当前位置: 仪器信息网 > 行业主题 > >

纳米压痕分析

仪器信息网纳米压痕分析专题为您提供2024年最新纳米压痕分析价格报价、厂家品牌的相关信息, 包括纳米压痕分析参数、型号等,不管是国产,还是进口品牌的纳米压痕分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米压痕分析相关的耗材配件、试剂标物,还有纳米压痕分析相关的最新资讯、资料,以及纳米压痕分析相关的解决方案。

纳米压痕分析相关的方案

  • 利用AFSEM进行纳米压痕分析
    - 原位SEM与AFM、纳米压痕仪三者联用- 无需将样品在AFM系统与SEM系统之间反复转移即可对多次纳米压痕测试进行观察、测量,操作方便高效- 定量分析表面的缺陷及压痕
  • 纳米压痕测试技术在钢铁材料中的应用
    是德科技纳米压痕测试的主要优点是将载荷控制在纳牛量级,同时压入深度控制在纳米量级,且样品表面的定位能力也可以被精确控制在几十纳米到亚微米量级,所有这些因素决定了该设备非常适合钢铁材料中各种相组织的力学性能测量。
  • 纳米压痕测试技术在汽车轮胎上的应用
    是德科技最新的纳米压痕测试技术结合连续刚度测量专利,不但可以进行类似的粘弹性力学性能测试,(例如材料的储存模量,损耗模量以及损耗因子),同时具有更宽频谱下的粘弹性力学性能测试以及极高的空间定位分辨率,这对于新型的轮胎结构尤为重要,新型的汽车轮胎内部包括多层胶料、钢丝以及面纱等材料,利用是德科技的Nano Indenter G200上述特点,这就使得我们可以获得轮胎材料中微区的力学性能,进而形成粘弹性力学性能Mapping。
  • 纳米力学测试系统在新能源领域的应用
    是德科技纳米压痕仪的特点和优势–– 广受赞誉的快速测试选项可以和所有G200型纳米压痕仪配合使用,包括DCMII和XP模块以及样品台–– 快速进行面积函数和框架刚度校对–– 精确和可重复的结果,完全符合ISO 14577标准–– 通过电磁驱动,可在无与伦比的范围内连续调整加载力和位移–– 结构优化,适合传统测试或全新应用–– 模块化设计,可以进行适合划痕测试,高温测试和动态测试–– 强大的软件功能,包括对试验进行实时控制,简化了特殊测试方法的开发––全自动的热漂移效应实时扣除功能
  • 活塞环的纳米力学表征
    是德科技公司的微纳米力学测试系统(Nano Indenter G200)不仅能测试出活塞环的纳米压痕硬度和杨氏模量,还可以通过摩擦磨损测试定量研究活塞环的耐磨特性,为新产品的研发和质量检测给出判据。
  • 薄膜材料的纳米力学测试解决方案
    布鲁克TI系列纳米材料机械性能,压痕,划痕,摩擦磨损具有高精度,结合原位AFM功能,可获得精准数据,排除环境因素,底材因素。
  • 改性碳纳米管的XPS测定与分析
    碳纳米管以其独特的结构和优异的性能,在纳米、生物、能源、催化、电子材料等领域有很大的应用潜力。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来;目前碳纳米管的合成和应用已经成为材料科学研究的前沿热点。然而,由于其分散性以及与基体材料的相容性问题制约着碳纳米管材料的发展;为解决这两个问题,很多科研工作者致力于碳纳米管表面改性的研究,以提升其分散性和相容性。XPS作为一种表面分析技术,由于其表面敏感性,这就使XPS成为碳纳米管研究过程中一种必不可少的研究手段。本文通过ESCALAB Xi+对改性前后的碳纳米管进行检测分析,探索不同改性工艺获得的改性碳纳米管的结构与组成信息,文章中将详细介绍如何利用XPS准确的获得材料表面组成和化学态信息。
  • 碳纳米管的拉曼光谱分析
    分析这些纳米结构的一种主要方法是拉曼显微光谱法
  • 利用AFM PINPOINT 纳米机械模式定量材料的弹性模量 比力体积谱快两个数量级
    自原子力显微镜发明以来,原子力显微镜通过在纳米尺度上提供精确、可靠、无损的成像,在材料科学和元件工程中产生了革命性的影响。原子力显微镜被广泛用于纳米技术应用当中,像生物医学可植入驱动器、电池超薄阴极材料、光电探测器和存储器和逻辑电路开关。随着元件尺寸的不断缩小,材料的局部特性测量方式方法在提供精确的纳米尺度测量方面已经变得更加有效。局部的机械性能如粘附性和弹性模量是决定这些元件的可靠性和所含性能的关键参数。现有的原子力显微镜是基于纳米机械方法被引入测量机械性能,例如包括力体积谱和纳米压痕。 然而,其中一些技术相当耗时间,有些则具有破坏性,不能满足某些特定应用的高产量监测。 图1展示了Park Systems开发的原子力显微镜PinPoint纳米机械模式。Park Systems专利的PINPOINT技术比传统的力体积谱技术至少快两个数量级,这可以使用户在短时间内能够同时获取材料的定量力学特性和高分辨率形貌图。在操作过程中,探针针尖以接近-缩回的方式移动,确保两者间不会形成摩擦,消除了探针和样品间的持续接触所产生的侧向力,保持了针尖和样品间的良好状态,进而理想的测量软性或硬性样品,如硬盘和生物样品。在图像中的每一点获取力-距离曲线,用于计算被测样品的机械特性。在数据收集期间,XY 扫描器停止,并控制接触时间以给扫描器足够时间去获取精确和准确的数据。在本实验中,成功地定量了具有不同模量范围的4种不同材料。各试验所得结果均接近所测材料的标称值,证明了PinPoint模式在力学特性的定量方面所具备的优越性。此外,它又同时获得了高分辨率图像,显示了样品的表面特征。
  • 单粒子-ICPMS分析血中金和银纳米粒子
    纳米技术及其潜在应用在临床研究中的快速发展,引起了纳米粒子(NPs)对人类健康方面负面影响的顾虑。小尺寸的纳米粒子由于其单位体积里具有更大的表面积而意味着具有增强的反应性。在这种属性可以加强预期效果的同时,也有引入新的、未知的有害的影响的可能性。两种金属纳米粒子--金和银粒子,金粒子由于其具有高化学稳定性、易于控制颗粒大小和实现表面功能化被广泛应用于研究,银粒子具有抗菌效果经常被用于伤口灭菌、医学部件和假体涂层,以及商品化的纺织品、化妆品和日用商品2。由此,越来越多的银纳米粒子将经过绷带或医疗部件被引入开放性创口,直至迁移进入血液循环系统。近期的论文已经开始考虑纳米粒子被暴露性接触的器官直接吸收,并经由血液系统至第二级器官,例如中枢神经系统,可能影响到胚胎神经前驱细胞的生长特性3。因此,科研人员需要检测和测量血中纳米粒子的分析方法。本文研究了单粒子ICP-MS(SP-ICP-MS)测定血中金和银纳米粒子的分析能力。
  • 纳米材料粒径分析+CN-300 离心式纳米粒度分析仪
    HORIBA CN-300 离心式纳米粒度分析仪通过记录颗粒到达检测器的所需时间计算颗粒大小,显著提升了仪器的表征复杂样品的能力,可帮助解决粒度分析难题。
  • 纳米力学测试系统的应用-高温微划痕和冲击测试
    在正确的长度尺度上测试机械和摩擦学性能提供了更多相关的数据,例如优化涂层成分,以提高苛刻应用的性能,如切削工具或航空/汽车发动机的机械接触。虽然它们以简单而受欢迎,但许多宏观机械接触测试对薄CVD和PVD涂层的性能不太敏感,因为测试中的大探针半径和非常高的接触力会导致峰值应力深入基材。相反,纳米划伤测试使用更低的载荷和更小的探针半径,可能会使峰值应力太靠近表面,而涂层只有几微米厚。此外,高表面粗糙度会限制小半径划痕探头的使用寿命。
  • 如何通过扫描电镜分析来理解最新的纳米纤维应用
    电纺纳米纤维是近年来备受关注的一种新型纳米纤维,这归因于这些纤维的特殊性质:它们具有多孔的三维表面,高比值表面积以及可调节孔隙尺寸的互连孔隙。扫描电子显微镜(SEM)被证明为研究纤维性能是如何改变和增强的有力分析工具。
  • Nano-FTIR对多组分高分子材料的纳米成分分析
    西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm-1),C=O(1740cm-1)及C-O(1155cm-1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率高可达10 nm,是传统FTIR和ATR-IR无法企及的。
  • 使用配备了单纳米颗粒应用模块的 Agilent 7900 ICP-MS 对单纳米颗粒进行自动化、高灵敏度的分析
    纳米技术的发展将对各个行业领域产生重要影响。由于纳米颗粒 (NP) 的理化性质较为新颖,它们的许多环境归宿和毒理学性质仍然不为人知。因此,人们对一种能够快速、准确而灵敏地完成各种类型样品中纳米颗粒表征与定量的技术的需求也日益增长。ICP-MS 技术中称作单颗粒 ICP-MS (sp-ICP-MS) 的方法可用来测定单个纳米颗粒。该方法在一次快速分析中可同时测定纳米颗粒的粒径、粒径分布、元素组成和计数浓度。我们对 ICP-MS 硬件和软件的最新升级进一步改善了这一技术。安捷伦针对 ICP-MS MassHunter 软件开发出一种专用的单纳米颗粒应用模块 (G5714A),可简化使用 Agilent 7900 ICP-MS 进行 sp-ICP-MS 分析的过程。7900 ICP-MS 系统使用短驻留时间(1 ms 以下)和快速时间分辨分析 (TRA) 模式,能够在快至 100 ?s 的采样速率下完成单元素采集,且无需稳定时间。该方法在单颗粒信号脉冲期间可进行多次测定,显著降低了相邻颗粒信号重叠的风险。该方法的另一优势在于可使用较低的样品稀释比例和更短的样品采集时间。sp-ICP-MS 分析产生的海量数据可由单纳米颗粒应用模块管理并处理。本文利用金 (Au) 和银 (Ag) 纳米颗粒参比标样对配备单纳米颗粒应用模块的 Agilent 7900 ICP-MS 性能进行了评估。
  • 使用配备单纳米颗粒应用模块的Agilent 7900 ICP-MS 实现单个纳米颗粒的自动化高灵敏度分析
    纳米技术的发展将对各个行业领域产生重要影响。由于纳米颗粒 (NP) 的理化性 质较为新颖,它们的许多环境归宿和毒理学性质仍然不为人知。因此,人们对一 种能够快速、准确而灵敏地完成各种类型样品中纳米颗粒表征与定量的技术的需 求也日益增长。ICP-MS 技术中称作单颗粒 ICP-MS (sp-ICP-MS) 的方法可用来 测定单个纳米颗粒。该方法在一次快速分析中可同时测定纳米颗粒的粒径、粒径 分布、元素组成和计数浓度 [1-3]。我们对 ICP-MS 硬件和软件的最新升级进一 步改善了这一技术。 安捷伦针对 ICP-MS MassHunter 软件开发出一种专用的单纳米颗粒应用模 块 (G5714A),可简化使用 Agilent 7900 ICP-MS 进行 sp-ICP-MS 分析的过程。 7900 ICP-MS 系统使用短驻留时间(1 ms 以下)和快速时间分辨分析 (TRA) 模式,能够在快至 100 μs 的采样速率下完成单元素采集,且 无需稳定时间。该方法在单颗粒信号脉冲期间可进行多次 测定,显著降低了相邻颗粒信号重叠的风险。该方法的另 一优势在于可使用较低的样品稀释比例和更短的样品采集时 间。sp-ICP-MS 分析产生的海量数据可由单纳米颗粒应用 模块管理并处理 [4]。 本文利用金 (Au) 和银 (Ag) 纳米颗粒参比标样对配备单纳 米颗粒应用模块的 Agilent 7900 ICP-MS 性能进行了评估。
  • 真空干燥箱在纳米颗粒性能研究中的应用:实验结果与分析
    本文通过使用真空干燥箱对不同类型纳米颗粒进行干燥处理,研究了干燥条件对纳米颗粒性能的影响。实验结果表明,温度、真空度和干燥时间是影响纳米颗粒性能的关键参数。
  • 采用纳米微粒跟踪分析测定乳胶标准尺寸
    NanoSight 仪器有个独特的功能,就是可以在悬浮液中直接观察和测量纳米颗粒。颗粒可视化可以同时对每个颗粒测量尺寸,克服了与光子相关谱(PCS,或者动态光散射)等有关技术所存在的固有问题。纳米颗粒产生的光散射强度与半径公式遵循能量公式,并且随瑞利粒子1的六次方增大而增大。因此PCS(由总体颗粒产生的总散射光)虽然可以获得平均颗粒大小但是很难区分区那些是数量少的大颗粒还是是污染物。从另一方面来说,电子显微镜不仅在样品准备和成像上耗时,而且只能观察一个小区域,因此分析结果可能是以偏概全的。
  • SP-ICP-MS分析涂层表面纳米颗粒的迁移
    本文探讨了纳米材料表面上的纳米微粒如何迁移到抹布上,并集中讨论了纳米微粒释放的几大特征:总质量浓度、微粒数量浓度及微粒尺寸分布。我们检测了因抗菌性而被广泛使用的银纳米微粒,及油漆涂层表面的氧化铜纳米微粒的迁移情况。
  • 利用 SP-ICP-MS对单壁碳纳米管进行分析
    SP-ICP-MS 提供了一种单壁碳纳米管金属含量的定量方法。使用金属杂质的含量可以推测单壁碳纳米管的计数浓度,有效拓展了ICP-MS在纳米材料领域的应用。另外,一旦金属含量已知,即可测定未知样品中的单壁碳纳米管浓度。这项研究的意义是可以在无需消解碳纳米管(一个冗长繁琐的过程)的情况下准确量化碳纳米管中的金属杂质。
  • 双相不锈钢的增强纳米压痕应用
    Using Bruker’s Hysitron PI 88 SEM PicoIndenterequipped with tilt and rotation stages in conjunction withthe QUANTAX EBSD system enables a more robustcharacterization of metallic materials by combining highresolution phase and grain orientation mapping capabilitieswith targeted nanomechanical property measurements.This combination could also be used to extend the scope ofresearch related to other advanced textured, anisotropic, ormulti-phase materials.
  • Agilent 7800 ICP-MS 分析 10 nm金纳米颗粒
    本研究创建了一种检测和表征 10 nm Au 纳米颗粒以及 10 nm与 30 nm 纳米颗粒混合物的简单方法。该方法将无气体模式与 ICP-MS MassHunter 简单而功能强大的单颗粒应用模块相结合,利用了 Agilent 7800 ICP-MS 高灵敏度和易于优化的特点。借助方法向导,只需轻点几下鼠标即可完成方法开发,之后便能够自动分析短样品序列。单颗粒分析的速度非常快,每个样品通常仅需 60 秒。介绍了包括校准、雾化效率测定和样品分析在内的整个序列,用时少于半小时。
  • 纳米压痕在TFT/LCD间隔物性能测试中的应用
    TFT/LCD等液晶屏中,间隔物用来保持两面板之间的固定间距,使得液晶填充在面板之间并发挥其作用。这些间隔物的性能好坏直接影响到最终液晶面板的质量优劣。最常用到的间隔物是球状间隔物和柱状间隔物,它们的破裂强度、回弹率以及高度的均匀性,保证了面板间隔的稳定,以及面板的优质质量。HM2000是测量LCD间隔物性能最理想的选择,其装配了平压头,具有极高精度的载荷和位移传感器,以及高精度的移动平台,使得可以在一个测试循环中得到单个间隔物的各种力学性能。更多详细信息欢迎咨询我们FISCHER
  • 微纳米气泡的直观表征方法
    微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡数量、球形度等信息,用于表征、鉴别微米气泡;通过纳米颗粒跟踪分析技术,测得纳米气泡的粒径分布、浓度、电位等信息,用于全面表征纳米气泡的性质。
  • 使用单颗粒ICP-MS在反应模式下分析SiO2纳米颗粒
    使用ICP-MS测量硅(Si)富有挑战性。等离子体中形成的14N2+和12C16O+ 多原子离子,与丰度最高的Si同位素(28Si 92 %丰度)的m/z相同。因此,当多原子离子未被去除时(标准模式下),m/z 28处的背景等效浓度非常高。它抑制了低水平Si的测定,让SiO2纳米颗粒的检测变得更加困难。此外,Si的电离势相对较高,其电离也更具挑战性,导致其强度低于其它易电离的元素,如Na。然而,如果能提高信背比(S/B),就有可能检测到更小的SiO2纳米颗粒。在之前的应用报告中,2我们介绍过100 nm SiO2纳米颗粒标准品可以使用SP-ICP-MS进行分析,且无需去除干扰(标准模式下)。然而,如果能在反应模式下去除干扰,预期能精准测量更小的SiO2纳米颗粒。本工作将讨论在反应模式下,通过SP-ICP-MS检测、测量和表征SiO2纳米颗粒的能力。
  • 美藤果油纳米乳液稳定性分析研究
    美藤果油是一种含有丰富 α-亚麻酸的功能性植物油,其 α-亚麻酸含量分别是橄榄油的 67. 09 倍、茶籽油的 175. 46 倍、花生油的 506. 89 倍,不饱和脂肪酸质量分数可达 93% ,研究表明,美藤果油在调节人体血脂、预防心血管疾病、增强免疫力、抗菌消炎、保养肌肤等方面具有显著疗效。然而,由于美藤果油中不饱和脂肪酸含量极高,其在贮藏加工中极易发生氧化,且又因为油类物质具有水溶性差、口服利用率低等不足,大大限制了其作为功能油脂在食品中的开发应用。纳米乳液( nanoemulsions) ,多指平均粒径为50 ~500 nm 的乳液体系,是由水、油、表面活性剂或助表面活性剂等按一定比例混合,经过一定的外部能量输入( 如搅拌、均质、分散、超声等) 所形成的热力学稳定的胶体分散体系。纳米乳液可以改善功能性油脂在水相食品中的溶解性和分散性,使功能性油脂可以应用到多相多组分的油水分散体系。纳米乳液与其他乳液体系相比,在乳液稳定性和食品安全性等方面具有较好的优势。将美藤果油制作成美藤果油纳米乳液,可以解决其水溶性差、口服利用率低、贮藏和加工过程中易发生氧化变质等加工应用方面的难题,同时保留美藤果油作为功能性油脂的营养价值,有利于其作为功能性辅料在食品领域进行广泛应用。
  • 使用 Agilent 7800 ICP-MS 分析 10 nm 金纳米颗粒
    高灵敏度和低背景噪音对 ICP-MS 法检测小纳米颗粒至关重要。纳米颗粒电离生 成的信号随粒径的立方而减小。这就要求检测极小颗粒(如 10 nm Au 颗粒 (NIST 8011))时,ICP-MS 仪器的灵敏度远高于检测一般 NIST 参比物质(如 NIST 8012 (30 nm) 和 8013 (60 nm))时的要求。 本研究证明了 Agilent 7800 ICP-MS 能够轻松达到测定 10 nm Au 纳米颗粒所需的信噪比,无需复杂的反应池气体或定制调谐条件即可实现。所采用的标准操作条件可 轻松应用于含有其他元素(例如 Ag)的纳米颗粒。
  • 同时分析TEMPO氧化纤维素纳米纤维的成分糖和葡萄糖醛酸
    纤维素纳米纤维(CNF)通过机械处理木质纸浆(纤维直径20–30 μ m、纤维长度0.5–3 mm)获得。但是,木质纸浆中的CNF与CNF之间形成氢键,因此,在结晶最小尺寸(纤维直径3-4 nm)时,仅通过机械处理可能导致纳米化无法充分达到,或对CNF的损伤变大,需要更大能量进行纳米化,这些都是存在的问题。本文将向您介绍同时分析TEMPO氧化CNF的成分糖和利用TEMPO催化生成的葡萄糖醛酸的案例。
  • 扫描电镜在纳米测量中的成象误差
    本文从扫描电镜二次电子像成像原理出发,分析用扫描电镜测量纳米尺度时可能出现的成像误差。重点分析了《成份边界的成像误差》,并提出了减小成份边界成像误差的方法。分析了《台阶的成像误差》也提出了减小台阶成像误差的方法。同时提请纳米测量者注意《渐变边界的成像误差》。在讨论中提出:在纳米测量中,应尽量避免用边界作为测量的标记点或标记线;纳米标准器具,更应避免用边界作为标记点或标记线;最好用成份细线的中心点或中心线作为标记点或标记线;其次是用小颗粒的中心点,细刻线的中心线作为标记点或标记线。为研究纳米标准器具提出了技术方向。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制