府采购网信息显示,目前天津、江苏、山东、黑龙江、河北、甘肃北京等省市相关的招标信息也已经发布。项目名称:2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-7)2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目共有151个地下水水质监测站,15个同步监测站。项目名称:2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-5)2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目共有125个地下水水质监测站,13个同步监测站。项目名称:2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-6)2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目共有219个地下水水质监测站,22个同步监测站。项目名称:2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-4)2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目共有222个地下水水质监测站,22个同步监测站。项目名称:2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-3)2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目共有265个地下水水质监测站,27个同步监测站。项目名称:2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-2)2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目共有93个地下水水质监测站,9个同步监测站。项目名称:2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-1)2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目共有172个地下水水质监测站,17个同步监测站。
  • 地下水水质监测是治污的重中之重
    国土资源部4月22日发布《2014中国国土资源公报》。2014年全国202个地级市开展了地下水水质监测工作,监测点总数为4896个,其中国家级监测点1000个。  按照《地下水质量标准》(GB/T 14848-93)的监测标准,此次4896个监测点中,优良的有529个,占监测点总数的10.8% 良好的有1266个,占25.9% 较好的有90个,占1.8% 较差的有2221个,占45.4% 极差的有790个,占16.1%。在我们大力推进生态文明建设过程中,&ldquo 地下生态&rdquo 作为生态建设系统的一个方面,同样不可轻视。没有&ldquo 地下生态&rdquo 文明,就没有系统的生态文明,地下水质直接考验我们国家和地区的&ldquo 地下生态&rdquo 治理能力。  在我国各地区大力推进统筹城乡建设发展过程中,&ldquo 地下工程&rdquo 越来越多,&ldquo 地下工程&rdquo 的建设也越来越复杂,如何科学规划、合理布局,既顺应经济社会发展,又不破坏地下生态环境,是我们面临的新课题。笔者认为,地下水质是不可忽视的大问题,地下水质问题直接影响居民的生活质量。优质的地下水不仅能够体现优质的生态环境,同时也是地方生态文明建设的有力见证。反之,被重金属等严重污染的地下水质虽然一时不被人们发现,但是这样的低劣水质绝对不利益居民长期的生产生活,同样也反应了相关部门治理&ldquo 地表&rdquo 不治&ldquo 地底&rdquo ,管&ldquo 天&rdquo 不管&ldquo 地&rdquo 的治理思路。  从《公报》中还可以到这这样一组数据,与上年度比较,有连续监测数据的水质监测点总数为4501个,分布在195个城市,水质有提升的监测点位有751个,占16.7%,变差的监测点有809个,占18.0%,报告以&ldquo 综合变化趋势以稳定为主&rdquo 说明&ldquo 有进步&rdquo ,因为&ldquo 呈变好趋势和变差趋势的监测点比例相当&rdquo 。读罢,笔者不禁要问,为何还有809个监测的水质有变差的现象?换做是地面生态环境治理,就有809个地区的生态环境在持续恶化,这样必定会对相关部门问责,但是因为是地下水,因此就不再追责。然而这恰恰是我们生态环境治理的漏洞,管&ldquo 天&rdquo 不管&ldquo 地&rdquo 的治理思路和治理考核机制的缺失直接考验我国各地区的&ldquo 地下生态&rdquo 治理能力。  笔者认为,生态文明建设是一个系统而全面的工程,凡是影响长远发展的自然环境,都应当是我们各地区治理的重中之重,没有地下的生态,就没有系统的生态,没有优质的地下水,就没有我们可持续发展的基础。
  • 15省正开展地下水监测工程运行维护与地下水质监测
    年初,生态环境部、发展改革委、财政部、自然资源部、住房城乡建设部、水利部、农业农村部7部门联合印发的《“十四五”土壤、地下水和农村生态环境保护规划》中明确提出建立以饮用水水源和国家重点生态区域保护、地下水污染防控为重点的地下水环境监测网。为保障地下水监测站点和地下水自动监测仪的高效运行和发挥作用,掌握区域地下水动态变化规律和水质状况,开展科学研究和科技创新工作。近期,中国地质环境监测院国家地下水监测工程运行维护与地下水质监测(2021-2023)项目公开招标,涉及15个省份共计15个包,项目2022年预算金额3053.69万元,2023年4631.97万元,资金来源为中央财政资金。从招标文件中,我们获悉15个省份近两年地下水监测工作任务,2022年15省共开展 6538处国家地下水监测站点及辅助设施的看护、巡查和维修重建,共开展2456处地下水监测站点样品采集,涉及37项常规指标检测分析。常规指标测试项(37 项)序号测试指标1色(铂钴色度单位)2嗅和味3浑浊度/NTU4肉眼可见物5pH6总硬度(以 CaCO3计)/(mg/L)7溶解性总固体/(mg/L)8硫酸盐/(mg/L)9氯化物/(mg/L)10铁/(mg/L)11锰/(mg/L)12铜/(mg/L)13锌/(mg/L)14铝/(mg/L)15挥发性酚类(以苯酚计)/(mg/L)16阴离子合成洗涤剂/(mg/L)17耗氧量(CODMn法,以 O2计)/(mg/L)18氨氮(以 N 计)/(mg/L)19硫化物/(mg/L)20钠/(mg/L)21亚硝酸盐/(mg/L)22硝酸盐/(mg/L)23氰化物/(mg/L)24氟化物/(mg/L)25碘化物/(mg/L)26汞/(mg/L)27砷/(mg/L)28硒/(mg/L)29镉/(mg/L)30铬(六价)/(mg/L)31铅/(mg/L)32钾/(mg/L)33钙/(mg/L)34镁/(mg/L)35重碳酸根/(mg/L)36碳酸根/(mg/L)37游离二氧化碳(mg/L)
  • 3053万大单!国家地下水监测工程运行维护与地下水质监测(2021-2023)
    项目编号:0733-22171032项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023)预算金额:3053.6900000 万元(人民币)采购需求:1、本次公开招标项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023),共15包,各包均为2022年和2023年一招两年,合同一年一签。资金来源为中央财政资金,其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。2、招标项目概况和简明技术要求及各包预算等如下表:序号分包编号分包名称2022年分包预算(万元)2023年分包预算(万元)(预计金额)主要工作内容/工作量工作周期2022年2023年2022年2023年10733-22171032/1国家地下水监测工程2022年度运行维护(河北省部分)220.30345.74开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展215处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展607处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。2022年5-12月2023年5-12月20733-22171032/2国家地下水监测工程2022年度运行维护(山西省部分)193.07230.13开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展133处地下水监测站点样品采集与37项常规指标检测分析。开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展338处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月30733-22171032/3国家地下水监测工程2022年度运行维护(内蒙古自治区部分)264.49368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展190处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月40733-22171032/4国家地下水监测工程2022年度运行维护(辽宁省部分)161.13297.14开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展166处地下水监测站点样品采集与37项常规指标检测分析。开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展455处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月50733-22171032/5国家地下水监测工程2022年度运行维护(吉林省部分)213.56339.07开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展498处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月60733-22171032/6国家地下水监测工程2022年度运行维护(黑龙江省部分)234.13365.31开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展192处地下水监测站点样品采集与37项常规指标检测分析。开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展496处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月70733-22171032/7国家地下水监测工程2022年度运行维护(江苏省部分)117.66191.38开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展124处地下水监测站点样品采集与37项常规指标检测分析。开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展336处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月80733-22171032/8国家地下水监测工程2022年度运行维护(安徽省部分)189.42313.68开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展115处地下水监测站点样品采集与37项常规指标检测分析。开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展370处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月90733-22171032/9国家地下水监测工程2022年度运行维护(山东省部分)290.78435.76开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展256处地下水监测站点样品采集与37项常规指标检测分析。开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展640处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月100733-22171032/10国家地下水监测工程2022年度运行维护(河南省部分)226.30330.22开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展485处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月110733-22171032/11国家地下水监测工程2022年度运行维护(四川省部分)140.80188.60开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展109处地下水监测站点样品采集与37项常规指标检测分析。开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展277处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月120733-22171032/12国家地下水监测工程2022年度运行维护(陕西省部分)161.60255.13开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展136处地下水监测站点样品采集与37项常规指标检测分析。开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展360处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月130733-22171032/13国家地下水监测工程2022年度运行维护(甘肃省部分)232.77368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展186处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月140733-22171032/14国家地下水监测工程2022年度运行维护(青海省部分)148.70232.91开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展98处地下水监测站点样品采集与37项常规指标检测分析。开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展266处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月150733-22171032/15国家地下水监测工程2022年度运行维护(新疆维吾尔自治区部分)258.98370.40开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展162处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展410处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月合计3053.694631.973、本项目为非专门面向中小企业采购项目,采购标的对应的中小企业划分标准所属行业:《中小企业划型标准规定》(工信部联企业〔2011〕300号)中(十六)其他未列明行业。4、本项目评标、授标均以包为单位。拆包投标或多包合并一个报价投标将被视为无效投标。5、本项目各包均为2022年和2023年一招两年,合同一年一签。其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。6、本项目为国家财政预算投资项目,如因国家政策调整或其他不可抗拒的因素造成预算调整或取消,采购人和招标代理机构将不对投标人和中标人作出任何补偿,请投标人注意风险。合同履行期限:合同签订之日起至2023年12月。本项目( 接受 )联合体投标。
  • 水利部:国家地下水监测工程水质检测分析开始招标
    招标编号:GXTC-1550026)  国家地下水监测工程(水利部分)已由国家批准建设,建设资金已落实,具备招标条件。国信招标集团股份有限公司受水利部水文局(水利部水利信息中心)委托,对国家地下水监测工程(水利部分)成井水质检测分析(一~六标段)进行国内公开招标。请愿意承担本项目的投标人投标。  一、资金来源  本项目资金来源于中央预算内投资。  二、项目概况  根据国家地下水监测工程初步设计报告,水利部门建设任务为建设1个国家地下水监测中心(与国土资源部共建)、7个流域监测中心、32个省级(含新疆生产建设兵团)监测中心、280个地市级分中心,新建改建10298个地下水监测站、相应配套地下水信息自动采集传输处理设备等。本项目对国家地下水监测工程(水利部分)10143个(不含浙江155个)新建与改建监测井成井后的初始水样进行水质检测分析。  国家地下水监测工程(水利部分)成井水质检测分析一标段:  本标段为一标段,包含河南、江西、湖北、湖南、重庆、四川、贵州、云南、西藏等 9省(自治区、直辖市)1620个新建和改建井。  国家地下水监测工程(水利部分)成井水质检测分析二标段:  本标段为二标段,包含陕西、甘肃、青海、宁夏、新疆等5省(自治区)、新疆生产建设兵团和内蒙西部(乌兰察布市、锡林郭勒盟、呼和浩特、包头、巴彦淖尔、鄂尔多斯、乌海、阿拉善盟)的1982个新建和改建井。  国家地下水监测工程(水利部分)成井水质检测分析三标段:  本标段为三标段,包含江苏、安徽、山东等3省1715个新建和改建井。  国家地下水监测工程(水利部分)成井水质检测分析四标段:  本标段为四标段,包含北京、天津、河北、山西等4省(直辖市)2260个新建和改建井。  国家地下水监测工程(水利部分)成井水质检测分析五标段:  本标段为五标段,包含上海、福建、广东、海南、广西等5省(自治区、直辖市)441个新建和改建井。  国家地下水监测工程(水利部分)成井水质检测分析六标段:  本标段为六标段,包含辽宁、吉林、黑龙江等3省和内蒙东部(赤峰、呼伦贝尔、通辽市、兴安盟)2125个新建和改建井。  三、招标内容  对各标段新建和改建井成井后的初始水样进行水质检测分析,了解所在地区地下水的水质状况和背景情况,为工程建设和管理提供基础数据。(详见技术条款:各标段站网分布数量统计表。监测井具体信息在双方签订合同时由招标人提供)。  工作内容与时间要求如下:  (1)收集基础资料,包括但不限于:监测井所在地区经济社会、水资源开发利用、地表水及地下水水质基本情况。本项工作内容应在合同签订后1个月内完成。  (2)投标人在合同签订后15天内提出国家地下水监测工程(水利部分)成井水质检测分析工作方案,工作方案经招标人组织专家审查后实施。  (3)水质取样应在成井抽水试验结束后2小时内完成,同时应以数码照片和视频形式对取样操作过程进行现场记录。样品采集、保存运输、质量保证与质量控制、实验室分析、数据处理等严格遵循《水环境监测规范》(SL219-2013),分析方法选用国家标准分析方法或者水利行业标准分析方法。检测指标共26项,包括《地下水质量标准》(GB/T14848-1993)基本20项:pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、挥发性酚类、高锰酸盐指数、硝酸盐(以N计)、亚硝酸盐(以N计)、氨氮、氟化物、氰化物、汞、砷、镉、铬(六价)、铅、总大肠菌群,以及钾、钠、钙、镁、碳酸根、碳酸氢根等6项天然水化学指标。单井采样结束10天内完成检测分析工作并向招标人提交检测结果电子表和取样操作记录。  (4)在国家地下水监测工程监测井建设单一合同的全部监测井成井后30天内,向甲方提交单一合同全部监测井的检测报告纸质版(带有CMA标志的总检测报告,一式两份,内容应符合《水利质量检测机构计量认证评审准则》、《水环境监测规范》要求)。在本招标标段涉及的所有监测井成井后30天内,向招标人提交《国家地下水监测工程(水利部分) 成井水质检测分析报告》。  (5)按照招标人要求完成重点水质监测井(详见技术条款:各标段站网分布数量统计表。重点水质监测井具体信息在双方签订合同时由招标人提供)样品同步采集、现场处理并寄送至北京大学等工作。  四、投标人资格要求  国家地下水监测工程(水利部分)成井水质检测分析(一~六标段)投标人资格要求:  4.1 本次招标要求投标人必须同时具备下列资格条件:  1. 投标人必须是在中华人民共和国境内注册的具有独立法人资格的企业或事业单位   2. 本项目接受联合体投标,联合体成员单位不得超过两个,组成联合体投标的必须提供联合体投标协议   3. 投标人(或联合体成员之一)必须具有水文水资源调查评价甲级资质,资质业务范围要含有水质监测   4. 投标人(或联合体成员之一)必须具有国家计量认证合格证书,计量认证的项目要包括检测分析要求的26项指标   5. 投标人(或联合体成员之一)近3年(2012年6月1日以来)承担过国家或省区下达的水环境监测任务或大中型水利水电工程水环境监测工作   6. 投标人为本项目设置的项目负责人须具备高级技术职称并从事过水环境监测工作   7. 投标人信誉良好,财务状况能满足本项目实施需要。  4.2 投标人须同时参与上述6个标段的投标,但每位投标人只能在1个标段上中标,投标人应在投标文件中提出优先的意向性标段。  五、投标报名须知  1. 本次招标将采用资格后审方式   2. 法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司,不得单独同时投标,否则取消其投标资格,但可以组成联合体投标 招标人及招标代理机构的附属机构和控股公司,或者与招标人及招标代理机构有隶属关系的单位不得参与本招标项目所有标段投标,否则取消其投标资格   3. 投标人必须同时对六个标段进行投标,但只能在一个标段上中标 投标人应在投标文件中提出优先的意向性标段,否则取消投标人(包括有关联合体各方)的投标资格 联合体各方签订共同投标协议后,不得再以各自名义单独投标,也不得组成新的联合体在同一标段中投标,否则取消有关联合体各方的投标资格 联合体对多个标段投标的,联合体成员单位不得发生变化,否则取消所有有关联合体各方的投标资格   4. 投标人必须向招标代理机构购买招标文件并登记备案,未向招标代理机构购买招标文件并登记备案的潜在投标人均无资格参加投标   5. 投标报名时间:2015年9月7日至2015年9月11日止,每天9:00-16:00(北京时间)   6. 投标报名地点:北京市海淀区首体南路22号国兴大厦11层   7. 投标报名须出示:营业执照(复印件) 组织机构代码证(复印件) 法人授权委托书(原件) 被授权人身份证(原件及复印件)。  六、招标文件获取  招标文件于投标报名时获取,招标文件售价1000元人民币,售后不退。招标文件获取地点为北京市海淀区首体南路22号国兴大厦11层。  七、投标截止时间和开标时间  2015年9月29日上午9时30分整(北京时间)。届时请参加投标的代表出席开标仪式。  八、开标地点  北京市海淀区车道沟1号院青东商务区B座5层多功能厅。  九、投标文件的递交  投标文件须密封后于开标当日投标截止时间前递至开标地点。逾期送达或不符合规定的投标文件恕不接受。  招标人名称:水利部水文局(水利部水利信息中心)  地 址: 北京市西城区白广路二条二号  电 话: 010-63207013 010-63202416  传 真: 010-63207027  联 系 人:高先生、袁先生  招标代理机构名称:国信招标集团股份有限公司  地址:北京市海淀区首体南路22号国兴大厦10层  电话:13720096233、13611365550  传真:010-88356673  联系人:辛颖、张露露  开户银行及帐号:  户 名:国信招标集团股份有限公司  开户银行:中信银行首体南路支行  帐 号:7112510182600005361  联行行号:302100011251
  • 近600万!2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目
    项目编号:OITC-G220320263-8项目名称:2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目预算金额:586.6600000 万元(人民币)最高限价(如有):586.6600000 万元(人民币)采购需求:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 国家地下水监测工程水质检测中标结果公布 总投资2120万元
    p  2014年开始投资20亿的国家地下水监测工程工作正式开始,此项目由国土资源部和水利部共同承担。水利部分监测井建设已陆续开始,日前水利部水文局对“国家地下水监测工程(水利部分)成井水质检测分析项目”进行招标,招中标结果显示,共有7家单位对10143个监测井的水质进行检测,总费用为2120万元。/pp  中标公告如下:/pp  国信招标集团股份有限公司受水利部水文局(水利部水利信息中心)的委托对国家地下水监测工程(水利部分)成井水质检测分析项目进行了国内公开招标,评标工作已经结束,现将评标结果公告如下:/pp  采购项目名称:国家地下水监测工程(水利部分)成井水质检测分析项目/pp  招标编号:GXTC-1550029/pp  采购方式:公开招标/pp  招标公告日期:2015年9月22日/pp  采购人全称:水利部水文局(水利部水利信息中心)/pp  采购人地址:北京市西城区白广路二条二号/pp  采购人联系人: 高先生/pp  采购人联系方式:010-63207013/pp  采购代理机构全称:国信招标集团股份有限公司/pp  采购代理机构地址:北京市海淀区首体南路22号国兴大厦10层/pp  采购代理机构联系方式:010-68092166/pp  招标内容:对各标段新建和改建井成井后的初始水样进行水质检测分析,了解所在地区地下水的水质状况和背景情况,为工程建设和管理提供基础数据。/pp  简要技术要求:/pp  (1)收集基础资料,包括但不限于:监测井所在地区经济社会、水资源开发利用、地表水及地下水水质基本情况。本项工作内容应在合同签订后1个月内完成。/pp  (2)投标人在合同签订后15天内提出国家地下水监测工程(水利部分)成井水质检测分析工作方案,工作方案经招标人组织专家审查后实施。/pp  (3)水质取样应在成井抽水试验结束后2小时内完成,同时应以数码照片和视频形式对取样操作过程进行现场记录。样品采集、保存运输、质量保证与质量控制、实验室分析、数据处理等严格遵循《水环境监测规范》(SL219-2013),分析方法选用国家标准分析方法或者水利行业标准分析方法。检测指标共26项,包括《地下水质量标准》(GB/T14848-1993)基本20项:pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、挥发性酚类、高锰酸盐指数、硝酸盐(以N计)、亚硝酸盐(以N计)、氨氮、氟化物、氰化物、汞、砷、镉、铬(六价)、铅、总大肠菌群,以及钾、钠、钙、镁、碳酸根、碳酸氢根等6项天然水化学指标。单井采样结束10天内完成检测分析工作并向招标人提交检测结果电子表和取样操作记录。/pp  (4)在国家地下水监测工程监测井建设单一合同的全部监测井成井后30天内,向甲方提交单一合同全部监测井的检测报告纸质版(带有CMA标志的总检测报告,一式两份,内容应符合《水利质量检测机构计量认证评审准则》、《水环境监测规范》要求)。在本招标标段涉及的所有监测井成井后30天内,向招标人提交《国家地下水监测工程(水利部分)成井水质检测分析报告》。/pp  (5)按照招标人要求完成重点水质监测井(详见技术条款:各标段站网分布数量统计表。重点水质监测井具体信息在双方签订合同时由招标人提供)样品同步采集、现场处理并寄送至北京大学等工作。/pp  详细技术要求见招标文件。/pp  一标段:/pp  中标供应商名称:长江水利委员会水文局长江上游水文水资源勘测局与长江水利委员会水文局汉江水文水资源勘测局联合体/pp  中标供应商地址:重庆市江北区海尔路410路/湖北省襄阳市襄城区琵琶山路6号1幢/pp  中标金额:3802500.00元人民币/pp  二标段:/pp  中标供应商名称:黄河流域水环境监测中心/pp  中标供应商地址:郑州市金水区城北路东12号/pp  中标金额:4214781.00元人民币/pp  三标段:/pp  中标供应商名称:淮河流域水资源保护局淮河流域水环境监测中心/pp  中标供应商地址:安徽省蚌埠市治淮路500号/pp  中标金额:3189709.00元人民币/pp  四标段:/pp  中标供应商名称:海河流域水环境监测中心/pp  中标供应商地址:天津市河东区龙潭路15号/pp  中标金额:4337000.00元人民币/pp  五标段:/pp  中标供应商名称:中国水利水电科学研究院/pp  中标供应商地址:北京市海淀区车公庄西路20号/pp  中标金额:1123200.00元人民币/pp  六标段:/pp  中标供应商名称:松辽流域水资源保护局松辽流域水环境监测中心/pp  中标供应商地址:长春市朝阳区红旗街道办事处工农大路888号/pp  中标金额:4528000.00元人民币/pp  定标日期: 2015年10月15日/p
  • 环保部:全国地下水水质监测57.3%为“差”
    环保部公布2012年环境公报,六成地级以上城市空气质量不达标,新标准纳入PM2.5达标率降低  今天是&ldquo 世界环境日&rdquo ,环保部昨日公布了《2012中国环境状况公报》。对于去年全国环境质量状况,环保部表示总体保持平稳,但形势依然严峻:超过30%的河流和超过50%的地下水不达标 空气质量方面,325个地级城市中,有59.1%的城市不符合新的空气质量标准,113个环保重点城市的不达标率更是达到76.1%。     PM2.5相关指标下降  公报称,我国污染物总量排放均有所下降。环保部强制要求减排的四项污染物,和废水相关的化学需氧量和氨氮,均较去年有所减少,和废气相关二氧化硫和氮氧化物,也比上一年降低。  在2011年,和PM2.5关系密切的氮氧化物排放总量当年有所上升,环保部曾解释这与该指标刚刚增加,尚未达到减排节点有关。去年,全国氮氧化物的排放量也开始全面下降。  但是,排放的废水废气减少,不代表环境质量改善。根据《公报》,2012年,全国325个地级市及以上城市,如果用新的空气质量标准衡量,达标城市比例仅40.9%,113个环保重点城市的达标率更是只有23.9%。  农村饮用水源受污染  对于水环境,环保部称&ldquo 质量不容乐观&rdquo ,针对全国798个村庄的农村环境质量试点监测结果表明,农村饮用水源和地表水受到不同程度污染。  此外,环保部认为,农村环境问题日益显现,突出表现为工矿污染压力加大,生活污染局部加剧,畜禽养殖污染严重等。  去年,环保部批复了240个项目的建设项目环境影响评价,涉及总投资近1.4万亿元,其中基础设施和民生工程有79个,约占总投资的一半,有24个项目被退回环评,不予审批或暂缓审批,涉及总投资1000多亿元。  今年世界环境日中国主题为&ldquo 同呼吸 共奋斗&rdquo ,重点关注以防治PM2.5为重点的大气污染防治工作。  ■ 数说  水环境  在198个城市4929个地下水监测点位中,优良-良好-较好水质的监测点比例为42.7%,较差-极差水质的监测点比例为57.3%。农村地区的水环境问题更为严重,试点村庄饮用水源地的水质达标率仅77.2%,地下水饮用水源地水质达标率仅70.3%。地表水达标率只有64.7%。  点评:人民大学环境学院院长马中表示,水污染与污水排放量过大有关,虽然目前国家对废水的化学需氧量和氨氮进行了控制,但总量控制目标依然远远低于环境承载能力,&ldquo 每年降百分之几的远远不够&rdquo 。  空气质量  2012年,国家制定了新的环境空气质量标准,从今年开始,有74个城市开始执行新标准,采用PM2.5、臭氧为主的新评判方式,但在去年,还没有城市进行PM2.5监测。  即使如此,环保部也分别用新、旧两套标准对不同城市2012年的空气质量进行了衡量。325个地级及以上城市中,根据旧版空气质量标准,有91.4%的城市达标,但根据新的标准,达标城市比例仅40.9%。  点评:中国环科院副院长柴发合认为,在还没有纳入PM2.5和臭氧标准的时候,达标率在新标准面前就已经下降了那么多,在纳入新指标后,达标率变得更低是完全有可能的。
  • 全国地下水质近六成监测结果为“差”
    4月22日发布的《2013中国国土资源公报》显示,全国203个地市级行政4778个地下水水质监测点,接近六成监测结果为较差和极差级。  在第45个世界地球日发布的这一公报称,2013年全国203个地市级行政区开展了地下水水质监测工作,监测点总数为4778个,其中国家级监测点800个。依据《地下水质量标准》(GB/T14848-93),综合评价结果为水质呈优良级的监测点为498个,占全部监测点的10.4% 水质呈良好级的监测点为1287个,占26.9% 水质呈较好级的监测点为148个,占3.1% 水质呈较差级的监测点为2095个,占43.9% 水质呈极差级的监测点为750个,占15.7%。主要超标组分为总硬度、铁、锰、溶解性总固体、&ldquo 三氮&rdquo (亚硝酸盐氮、硝酸盐氮和铵氮)、硫酸盐、氟化物、氯化物等,个别监测点存在重(类)金属铅、六价铬、砷等超标现象。  与上年比较,有连续监测数据的水质监测点总数为4196个,分布在185个城市,其中水质综合变化呈稳定趋势的监测点有2795个,占监测点总数的66.6% 呈变好趋势的监测点有647个,占15.4% 呈变差趋势的监测点有754个,占18.0%。总体来看,2013年度在全国有连续监测数据的水质监测点中,地下水水质综合变化趋势以稳定为主,呈变好趋势和变差趋势的监测点比例相当。
  • 过度开采且污染严重 地下水水质如何监测?
    3月22日是刚刚过去的“世界水日”,今年世界气象日的主题又是“气候与水”,水环境的污染和治理似乎已经受到越来越多人的重视。日常生活中,当我们提起水质安全时,脑海中浮现出来的总是饮用水、河流、湖泊甚至是海洋等地表水,而作为全球水系统中极其重要的地下水,往往很容易被忽略。狭义上的地下水是指地面以下各种岩石空隙中的水,包括地下水面以下饱和含水层中的水。在《水文地质术语》中,地下水是指埋藏在地表以下各种形式的重力水。虽然埋藏于地表之下,难以用肉眼观察到。但实际上地下水是一个很庞大的系统,据了解,全球地下水的总量多达1.5亿立方公里,几乎占地球总水量的十分之一,井水和泉水就是我们常见的地下水。作为地球上的重要水体之一,地下水与人类社会有着密切的关系。由于其水量稳定、水质好,因此地下水是农业灌溉、工矿和城市的重要水源之一。尤其是在地表缺水的干旱和半干旱地区,地下水常常成为当地的主要用水来源。而一些含有特殊化学成分或水温较高的地下水,还可用作医疗、热源、饮料和提取有用元素的原料。然而,在我国大气“阴霾”尚未全然散退之时,地下水也同样面临着严重的开采和污染危机。近10年来我国地下水供水量每年约1000亿—1100亿立方米,约占全国供水总量的18%,全国年均超采近170亿立方米。与此同时,工业废水与生活污水的大量入渗,也严重威胁着地下水的水质安全。根据有关部门的相关监测,我国约有64%的城市地下水遭受着严重污染。因此,加强地下水系统的保护、科学治理以及有效监管,对于确保我国城乡居民用水安全,有效改善地下水的可持续发展策略具有重要的意义。但由于我国地下水开采时间长且程度深,再加上地下水的流动性及其系统的复杂性,导致地下水的检测要比地表水及其它水体的检测更加困难,对技术的要求也更高。所以地下水的检测,离不开现代科学仪器和分析技术的支撑。在地下水检测之前,需要对地下水先进行采样。伴随着监测技术的不断发展,更多不同类型的地下水采样设备已经被研制出来,有包括自动水质采样器、全自动多功能地下水采样器、智能地下水采样器等采样设备和系统。根据结构不同,还可以分为取样筒式采样器、惯性式采样器、气体驱动式采样器、潜水电泵式采样器。采样的目的是为了进行更加准确的分析。事实上,现在的水质分析是相当完备的,而且水质分析的方法也正在逐步向连续化、自动化方向发展。重金属分析仪、多参数水质分析仪、水质毒性分析仪、余氯分析仪、水中VOC检测仪、氨氮测定仪以及污染指数测定仪等仪器仪表共同组成了地下水的监测网络。作为人类宝贵的自然资源,那些埋于地底、不为人知的地下水和地表水一样弥足珍贵。从长远利益出发,我们有必要了解地下水的污染状况、途径和原因,制定科学的防治对策,保护地下水的安全。24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系我们网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 252.8万!海委水文局地下水测站水质样品检测项目
    项目编号:HWSWJHT2022-032项目名称:海委水文局地下水测站水质样品检测预算金额:252.8000000 万元(人民币)最高限价(如有):252.8000000 万元(人民币)采购需求:主要工作内容包括配合甲方开展海河流域565个地下水测站(包括25个地下水水源地取水口、186个保留生产井、354个国家地下水监测工程监测井)水质样品采集的有关协调工作,完成海河流域790个地下水样品的实验室检测分析,检测指标为《地下水质量标准》(GB/T14848-2017)中39项地下水质量常规指标:色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量(CODMn法)、氨氮、硫化物、钠、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、甲苯、总α放射性、总β放射性。出具地下水水质样品检测报告和相关数据。合同履行期限:自合同生效之日起1年本项目( 不接受 )联合体投标。
  • 商机!1344个国家地下水监测站监测系统运维和水质监测项目亟待采购
    p  7月13日,中国政府采购网发布两项水利部信息中心相关采购公告,分别是“水利部信息中心2020年河北省国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测项目公开招标公告”和“水利部信息中心2020年安徽省国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测项目公开招标公告”,这两个项目的预算分别为718.2万元和320.26万元。详情如下:/pp  strongspan style="color: rgb(0, 112, 192) "项目一概况:/span/strong/pp  项目编号:OITC-G200321042/pp  项目名称:2020年河北省国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测项目/pp  采购人信息/pp  名 称:水利部信息中心/pp  地址:北京市西城区白广路二条2号/pp  联系方式:王女士 010-63207004/pp  采购代理机构信息/pp  名 称:东方国际招标有限责任公司/pp  地 址:北京市海淀区西三环北路甲2号院北理工科技园6号楼13层01室/pp  联系方式:窦志超010-68290502/pp  项目联系方式/pp  项目联系人:窦志超/pp  电 话:010-68290502/pp  预算金额:718.2 万元(人民币)/pp  主要工作任务包括:/pp  1、954个地下水监测站全年信息报送。省级节点的全年到报率、省级节点到中央节点信息交换率和完整率原则上不低于95% 复核并及时更新监测站基础信息,确保高程等信息准确 全年运行维护量化考核评分原则上不低于90分。/pp  2、954个地下水监测站设施设备看护,保证监测站资产安全。/pp  3、954个地下水监测站自动监测仪器现场校测(含部分新建站井深测量)。/pp  4、6个水质自动监测站监测仪器校测,执行《水环境检测仪器及设备校验方法》(SL 144.1~11-2008)有关技术要求。/pp  5、监测站通信保障和故障处理。/pp  6、井口保护装置等附属设施养护维护。/pp  7、954个监测站2019年地下水资料整编与刊印。/pp  8、省市地下水监测中心系统运行维护。/pp  9、监测站自动监测设备故障处理技术支持。/pp  10、提供自动监测设备维护所需的备品备件,具备运维管理、设备故障处理所需交通工具。/pp  11、808个监测站采样前抽水等准备工作,提供全部水样容器。/pp  12、808个监测站42项、21个同步监测站93项水质采样。/pp  13、808个监测站、21个同步监测站水样运输(运送、寄送)。/pp  14、808个监测站水质样品进行1次42项水质检测,出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表等。/pp  本项目( 接受 )联合体投标。/pp  获取招标文件/pp  时间:2020年07月13日 至 2020年07月23日/pp  地点:www.o-science.com/pp  方式:登录东方在线www.o-science.com注册并购买/pp  售价:¥600.0 元,本公告包含的招标文件售价总和/pp  投标截止时间:2020年08月03日 13点30分(北京时间)/pp  strongspan style="color: rgb(0, 112, 192) "项目二概况/span/strong/pp  项目编号:AZ20200713-FW0080001/pp  项目名称:2020年安徽省国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测项目/pp  采购人信息/pp  名 称:水利部信息中心/pp  地址:安徽省合肥市/pp  联系方式:姚女士 0551-62128182/pp  采购代理机构信息/pp  名 称:安徽安兆工程技术咨询服务有限公司/pp  地 址:安徽省合肥市滨湖新区云谷路2588号/pp  联系方式:王工 0551-65707329/pp  项目联系方式/pp  项目联系人:姚女士/pp  电 话:0551-62128182/pp  预算金额:320.26 万元(人民币)/pp  主要工作任务包括:/pp  1、390个地下水监测站全年信息报送。/pp  2、390个地下水监测站设施设备看护。/pp  3、390个地下水监测站自动监测仪器现场校测(含井深测量)。/pp  4、4个水质自动站监测仪器校测。/pp  5、390个监测站自动监测仪器通信保障和故障处理。/pp  6、井口保护装置等附属设施养护维护。/pp  7、390个监测站2019年度地下水资料整编与刊印。/pp  8、省市地下水监测中心系统运行维护。/pp  9、监测站自动监测设备故障处理技术支持。/pp  10、提供省中心管理、市(地)分中心管理及故障处理所需交通工具及自动监测设备维护相应的备品备件。/pp  11、314个监测站、8个同步监测站采样前抽水等准备工作。/pp  12、314个监测站42项、8个同步监测站93项的水质采样。/pp  13、314个监测站42项、8个同步监测站水样运输(运送、寄送),抽水洗井应达到采样相关规范要求,提供全部水样容器。/pp  14、314个水质样品进行1次42项指标水质检测,并出具水质检测报告、质控报告、水质分析评价报告,提供水质监测数据汇总表等。/pp  获取招标文件/pp  时间:2020年07月13日 至 2020年07月28日/pp  地点:http://www.anzhaobid.com/jyxx/002003/002003001/list.html/pp  方式:网上下载/pp  售价:¥600.0 元,本公告包含的招标文件售价总和/pp  投标截止时间2020年08月03日 09点30分(北京时间)/pp附:/pp style="text-align: center "  地下水水质检测指标一览表(42项)/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse" align="center"tbodytr style=" height:18px" class="firstRow"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="font-family: arial, helvetica, sans-serif "strongspan style="color: black "序号/span/strongstrongspan style="color: black "/span/strong/span/p/tdtd width="220" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="font-family: arial, helvetica, sans-serif "strongspan style="color: black "指标/span/strong/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="font-family: arial, helvetica, sans-serif "strongspan style="color: black "序号/span/strong/span/p/tdtd width="212" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="font-family: arial, helvetica, sans-serif "strongspan style="color: black "指标/span/strong/span/p/td/trtr style=" height:21px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "1/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "色度(铂钴色度单位)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "22/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "菌落总数CFU/100mL)/span/p/td/trtr style=" height:34px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "2/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "嗅和味/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "23/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "亚硝酸盐(以N计,mg/L)/span/p/td/trtr style=" height:34px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "3/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "混浊度/NTUsupa/sup/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "24/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "硝酸盐(以N计,mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "4/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "肉眼可见物/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "25/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "氰化物(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "5/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "pH值/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "26/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "氟化物(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "6/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "总硬度(以CaCO3计,mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "27/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "碘化物(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "7/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "溶解性总固体(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "28/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "汞(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "8/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "硫酸盐(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "29/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "砷(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "9/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "氯化物(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "30/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "硒(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "10/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "铁(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "31/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "镉(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "11/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "锰(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "32/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "铬(六价)(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "12/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "铜(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "33/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "铅(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "13/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "锌(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "34/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-family: arial, helvetica, sans-serif "span style="color: black "三氯甲烷(/spanspan style="font-size: 13px color: black "μg/spanspan style="color: black "/L)/span/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "14/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "铝(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "35/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-family: arial, helvetica, sans-serif "span style="color: black "四氯化碳(/spanspan style="font-size: 13px color: black "μg/spanspan style="color: black "/L)/span/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "15/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "挥发性酚类(以苯酚计)(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "36/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-family: arial, helvetica, sans-serif "span style="color: black "苯(/spanspan style="font-size: 13px color: black "μg/spanspan style="color: black "/L)/span/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "16/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "阴离子表面活性剂(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "37/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-family: arial, helvetica, sans-serif "span style="color: black "甲苯(/spanspan style="font-size: 13px color: black "μg/spanspan style="color: black "/L)/span/span/p/td/trtr style=" height:36px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "17/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "耗氧量(CODMn法,以Osub2/sub计,mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "38/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "钾(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "18/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "氨氮(以N计,mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "39/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "钙(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "19/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "硫化物(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "40/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "镁(mg/L)/span/p/td/trtr style=" height:18px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "20/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "钠(mg/L)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "41/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "碳酸根(mg/L)/span/p/td/trtr style=" height:40px"td width="72" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "21/span/p/tdtd width="229" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "总大肠菌群(MPNsupb/sup/100mL或CFUsupc/sup/100mL)/span/p/tdtd width="45" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="color: black font-family: arial, helvetica, sans-serif "42/span/p/tdtd width="221" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:left"span style="color: black font-family: arial, helvetica, sans-serif "重碳酸根(mg/L)/span/p/td/trtr style=" height:18px"td width="575" colspan="4" valign="bottom" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-size: 15px color: black font-family: arial, helvetica, sans-serif "a NTU为散射浊度单位。/span/p/td/trtr style=" height:18px"td width="575" colspan="4" valign="bottom" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-size: 15px color: black font-family: arial, helvetica, sans-serif "b MPN表示最可能数。/span/p/td/trtr style=" height:18px"td width="575" colspan="4" valign="bottom" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:left"span style="font-size: 15px color: black font-family: arial, helvetica, sans-serif "c CFU表示菌落形成单位。/span/p/td/tr/tbody/tablepbr//p
  • 广电计量守护地下水环境安全 2022年国家地下水监测项目通过验收
    近日,水利部信息中心在北京组织专家组,对2022年国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测(水质部分第二批)项目召开线上合同验收会。业主单位水利部信息中心和验收专家听取广电计量验收汇报。专家组一致评价:项目采样过程严谨,质量控制措施合理,成果材料完整,同意通过验收。   “十四五”时期,国家明确建立以“水生态系统健康”指标为核心,以“水生态保护”“水环境保护”和“水资源保障”三方面指标为支撑的指标体系,着力推动水生态环境保护由污染治理为主,向水生态、水资源、水环境等要素协同治理、统筹推进转变。   根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文[2022]79号)任务安排,广电计量继圆满完成“2021年北京等17省(市、区)国家地下水监测工程(水利部分)地下水水质监测项目”后,再度承接2022年山西等18省地下水监测、调查与评估工作。任务总计1112眼国家地下水监测工程(水利部分)监测井,主要分布于东北、华南、西南、西北、华中18个省(市、自治区),任务覆盖面积占全国国土总面积71%。   面对点位分布散、时间紧、任务重的挑战,公司的全国一体化管控为项目顺利开展打下了坚实基础。广电计量统一调度8个计量检测基地共计162人组建了项目服务团队,服务过程统一调度、多地协同,为顺利推进实施计划提供了重要技术保障。期间,技术人员克服南方夏季高温酷暑,西藏地区高原反应等自然环境带来的不利影响,经合理安排采样计划,顺利完成安徽、新疆、云南等时值疫情区域的采样任务。   不同于常见的地表水监测任务,地下水监测对在线监测设备的取放方法、洗井设备(泵)的选择及采样时间等都有特殊要求。为确保项目完成质量,保障团队实行“公司、计量检测基地、项目组”三级质量保障措施和综合保障体系,确保各项工作既能严格落实质量控制,保证所得检测数据准确可靠,又能高效协同不误进度。最终,项目采样工作较合同要求时间提早10天完成,为项目后续检测及成果汇总工作提供了时间保障。   作为国有上市的第三方技术服务机构,广电计量在生态环境领域的服务能力覆盖水质、空气废气、噪声、土壤、固废、电磁辐射等领域,可提供全面的环境检测和技术服务,是国家、省部级水质监测分析、土壤修复评估检测服务、农田污染综合管理检测等重大项目的承接和技术支撑单位。   广电计量近年来承担了国家部委及广东、湖南、河南、辽宁、广西、安徽、内蒙古、吉林等多个省份的水资源环境调查服务项目,以强有力的检测技术支撑,为政府部门科学开展水质评价、打赢“碧水保卫战”作出积极贡献。后续,广电计量将继续夯实项目经验及检测能力,为监管部门提供强有力的技术支撑保障,为生态环境管理、区域环境调查提供专业、全面的技术服务,积极履行国企在生态环境保护事业中的责任担当,为守护蓝天、碧水、净土,建设美丽中国贡献技术力量!
  • 国土资源部公开地下水监测数据
    2月25日,北京律师黄乐平等三人致函国土资源部,申请公开全国地下水监测详情。3月25日,三名律师收到书面回复,一并寄达的还有厚达400页的水质报表。专家分析时指出,报表呈现的总体水质状况可能与现实不符,我国目前使用的地下水质量标准仍是20年前的,早已过时,建议重新制定相关标准。  公开 规定期限作出答复  申请信息公开的黄乐平、韩世春和叶明欣,为北京义联劳动法援助与研究中心的律师。  2月25日,三位律师通过电子邮件和EMS快递,向国土资源部申请公开2011年全国200个城市地下水水质监测的各城市的具体结果。申请缘由是:早在2012年5月,国土资源部发布《2011年中国国土资源公报》,公布了2011年地下水监测概况,但没有详细数据。  3月22日,黄乐平等三人尚未收到回复。三人“以为国土资源部不予回复”,遂委托北京义贤律师事务所发出律师函,恳请予以答复。律师函发出3天,三人收到信息公开告知书。  《告知书》落款时间为3月18日,落款为国土资源部政府信息公开工作办公室(国土资源部办公厅(代章))。  其内容称,2月27日收到申请,该部依法受理,根据《政府信息公开条例》作出答复。根据《政府信息公开条例》第二十四条,行政机关收到政府信息公开申请,不能当场答复的,应当自收到申请之日起15个工作日内予以答复。以此推算,国土资源部的回复是在15个工作日内作出的。  对此,该申请项目的执行人叶明欣认为,国土资源部的回应很及时。  涉及八百个监测点  与回函同时寄达的,还有厚达400多页的资料,全称为《2011年度国家级监测点地下水水质监测数据报表》(以下简称《报表》)。该报表由国家级地下水监测数据采集项目组制作,完成于2012年5月。  《报表》前言介绍,该表是依据我国31个省级地质环境监测总站(院、中心)上报的2011年度国家级监测点地下水水质监测数据汇编而成,监测点主要分布在全国31个省(自治区、直辖市)的151市,其中,包含地级以上市139个,区、县级市12个,共计800个监测点,2万余条检测数据。  《公告书》解释,2011年《国土资源公报》关于200个城市地下水水质的表述,是该部根据800个国家级监测点数据,通过与各省(区、市)国土资源部主管部门进行地下水监测成果会商得出的。  检测标准未予说明  《报表》统计表显示,全国800个监测点中,北京为26个,上海为14个。监测点数量较多的,依次为安徽省66个,吉林省63个,山东省60个。监测点数量最少的是山西省、江苏省和新疆,均为5个。  昨天,记者查看各监测点的地下水水质报表,每张报表中的检测指标共计36项,每个分析项目,对应相应的检测结果,但每个数据是否超标,表格上未明确体现,需要查询相关标准对照。  此外,每份报表并无水质情况的综合结果,因此,简单翻看表格,并不能得出某个监测点水质的直观结论。  对于这份报表,黄乐平等人同样不能直接解读。黄乐平说,专业数据显得枯燥,普通人不易消化。因此,他们将邀请环保专家及研究人员参与解读,分析这些数据可能呈现的地下水水质污染问题。  “2011年《国土资源公报》关于200个城市地下水水质的表述,只有一张纸。从400页到一页纸的结论,应该有份说明。”黄乐平说,在分析完《报表》后,下一步,可能会申请公开相关数据的计算标准和详细的分析报告。  同时,黄乐平也建议,希望国土资源部进一步在网站上公开《报表》资料,方便全国公众查阅,以了解身边地下水水质的情况。  分析 部分重要指标未呈现  昨天,知名环保专家、中国环境科学研究院研究员赵章元查阅了这份《报表》。赵章元表示,这份资料很难得,国土资源部也从未公开过,“我本人也没有查到过”。由于《报表》数据庞杂,赵章元表示,需要仔细研究后,才能得出结果。  赵章元初步分析,《报表》检测的项目,使用的是国家技术监督局1993年制定的《地下水质量标准》(以下简称《标准》)。该标准中,地下水质量的分类指标共有39项,而国土资源部此次公开的《报表》中,监测数据为36项指标,包括《标准》中的23项。已监测的另外13项,则不在标准中。  资料显示,《标准》中的39项指标,有16项不在公布的范围内,包括总大肠菌群、细菌总数、滴滴涕(DDT)等。而总大肠菌群和细菌总数,却是水污染常规分析指标,反映水体受到生物性污染的程度。  赵章元指出《报表》的不足:“像钾离子、钠离子等一些物质,属于无关紧要的,不测也可以,但大肠杆菌和细菌总数,是必须要测的,但《报表》中却没呈现。”  部分地方水质检测缺项多  《报表》显示,各城市的监测点,很多指标的检测结果为空白。而据《报表》前言介绍,空白“表示缺失该项信息。”  其中,北京一共有8个区县、26个监测点。但36项指标中,只有25项有对应的数据,有11项为空白,“重金属如铅、镉等物质,都没有检测。”  资料还显示,在其他城市中,宁夏银川市的监测点可能是最完整的报表。表格中包括34项指标,仅空缺两项。而丹东市的部分监测点则仅有14项检测结果,空缺22项。  “有的地方水质检测缺项太多,这样的检测是起不到作用的,有一项没有数据,都没有办法计算出水质的总体情况。”赵章元说,缺失的信息,很可能是没检测,而官方公布的水质概况却建立在这些数据的基础上,由此,其可信度大打折扣。  建议 更新水质检测标准  赵章元介绍,之前,国家公布的地下水重污染占64%,轻污染的占33%。而根据2011年《国土资源公报》的数据显示,污染较差和极差的水质一共占到了55%,从数据上来说水质是变好了很多。  但赵章元认为,水质好转与实际情况可能不符。“近年来,各地水污染事件频发。企业污水排放的总量在增加,环保部门的有效措施却很少看到。”他分析,结论和现实的误差,可能出现在实测项目和计算上。  赵章元指出,1993年制定《标准》时,主要的污染物是无机物,而如今最大的污染来自有机物,“但《标准》中,没有有机物的监测项,比如石油烃。20年没有改变,根本跟不上水质变化的速度。这说明标准本身已经过时了,应该重新制定。”  相关新闻:律师申请公开地下水监测详情
  • 地下水现场必检项目如何选仪器?——《地下水环境监测技术规范》(HJ 164-2020)解读
    一、背景介绍地下水的利用与开采是工业用水的重要来源,为了保护地下水水质和防治地下水污染,做好地下水环境的监测工作是重中之重。《地下水环境监测技术规范》(HJ 164-2020)为首次修订,将于于2021-03-01 实施。在《地下水环境监测技术规范》(HJ/T 164-2004)的基础上,结合十余年地下水污染物监测方法的更新情况和全国实际应用经验进行修订完善,增加了监测井布设、建设和管理等适应当前地下水环境监测需求的内容。该标准的发布实施,将进一步规范地下水环境监测工作,为水污染防治提供有力的技术支撑。 二、标准介绍1. 《地下水环境监测技术规范》(HJ 164-2020)地下水环境监测时的气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等监测项目为每次监测的现场必测项目。2. 《地下水质量标准》(GB/T 14848-2017)地下水质量检测指标推荐分析方法(部分)序号检测指标推荐分析方法1浑浊度散射法2pH玻璃电极法3. 《地下水质检验方法》(DZ/T 0064系列)序号检测指标分析方法标准名称1电导率电极法DZ/T 0064.7-19932氧化还原电位电极法DZ/T 0064.7-1993 三、仪器配置方案●《地下水环境监测技术规范》(HJ 164-2020)要求的必检项目:气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等。●“雷磁”提供2种现场检测方案:方案1:配置便携式检测箱,现场取样检测。检测箱配置满足水温、pH、溶解氧、电导率、氧化还原电位、浑浊度的测量,可以选配嗅和味、肉眼可见物的检测配置。方案2:配置便携式检测箱,现场原位检测。检测箱内置DZB-715便携式原位水质检测仪和配套试剂,可以直接投入监测点进行原位测定,满足水位、水温、pH、溶解氧、电导率、氧化还原电位和浑浊度的原位检测。现场必检项目雷磁仪器配置方案测试项目检测方法现场监测仪器型号及名称(方案1)现场监测仪器型号及名称(方案2)水位//DZB-715型原位水质监测仪水温电极法DZB-718L型便携式多参数分析仪(选配ORP电极)pH玻璃电极法氧化还原电位电极法溶解氧电极法电导率电极法浑浊度散射法WZB-175型便携式浊度计注:其他监测项目,请联系销售获取具体方案
  • 自然资源部国家地下水监测工程收官
    p  2019年12月29日,自然资源部国家地下水监测工程收官,自然资源部中国地质调查局在京召开了竣工验收会。由袁道先、王浩、王光谦等14位院士专家组成的专家组验收认为,国家地下水监测工程建设竣工,使我国地下水监测事业产生了质的飞跃,是我国地下水领域具有里程碑意义的标志性成果,标志着我国的地下水监测工作迈入国际领先行列。/pp  会上,自然资源部国家地下水监测工程首席专家李文鹏在会上介绍了工程取得的主要成果。他表示,该工程首次构建了国家级地下水三维自动化监测网,以水文地质单元为基本单位,在人口密集区、国家重大工程区、地下水超采区、地面沉降区进行重点监测,实现了对我国主要平原盆地和岩溶含水层地下水水位、水质的有效监测,大幅提高了我国区域性地下水专业监测的能力和水平。/pp  其次,工程运用物联网和北斗通信技术、大数据及云计算技术,研发了集地下水水位水温和大气压监测数据自动采集、自动传输、数据整编、综合分析及数据共享和信息服务为一体的信息应用服务系统。建设完成国家信息中心与省级节点及数据灾备节点之间的专线网络,实现了国家级和省、市等多级地下水监测网的联动管理和数据信息共享服务。/pp  同时,工程建设完成地下水水质测试与质量控制实验室,可分析无机、有机化学指标100余项,满足国家地下水监测网水质测试和质量控制的需求。改建完成的河南郑州地下水均衡试验场、新疆昌吉地下水均衡试验场及秦皇岛海平面综合监测站,将为我国地下水科学和气候变化等综合研究提供科学观测平台和基础数据。/pp  再次,工程编制了地下水水位水质监测网优化、监测井建设材料和工艺等13项地下水监测标准体系,有效带动了省—市级地下水监测网络建设,并将为后续水资源和生态环保监测网的建设提供依据。北京、内蒙古、河南等10个省级监测井建设累计投入资金3.19亿元,建设完成2389个省级监测井。/pp  此外,自然资源部通过工程实施形成了10171个监测站点建设全过程的水文地质勘探成果资料,全面更新了整个监测区的水文地质参数系列,大幅提升了监测区水文地质认识。/pp  据介绍,国家地下水监测工程建设启动于2015年6月,总投资达22亿元,共建设完成20469个监测站点,由自然资源部和水利部共同建设。其中,自然资源部建设完成10171个监测站点。两年试运行结果表明,水位水温自动监测数据到报率保持在95%以上,每年产生8900余万条水位水温数据,水质测试指标从35项扩展到97项,工程总体运行平稳。所获两次全国水质监测数据已应用于并将持续服务于我国地下水保护、国土空间规划和水资源管理,为地下水资源与环境科学研究提供数据基础。/p
  • 国家地下水监测工程建设完成
    p style="text-indent: 2em text-align: justify "从自然资源部中国地质调查局获悉,2018年,由该单位组织实施,31个省级自然资源主管部门和地质环境监测机构配合,自然资源部门国家地下水监测工程建设全面完成,大幅提升了地下水监测的专业化和自动化水平。/pp style="text-indent: 2em text-align: justify "自然资源部门国家地下水监测工程共建成层位明确的国家级地下水专业监测站点10168个,全部安装一体化地下水自动监测设备,实现了全国主要平原盆地和人类活动经济区的地下水水位、水温监测数据自动采集、实时传输和数据接收,与水利部门地下水监测数据实时共享。/pp style="text-indent: 2em text-align: justify "改建完成西北干旱、华北半干旱地区的2个地下水均衡试验场和1个秦皇岛地下水与海平面综合监测站,实现了土壤水负压、潮汐等要素的实时在线监测,提高了土壤水运移、海平面变化等方面的分析研究能力。/pp style="text-indent: 2em text-align: justify "利用云平台和大数据技术,研发了监测信息应用服务系统和三维地下水云计算实时模拟系统,实现了监测数据管理、动态分析、水质水量综合评价与信息发布等功能,建立了国家—省—市县多级数据共享与异地联动的工作模式。/pp style="text-indent: 2em text-align: justify "建成国家地下水监测网络数据中心,与31个省级节点实现互联互通;建成现代化的水质监控实验室,满足《地下水监测网运行维护规范》中规定的100项水质指标测试监控能力,实现对国家地下水质标准93项指标的全覆盖。/pp style="text-indent: 2em text-align: justify "在国家地下水监测工程实施过程中,首次研发并成功实施了承压—自流井监测技术,有效地解决了承压水与无压水转化过程的自动监测问题,有效解决了水样采集、冬季的防冻和洗井清淤难题;完成了基于北斗传输的自动监测站点建设,解决了无移动信号网络覆盖或信号较弱地区监测数据传输问题;编制了12项地下水监测行业标准规范,提出了多要素综合评价的地下水位和水质监测网优化设计方法,总结形成了多层含水层系统的分层监测井建设技术和服务于生态环保的浅部地下水分层监测井建设技术。/pp style="text-indent: 2em text-align: justify "国家地下水监测工程的建设,形成了10168个监测孔的地层编录和抽水试验资料,获取了丰富的水文地质参数,进一步揭示了区域含水层结构特征,深化了区域水文地质条件认识。信息应用服务系统每年产生近9000万条地下水水位、水温、水质数据,将为水资源科学管理、地质环境问题防治、生态文明建设提供重要支撑。/p
  • 【行业动态】GB/T 14848-2017 地下水质量标准
    水是万物之源,人们的日常饮食起居都离不开水。随着我国工业化进程加快,人工合成的各种化合物投入施用,地下水中各种化学组分正在发生变化;为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,国土资源部特制定《地下水质量标准》(GB/T 14848-2017),于2018年5月1日实施;该标准代替《地下水质量标准》(GB/T 14848-1993)。与《地下水质量标准》(GB/T 14848-1993)相比,该标准的变化是水质指标明显增加,由原来的39项增加至93项,增加了54项。调整了20项指标分类限值,直接采用了19项分类限值;减少了综合评价规定,使标准具有更广泛的应用性。 该标准规定了地下水质量分布、指标及限值,地下水质量调查与监测,地下水质量评价等内容地下水质量是指地下水的物理、化学和生物性质的总称。 它包括常规指标和非常规指标的检测。Ø 常规指标:反映地下水质量基本状况的指标,包括感官性状及一般化学指标、微生物指标、常见毒理学指标和 放射性指标。Ø 非常规指标:在常规指标上的拓展,根据地区和时间差异或特殊情况确定的地下水质量指标,反映地下水中所产生的主要质量问题,包括比较少见的无机和有机毒理学指标。 针对该标准中毒理学指标,坛墨质检提供五款混标和一款单标方案,涵盖有机检测项目指标,欢迎大家到坛墨质检商城选购。详细阅读:GB/T 14848-2017标准文件产品名称商城编号溶剂浓度μg/mL规格27种VOC混标GB/T 14848-201781723a甲醇1001mL11种SVOC混标GB/T 14848-201780238GM二氯甲烷1001mL9种PCB混标GB/T 14848-201780247GB正己烷1001mL8种有机氯农药混标GB/T 14848-201780087GA甲醇1001mL11种农药类混标GB/T 14848-201781471a甲苯1001mL 有机物定制混标组分 有机物单标中文名称CAS号商城编号溶剂浓度 μg/mL规格草甘膦1071-83-671257//250 mg71257-100mg100 mg71257-10mg10 mg水中草甘膦BW900145-1000-L水10001.2 mL水中草甘膦BW900145-100-L水1001.2 mL
  • 应用案例 | Evolution环境监测系统应用于地下水质及环境气象监测
    根据意大利第36/2003号法令,对垃圾填埋场和废物处理厂的环境条件以及任何土壤和地下污染需要进行严格监测。尤其是地下水可能会受到渗漏液的污染,因此须要进行准确控制,持续监测水质情况。近期,在意大利南部一个大规模的垃圾填埋场区域内安装了一套大型的Evolution环境监测系统,系统由7个外围监测站点和一套中心气象站组成,7个监测站点分别对应7个监测井。在约800000平方米的区域内,这些站点通过物联网技术进行通信,并将数据发送到云端的控制系统。系统持续监控50多个环境参数,通过APP进行异常状况报警,以便快速处理。为了信息的完整性,系统除了监测水质和气象参数,还把空气质量参数也考虑进来。在此之前,系统已经多次在其他类似应用场景中成功运行,此此成功安装运行再次证明了Evolution环境监测系统的高质量。关于Evolution环境监测系统Evolution环境监测系统,采用模块化高频Evolution数据采集器,可配备wifi模块,实现本地、远传或wifi访问数据采集器查看下载数据。可原位时时监测空气温湿度、温度廓线、辐射温度、水体温度、土壤温度、热通量、土壤三参数、雨量、降水(雪等)类型、地面状态、可见度、风速风向、大气压、气体浓度(CO2/CH4/O3等)、太阳直射、总辐射、净辐射、反射、照度、水位、水质等等参数指标。可应用于气象监测、空气质量监测、地表地下水监测、机场专业监测、路面状况监测、山体滑坡监测等等领域。
  • 监测工程渐行渐近 地下水仍面临多重困局
    p  水是生命之源,也是一种公共产品,地下水质量与每个人息息相关。尽管水利部随后给大家补了一颗“定心丸”,但涉及人口众多,浅层地下水的监测数据堪忧着实令人不安,浅层地下水是否会污染深层地下水等关于地下水水质的追问还应继续。/pp style="text-align: center "img style="width: 400px height: 265px " title="yg3-1470697.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201605/noimg/1009c864-50fe-4316-83db-1fdbfd0799d9.jpg" width="400" height="265"//pp  国土资源部近日发布的最新数据显示,2015年,在全国202个地市级行政区的5118个地下水监测点中,较差级和极差级的水质监测点占的比例超过60%,地下水水质状况并不理想。/pp  其中,水质呈极差级的监测点964个,占18.8%;水质呈较差级的监测点2174个,占42.5%。而水质呈较好级的监测点236个,占4.6%;水质呈良好级的监测点1278个,占25.0%;水质呈优良级的监测点466个,仅占监测点总数的9.1%。/pp  地下水主要超标组分为总硬度、溶解性总固体、铁、锰、氟化物、硫酸盐等,个别监测点水质存在砷、铅、六价铬、镉等重金属超标现象。/pp  此外数据还显示,与上年度比较,有连续监测数据的水质监测点总数为4552个,其中水质综合变化呈稳定趋势的监测点有2837个,占监测点总数的62.3%;呈变好趋势的监测点有795个,占17.5%;呈变差趋势的监测点有920个,占20.2%。/pp strong 地下水污染到底多严重?/strong/pp  而在4月初,一则“我国地下水八成不能饮用”的消息引发强烈关注。此后水利部专门对此进行“辟谣”,称报道中说的水是浅层地下水,而如今的地下饮用水水源大多都是深层的。/pp  那么问题来了,中国的地下水饮用水水源质量到底怎样呢?/pp  根据水利部最新一期《地下水月报》中“监测结果中不适宜人类饮用的IV类水和V类水合计占比为80.2%”这一数据,有媒体将之误读为“我国超八成地下水不能饮用”。一石激起千层浪,这随即被社会舆论所高度关注。/pp  中国科学院水资源研究中心副主任贾绍凤介绍,水利部选择了污染较为严重的地区,监测对象以浅层地下水为主。“但地下水作为我们的水源已经很少了,跟我们喝的水的水源是两回事。”/pp  “近年来,随着浅层地下水的污染,很多地区已经放弃了浅层水源地,开始开采深层地下水。”马军介绍说,但这并不意味着全都换成深层地下水就可以不必担心了。深层地下水不仅也会受到污染,同时很多也是非常有限,并难以有效地补给。/pp strong 十年“联姻”路/strong/pp  自2005年起,水利部和国土资源部开始对“国家级地下水监测工程”共同进行申报,提交一个建议书,分别实施、信息共享。自此,两家开启了十年的漫长“求亲路”。2011年国务院通过国家级地下水监测工程后,水利部和国土资源部亦分别编制可行性报告,逐渐走向“合二为一”。2012年8月,水利部、国土资源部联合向国家发改委提交了《国家地下水监测工程可行性研究报告》。2014年7月22日,国家发改委批复了上述报告。/pp  “技术问题不是主要问题。行政管理职权交叉以及部门之间分工才是主要问题。两部联合行文,比一个部门单独申请,要更加困难。”上述国土资源系统人士这样解释原因,“比方说,水利部有自己的一套管理机制、技术标准,而国土资源部也有自己的标准、规范。”/pp  例如地下水监测规范,某权威媒体通过网络检索,国土资源部有主持编制并发布的《地下水监测井建设规范》(DZ/T0270-2014),而水利部则编制发布有《地下水监测站建设技术规范》(SL360-2006)。/pp  自然,两家联姻也少不了“嫁妆”和“彩礼”。从事地下水监测的一名专家透露,最终国土部门取消了水利部门在打井中所需的繁琐的土地申请审批。而按照此前的项目程序,国土部门建每一个井都要向水利部门申请打井许可证。作为回馈,水利部门省掉了国土部门的打井许可。/pp  根据国家发改委的要求,水利、国土资源两部共同委托中国国际工程咨询公司对《国家地下水监测工程初步设计概算》进行审查,并于2015年5月提交发改委。2015年6月8日,国家发改委核定并正式批复了这一概算 10日,水利部和国土资源部对《国家地下水监测工程初步设计报告》进行批复。自此,经过11年的“磨剑”,地下水监测工程正式开始建设。/pp strong 挑战与破局/strong/pp  早在2011年,环保部就出台了《全国地下水污染防治规划(2011—2020年)》。一年后,2012年10月,环保部公布了《华北平原地下水污染防治工作方案(2012—2020年)》,要求2015年初步建立华北平原地下水质量和污染源监测网、摸清华北平原地下水污染情况,2020年全面监控华北平原地下水环境质量和污染源状况、开展地下水污染修复示范。/pp  但有专家表示,这些方案在现实的执行中却大打折扣。如今,我国依然面临地下水环境保护的法律法规不健全、地下水环境监管能力薄弱、缺乏完善的风险管理体系、地下水修复技术支撑能力不强、治理资金缺乏有效保障等多重困局。/pp  北京师范大学法学院教授陈芬指出,我国目前缺少专项的地下水环境保护法律法规,而且我国规范地下排污方面的法律主要是水污染防治法,但这部法律提出了对地下水环境保护的一般原则,并未明确具体内容和责任,故而在实际中缺乏约束力。/pp  而一名环保部门官员表示,单从地下水的污染防治而论,其职责归环保部门,但地下水的勘探和开发利用又牵涉到住建部和水利部,而环保部门经常与水利部门“打架”,因此这些部门之间如何建立起一个有效的协调机制,将成为一个重大挑战。/pp  不久前,国土资源部部长姜大明表示,将加快实施“国家地下水监测工程”。准备用三年时间,新建改建2万个国家级地下水监测点,覆盖国土面积350万平方公里,实现对全国地下水水质的区域监控和重点地区的实时监控。继续搞好全国地下水污染调查评价,全面摸清全国地下水污染的状况。同时,加强地下水污染防治科技攻关,促进地下水管理的立法工作,完善相关法律法规。/pp  (本文综合央广网、钱江晚报、南方周末、民主与法制时报)/p
  • 从国家地下水监测中心建设看地下水检测仪器需求
    投资22亿的国家地下水监测工程自2015年开始,已经建设三年多,其中一项重要的工作就是建设国家地下水监测中心1个,用来检测地下水水质。经过这两年招标,目前实验室已经购买大批量仪器,此实验室仪器设备应该算是地下水检测设备最齐全实验之一。  仪器信息网小编从国家地下水监测中心实验室招标过程,盘点了地下水检测仪器需求。  目录如下:序号名称采购数量采购品牌1采水器3台2潜水泵5台3过滤器4台4普通显微镜1台5恒温培养箱1台6恒温干燥箱(小)1台7马弗炉1台8快速制备色谱1台9冷藏柜10台10固相萃取仪2台11强力振荡萃取机2台12超声波清洗器1台13电子天平2台14电子天平(万分之一)1台15电子天平(十万分之一)1台16酸度计2台17大肠菌快速测定仪1台18溶解氧测定仪6台19红外测油仪1台20浊度仪1台21总、测定仪1台22原子荧光分光光度计1台23TOC测定仪1台24紫外-可见分光光度计2台25BOD测定仪3台26电位滴定仪2台27实验室lims数据处理系统1套28超高效液相色谱仪1台UPLCH-Class29超高效液相色谱-串联四极杆质谱仪1台OAUPLCOn-LineSPE/XevoTQD30超高效液相离子淌度四极杆飞行时间质谱联用仪1台UPLCI-Class/VIONIMSQTOF31全二维气相色谱-飞行时间质谱联用仪1台Pegasus4D-C32气相色谱仪3台Intuvo900033气相色谱-串联四极杆质谱仪1台7890B-7000D34顶空/气相色谱-质谱仪1台AtomxXYZ/7890B-5977B35实验室分析级纯水系统1套36微波消解仪1台37真空泵3台38旋转蒸发仪2台39有机分析专用烘箱1台40低温高速离心机(大、小)3台41卡尔费休水分测定仪1台42气体采样器1台43氮气发生器2台44便携式多参数水质分析仪3台45氮吹仪2台46同位素仪1台47原子吸收分光光度计1台48离子色谱仪1台49连续流动分析仪1台50电感耦合等离子体原子发射光谱仪1台51气相色谱-质谱仪1台52电感耦合等离子体串联四级杆质谱仪1台53气相色谱-高分辨磁式质谱仪1台54荧光显微镜1台55便携式低流量采样器1台56便携式电动采样泵1台57高压灭菌锅2台58水浴锅3台59消煮炉3台60电热板2台61洗瓶机2台62涡旋混匀仪5台63摇床1台64天平5台65色度仪2台66COD仪(加消解器)2台67浮游生物网5台68恒温平板振动器1台69全温震荡培养箱1台70超净台2台71有机溶剂移液器1支72无机溶剂移液器1支73标签机3台  公开资料显示,仪器总价达4190万。
  • 水位|高海拔地区的地下水监测
    如果问你监测水质意味着什么时,您会想到哪些参数?温度、电导率、pH值、溶解氧和浊度这“五大”参数吗?追踪有害藻华的叶绿素和藻蓝蛋白?以我作为水质仪器经理的经验来看,每当我问这个问题时,“水位”很少是我得到的第一个答案。实际上,在一些圈子中,水位根本不被认为是水质的衡量,而是水量的衡量,被当作一个完全独立的话题来对待。无论你是否相信水位是一个水质参数,水位可能是最重要的,当然也是最广泛的。今天测量的参数,准确的水位测量对于地下水监测、河流和河流测量、湖泊/池塘水位分析、洪水水位记录、灌溉渠道、波浪和潮汐分析都非常重要...不胜枚举。我最近写了气候变化教育的重要性,而水位也与之息息相关。伴随气候变化引发极端天气事件,各地区应对暴雨和洪水、干旱和缺水、海平面上升以及其他与气候相关的问题。此系列文章将重点介绍凭借 Xylem的水位测量实现重要应用的以下三个项目: 地下水监测暴雨监测洪水监测01地下水监测第一个例子来自于我的同事James Chen。James作为YSI的资深水质监测专家,提供从现场应用到销售和业务开发的全方位服务,并曾在世界上最迷人的地方开展工作。例如,James在西藏的拉萨开展过一个项目,监测地下水。出于多种原因,监测地下水水位非常重要,其中包括了解在静态条件和抽水条件下的蓄水层水位、确定水位与当地地表水源的相互作用以及了解地表开发对蓄水层的影响。拉萨被称为“亚洲水塔”,在这样的情况下,James将协助客户监测拉萨的自然资源- 尤其是水质。James用一台EXO1透气式水位主机来完成这项任务。这种仪器的选择至少说明了关于地下水监测的两个非常重要的原则。在传统意义上,水质监测也是一个优先事项。为什么客户要求测量诸如比电导、温度、pH/ ORP和浊度等水质参数,而不仅仅是测量地下水水位?主要原因就是,水量丰富并不代表水源适合饮用。雨水或地表水在渗入地下时会接触受污染的土壤,从那一刻起,雨水或地表水就可能会被污染,并将污染从土壤带到地下水蓄水层。而当液态有害物质通过土壤或岩石渗入地下水时,地下水也可能受到污染。还存在许多其他类型的地下水点源和非点源污染,而在这个项目中,客户需要监测这些威胁。连续监测标准水质参数的变化是一种很好的方法,同时也证明了相比于水位记录仪,使用窄小直径 EXO1进行地下水监测的关键优势。第二个原则,该项目揭示了在某些情况下使用透气式水位深度传感器的重要性。拉萨是世界上海拔最高的城市之一。海拔超过3650米,拉萨的气压比海平面的气压低约35%。正如以下James提供的数据所示,这对水位的测量产生了巨大影响,尤其是在不使用透气式水位传感器的情况下。所以...什么是透气式水位测量,它和深度传感器有哪些区别?02深度vs.透气式水位YSI EXO配备的传感器分为深度和透气式水位两种。深度由一个非透气式的应变传感器进行测量的,这里我们将其称为压力传感器(也称之为“深度传感器”)。压力传感器与电阻相连接,当传感器隔膜片上的压力变化时就会发出电信号。隔膜的一侧暴露在水中,另一侧暴露于真空中。在真空侧,压力恒定不变。在水侧,压力随水压(Pw)的变化而变化,水压与水深成正比。因此,水量越多意味着压力越大,信号被转换成工程单位(磅/平方英寸-PSI 或深度,单位为m、ft或bar)。据此,您就可以知道压力传感器上方的水深。有时,这些测量值被称为绝对深度。我不是特别喜欢“绝对”这个词。因为我始终认为有可能存在极低的测量误差。我认为“绝对”代表的含义是:所有对传感器隔膜施加的压力都会被转换成电信号,然后这些信号由仪器的固件转换成深度,但如果是这样,情况就变得复杂了...如您所见,Pw则不再仅代表水施加的压力。它也代表大气施加在水面的压力,甚至水的密度,受诸如盐等溶质以及诸如温等环境条件的影响。对于许多应用,这些其他因素可以忽略不计。但是在浅水应用中,有两个因素可能会产生严重影响:盐度(也可解释为水的比重ρ)和大气压。在室温1个大气压(即海平面)下,纯水的比重为1。海水的比重则要高 50%,甚至还取决于温度。因此,考虑温度的盐度测量可用于补偿水位测量。其中一个重要的例子是与海平面上升相关的气候变化研究,如在佛罗里达州Clam Bayou案例的经典文章关于海平面上升的YSI应用指南所描述的。Clam Bayou案例研究也描述了第二个关键变量–大气压。特别是在水深较浅的应用中(YSI认为10 m为浅水),大气压波动会影响水位测量的准确性。正因为如此,我们推荐您使用透气式水位主机。透气式水位主机中的压力传感器通过透气管与大气联通。当使用压差传感器时,这确保了整个测量中自动补偿了大气压力(Pair) 。有时气压会发生剧烈波动,例如在暴风雨期间。在生活中,您甚至可能认识一些可以感知这些变化的人,——也许他们会患上气压性头痛。海拔变化也会影响气压,这也是拉萨气压如此低的一个重要原因。因此,让我们从Clam Bayou向上爬升3,650米,看看大气压补偿有多重要。03高海拔水位的气压补偿 我的同事James在西藏拉萨的客户现场安装了一台 EXO1透气式水位主机。之后他的一位合作伙伴也访问了该地点,并在同一口井中安装了一台配有非透气式压力传感器的EXO2主机,他们也想在那里观察水质。这台非透气式主机的深度传感器只是在出厂前进行了校准。工厂校准可能仍然非常好(深度传感器相当稳定)。但是,俄亥俄州的金泉市海拔为260米,实际的传感器本身是在压力控制室中校准的。这也就是在部署之前深度传感器通常应该在室外现场进行校准的原因。在深水应用中,Pw远大于Pair,这可能无关紧要。但如果是在地表水应用,且使用我们的垂直剖面仪进行深度测量的情况下,则一定要进行现场校准。然而,James的合作伙伴起初并不想测量深度,因此他没有校准深度传感器。尽管如此,深度传感器仍在部署过程中进行了记录。10周后,James查看和分析数据时他注意到了一些显著的差异,如下图所示。James比较了他的EXO1主机和合作伙伴的EXO2主机的测量值。在下图中,左侧Y轴表示EXO1水位值,右侧Y轴表示EXO2深度值,两者均以米为单位:从另一个角度来看数据,James绘制了两条线之间的差值,且还是使用米作为Y轴上的度量单位。该图显示了两台主机所测得的水位值之间相差约6.5-6.85米,此外更重要的是它还显示了值在6.67至6.84 米之间的波动。这一点很有趣引起我们的注意,并还会在我们的最终分析中再次出现。我们已经暗示过,拉萨的低气压可能是引起两个探头测得的数据之间的波动和差值的一个原因,但是这一假设是否得到有力证据的支持?James在右侧Y轴上绘制了以百帕斯卡 (hPa) 为单位的气压测量值,并在左侧Y轴上绘制了两个探头所测的深度差 (m)。作为参考,海平面上的1个标准气压为1013.25hPa。除了这两条线看起来相互跟踪程度外,该图的右轴数据还显示出了气压非常之低,与拉萨的高海拔相对应。James继续评估了两个主机所测的深度差值(X轴、ΔDepth,以m为单位)与Y轴的气压之间的相关性。通过线性回归分析,大多数环境科学家认定它们之间存在非常强的相关性:这为在高海拔地区使用透气式水位测量进行地下水监测这一假设提供了有力的依据。04准确度规格当我看到这些数据时,我想到,如果想知道水是什么时候抽出或流入的,主要的深度测量可能不是最重要的,而是检测变化的能力。换句话说,假设EXO2主机测得的起点为9m实际上是错误的,但我仍然能够检测到几厘米的变化,就像我使用透气式水位主机一样。那么如果我有一台EXO2,又不想再买另一台主机,这样够用了吗?以下为来自EXO用户手册的规格信息:这项研究中使用的EXO2是中等深度 (100m) 主机,其准确度规格约为满量程的±0.04% ,即±4cm。相比之下,EXO1浅水透气式主机 (10m) 的准确度规格为满量程的±0.03% ,即±0.3cm。准确度足足提高了10倍以上!然而... 如果James的同事部署的并不是100m量程的主机,而是浅水不透气的EXO2主机,由于浅水非透气式主机(EXO1或EXO2)在10m量程范围内的准确度为±0.4cm,所以所得测量结果可能会与EXO1透气式水位主机的测量值更接近。当然,前提是已经在现场正确校准了EXO2。假设您打算进行校准,您可能会想,为什么还要这么费心使用透气呢?0.4cm我听着挺好的!请记住这些准确度规格是在受控的海平面条件下测得的。气压仍然是必须考虑的干扰因素。使用透气式水位主机,气压补偿将自动完成。但对于非透气式标准主机,必须从外部完成气压补偿,现在有另一个测量误差被引入总误差预估。这就意味着,在这个高度偏远的地区,气压的一些单独测量必须与探测器的水位测量同时进行,气压测量是可靠的,以最终进行大气压补偿,从而完成最终的水位测量。如果这听起来有点混乱,那是因为确实如此。当在拉萨James现场的百帕的变化相差2-4% (16hPa) 时,要做到这一点颇为困难:最后,相对于含水层的总体积,水位变化所代表的估计体积对于选择仪器时的理解也很要,这将提高应用所需的整体准确度。最终分析:这些有关系吗?所以在这个故事中,我们遇到了不同的状况。有两种不同类型的测量值:深度和透气水位。另一个现实是,EXO2主机没有进行现场校准,这进一步增加了深度测量的误差。但是,总体来说,如果James的客户选择信任这台EXO2主机的深度测量结果,而不是EXO1的透气水位测量结果,会发生什么?再看上图,气压变化在 648-632hPa之间波动,EXO1报告的水位变化约为6cm(3.045-2.985m)。但是EXO2报告的水“位”变化为20cm (9.98-9.68)。我们可以估计出,EXO2报告的约17cm的差异是由缺乏气压补偿导致(6.84-6.670m,来自上面的差异图)。如果未进行此补偿,操作人员怎么知道地表水流入、流出或其他因素正在发生呢?如需更多讨论和信息,请联系James.Chen@xylem.com 。05 Case Study此案例研究说明了为什么YSI建议您使用经过适当校准的透气式水位主机进行地下水水位测量。针对地下水监测的YSI标准建议如下:大多数地下水应用,需要使用高准确度的透气式水位传感器。无论是自动(通过透气)还是手动补偿,都建议在高海拔或气压易于出现明显波动的地方实施大气补偿。如果优先考虑其他水质参数,尤其是在可能需要盐度或比重补偿也是必要的,那么透气式水位的主机(而不是压力传感器)是最正确的解决方案。
  • 国土资源公报显示近六成地下水质为“差”
    国土资源部《2012中国国土资源公报》日前正式向社会发布。公报显示,全国198个地市级行政区4929个地下水水质监测点,近六成地下水为“差”,其中16.8%监测点水质呈极差级 去年全国土地出让价款为2.69万亿元。  公报显示,全国198个地市级行政区开展了地下水水质监测工作,监测点总数为4929个,其中国家级监测点800个。依据《地下水质量标准》(GB/T14848-93),综合评价结果为水质呈优良级的监测点为580个,占全部监测点的11.8% 水质呈良好级的监测点为1348个,占27.3% 水质呈较好级的监测点为176个,占3.6%.  根据公报,全部监测点中,水质呈较差级的监测点为1999个,占40.6% 水质呈极差级的监测点为826个,占16.8%.主要超标组分为铁、锰、氟化物、“三氮”(亚硝酸盐氮、硝酸盐氮和铵氮)、总硬度、溶解性总固体、硫酸盐、氯化物等,个别监测点存在重(类)金属项目超标现象。  与上年度比较,有连续监测数据的水质监测点总数为4677个,分布在187个城市,其中水质综合变化呈稳定趋势的监测点有2974个,占监测点总数的63.6% 呈变好趋势的监测点有793个,占17.0% 呈变差趋势的监测点有910个,占19.5%.  总体来看,2012年度在全国有连续监测数据的水质监测点中,地下水水质综合变化趋势以稳定为主,呈变好趋势和变差趋势的监测点比例相当。  同时,公报显示,2012年全国出让国有建设用地面积32.28万公顷,出让合同价款2.69万亿元,同比分别减少3.3%和14.7%.其中,招标、拍卖、挂牌出让土地面积29.30万公顷,占出让总面积的90.8% 出让合同价款2.55万亿元,占出让合同总价款的94.8%.  全国重点城市土地抵押监测表明,截至2012年底,全国84个重点城市处于抵押状态的土地面积为34.87万公顷,抵押贷款总额5.95万亿元,同比分别增长15.7%和23.2%.全年土地抵押面积净增4.72万公顷,抵押贷款净增1.12万亿元。  公报显示,2012年全国批准建设用地61.52万公顷,其中转为建设用地的农用地42.91万公顷,耕地25.94万公顷,同比分别增长0.6%、4.5%、2.5%.  报国务院批准用地中,核减不合理用地0.66万公顷。全年国有建设用地供应量为69.04万公顷,同比增长17.5%,连续4年保持增长。其中,工矿仓储用地、商服用地、住宅用地和基础设施等其他用地供地面积分别为20.35万公顷、4.94万公顷、11.08万公顷和32.66万公顷,同比分别增长5.6%、增长17.6%、减少11.5%和增长43.4%.  数据显示,2012年,全国供应房地产用地16万公顷,房地产和住宅用地供应量均超过前5年年均水平。全国105个监测城市住宅地价同比涨幅为2.3%,维持在历史低位水平。全年保障性安居工程的用地落实量达到3.8万公顷,超过“新开工700万套以上”预测用地需求。加大土地开发利用监管力度,已供房地产用地开发建设速度加快,截至2012年底,全国处于在建状态住房用地26.3万公顷,同比增加31.3%.
  • 中国地质环境监测院国家地下水监测工程运行维护项目中标结果公布
    近日,预算28052.1万元(人民币)的国家地下水监测工程运行维护项目发布中标公告,最终采购金额为27872.809148万元(人民币)。该项目的主要任务为运行维护国家地下水监测工程分布在各个省市的地下水监测站点 采集地下水常规、非常规指标样品 测试地下水常规及非常规指标样品。  以下为招标公告主要内容:  项目名称:国家地下水监测工程运行维护  项目编号:WKZB1911BJM300259  项目联系方式:  项目联系人:张艺飞、程皓、刘畅  项目联系电话:010-88821765、88821635  采购单位联系方式:  采购单位:中国地质环境监测院  地址:北京市海淀区大慧寺路20号  联系方式:010-62170330  中标信息  招标公告日期:2019年04月01日  中标日期:2019年04月30日  总中标金额:27872.809148万元(人民币)  中标供应商名称、联系地址及中标金额:包号包名称中标人联系地址中标金额(元)1国家地下水监测工程运行维护与地下水质监测(北京市部分)北京市水文地质工程地质大队(北京市地质环境监测总站)北京市海淀区西四环北路123号13,017,629.982国家地下水监测工程运行维护与地下水质采样(天津市部分)天津市地质环境监测总站天津市南开区迎水道20号3,289,800.003国家地下水监测工程地下水质测试(天津市部分)中矿(天津)岩矿检测有限公司天津市滨海新区轻纺经济区房五路36号3,102,000.004国家地下水监测工程运行维护与地下水质监测(河北省部分)河北省地质环境监测院石家庄市裕华区兴苑街58号16,470,000.005国家地下水监测工程运行维护(山西省部分)山西省地质环境监测中心太原市和平南路255号山西省地质环境监测中心2,790,000.006国家地下水监测工程地下水质监测(山西省部分)山西省地质矿产局二一三实验室山西省地质矿产局二一三实验室6,530,160.007国家地下水监测工程运行维护与地下水质采样(内蒙古自治区部分)内蒙古自治区地质环境监测院内蒙古呼和浩特市大学西街明珠巷19号9,082,200.008国家地下水监测工程运行维护与地下水质采样(辽宁省部分)辽宁省地质环境监测总站辽宁省沈阳市皇姑区宁山东路62号6,494,000.009国家地下水监测工程地下水质测试(辽宁省部分)辽宁省地质矿产研究院有限责任公司沈阳市皇姑区北陵大街31号5,435,330.0010国家地下水监测工程运行维护与地下水质采样(吉林省部分)吉林省地质环境监测总站(吉林省地质灾害应急技术指导中心)吉林省长春市建设街2008号6,814,346.9011国家地下水监测工程地下水质测试(吉林省部分)白山市产品质量检验所(国家饮用水产品质量监督检验中心)吉林省白山市浑江大街368号5,685,680.0012国家地下水监测工程运行维护与地下水质采样(黑龙江省部分)黑龙江省地质环境监测总站哈尔滨市香坊区红旗大街263号8,670,000.0013国家地下水监测工程地下水质测试(黑龙江省部分)黑龙江省地质矿产实验测试研究中心黑龙江省哈尔滨市香坊区新乡里街5号5,917,600.0014国家地下水监测工程运行维护与地下水质监测(上海市部分)上海市地质调查研究院上海市灵石路930号6,083,380.0015国家地下水监测工程运行维护与地下水质监测(江苏省部分)江苏省地质调查研究院南京市玄武区珠江路700号9,160,800.0016国家地下水监测工程运行维护与地下水质采样(浙江省部分)浙江省地质环境监测院浙江省杭州市西湖区天目山路102号海洋渔业大厦607室4,495,000.0017国家地下水监测工程地下水质测试(浙江省部分)浙江省地质矿产研究所浙江省杭州市西湖区体育场路508号3,422,000.0018国家地下水监测工程运行维护与地下水质采样(安徽省部分)安徽省地质环境监测总站安徽省合肥市屯溪路296号地矿大厦A座1101室5,660,000.0019国家地下水监测工程地下水质测试(安徽省部分)安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心)安徽省合肥市阜阳北路318号4,410,400.0020国家地下水监测工程运行维护(福建省部分)福建省地质环境监测中心福建省福州市鼓楼区金泉路38号2,014,247.6021国家地下水监测工程地下水质监测(福建省部分)福建省地质测试研究中心福建省福州市鼓楼区洪甘路31号4,820,640.0022国家地下水监测工程运行维护与地下水质采样(江西省部分)江西省地质环境监测总站江西省南昌市高新区紫阳大道169号4,177,546.0023国家地下水监测工程地下水质测试(江西省部分)江西省中环岩土工程勘察院、江西省地质调查研究院(联合体)江西省南昌市青山湖区罗家集白兰村3,185,380.0024国家地下水监测工程运行维护(山东省部分)山东省地质环境监测总站山东省济南市历下区荆山路17号5,060,000.0025国家地下水监测工程地下水质监测(山东省部分)山东省鲁南地质工程勘察院(山东省地勘局第二地质大队)山东省济宁市兖州区建设东路272号11,904,000.0026国家地下水监测工程运行维护与地下水质采样(河南省部分)河南省地质环境监测院河南省郑州市郑东新区金水东路18号7,626,000.0027国家地下水监测工程地下水质测试(河南省部分)河南省岩石矿物测试中心河南省郑州市金水区金水路28号5,761,800.0028国家地下水监测工程运行维护与地下水质采样(湖北省部分)湖北省地质环境总站湖北省武汉市硚口区古田五路9号地质大楼3,600,000.0029国家地下水监测工程地下水质测试(湖北省部分)湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心)湖北省武汉市古田五路9号2,689,160.0030国家地下水监测工程运行维护与地下水质采样(湖南省部分)湖南省地质环境监测总站湖南省长沙市城南中路下麻园湾40号3,676,000.0031国家地下水监测工程地下水质测试(湖南省部分)湖南省勘测设计院湖南省长沙市天心区五凌路8号2,691,208.0032国家地下水监测工程运行维护与地下水质采样(广东省部分)广东省地质环境监测总站广东省广州市天河区广州大道北910号3,545,600.0033国家地下水监测工程地下水质测试(广东省部分)广东省地质实验测试中心广东省州市越秀区风路751号6楼4,362,720.0034国家地下水监测工程运行维护与地下水质采样(广西壮族自治区部分)广西壮族自治区地质环境监测总站广西壮族自治区南宁市中新路2号国土资源厅9楼4,109,200.0035国家地下水监测工程地下水质测试(广西壮族自治区部分)广西壮族自治区产品质量检验研究院南宁市科兴路5号3,065,000.0036国家地下水监测工程运行维护与地下水质采样(海南省部分)海南省地质环境监测总站海南省海口市龙昆南路12号综合办公楼五楼、四楼1,897,148.0037国家地下水监测工程运行维护与地下水质采样(重庆市部分)重庆市地质环境监测总站重庆市北部新区龙睛路2号凯比特大厦1,320,700.0038国家地下水监测工程运行维护与地下水质采样(四川省部分)四川省国土空间生态修复与地质灾害防治研究院四川省成都市人民北路一段25号4,411,200.0039国家地下水监测工程地下水质测试(四川省部分)四川省华地新能源环保科技有限责任公司联合四川省天晟源环保股份有限公司(联合体)成都市金牛区一环路北二段3号5,684,600.0040国家地下水监测工程运行维护与地下水质采样(贵州省部分)贵州省地质环境监测院贵州省阳市观山湖区石林西路171号贵州省地质科技园号贵州省地质科技园6号楼3,434,594.0041国家地下水监测工程地下水质测试(贵州省部分)贵州省地质矿产中心实验室(贵州省矿产品黄金宝石制品质量检验站)贵州省贵阳市乌当区新庄路82号5,243,490.0042国家地下水监测工程运行维护与地下水质采样(云南省部分)云南省地质环境监测院(云南省环境地质研究院)昆明市人民东路王大桥3,839,000.0043国家地下水监测工程运行维护与地下水质采样(西藏自治区部分)西藏自治区地质环境监测总站西藏拉萨市当热西路44号1,995,600.0044国家地下水监测工程运行维护与地下水质采样(陕西省部分)陕西省地质环境监测总站西安市雁塔北路100号5,175,120.0045国家地下水监测工程地下水质测试(陕西省部分)国家地质实验测试中心北京市西城区百万庄大街26号4,080,250.0046国家地下水监测工程运行维护与地下水质采样(甘肃省部分)甘肃省地质环境监测院甘肃省兰州市七里河区建兰新村120号8,224,110.0047国家地下水监测工程地下水质测试(甘肃省部分)甘肃省地质矿产勘查开发局第三地质矿产勘查院兰州市七里河区兰工坪路121号5,961,700.0048国家地下水监测工程运行维护与地下水质采样(青海省部分)青海省地质环境监测总站青海省西宁市海湖新区海晏路77号4,562,400.0049国家地下水监测工程地下水质测试(青海省部分)青海省地质矿产测试应用中心西宁市城中区新城北路9号2,819,600.0050国家地下水监测工程运行维护(宁夏回族自治区部分)宁夏回族自治区国土资源调查监测院宁夏银川市金凤区尹家渠北街25号2,506,200.0051国家地下水监测工程地下水质样品采集(宁夏回族自治区部分)宁夏回族自治区地质矿产勘查院宁夏银川市西夏区北京西路199号2,072,800.0052国家地下水监测工程地下水质测试(宁夏回族自治区部分)陕西省地质矿产实验研究所有限公司(国土资源部西安矿产资源监督检测中心)陕西省安市碑林区雁塔北路100号3,589,751.0053国家地下水监测工程运行维护与地下水质采样(新疆维吾尔自治区部分)新疆维吾尔自治区地质环境监测院新疆乌鲁木齐市克拉玛依东街390号深圳城10楼8,408,800.0054国家地下水监测工程地下水质测试(新疆维吾尔自治区部分)新疆维吾尔自治区矿产实验研究所乌鲁木齐市克拉玛依西路2号4,682,200.00
  • 贵州省土壤、地下水和农村生态环境保护规划发布,建48个点位的地下水质量考核网络
    近日,贵州省生态环境厅、省发展改革委、省财政厅、省自然资源厅、省住房城乡建设厅、省水利厅、省农业农村厅联合印发《贵州省“十四五”土壤、地下水和农村生态环境保护规划》,围绕土壤污染、地下水污染、农业农村环境治理、生态环境监管等布局了一系列任务,其中包括:严格控制涉重金属行业企业污染物排放。依据《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》以及重点排污单位名录管理有关规定,将符合条件的排放镉等有毒有害大气、水污染物的企业纳入重点排污单位名录;纳入大气重点排污单位名录的涉镉等重金属排放企业,2023年底前对大气污染物中的颗粒物按排污许可证规定实现自动监测,以监测数据核算颗粒物等排放量。落实地下水防渗和监测措施。督促“一企一库”“两场两区”采取防渗漏措施,按要求建设地下水环境监测井,开展地下水环境自行监测。指导地下水污染防治重点排污单位优先开展地下水污染渗漏排查,针对存在问题的设施,采取污染防渗改造措施。市(州)生态环境部门开展地下水污染防治重点排污单位周边地下水环境监测。健全监测网络。完善土壤环境监测网,优化调整土壤环境监测点位,定期开展国控网络和省控土壤环境质量监测,持续开展农产品产地土壤和农产品协同监测。至少完成一轮土壤污染重点监管单位周边土壤环境监测。探索开展建设用地安全利用卫星遥感监测。建成48个点位的国家地下水环境质量考核网络。对218个国家地下水环境质量监测点和152个省级监测点位开展监测。组织开展12个特色村农村环境质量监测,加强农村“万人千吨”饮用水水源地水质监测,加强日处理能力20吨及以上农村生活污水设施排口、规模化畜禽养殖场排污口、水产养殖集中区养殖尾水等监测。附1:为加强土壤环境监测检测,仪器信息网3i讲堂拟于5月9日-10日举办“第四届土壤检测技术与应用”网络会议,点击即可报名:https://www.instrument.com.cn/webinar/meetings/soil230509/附2:规划全文如下贵州省“十四五”土壤、地下水和农村生态环境保护规划为贯彻落实党的二十大精神,深入打好污染防治攻坚战,加强土壤及地下水污染防治,强化农村生态环境保护,根据《中华人民共和国土壤污染防治法》《中共中央国务院关于深入打好污染防治攻坚战的意见》《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》《国务院关于支持贵州在新时代西部大开发上闯新路的意见》《“十四五”土壤、地下水和农村生态环境保护规划》和《贵州省生态环境保护“十四五”规划》,制定本规划。一、规划背景(一)工作进展“十三五”时期,贵州省深入贯彻习近平生态文明思想和习近平总书记对贵州工作重要指示精神,认真落实党中央、国务院决策部署,大力实施《贵州省土壤污染防治工作方案》,全省土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本控制,地下水和农业农村生态环境保护取得积极成效。1.土壤污染风险得到基本管控土壤污染防治多部门联动机制、协调推进和调度考核机制基本形成。2020年完成国家下达受污染耕地安全利用和严格管控总任务1039.35万亩(其中安全利用类任务834.75万亩,严格管控类任务204.6万亩),污染地块安全利用率达到100%,超额完成《贵州省土壤污染防治目标责任书》和净土保卫战确定的目标任务。顺利完成农用地土壤污染状况详查和重点行业企业用地土壤污染状况调查,基本查明我省农用地土壤污染的面积、分布及其对农产品质量的影响;完成2227个重点行业企业用地地块基础信息采集、风险筛查及典型地块布点采样监测,确定地块环境风险等级,建立优先管控名录。完成全省耕地土壤环境质量类别划定,实施分类管理。严格建设用地土壤污染风险管控,对204个纳入全国污染地块土壤环境管理信息系统的地块开展调查,将75个地块纳入建设用地土壤污染风险管控和修复名录,确保130万平方米疑似污染地块和污染地块安全利用。强化土壤污染源头管理,按年度公布《贵州省土壤污染重点监管单位名录》,截至2020年底,已将201家企业纳入土壤污染重点监管单位,监督企业落实土壤污染源头防控措施;排查整治耕地周边涉镉等重金属污染源,将29个污染源纳入排查整治。建立贵州省土壤信息化管理平台,土壤环境信息化管理水平显著提升。土壤环境监测网络基本形成。铜仁市土壤污染综合防治先行区建设任务全面完成。“十二五”以来,全省累计投入土壤污染防治资金22.21亿元,实施了土壤污染防治相关项目188个,历史遗留重金属废渣治理率达到87.8%,环境风险得到有效管控。2.地下水生态环境保护有序推进贯彻落实《全国地下水污染防治规划(2011-2020年)》《地下水污染防治实施方案》,全省2051座加油站共7036个地下油罐完成双层罐更换或防渗池建设。持续开展地下水污染现状调查评价,基本掌握12.3万平方公里1:25万比例尺区域地下水质量。完成1926眼废弃井封井回填。地下水监测点位不断优化,截至2020年底,全省共建成地下水水质监测点位409个。3.农业农村生态环境保护取得初步进展农村环境整治稳步推进。截至2020年底,累计完成3027个行政村农村环境整治。各地编制县域农村生活污水治理专项规划并组织实施,建成农村生活污水处理设施8175套,日污水处理能力约20.73万吨,建成配套污水收集管网8961.91公里,农村生活污水处理设施覆盖行政村4202个,全省农村生活污水治理率10.2%,圆满完成农业农村污染治理攻坚战确定的主要目标任务,2020年底全省农村生活垃圾收运处置体系行政村覆盖率94.4%以上,农村生活垃圾、生活污水无序排放得到有效管控和治理;养殖业、种植业污染得到有效防控,全省畜禽粪污综合利用率达86.44%,规模养殖场粪污处理设施装备配套率达99.57%;化肥、农药持续减量增效。农业农村环境监管能力进一步提高,村民参与农业农村环境保护的积极性和主动性显著增强,农村生态环境得到较大改善。(二)存在的主要问题1.部分区域存在地质高背景导致土壤重金属“超标”六盘水市、毕节市等部分区域因地质高背景导致农用地镉“超标”严重,安全利用和严格管控类耕地划定面积过大。贵阳市、黔东南州、黔西南州等地部分地块因存在地质高背景,建设用地土壤环境质量不满足开发利用要求,制约了土地的开发利用。2.地下水污染底数不清、治理难度大我省喀斯特地貌特征显著,地下水埋藏较深,地下水污染较隐蔽,化工集聚区、垃圾填埋场、危险废物处置场地下水污染风险尚不明确。六盘水市、毕节市、铜仁市、黔南州、黔西南州等局部区域因历史上煤矿、硫磺矿、锑矿、锰矿等开采导致地下水污染,形成矿井涌水对土壤和地表水产生影响,目前尚未探索出适宜岩溶山区地下水污染防治的技术路径和方法。3.土壤和地下水污染源头预防压力较大纳入土壤污染重点监管单位、涉镉行业企业需进一步筛选和完善;部分企业有毒有害物质跑冒滴漏、事故泄漏等污染土壤和地下水的隐患没有得到根本消除,污染隐患排查、自行监测等法定义务落实不到位。部分污染源周边地下水污染扩散趋势未得到有效控制,地下水环境质量存在恶化风险。4.农业农村生态环境保护任务十分艰巨农村环境整治存在明显短板,农村生活污水治理率低,约90%的行政村还需接续开展农村环境整治。已整治地区成效还不稳定。现有污水处理设施运行效果差,资源化利用水平不高,资金投入严重缺乏,长效机制不健全,治理成效不明显;农村生活垃圾和农业废弃物处理处置机制尚不完善;畜禽养殖粪污处理和资源化利用方式不规范,养殖生产布局需进一步优化。化肥农药使用量偏高,部分地区地膜残留量大等问题突出。5.土壤、地下水及农业农村污染防治体系基础比较薄弱土壤、地下水和农业农村生态环境监管人员设备不足、监测和执法能力不足,难以满足监管需要。部分地方对用途变更为住宅、公共管理与公共服务用地土壤环境准入管理认识不一、责任落实不到位,部门联动、信息共享等齐抓共管的工作机制尚不健全。土壤和地下水治理修复、风险管控和二次污染防治缺乏有效的环境监管手段。土壤重金属污染成因尚不清晰,区域土壤地质背景调查工作尚未开展,建设用地土壤砷等元素地质高背景边界不清晰。二、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,深入贯彻落实习近平生态文明思想和习近平总书记视察贵州重要讲话精神,以“在生态文明建设上出新绩”为总目标,以深入实施大生态战略行动为总路径,以深入打好污染防治攻坚战为总抓手,坚持保护优先、预防为主,坚持问题导向、系统治理,坚持强化监督、依法治污,解决一批土壤、地下水和农业农村突出生态环境问题,保障农产品质量安全、人居环境安全、地下水生态环境安全,全面推进乡村振兴,建设生态宜居美丽乡村,努力建设贵州人与自然和谐共生的现代化。(二)主要目标到2025年,全省农用地和建设用地土壤污染风险得到进一步管控,受污染耕地和重点建设用地安全利用得到巩固提升;重点园区地下水污染趋势得到基本遏制,农业面源污染得到初步管控,农村环境基础设施建设稳步推进,农村生态环境持续改善。表1 “十四五”土壤、地下水和农业农村生态环境保护主要指标类  型指标名称2020年(现状值)2025年指标属性土壤生态环境受污染耕地安全利用率—93%左右约束性重点建设用地安全利用1—有效保障约束性地下水 生态环境地下水国控点位V类水比例26%8.1%左右预期性“双源”点位水质—总体保持稳定预期性农业农村生态环境主要农作物化肥使用量—减少预期性主要农作物农药使用量—减少预期性农村环境整治村庄数量3027新增2000个预期性农村生活污水治理率310.2%25%预期性注:1.重点建设用地指用途变更为住宅、公共管理与公共服务用地的所有地块。 2.地下水国控点位V类水比例指国家级地下水质区域监测点位中,水质为Ⅴ类的点位所占比例(2020年考核点位33个,十四五考核点位为37个,因考核点位数增加,2025年目标较2020年对应提高了2.1%)。 3.农村生活污水治理率是指生活污水得到处理和资源化利用的行政村数占行政村总数的比例。三、主要任务(一)推进土壤污染防治1.加强耕地污染源头治理管控严格控制涉重金属行业企业污染物排放。2023年起,在矿产资源开发活动集中、安全利用类和严格管控类耕地集中的毕节市赫章县,执行《铅、锌工业污染物排放标准》中颗粒物和镉等重点重金属特别排放限值。依据《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》以及重点排污单位名录管理有关规定,将符合条件的排放镉等有毒有害大气、水污染物的企业纳入重点排污单位名录;纳入大气重点排污单位名录的涉镉等重金属排放企业,2023年底前对大气污染物中的颗粒物按排污许可证规定实现自动监测,以监测数据核算颗粒物等排放量。(省生态环境厅、省农业农村厅、省粮食和物资储备局按职责分工负责,地方各级人民政府负责落实。以下均需地方各级人民政府落实,不再列出)排查整治涉重金属矿区历史遗留固体废物及河道底泥。以市(州)为单位,全面开展安全利用类和严格管控类耕地集中区域周边重有色金属、硫铁矿等矿区历史遗留固体废物及河道底泥排查,明确历史遗留固体废物环境风险,围绕保障农产品质量安全和改善土壤环境质量目标,建立矿区历史遗留固体废物风险管控与治理修复台账,有序开展风险管控及修复治理。(省生态环境厅、省农业农村厅、省自然资源厅按职责分工负责)开展耕地土壤重金属污染成因排查。以贵阳市、六盘水市、毕节市、铜仁市、黔南州、黔西南州等土壤重金属污染问题突出的18个县(市、区)为重点,开展耕地土壤重金属污染途径识别和污染源头追溯,探明耕地土壤重金属污染成因,为耕地土壤污染精准科学防控和安全利用提供基础数据。(省生态环境厅、省农业农村厅按职责分工负责)2.防范工矿企业新增土壤污染严格建设项目土壤环境影响评价制度。对涉及有毒有害物质可能造成土壤污染的新(改、扩)建项目,依法进行环境影响评价,提出并落实防腐蚀、防渗漏、防遗撒等土壤污染防治具体措施。(省生态环境厅负责)强化重点监管单位监管。动态更新土壤污染重点监管单位名录。将土壤污染重点监管单位土壤污染防治义务载入排污许可证,全面落实有毒有害物质排放报告、污染隐患排查、土壤(地下水)自行监测、设施设备拆除污染防治要求,2025年底前,至少完成一轮土壤和地下水污染隐患排查“回头看”,动态更新污染源整治清单。定期开展土壤污染重点监管单位周边土壤环境监测。对已查明用地土壤严重污染的企业,督促落实必要的污染源隔断、污染区域阻隔等风险管控措施。(省生态环境厅负责)推动实施绿色化改造。鼓励土壤污染重点监管单位因地制宜实施管道化、密闭化改造,重点区域防腐防渗改造,以及物料、污水管线架空建设和改造。聚焦铅、镉、汞污染,推动毕节市赫章县、铜仁市万山区、黔东南州台江县等地重有色金属采选及冶炼、涉重金属无机化工行业企业升级改造,鼓励企业实施清洁生产和提标升级改造,进一步减少污染物排放。(省生态环境厅、省发展改革委按职责分工负责)3.深化耕地分类管理切实加大保护力度。依法将符合条件的优先保护类耕地划为永久基本农田,在永久基本农田集中区域,不得规划新建可能造成土壤污染的建设项目。加强农业投入品质量监管,从严查处向农田施用重金属不达标肥料等农业投入品行为。在粮食主产区,实施强酸性土壤降酸改良工程。(省自然资源厅、省农业农村厅、省生态环境厅、省市场监管局按职责分工负责)全面落实受污染耕地安全利用和严格管控措施。“十四五”期间,每年完成受污染耕地安全利用年度工作计划,明确行政区域内安全利用类耕地和严格管控类耕地的具体管控措施,以县(市、区、特区)或市(州)为单位全面推进落实。在毕节市、铜仁市、黔西南州等地选择一批受污染耕地面积较大的县(市、区)开展农用地安全利用示范。对安全利用类耕地,分区分类探索实施安全利用技术和农作物种植推荐清单;对严格管控类耕地,依法采取风险管控措施,探索划定特定农产品严格管控区。积极争取国家资金支持开展耕地生产障碍修复利用,到2025年,耕地生产障碍修复利用面积累计不少于50万亩,其中联合攻关区面积不少于0.8万亩,集中推进区面积不少于19万亩。沿用贵州省土壤污染防治技术指导委员会专家组及技术组成员,加强对各市(州)农用地安全利用及严格管控的工作指导。加强粮食收储和流通环节监管,杜绝重金属超标粮食进入口粮市场。(省农业农村厅、省林业局、省生态环境厅、省自然资源厅、省市场监管局、省粮食和物资储备局按职责分工负责)动态调整耕地土壤环境质量类别。根据土地利用变更、土壤和农产品协同监测结果等,动态调整耕地土壤环境质量类别,调整结果经省人民政府审定后报送农业农村部和生态环境部,并将清单上传至全国土壤环境信息平台。原则上禁止将曾用于生产、使用、贮存、回收、处置有毒有害物质的工矿用地及重金属历史遗留废渣堆存点、治理点复垦为种植食用农产品耕地。(省农业农村厅、省生态环境厅、省自然资源厅按职责分工负责)4.严格建设用地准入管理开展土壤污染状况调查评估。推动用途变更为“一住两公”(住宅、公共管理与公共服务用地)的地块依法开展土壤污染状况调查。鼓励各地因地制宜适当提前开展土壤污染状况调查,化解建设用地土壤污染风险管控和修复与土地开发进度之间的矛盾。及时将注销、撤销排污许可证的企业用地纳入监管视野,防止腾退地块游离于监管之外。土壤污染重点监管单位生产经营用地的土壤污染状况调查报告应当依法作为不动产登记资料送交地方人民政府不动产登记机构,并报地方人民政府生态环境主管部门备案。严格执行土壤平行样采测制度,强化土壤污染状况调查等涉及土壤监测环节质量监管。到2025年,全省开展100个疑似污染地块、高风险地块土壤污染状况调查或风险评估。(省生态环境厅、省自然资源厅按职责分工负责)因地制宜严格污染地块用地准入。从事土地开发利用活动,应当采取有效措施,防止、减少土壤污染,并确保建设用地符合土壤环境质量要求。合理规划污染地块用途,从严管控农药、化工等行业中的重度污染地块规划用途,确需开发利用的,鼓励用于拓展生态空间。地方各级自然资源部门对列入建设用地土壤污染风险管控和修复名录的地块,不得作为“一住两公”用地;不得办理土地征收、收回、收购、土地供应以及改变土地用途等手续。依法应当开展土壤污染状况调查和风险评估而未开展或未完成的地块,以及未达到土壤污染风险评估报告确定的风险管控、修复目标的地块,不得开工建设与风险管控、修复无关的项目。鼓励市(州)因地制宜制定建设用地土壤污染联动监管具体办法或措施,细化准入管理要求。(省自然资源厅、省生态环境厅、省住房城乡建设厅按职责分工负责)优化土地开发和使用时序。涉及成片污染地块分期分批开发的,以及污染地块周边土地开发的,要优化开发时序,防止污染土壤及其后续风险管控和修复影响周边拟入住敏感人群。原则上居住、学校、养老机构等用地应在毗邻地块土壤污染风险管控和修复完成后再投入使用。(省自然资源厅、省生态环境厅按职责分工负责)强化部门信息共享和联动监管。建立完善污染地块数据库及信息平台,共享疑似污染地块及污染地块空间信息。生态环境部门、自然资源部门应及时共享疑似污染地块、污染地块有关信息,用途变更为“一住两公”的所有地块信息,土壤污染重点监管单位生产经营用地用途变更或土地使用权收回、转让信息。将疑似污染地块、污染地块空间信息叠加至国土空间规划“一张图”。(省生态环境厅、省自然资源厅按职责分工负责)5.有序推进建设用地土壤污染风险管控与修复明确风险管控与修复重点。以用途变更为“一住两公”的污染地块为重点,依法开展风险管控与修复。以危险化学品生产企业搬迁改造、长江经济带化工污染整治等专项行动遗留地块为重点,对暂不开发利用的,加强风险管控。以化工等行业企业为重点,鼓励采用原位风险管控或修复技术,探索在产企业边生产、边管控土壤污染风险模式。推广绿色修复理念,强化修复过程二次污染防控。积极探索“环境修复+开发建设”模式。到2025年,完成20个污染地块土壤修复或风险管控。(省生态环境厅、省自然资源厅按职责分工负责)强化风险管控与修复活动监管。探索建立污染土壤转运联单制度,防止转运污染土壤非法处置。严控农药类等污染地块风险管控和修复过程中产生的异味等二次污染。针对采取风险管控措施的地块,强化后期管理。严格管控修复效果评估,确保实现土壤污染风险管控与修复目标。(省生态环境厅负责)加强从业单位和个人信用管理。依法将从事土壤污染状况调查和土壤污染风险评估、风险管控、修复、风险管控效果评估、修复效果评估、后期管理等活动的单位和个人的执业情况和违法行为记入信用记录,纳入全国信用信息共享平台。鼓励社会选择水平高、信用好的单位,推动从业单位提高水平和能力。(省生态环境厅、省发展改革委、省市场监管局按职责分工负责)专栏1 土壤污染防治领域重大工程(一)矿区历史遗留固体废物污染源头排查整治。有序推进全省九个市州及贵安新区铅锌矿、汞矿、锑矿、钼镍矿、锰矿、煤矿、硫铁矿等矿区历史遗留固体废物及河道底泥排查,对区域位置敏感、环境风险高的历史遗留固体废物及河道底泥进行风险管控或整治。(二)耕地土壤重金属污染成因排查。对贵阳市、六盘水市、毕节市、铜仁市、黔南州、黔西南州等土壤重金属污染问题突出18个县(市、区)开展耕地土壤重金属污染途径识别和污染源头追溯,查明污染成因。(三)污染源治理。以遵义市、毕节市、铜仁市、黔东南州为重点,围绕铅锌冶炼(铅蓄电池)、含汞试剂生产及汞冶炼、电镀等行业企业实施一批在产企业绿色生产和提标改造工程,防范新增土壤污染。(四)农用地安全利用。选择毕节市、铜仁市、黔西南州等地一批受污染面积较大的县(市、区)开展受污染农用地安全利用示范;开展耕地生产障碍修复利用,修复利用面积累计不少于50万亩,其中联合攻关区示范面积不少于0.8万亩,集中推进区示范面积不少于19万亩。(五)建设用地土壤风险管控与修复。在铜仁市等地开展在产企业土壤污染风险管控试点;开展100个疑似污染地块、高风险地块土壤污染状况调查或风险评估,实施20个污染地块土壤修复或风险管控工程。(六)区域土壤环境背景值调查。以砷等重金属元素为重点,开展贵阳市土壤环境背景值调查试点。(二)加强地下水污染防治1.建立地下水污染防治管理体系制定地下水环境质量达标方案。查明贵阳市扁井及遵义市汇川区高坪街道大桥村、汇川区高桥街道玻璃厂3个国家地下水环境质量考核点位污染来源,制定地下水环境质量达标方案,明确防治措施及完成时限。(省生态环境厅、省自然资源厅按职责分工负责)推动地下水污染防治分区管理。率先在遵义市、安顺市、黔南州等市(州)开展地下水污染防治重点区划定,实施地下水环境分区管理、分级防治,明确环境准入、隐患排查、风险管控、修复等差别化环境管理要求。(省生态环境厅、省自然资源厅、省发展改革委按职责分工负责)建立地下水污染防治重点排污单位名录。研究建立地下水污染防治重点排污单位名录,推动纳入排污许可管理,加强防渗、地下水环境监测、执法检查。(省生态环境厅负责)建设地下水污染防治试验区。推进遵义市地下水污染防治试验区建设,以地下水生态环境状况调查评估、在产企业地下水污染防治、地下水生态环境管理、地表—地下污染协同防治为抓手,探索创新地下水生态环境管理制度,打造西南岩溶地区地下水污染防治样板。(省生态环境厅、省自然资源厅按职责分工负责)2.加强污染源头预防、风险管控与修复开展地下水污染状况调查评估。开展“一企一库”“两场两区”(即化学品生产企业、尾矿库、危险废物处置场、垃圾填埋场、化工产业为主导的工业集聚区、矿山开采区)地下水污染调查评估。到2023年底,完成贵阳市、遵义市、安顺市、铜仁市、黔南州等地7个化工集聚区地下水环境状况调查评估;到2025年,完成一批其他污染源地下水污染调查评估。(省生态环境厅、省自然资源厅、省住房城乡建设厅按职责分工负责)落实地下水防渗和监测措施。督促“一企一库”“两场两区”采取防渗漏措施,按要求建设地下水环境监测井,开展地下水环境自行监测。指导地下水污染防治重点排污单位优先开展地下水污染渗漏排查,针对存在问题的设施,采取污染防渗改造措施。市(州)生态环境部门开展地下水污染防治重点排污单位周边地下水环境监测。(省生态环境厅、省住房城乡建设厅按职责分工负责)实施地下水污染风险管控。针对存在地下水污染的化工产业等工业集聚区、危险废物处置场和生活垃圾填埋场,实施地下水污染风险管控,阻止污染扩散,加强后期环境监管。试点开展废弃矿井、金矿堆浸地下水污染防治及风险管控。(省生态环境厅、省住房城乡建设厅、省能源局按职责分工负责)探索开展地下水污染修复。土壤污染状况调查报告、土壤污染风险管控或修复方案等,应依法包括地下水相关内容,存在地下水污染的,要统筹推进土壤和地下水污染风险管控与修复。开展历史遗留煤矿酸性废水、有色金属采选矿区矿井涌水排查,探索煤矿酸性废水、矿井涌水治理技术模式。(省生态环境厅、省自然资源厅、省科技厅按职责分工负责)3.强化地下水型饮用水水源地保护规范地下水型饮用水水源保护区环境管理。强化县级及以上地下水型饮用水水源保护区划定,设立标志,进行规范化建设。针对水质超标的地下水型饮用水水源地,分析超标原因,因地制宜采取整治措施,确保水源地环境安全。(省生态环境厅、省水利厅、省发展改革委按职责分工负责)加强地下水型饮用水水源补给区保护。开展城镇地下水型饮用水水源保护区、补给区及供水单位周边环境状况调查评估,推进县级及以上城市浅层地下水型饮用水重要水源补给区划定,加强补给区地下水环境管理。(省生态环境厅、省水利厅、省发展改革委按职责分工负责)防范傍河地下水型饮用水水源地环境风险。推进地表水和地下水污染协同防治,加强河道水质管理,减少受污染河段侧渗和垂直补给对地下水污染,确保傍河地下水型饮用水水源水质安全。(省生态环境厅、省水利厅、省发展改革委按职责分工负责)专栏2 地下水污染防治领域重大工程(一)地下水污染状况调查评估工程。完成贵阳市、遵义市、安顺市、铜仁市、黔南州等地7个化工集聚区地下水环境状况调查评估;开展历史遗留煤矿酸性废水、有色金属矿采选区矿井涌水摸排调查。(二)遵义市地下水污染防治试验区建设。完成遵义市习水县等14个县(市、区)地下水环境状况调查评估与重点区划分,评估地下水环境状况、环境及健康风险,建立地下水污染防治分区划分体系,提出针对性的管理对策措施。(三)地下水综合治理试点工程。实施鱼洞河、坝辉河等一批历史遗留煤矿酸性废水、锑矿采选区矿井涌水等地下水污染综合治理试点工程。(三)深化农业农村环境治理1.加强种植业污染防治持续推进化肥农药减量增效。聚焦赤水河、乌江流域重点区域,明确化肥减量增效技术路径和措施。在主要粮油作物上实施精准施肥,分作物制定化肥施用限量标准和减量方案,制定水稻、玉米、油菜等氮肥推荐定额用量,依法落实化肥使用总量控制。大力推进测土配方施肥,优化氮、磷、钾配比,逐步实现在粮食主产区及果菜茶等经济作物优势区全覆盖。改进施肥方式,推广应用机械施肥、种肥同播、水肥一体化等措施,减少养分挥发和流失,提高肥料利用效率。积极推广缓释肥料、水溶肥料、微生物肥料等新型肥料,拓宽畜禽粪肥、秸秆和种植绿肥的还田渠道,在更大范围推进有机肥替代化肥。培育扶持一批专业化服务组织,提供统测、统配、统供、统施“四统一”服务。鼓励以循环利用与生态净化相结合的方式控制种植业污染,农企合作推进测土配方施肥。推进科学用药,推广应用高效低风险农药。推广新型高效植保机械,推进精准施药,提高农药利用效率。2025年,全省化肥农药施用量稳中有降,主要农作物化肥、农药利用率达到43%。(省农业农村厅、省生态环境厅、省供销合作社按职责分工负责)提升秸秆农膜回收利用水平。健全秸秆收储运体系,培育壮大一批产业化利用主体,提升秸秆离田收储、运输和供应能力,完善秸秆资源化利用和台账管理制度。深入实施农膜回收行动,严格落实农膜管理制度,健全农膜生产、销售、使用、回收、再利用全链条管理体系;推广使用标准地膜,发展废旧地膜机械化捡拾,探索推广环境友好全生物可降解地膜。到2025年,秸秆综合利用率保持在86%以上,农膜回收率保持在85%以上。(省农业农村厅、省生态环境厅、省市场监管局、省供销合作社按职责分工负责)2.着力推进养殖业污染防治编制实施畜禽养殖污染防治规划。按照“统筹考虑、一体推进、源头预防”原则,将畜禽污染防治纳入省畜牧业发展规划并组织实施。2022年率先组织开阳、播州、习水、七星关、威宁、思南和松桃7个畜牧大县编制畜禽养殖污染防治规划。以贵阳市为试点,逐步推进市(州)和其他县(市、区、特区)县畜禽养殖污染防治规划编制工作。(省农业农村厅、省生态环境厅、省发展改革委按职责分工负责)加强畜禽粪污资源化利用。健全畜禽养殖场(户)粪污收集贮存配套设施,建立粪污资源化利用计划和台账。创新粪肥还田组织方式,加快建设田间粪肥施用设施,鼓励采用覆土施肥等施肥方式。促进粪肥科学适量施用,推动开展粪肥还田安全检测。培育壮大一批粪肥收运和田间施用社会化服务主体。推进15个国家级畜禽粪污资源化利用“整县推进”示范县建设,重点支持养殖大县、粮食和蔬菜主产区、生态保护重点区域,选择基础条件好、地方政府积极性高的县(市、区),整县开展粪肥就地消纳、就地还田,实现示范县域内“一控、两减、三基本”目标。到2025年,全省畜禽粪污综合利用率稳定在80%以上。(省农业农村厅、省生态环境厅、省发展改革委按职责分工负责)加强畜禽养殖污染环境监管。落实畜禽规模养殖场环境影响评价及排污许可制度,依法规范畜禽养殖禁养区管理。推动畜禽规模养殖场配备视频监控设施,防止粪污偷运偷排。推动设有排污口的畜禽规模养殖场定期开展自行监测。依法严查环境违法行为。(省生态环境厅、省农业农村厅按职责分工负责)推动水产养殖污染防治。因地制宜发展池塘工程化循环水养殖、大水面增殖渔业、稻渔综合种养等绿色生态健康养殖模式。鼓励采取进排水改造、生物净化、人工湿地、种植水生蔬菜花卉等技术措施开展集中连片池塘养殖区域和工厂化养殖尾水处理,推进养殖尾水节水减排。深入实施生态健康养殖、养殖尾水治理、水产养殖用药减量、水产种业提升“四大行动”,因地制宜研究制定地方水产养殖业水污染物排放标准,加强水产养殖尾水监测,规范工厂化水产养殖尾水排污口设置。以赤水河流域、乌江流域等区域为重点,依法加大环境监管执法检查力度。(省农业农村厅、省生态环境厅按职责分工负责)3.推进农业面源污染治理监督指导以乌江流域为重点,开展黔南州贵定县农业面源污染治理与监督指导试点。优化完善监测点位,开展水质水量同步监测,加强汛期等重点时段水质监测;以小流域为单元,开展污染负荷评估,确定监管重点地区和重要时段,编制优先治理区域清单;实施治理工程,分区分类建立适宜管理模式和技术体系;开展治理绩效评估。(省生态环境厅、省农业农村厅按职责分工负责)4.整治农村黑臭水体明确整治重点。建立全省农村黑臭水体监管清单,优先整治纳入国家监管、群众反映强烈的黑臭水体,实行“拉条挂账、逐一销号”,稳步消除较大面积的农村黑臭水体。进一步核实黑臭水体排查结果,对新发现的黑臭水体及时纳入监管清单,加强动态管理。到2025年,国家监管的农村黑臭水体整治率达100%。(省生态环境厅、省农业农村厅、省乡村振兴局按职责分工负责)系统开展整治。针对黑臭水体问题成因,以控源截污为根本,综合采取清淤疏浚、生态修复、水体净化等措施,将农村黑臭水体整治与生活污水、垃圾、种植、养殖等污染统筹治理,确保治理成效。对垃圾坑、粪污塘、废弃鱼塘等淤积严重的水体进行底泥污染调查评估,采取必要的清淤疏浚措施。对清淤产生的底泥,经无害化处理后,可通过绿化等方式合理利用,禁止随意倾倒。根据水体的集雨、调蓄、纳污、净化、生态、景观等功能,科学选择生态修复措施。对于滞流、缓流水体,采取必要的水系连通和人工增氧等措施。(省生态环境厅、省水利厅、省农业农村厅、省乡村振兴局按职责分工负责)推动“长治久清”。充分发挥河湖长制平台作用,压实责任,实现水体有效治理和管护。对已完成整治的农村黑臭水体,开展效果评估,确保达到水质指标和村民满意度要求。严禁表面治理和虚假治理,禁止简单采用冲污稀释、一填了之等“治标不治本”做法。将农村黑臭水体排查结果和整治进展向社会公开公示,鼓励群众积极参与,对排查结果、整治情况监督举报。(省生态环境厅、省农业农村厅、省水利厅、省乡村振兴局按职责分工负责)5.治理农村生活污水积极稳妥推进治理。以解决农村生活污水等突出问题为重点,提高农村环境整治成效和覆盖水平。加强城乡统筹治理,扎实推进乡村建设行动,推动县域农村生活污水治理统筹规划、建设和运行,与供水、改厕、水体整治等一体推进,有效衔接。聚焦赤水河流域、乌江流域等水环境敏感区域流域,重点治理饮用水源保护区、黑臭水体集中区域、中心村、城乡接合部、旅游风景区,加强与传统村落、特色田园乡村示范试点建设等相衔接,因地制宜开展污水处理与资源化利用。城镇所在村及周边村,有条件的可以纳入城镇生活污水处理系统处理;居住较为集中、环境要求高的村庄,集中建设农村生活污水处理设施;居住分散、人口较少的非敏感区,结合厕所粪污无害化处理和资源化利用,对生活污水进行有效管控。在满足排放标准的前提下,大力推进运行费用低、管护简便的治理技术,优先选择三格式化粪池+厌氧池或小型人工湿地等无(微)动力生态处理技术。聚焦解决污水乱排乱放问题,开展农村生活污水治理成效评估。到2025年,全省新增完成2000个行政村环境整治任务,农村生活污水治理率达到25%。其中有基础、有条件地区,农村生活污水治理率达到40%左右;有较好基础、基本具备条件地区,农村生活污水治理率达到25%左右;基础较弱、经济欠发达地区,农村生活污水治理水平有新提升。(省生态环境厅、省发展改革委、省科技厅、省住房城乡建设厅、省乡村振兴局、省农业农村厅按职责分工负责)加强农村改厕与生活污水治理有效衔接。科学选择改厕技术模式,宜水则水、宜旱则旱。因地制宜推进厕所粪污分散处理、集中处理与纳入污水管网统一处理,鼓励联户、联村、村镇一体处理。已完成水冲厕所改造的地区,目前具备污水收集处理条件的,优先将厕所粪污纳入生活污水收集和处理系统;暂时无法纳入污水收集处理系统的,应建立厕所粪污收集、贮存、资源化利用体系。计划开展水冲式厕所改造的地区,鼓励将改厕与生活污水治理同步设计、同步建设、同步运营;暂时无法同步建设的,预留后续污水治理空间。(省生态环境厅、省农业农村厅、省乡村振兴局、省卫生健康委按职责分工负责)6.治理农村生活垃圾推进农村生活垃圾减量化资源化。按照垃圾“减量化、资源化、无害化”的原则,多措并举宣传推进农村生活垃圾分类,构建“政府主导、企业主体、全民参与”垃圾分类体系,引导村民分类投放,实现源头减量。鼓励社会资本参与农村生活垃圾资源化减量化,推进现有生活垃圾收运体系与资源再回收利用网络的衔接。(省住房城乡建设厅、省农业农村厅牵头,省乡村振兴局、省生态环境厅、省供销合作社按职责分工负责)健全农村生活垃圾收集、转运和处置体系。根据当地实际,统筹县、乡镇、村三级设施建设和服务,合理选择收运处置模式。完善农村生活垃圾收运处置设施,构建稳定运行的长效机制,加强日常监督,不断提高运行管理水平。因地制宜采用小型化、分散化的无害化处理方式,降低收集、转运和处置设施建设和运行成本。(省住房城乡建设厅、省乡村振兴局、省生态环境厅按职责分工负责)7.加强农村饮用水水源地环境保护完成乡镇级集中式饮用水水源保护区划定,规范设立保护区标志,必要时采取隔离防护措施。实施饮用水水源、供水单位供水和用户水龙头水质状况监测评估,并由县级以上地方人民政府有关部门依法向社会公开饮用水安全状况信息。(省生态环境厅、省水利厅、省卫生健康委按职责分工负责)专栏3 农业农村污染防治领域重大工程(一)农村生活污水治理工程。实施2000个行政村农村生活污水治理工程。(二)农村黑臭水体整治工程。实施织金县阿弓镇狗场村、平坝区羊昌乡稻香村、清镇市卫城镇南门村、花溪区石板镇盖冗村、花溪区高坡乡新安村、惠水县摆金镇关山村等56条农村黑臭水体整治工程。(三)畜禽粪污资源化利用整县推进工程。实施15个县畜禽粪污资源化利用整县推进工程,进一步提高粪污资源化利用率。(四)贵定县农业面源污染治理与监督指导试点工程。开展贵定县农业面源调查、监测及负荷评估,为贵州山区农业面源污染治理与监督指导提供示范。(四)提升生态环境监管能力1.完善法规标准推进《贵州省土壤污染防治条例(草案)》立法工作。制修订《贵州省农村生活污水资源化利用指南》《农村生活污水处理适用技术指南》《贵州省农村生活污水处理设施建设与运行维护技术指南》《贵州省农村生活污水处理技术规范》《贵州省农村生活污水处理设施运行维护管理办法》。(省生态环境厅、省司法厅、省市场监管局按职责分工负责)2.健全监测网络完善土壤环境监测网,优化调整土壤环境监测点位,定期开展国控网络和省控土壤环境质量监测,持续开展农产品产地土壤和农产品协同监测。至少完成一轮土壤污染重点监管单位周边土壤环境监测。探索开展建设用地安全利用卫星遥感监测。建成48个点位的国家地下水环境质量考核网络。对218个国家地下水环境质量监测点和152个省级监测点位开展监测。组织开展12个特色村农村环境质量监测,加强农村“万人千吨”饮用水水源地水质监测,加强日处理能力20吨及以上农村生活污水设施排口、规模化畜禽养殖场排污口、水产养殖集中区养殖尾水等监测。(省生态环境厅、省农业农村厅、省自然资源厅、省水利厅按职责分工负责)3.加强生态环境执法依法开展土壤、地下水和农业农村生态环境保护行政执法。严厉打击固体废物特别是危险废物非法倾倒或填埋,以及利用渗井、渗坑、裂隙、溶洞等逃避监管的方式向地下排放污染物等行为,对涉嫌污染环境犯罪的,及时移送公安机关。落实生态环境损害赔偿制度,按要求开展污染土壤和地下水的生态环境损害调查评估。组织开展监管执法工作培训,提升执法水平。(省生态环境厅负责)4.强化科技支撑优化整合科技计划,支持土壤、地下水和农业农村污染治理相关技术研发。开展高背景农用地土壤中镉等重金属元素生物有效性及向农产品迁移转化规律研究。推进铅、汞、镉、砷污染土壤安全利用、风险管控和修复共性关键技术、设备研发及应用。积极探索适宜我省地下水污染防治技术模式,围绕鱼洞河废弃煤矿酸性水流域地表水—地下水污染、松桃“两井四库”锰矿渣场渗漏废水等地下水生态环境突出问题,开展综合探查、酸性水生成速率控制、生物处理工艺和污染协同防治技术研究和开发利用。开展农业面源污染防治关键技术和喀斯特地区农村分散式污水无动力处理关键技术研发。推进土壤、地下水和农业农村生态环境保护领域省级重点实验室建设。(省科技厅、省生态环境厅、省自然资源厅、省农业农村厅按职责分工负责)四、保障措施(一)强化组织领导地方各级人民政府是实施本规划的主体,市(州)制定并公布本行政区域土壤、地下水和农村生态环境保护相关规划,确定目标任务和主要措施,县(市、区、特区)将土壤、地下水和农村污染防治工作纳入国民经济和社会发展规划、环境保护规划。建立部门协同推进机制,有关部门按照职责分工,落实“一岗双责”,密切协作配合,形成工作合力。(二)强化政策支持落实生态环境领域省以下财政事权和支出责任划分改革方案要求,充分发挥各级财政资金作用,争取国家财政资金支持,积极拓宽资金渠道,探索建立多元化投融资机制。积极通过地方政府债券支持符合条件的农业农村生态环境保护项目。继续通过现有资金渠道持续推动化肥农药减量增效、生物防治等相关工作,推进农业绿色发展。紧密衔接国土空间规划编制,预留农村生活污水治理等环保基础设施建设用地,积极推动将农村环保基础设施用电纳入农业生产用电范畴。(三)强化宣传引导充分利用电视、广播、报刊、互联网、微信公众号等媒体,结合世界环境日、世界土壤日、全国土地日、贵州生态日等主题宣传活动,有针对性地宣传普及土壤、地下水和农业农村生态环境保护知识,增强公众生态环境保护意识。采用培训班、现场会、视频会等形式,强化宣传培训。推进土壤、地下水和农业农村生态环境保护融入党政机关、学校、工厂、社区、农村等环境宣传培训工作,大力推广绿色生产生活方式,形成全社会保护土壤、地下水和农业农村生态环境的良好氛围。(四)强化效果评估实行目标责任制和考核评价制度,分解落实目标任务。省生态环境厅会同相关部门围绕本规划目标指标、主要任务、重大工程进展情况进行调度。在2023年、2025年底,分别对本规划实施情况进行中期评估和总结评估。
  • 律师申请公开地下水监测详情
    2月25日,北京义联劳动法援助与研究中心的黄乐平、韩世春和叶明欣3位律师致函国土资源部,申请公开全国200个城市地下水水质监测的详细结果。黄乐平称,目前国土资源部发布的内容,只提供了监测结果的综述,既未公布具体的监测结果,也未公布这些城市的名称。近期水污染问题引起较大关注,故公开相关数据“迫在眉睫”。  国土资源部政务大厅相关负责人表示,已经收到黄乐平的电子邮件,将严格按相关条例和程序作出答复,具体如何答复,以及是否公开水质监测详情,需研究后决定。  2011年,全国200个城市开展了地下水水质监测。去年5月,国土资源部发布《2011年中国国土资源公报》,公布了地下水监测结果。据通报,全国地下水水质监测的4727个监测点上,55%呈较差-极差级。与2010年相比,有连续监测数据的水质监测城市总数为176个,其中,66%的城市地下水水质状况以稳定为主,水质变好与水质变差趋势的城市所占比例几乎相当。  链接  申请公开土壤污染环保部称国家机密  据了解,2013年1月30日,律师董正伟向环保部提交了两份信息公开申请,申请公开全国土壤污染状况调查方法和数据信息等数据。  日前,环保部回函,以“国家机密”为由,拒绝公开全国土壤污染状况调查数据。
  • 构建全国地下水环境监测网 《地下水污染防治实施方案》发布
    p  生态环境部、自然资源部、住房和城乡建设部、水利部和农业农村部近日发布了《关于印发地下水污染防治实施方案的通知》。方案对我国地下水的污染监测进行了详细规定,要求2025 年年底前,构建全国地下水环境监测网,按照国家和行业相关监测、评价技术规范,开展地下水环境监测。/pp  到2020年,初步建立地下水污染防治法规标准体系、全国地下水环境监测体系 到2025年,建立地下水污染防治法规标准体系、全国地下水环境监测体系。/pp  strong我国现行的《地下水质量标准》是2017年发布的,包括常规指标和非常规指标共93项。但地下水环境监测的相关技术指南还缺失中。/strong/pp  地下水的监测主要设备为监测井,目前我国境内有基于各种用途的监测井,如国家地下水监测工程中监测井,建设项目环评要求设置的地下水污染跟踪监测井、地下水型饮用水源开采井、土壤污染状况详查监测井、地下水基础环境状况调查评估监测井、《中华人民共和国水污染防治法》要求的污染源地下水水质监测井等。其中strong国家地下水监测工程是我国投资22亿建设的,其中包括20401个监测站点/strong,但是这些站点配备的仪器设备仅为水位仪和采样器 根据监测井位置不同,每年会对水质进行35项常规监测或者96项全项监测。/pp  此次方案要求,2020年底前,加强现有地下水环境监测井的运行维护和管理,完成地下水监测数据报送制度。2025 年年底前,构建全国地下水环境监测网,按照国家和行业相关监测、评价技术规范,开展地下水环境监测。京津冀、长江经济带等重点区域提前一年完成。/pp  按照“大网络、大系统、大数据”的建设思路,积极推进数据共享共用,2020 年年底前,构建全国地下水环境监测信息平台框架。2025 年年底前,完成地下水环境监测信息平台建设。/pp  span style="color: rgb(255, 0, 0) "以现有地表水监测系统为参考,我国地下水环境监测网很可能采取短期内以手工监测为主,逐步建立自动监测体系的布局。/span/pp  全文如下:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201904/attachment/6863833b-dbba-4413-94e9-f0d66b76db35.pdf" title="地下水污染防治实施方案.pdf" style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "span style="font-size: 18px "地下水污染防治实施方案.pdf/span/a/ppbr//p
  • 官方拟出地下水新标准 建国家级地下水监测网络
    中国地质环境监测院副院长张作辰29日在京透露,在现行地下水质量标准实施近20年之后,官方拟对其进行修订。目前新标准已完成初稿,待征求相关部门意见、报国家标准化管理委员会审查后出台。  目前中国施行的地下水标准制定于1993年。张作辰在当日国土资源部召开的新闻通气会上表示,随着中国经济社会发展和对地下水状况的认识不断深入,需要对该标准进行重新修订。  他表示,考虑到近20年间国家人类工程活动对地下水环境的影响,新标准将增加和修订一些具体的标准,将比现有标准更加完善。  对于目前中国地下水监测现状,张作辰透露,截至2013年底,中国共有各级各类的地下水监测点约1.6万个,监控面积约110万平方公里,其中包括水位流量监测点2000个,全国地下水监测网的建设初具规模。不过仍存在国家级地下水监测点比较少,自动化监测程度不高,监测能力比较低,不能满足经济社会发展要求等问题。  为此,国土资源部、水利部等相关部门已部署在未来三年建立国家地下水监测工程。其中,国土资源部将建立103个国家级地下水监测点。建成之后将会采集水量,并开展水体的检测,并实现水位、水温等数据的自动的采集和监测。  上述新建工程结合现有的地下水监测站网可以形成比较完整的国家级地下水监测站网,为社会提供及时准确、较为全面的地下水动态信息。  国土资源部今年颁布《地质环境监测管理办法》并且自7月1日起施行。其中就包含地下水、地质灾害、矿山等地质环境监测。  据介绍,这个政策在组织实施、网络建设和监测成果等方面都有相关的规定,同时还明确了各级国土资源主管部门的主要职责。
  • 999万!国家地下水监测工程采购多台质谱仪!
    p style="text-indent: 2em text-align: left "国家地下水监测中心水质实验室(简称“国家实验室”)通过承担标准物质的生产与研发工作,为全国地下水水质监测实验室的质量控制、计量认证考核提供必备的标准物质,开展监测新技术、新方法的标准化研发等方面工作;另外,国家实验室还承担着重点区域开展地下水污染物监测分析、迁移转化机理、生态健康评估等方面的研究工作,承担对国内外关注程度较高的新型污染物监测方法与技术的储备研发、地下水污染应急监测及预警分析等多方面工作。/pp style="text-indent: 2em text-align: left "近期,东方国际招标有限责任公司受水利部信息中心委托,根据《中华人民共和国政府采购法》等有关规定,现对国家地下水监测工程(水利部分)国家地下水监测中心水质实验室仪器设备设计变更标段进行公开招标,欢迎合格的供应商前来投标。招标仪器涉及多种质谱仪。/pp项目名称:国家地下水监测工程(水利部分)国家地下水监测中心水质实验室仪器设备设计变更标段/pp项目编号:OITC-G180321103-1/pp项目联系方式:/pp项目联系人:窦志超/pp项目联系电话:010-68290502/pp预算金额:999.31 万元(人民币)/pp投标截止时间:2018年11月09日 09:30/pp开标时间:2018年11月09日 09:30/ppbr//pp详情如下:/ppimg src="https://img1.17img.cn/17img/images/201810/uepic/bbbf0254-13e8-4267-bd46-87a7e38ed6cf.jpg" title="屏幕快照 2018-10-19 下午8.35.13.png" alt="屏幕快照 2018-10-19 下午8.35.13.png"//p
  • 总预算近千万!水利部信息中心2021国家地下水监测工程招标项目启动
    5月14日,水利部信息中心发布一批省(市、区)2021年国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告,其中包括江苏省、北京等17省(市、区)、山东省、河北省、陕西省、黑龙江省、吉林省等地,总预算953.90万元。采购人信息  名 称:水利部信息中心  地址:北京市西城区白广路二条2号  联系方式:010-68868158  采购代理机构信息  名 称:东方国际招标有限责任公司  地 址:北京市海淀区西三环北路甲2号科技园6号楼13层01室  联系方式:窦志超、王琪010-68290502  项目联系方式  项目联系人:窦志超、王琪  电 话:  010-68290502各项目详情如下:一、水利部信息中心2021年江苏省国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320561  项目名称:2021年江苏省国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:37.40万元(人民币)  最高限价(如有):37.40万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年江苏省国家地下水监测工程(水利部分)地下水水质监测项目共有85个地下水水质监测站,4个同步监测站。具体工作任务和简要技术要求如下:  1、85个监测站采样前抽水等准备工作,准备全部水样容器。  2、85个监测站23项、4个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水水质样品采集技术指南》(地下水[2018]91号)附录A的相关要求。  3、85个监测站、4个同步监测站水样运输(运送、寄送)。  4、85个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)  二、水利部信息中心2021年北京等17省(市、区)国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320557  项目名称:2021年北京等17省(市、区)国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:590.2000000 万元(人民币)  最高限价(如有):590.2000000 万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年北京等17省(市、区)国家地下水监测工程(水利部分)地下水水质监测项目共有1176个地下水水质监测站,61个同步监测站,涉及北京市、天津市、山西省、内蒙古自治区、辽宁省、河南省、安徽省、云南省、广西壮族自治区、广东省、湖南省、海南省、重庆市、福建省、西藏自治区、新疆维吾尔自治区、新疆生产建设兵团等17省(市、区)。具体工作任务和简要技术要求如下:  1、1176个监测站采样前抽水等准备工作,准备全部水样容器。  2、1176个监测站23项、61个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。  3、1176个监测站、61个同步监测站水样运输(运送、寄送)。  4、1176个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 不接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)三、水利部信息中心2021年山东省国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320560  项目名称:2021年山东省国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:80.80万元(人民币)  最高限价(如有):80.80万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年山东省国家地下水监测工程(水利部分)地下水水质监测项目共有205个地下水水质监测站,11个同步监测站。具体工作任务和简要技术要求如下:  1、205个监测站采样前抽水等准备工作,准备全部水样容器。  2、205个监测站23项、11个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水水质样品采集技术指南》(地下水[2018]91号)附录A的相关要求。  3、205个监测站、11个同步监测站水样运输(运送、寄送)。  4、205个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)  四、水利部信息中心2021年河北省国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320556  项目名称:2021年河北省国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:86.30万元(人民币)  最高限价(如有):86.30万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年河北省国家地下水监测工程(水利部分)地下水水质监测项目共有200个地下水水质监测站,11个同步监测站。具体工作任务和简要技术要求如下:  1、200个监测站采样前抽水等准备工作,准备全部水样容器。  2、200个监测站23项、11个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水水质样品采集技术指南》(地下水[2018]91号)附录A的相关要求。  3、200个监测站、11个同步监测站水样运输(运送、寄送)。  4、200个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)  五、水利部信息中心2021年陕西省国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320558  项目名称:2021年陕西省国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:49.40万元(人民币)  最高限价(如有):49.40万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年陕西省国家地下水监测工程(水利部分)地下水水质监测项目共有121个地下水水质监测站,7个同步监测站。具体工作任务和简要技术要求如下:  1、121个监测站采样前抽水等准备工作,准备全部水样容器。  2、121个监测站23项、7个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。  3、121个监测站、7个同步监测站水样运输(运送、寄送)。  4、121个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 不接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)  六、水利部信息中心2021年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320563  项目名称:2021年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:77.90万元(人民币)  最高限价(如有):77.90万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目共有141个地下水水质监测站,7个同步监测站。具体工作任务和简要技术要求如下:  1、141个监测站采样前抽水等准备工作,准备全部水样容器。  2、141个监测站23项、7个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水水质样品采集技术指南》(地下水[2018]91号)附录A的相关要求。  3、141个监测站、7个同步监测站水样运输(运送、寄送)。  4、141个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)  七、水利部信息中心2021年吉林省国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告  项目基本情况  项目编号:OITC-G210320562  项目名称:2021年吉林省国家地下水监测工程(水利部分)地下水水质监测项目  预算金额:32.10万元(人民币)  最高限价(如有):32.10万元(人民币)  采购需求:  根据《水利部办公厅关于做好2021年国家地下水监测系统运行维护和地下水水质监测工作的通知》(办水文函[2021]85号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2021年吉林省国家地下水监测工程(水利部分)地下水水质监测项目共有89个地下水水质监测站,5个同步监测站。具体工作任务和简要技术要求如下:  1、89个监测站采样前抽水等准备工作,准备全部水样容器。  2、89个监测站23项、5个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水水质样品采集技术指南》(地下水[2018]91号)附录A的相关要求。  3、89个监测站、5个同步监测站水样运输(运送、寄送)。  4、89个监测站水质样品进行1次23项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。  本项目( 接受 )联合体投标。  提交投标文件截止时间:2021年06月04日 09点30分(北京时间)  开标时间:2021年06月04日 09点30分(北京时间)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制