当前位置: 仪器信息网 > 行业主题 > >

流动式细胞仪

仪器信息网流动式细胞仪专题为您提供2024年最新流动式细胞仪价格报价、厂家品牌的相关信息, 包括流动式细胞仪参数、型号等,不管是国产,还是进口品牌的流动式细胞仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流动式细胞仪相关的耗材配件、试剂标物,还有流动式细胞仪相关的最新资讯、资料,以及流动式细胞仪相关的解决方案。

流动式细胞仪相关的资讯

  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 流式细胞仪的那些事儿
    流式细胞仪在生命科学领域尤其医学中应用非常广泛,是一种能够对细胞进行相关处理的仪器,并且能够对细胞进行必要的分析。小编为大家介绍一下流式细胞仪的概念、发展历史、特点、分类、基本原理以及应用。  流式细胞术与流式细胞仪的概念  流式细胞术(flow cytometry , FCM):是一种定量分析技术,是指利用流式细胞仪检测细胞特异性标记荧光信号而测定细胞的多种生物物理性质的方法,同时也是一项可以把具有某相同荧光信号特性的某些细胞亚群从多细胞群体中分离和富集出来的细胞分析技术。点击查看更多细胞流式仪  流式细胞仪(flow cytometer):是一种集激光技术、电子物理技术、光电测量技术、电子计算机技术、细胞荧光化学技术和抗原抗体检测技术为一体的新型高科技仪器 是以激光为光源、检测生物学颗粒理化性质的仪器。  流式细胞仪的发展历史  1、1934年,Moldavan使悬浮的红细胞从一个毛细玻璃管中流过,每个通过的细胞可被一个光电装置记录下来。这就是流式细胞仪的雏形。  2、1965年,Kamentsky用紫外吸收和可见光散射两个参数同时测量未染色细胞,给出细胞中核酸的含量和细胞大小。奠定了多参数流式细胞测量的基础。  3、1967年,Van Dilla和Los Alamos采用了层流流动室和氩激光器,开发出了液流束、照明光轴、检测系统三者相互垂直的流式细胞仪。这成为目前各种流式细胞仪的基础。  4、1969年,Fulwyler利用静电墨水喷射液滴偏转技术,建立了流式细胞分选术。Ehrlich和Wheeless利用飞点扫描技术和缝扫描技术使零分辨率的流式细胞仪变成了低分辨率的流式细胞仪。  5、20世纪70年代,随着Kohler和Milstein成功提出了单克隆抗体技术和荧光标记技术,为特异研究和分析细胞奠定了良好的基础。  6、1973年,美国BD公司和美国斯坦福大学合作,研制开发并生产了世界上第一台商用流式细胞仪FACS I。  7、20世纪80年代,流式细胞仪的数据采集、存储、显示、分析日趋完善,随着样品制备方法的增加,新的荧光染料和细胞标记物的出现,使流式细胞仪的应用范围逐渐扩大。  8、20世纪90年代,与之配套的标本制备仪和自动进样器的问世,以及适合临床应用的单克隆抗体的增加,使流式细胞仪逐渐从科研单位进入医院的中心实验室和检验科,成为现代化的临床检验仪器的一部分。  流式细胞仪的特点  1、高速度:每秒可检测1 000-5 000个细胞。  2、高灵敏度:每个细胞只要带有1 000-3 000个荧光分子就能检出,两个细胞之间有5%的差别就可区分出来,光散射的灵敏度为0.3um。  3、高精度:在细胞悬液中测量细胞,比其他分析技术的变异系数更小,分辨率高。  4、高纯度:分选细胞的纯度可大于99%以上。  5、多参数:可同时定量检测单个细胞的DNA等多个参数。  流式细胞仪的分类  1、根据功能不同,可分为临床型和综合型(科研型)。  2、根据有无细胞分选功能,可分为流式细胞分析分选仪和流式细胞分析仪。  3、根据结构不同,可分为一般流式细胞仪(零分辨率流式细胞仪)和狭缝扫描流式细胞仪(高分辨率流式细胞仪)。前者的激光光斑为椭圆形,光斑直径大于被检细胞体积。后者激光光束为一条线状扁平光斑,直径在3-5um。  流式细胞仪的基本原理  1、将悬浮分散的单细胞悬液,经特异性荧光染料染色后,放入样品管。  2、在气体压力的作用下,悬浮在样品管中的单细胞悬液形成样品流垂直进入流式细胞仪的流动室,流动室充满鞘液,在鞘液的约束下,细胞排列成单列由流动室的喷嘴喷出,成为细胞液柱。  3、液柱与水平方向的入射激光束垂直相交,相交点称为测量区。通过测量区的细胞受激光照射后发出荧光,同时产生光散射。这些信号分别被成90℃角方向放置的光电倍增荧光检测器和前向角放置的光电二极管检测器接收,经过转换器转换为电子信号。  4、电子信号经模/数转换输入计算机。计算机通过相应的软件储存、计算、分析,就可以得到细胞的大小和活性、核酸含量等理化指标。  流式细胞仪的应用  1、DNA倍体分析  DNA分析是流式细胞仪最初且是现在应用最广检测项目。由于恶性细胞DNA含量通常与正常细胞不同,存在异倍体细胞,所以现有很研究评价异倍体细胞与肿瘤恶性度及其预后的关系。DNA含量检测还可提供细胞周期方面的信息,这在细胞生物学中运用很广泛。特别地,它可表示出细胞毒性药物对细胞作用过程。这些DNA检测还可与细胞表面标志物标记同时进行,这样在细胞混合培养中,可通常追踪表达特异标志物的细胞显示其生长周期情况。所有方法都是基于染料能与核酸起特异的化学反应并发射出荧光,常用的染料为PI,DAPI。  在该领域Partec公司的 CyFlow PA是一枝独秀。  2、细胞生存能力实验  使用Heochest 33342染料与DNA特异性结合,后因细胞活力不同染料的结合程度也各异,故可评估细胞的活性度。  3、计数外周血中检测网织红细胞  使用TO染料能够特异性地与RNA结合,结合系数高达3000,故具有很好的性价比。  4、外周血、骨髓采集物中CD34阳性干细胞计数,临床上用于骨髓移植前干细胞数理的测定。使用标准ISHAG方案,需要DNA或其他核染料占用FITC通道,PE标记CD34抗体,PE-CY5标记CD45抗体。  5、交叉淋巴细胞、粒细胞毒实验  检测识别供体血清中免疫球蛋白与受体粒细胞之间是否存在反应有着重要临床意义,因为这种反应会导致移植后发热、移植后肺损伤及免疫性粒细胞缺乏症。流式细胞仪可检测全血样本与血清孵育后粒细胞上结合的人免疫球蛋白。FITC标记人免疫球蛋白抗体、PE标记粒细胞表面标志物、PE-CY5标记HLA抗体。  6、血小板自身抗体检测  血小板自身抗体识别人血小板抗原,会引起各种临床相关症状,如新生儿自免性血小板减少症、输血后紫癜、难治性血小板减少。流式细胞可快速准确地检测血小板自身抗体。FITC标记抗人免疫球蛋白抗体、PE标记识别血小板抗体。  7、移植交叉配型  原细胞毒实验,主要用于避免移植物超急性排拆反应。流式细胞仪用于监测T或B细胞是否受到受体血清中免疫球蛋白攻击,作为HLA配型前的预实验。流式细胞仪因其高精确性已成为该领域内的金标准。FITC标记抗人免疫球蛋白抗体、PE标记识别T细胞CD3或B细胞CD29抗体。  8、检测细胞经抗原或细胞有丝分裂刺激后活化效应淋巴细胞早期活化指标CD69可用来检测免疫治疗效果。流式细胞使用三色分析可监测淋巴细胞各亚群活化情况:FITC标记的CD3抗体、PE标记的CD8抗体、PE-CY5标记的CD69抗体。  9、细胞增殖状态检测  核增殖抗PCNA、Ki67、BrdUrd用于衡量细胞增殖分裂状况,在评估肿瘤预后有重要意义。为些标志物的检测一般同细胞表面标志物同时检测。FITC标记PCNA或Ki67或BrdUrd,PE或(并)PE-CY5标记细胞表面标志物。  10、染色体分析  流式细胞仪染色分析运用两种特异性染料:Hoechest33258与核苷酸AT结合 Chromomycin A3与GC相结合。从而在双参数坐标上根据染色体ATCG含量的不同识别各种染色体。平时进行的染色体分析耗时且需要操作者极具经验,而用流式细胞仪时可快速地识别出异常染色体,如加配分选系统可将这些异常染色体分选出来作进一步分析。  以上,就是小编为您介绍的流式细胞仪的概念、发展历史、特点、分类、基本原理以及应用。如今医疗的进步离不开医疗设备的发展与进步,流式细胞仪就是集中于测量发育异常的细胞遗传物质的数量变化,该设备的鉴定对种质资源、物种进化、物种分类、生态学研究、倍体育种等方面具有重要意义。
  • 温和细胞分选,开启单细胞测序成功的第一步!
    随着单细胞测序技术的快速发展,科研工作者们可对每个独一无二的单细胞进行分析,认识到细胞间的异质性,深入了解如胚胎发育早期的分化特征、肿瘤微环境中的非均质性、罕见循环肿瘤细胞的转录组等等以往传统高通量测序方法难以攻克的领域。单细胞分析的应用已进入百花齐放的时代,涵括神经生物学、癌症、免疫学、微生物学、胚胎发育、临床诊断等多个领域。单细胞测序分析的第一步,即是单细胞样品的制备,同时确保其生物完整性不被破坏。高质量的样品制备影响着后续单细胞分析成功与否。高活性、无细胞碎片且均一的单细胞悬液可使测序结果在完整性、真实性、数据可重复性得到提升。最常见细胞分离的方法可用MACS磁珠或流式细胞仪进行目的细胞分选与富集。单细胞测序流程利用流式细胞分选法富集目的细胞群体缩小研究范围,对单细胞群体可进一步精细化解读。尤其在研究罕见细胞族群,单细胞测序前先以流式细胞分选富集稀有细胞,可大大增加实验数据真实性与可靠性。现今已有愈来愈多单细胞测序研究结合流式细胞分选,筛选目的细胞、过滤死细胞减少样本中無效细胞的比例,提高单细胞文库构建的成功率以及后续的数据质量,让单细胞测序更有深度与广度分析实验数据,推动进一步研究范畴。传统高压液滴分选仪分选单细胞传统液滴式流式细胞分选(Droplet cell sorter),将目的细胞利用适宜的荧光标记。经荧光染色或标记的单细胞悬液,被高压压入流动室内,在鞘液的包裹和推动下,细胞被排成单列,以一定速度从流动室喷口喷出。通过相应荧光检测及充电,获得目的细胞,实现单细胞分离。然而操作过程中,分选的细胞相继受到高压、充电带有电荷、减压的刺激,常导致分选的目的细胞在分类过程中的损伤和溶解,活细胞回收率不高;即使回收的活细胞也因分选过程受刺激影响细胞基因转录图谱表现,无法维持其生物完整性。传统高压液滴分选仪进行单细胞分选Adapted from Technologies for Single-Cell IsolationInt. J. Mol. Sci. 2015, 16美天旎MACSQuant Tyto 革命性的细胞分选仪专利的微芯片技术,精准地控制阀门开合以进行细胞分选,该仪器的特性在于整个分选过程在一次性使用的全封闭样本舱(cartridge) 中进行,且无需鞘液、避免了样本污染和残留风险。上样简单、自动进行分选设置,无需操作人员进行高强度与长时间的培训就能轻松操作。由于实际分选过程都在样本舱进行,不会损失珍贵的样本材料;阳性和阴性分选组份均可在无菌洁净操作台内轻松回收。细胞不会受到高压、电荷及减压刺激,不同于传统的液滴分选仪,这种温和的分选方法可最大保持细胞活性和功能,即使经过多次分选,细胞活性也不会受影响,充分表明这种阀门介导的分选机制具有温和性质。美天旎MACSQuant Tyto细胞分选仪与样本舱功能示意图。A. 美天旎MACSQuant Tyto细胞分选仪;B. 样本舱;C.独特微芯片技术的分选示意图。单细胞测序前,使用美天旎MACSQuant Tyto细胞分选仪(MQ Tyto)进行目的细胞分选富集。分选过程不受到高压、电荷、减压与剪切力刺激,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率。位于美国加州大学(University of California, Irvine- UCI)的Dr. Kai kessenbrock研究团队致力于研究机体正常组织内环境稳态和乳腺癌中的细胞通讯。他们在单细胞水平上系统性分析研究乳腺干细胞微环境(stem cell niche)中细胞通讯的机制和乳腺上皮組織内的异质性,进一步加深对早期肿瘤发生过程中系统性变化的理解;最终目的是开发用于早期检测的生物标记物以及改善乳腺癌的治疗策略。Dr. Kai kessenbrock团队在FVB小鼠取出小鼠乳腺组织,分别以美天旎MACSQuant Tyto细胞分选仪(MQ Tyto)与传统液滴式流式细胞分选(Droplet cell sorter)分离乳腺上皮细胞(CD49f+/EpCAM+)后,标记建库并进行单细胞测序;比较两种不同的流式细胞方法分选后,所获得的测序数据真实性与可靠性,也进行分选后的细胞培养,观察细胞存活与功能。小鼠乳腺上皮细胞分离与单细胞建库 (Data kindly provided by Quy Nguyen, UCI)1. MQ Tyto可有效分选出不同乳腺上皮细胞亞型(Luminal 1, Luminal 2, Basal-like subtypes),基因转录图谱完整呈现。聚类分析与差异基因热图展示2. 经由MQ Tyto分选,每个单细胞可捕获更多的mRNA数量(UMI),获得更多可分析的基因数(Genes);显示MQ Tyto保留了细胞的完整性。质控图3. 传统液滴式流式(Droplet cell sorter)细胞分选后细胞应激基因表现明显上调。这主要是来自于细胞分选操作过程中所受到的外力刺激,而非原始组织环境细胞的真实表现。应激基因表现量展示4. 细胞分选后,持续培养七天乳腺上皮细胞并形成乳腺球(mammosphere formation)进行计数。结果显示MQ Tyto组形成更多的乳腺球,表示其MQ Tyto分选后的上皮细胞维持其功能性与高存活率。综上,利用MQ Tyto对目的细胞进行分离与富集,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率,开启单细胞测序成功的第一步。
  • 流式新技术|魏勋斌团队:在体流式细胞检测技术(IVFC)揭示循环肿瘤细胞昼夜节律
    光域生物医学完成数千万天使轮融资——自主知识产权的在体流式细胞检测技术(点击查看此前报道)光域生物医学宣布已经完成天使轮融资,由专业医疗投资机构苇渡创投独家投资。本轮融资资金主要用于研发投入和临床技术创新。公开资料显示,光域生物医学科技(苏州)有限公司成立于2022年4月,其核心技术是国际首创并具有自主知识产权的在体流式细胞检测技术,基于该技术可实现免抽血、实时、动态、连续、无创、定量检测/监测人体或动物循环系统中的细胞、分子、纳米颗粒等目标物质,获取多维度的科研或临床数据,直接反映人或实验动物体内环境真实的分子、生理、代谢、药物等方面的参数和状态,区别于传统离体检测方式。光域生物医学即将上市发布的IVFC-1000系列科研仪器将成为国际上首台基于IVFC技术的商用仪器,开创一项全新的活体细胞学检测方法,并具有完全自主知识产权。魏勋斌教授开发“体内流式细胞术”(IVFC)癌症是人类生命的巨大威胁,癌症转移是癌症患者死亡的主要原因。循环肿瘤细胞(ctc)是肿瘤转移的临床生物标志物之一。目前检测血液样本中ctc的体外方法都是基于ctc在外周血中的分布不随时间发生显著变化的假设 然而,最近的研究对这种方法的正确性提出了挑战。由于连续抽取患者或实验动物的血液,研究CTC计数的每日振荡是不现实的,理想的方法是在体内长时间监测CTC。在发表于《光科学与应用》(Light Science & Application)杂志上的一篇新论文中,以上海交通大学医学- x研究所和生物医学工程学院、北京大学生物医学工程系魏勋斌教授为首的一组科学家,和同事开发了一种非侵入性光学方法来监测异种移植瘤模型中的ctc。他们开发的光学系统被命名为“体内流式细胞术”(IVFC),这与传统的“体外”流式细胞术不同,后者只能在体外检测荧光标记的细胞。在IVFC中,调整激光聚焦于实验小鼠耳的微动脉。当荧光标记的CTC通过光片时,荧光被激发并被光电倍增管(PMT)检测。为了说明这种光学结构的意义,血液循环中的ctc可以无创、反复、连续检测。“我们的IVFC技术不同于目前用于CTC检测的实验室或临床方法。操作系统不需要抽血。由于反复采血不会破坏生物环境,因此我们可以长期定期、无创地监测ctc。”他们说。通过这项技术,他们在前列腺癌原位小鼠模型中监测了24小时内不同癌症进展阶段的gfp表达ctc。在CTC计数方面,他们观察到,在夜间开始时,也就是啮齿动物的活跃阶段,每天都有惊人的振荡。在第6天、第12天、第18天和第24天用IVFC实时检测ctc,结果显示在转移性循环早期出现了明显的爆发活性。结果表明,前期爆发的概率高于后期。“这些发现可能会扩展我们对ctc和时间框架之间关系的理解。ctc并非全天均匀分布于血液中。他们在白天和晚上是不同的。提示昼夜节律可能调节CTC释放。临床检测ctc时应考虑到这一因素。”“ctc似乎比人们预期的更复杂。本研究为我们提供了一个影响临床CTC检测的潜在因素。了解CTC是否昼夜变化和爆发,从而加深对其分布规律的认识,是非常重要的。IVFC技术不需要在不同的时间点采血,重复的采血过程可能会改变生物环境。毫无疑问,我们越来越了解ctc和癌症转移。ctc的检测比以往任何时候都更加精确。”生物学家和临床医生说。用血管代替流动室,IVFC和FCM相似在使用这种类型的IVFC检测CTC之前,需要对感兴趣的细胞进行标记。 基于荧光的IVFC的基本原理与传统的FCM相似,只是使用生物体内的天然血管代替常规流式细胞仪中的流动室。 当荧光标记的细胞通过聚焦在血管上的激光束的狭缝时,可以激发它发射荧光。 然后可以通过PMT检测该信号(结构详见下图)。 因此,可以长时间获得生物信息而无需抽血。参考文献Wei Xunbin,Zhou Jian,Zhu Xi et al. A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry.[J] .Methods Mol. Biol., 2017, 1634: 247-262DOI:10.1038/s41377-021-00542-5文献作者:魏勋斌,博士,博士生导师,博雅特聘教授,国家杰出青年科学基金获得者,SPIE(国际光学工程组织)Fellow(会士)。1993 年于中国科技大学物理系光电子技术专业获学士,1999 年获美国加州大学 Irvine 分校生物物理学博士,1999-2001 年在哈佛大学从事博士后研究。2001-2006 年任哈佛大学生物医学光学中心研究助理教授。2006 年回国,国内工作期间获得国家杰出青年科学基金、教育部新世纪优秀人才、科技部 973 国家重大基础研究计划、国家传染病重大专项、国家自然科学基金仪器专项、上海市领军人才、上海市优秀学科带头人、上海市曙光学者、上海市浦江人才计划等项目资助。共发表 NATURE、PNAS、NATURECOMMUNICATIONS 等 100 余篇,总影响因子400,他引 3600 余次。获得国家三类医疗注册证一项,国内外专利20 余项。1)可用于肿瘤光学早期检测的“在体流式图像细胞仪”; 2)在体肿瘤光学分子影像技术及近红外纳米光学探针技术; 3)活体光学细胞操纵技术研究; 4)激光医学与老年痴呆症的光治疗技术。
  • 浅谈流式细胞仪十大发展趋势
    p style="text-indent: 2em "从二十世纪八十年代至今,世界上生产流式细胞仪的厂家几经变迁,BC & BD仍在,新玩家不断进入,并购重组各取所需,它们生产各种不同性能和功能的流式细胞仪。总体而言,呈现出以下的发展趋势:br//pp  strongspan style="color: rgb(0, 112, 192) "1. 应用对象从细胞到颗粒/span/strong/pp  一般而言,流式细胞仪检测的对象是细胞,而且是呈独立状态的悬浮于液体中的细胞,即单细胞悬液。组织和器官中的细胞,必须用各种方法制备成单细胞悬液,才能进行检测。/pp  细菌、浮游生物等也可以用流式细胞仪分析。/pp  一些不是细胞的单个粒子,如病毒、细胞核、染色体、原生质体等也是流式细胞仪的检测对象。实际上,用“颗粒”而不仅仅是“细胞”来定义流式细胞仪的检测对象,显然更有代表意义。/pp  因为流式细胞仪可以将“颗粒”视同为“细胞”来进行检测,在特制的微球上包被抗原,抗体或核酸探针,以微球为载体来检测各种可溶性蛋白、细胞因子、自身抗体、特定的核酸序列等,从而使流式细胞仪的检测对象扩展到分子范围。/pp  Luminex公司的多重流式检测平台能够自一个微量反应孔中同时检测50、100甚至多达500种分析物,俨然成为这一技术的金标准。/pp  strongspan style="color: rgb(0, 112, 192) "2. 检测颗粒尺度大大拓宽/span/strong/pp  常规流式细胞仪检测颗粒的范围为0.5-50μm。/pp  电荷分选流式细胞仪检测颗粒范围与喷嘴直径等相关,最大应到喷嘴直径的1/3-1/2,目前最大直径的喷嘴为200μm。/pp  Union Biometrica公司的气流分选平台COPAS FP和BioSorter能够适应大到1500μm的颗粒,可以用于分选模式动物的卵和幼虫 模式植物种子与花粉 大体积细胞与细胞簇等。CytoBuoy公司的Cytosense也可以到1500μm。  /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/aca8ce15-8bb8-42f4-8863-4675f7724835.jpg" title="01.jpg" alt="01.jpg" width="381" height="417" style="width: 381px height: 417px "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Union Biometrica公司气流分选流式原理图/span/pp  通过光路优化,采用多角度光散射,使用特殊荧光探针,甚至加装紫色激光收集散射光信号,有些流式细胞仪可以实现0.2μm颗粒与噪音信号的鉴别。/pp  Apogee着力于微颗粒分析,其A50-Micro plus散射光的检测低限至80nm,可用于循环微粒,外泌体及特殊微生物检测。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/28e29df6-ee87-449c-b362-20f9785b26ec.jpg" title="02.jpg" alt="02.jpg" width="311" height="320" style="width: 311px height: 320px "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Apogee A50-Micro plus/span/pp strongspan style="color: rgb(0, 112, 192) " 3.多种流路技术商品化/span/strong/pp  绝大多数流式细胞仪基于鞘液流体动力学模式。/pp  因为负压进样省去了庞大的压缩气源,可以灵活使用各种上样管,已经成为几乎所有公司新仪器的选择。/pp  一般认为,流式细胞仪采用毛细管而非鞘液,容易被大的细胞或聚集细胞所阻塞,而且流动细胞难以准确聚焦,流速难以维持恒定。/pp  Guava平台easyCyte(现被Luminex公司收购)通过负压进样,采用高压注射泵与PEEK管路,建立自稳流的微毛细管系统,据称解决了以上困扰,带来的好处是无需鞘液,产生废液也少。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/bebe5684-49c2-419d-aa5c-e4fc9f47041a.jpg" title="03.jpg" alt="03.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Guava easyCyte(Luminex)/span/pp  Thermo公司声波流式细胞仪Attune NxT ,该产品利用超声波将细胞聚集在样品流中轴线上。进样速度至1mL/min时,也可以避免基于鞘液的流式的所谓轴流加宽和细胞分散现象,这一技术的最大优势是快速检测,同时对稀有细胞的分析比较有利。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/407f47e9-043f-4bea-a5ab-dcd240aebc70.jpg" title="04.jpg" alt="04.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Thermo Attune NxT/span/pp  strongspan style="color: rgb(0, 112, 192) "4.从相对计数到直接绝对计数/span/strong/pp  为满足统计学要求,流式细胞仪必须采集一定数量的细胞,仪器设定以细胞数为停止条件。传统流式细胞仪测试结果为相对计数,即目标细胞在某一总体系中的比值。/pp  随着应用深入,人们发现比值的变或者不变,以及变化大小不能反映细胞的真实变化,绝对计数,即单位体积内的细胞数被证明更具实际价值。/pp  最早是采用双平台法来解决以上问题,即用血细胞分析仪来获得白细胞,淋巴细胞等浓度,再结合流式细胞仪测定的百分比来计算被测细胞的绝对计数值。由于该法需要使用两种仪器,操作步骤多、变异系数大,不同实验室之间的差异也较大,因此应用受到限制。/pp  后来人们采用微球法,即用已知浓度的微球作为参比,通过被测细胞和微球的比例关系来进行绝对计数,但因计数微球价格较为昂贵,实际应用受到限制。/pp  近年来,厂家的共识回到了测定进样体积这一思路上来,替代微球法直接进行绝对计数,取得更为精确的结果。区别在于不同产品具体测定技术的差别。/pp  蠕动泵:Accuri C6 Plus、CytoFlex/pp  注射泵:easyCyte、NovoCyte、CytoFlow/pp  流量传感器:FACSVerse、Bricyte E6/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/ccfa4c2d-589a-4fd1-8bcd-17e1112840b1.jpg" title="05.jpg" alt="05.jpg"//pp style="text-align: center "Sysmex CytoFlow系列TVAC体积测定原理/pp  strongspan style="color: rgb(0, 112, 192) "5.光路优化和光学新元件的应用/span/strong/pp  庞大的水冷或气冷的激光器逐渐被小型化的固态激光器取代。/pp  光纤传导应用越来越普遍。/pp  光纤耦合让光能量传输更高效,而不为公司所专有。/pp  雪崩光电二极管等等新检测器提供新的选择。请见专家分析:/pp  流式细胞仪是怎么“看见”光的?/pp  以及光学元件的神级组合让灵敏度达到新的高度。/pp  MESF是仪器灵敏度衡量的标准,基于微球,基于鞘液。/pp  不同公司没有约定俗成,不是那么容易比较,但就同一公司产品而言:/pp  BD FACSCelesta FITC 25 PE 15/pp  Beckman Coulter CytoFlex FITC 30 PE 10/pp  strongspan style="color: rgb(0, 112, 192) "6.以多色分析为核心的新型光学技术的迅速发展/span/strong/pp  早期流式细胞仪的主要应用还是细胞DNA含量测定,这一技术对设备要求不高,通常配备一个散射光和一个荧光信号的流式细胞仪就足以应付。随着新型荧光探针的不断开发和仪器软、硬件的逐步更新,流式细胞仪多色荧光分析得到了迅速发展,包括两个方面:/pp  单激光多色,如488nm激光同时激发7色,紫色激光同时激发10色/pp  多激光:如10激光机器。/pp  也包括两种新的光学设计机型:/pp  光谱流式,利用特殊的接受装置收集某范围内的全发射光谱,无需补偿,区别发射光谱重合度高的荧光染料对。目前有Sony公司SP6800Z和SA3800,Cytek公司的Aurora。/pp  质谱流式,利用质谱原理对单细胞进行多参数检测的流式技术。这个名为CyTOF的平台最初由DVS Sciences公司开发,后被Fluidigm公司收购。仪器采用同位素标记抗体来标记或识别细胞表面和内部的信号分子,并根据流式细胞原理分离单个细胞,再用感应耦合等离子质谱(ICP-MS)观察单个细胞的原子质量谱,最后将原子质量谱的数据转换为细胞表面和内部的信号分子数据。2015年推出的Helios的检测通道达到135个,几乎没有信号重叠或背景噪音。/pp  img src="https://img1.17img.cn/17img/images/201901/uepic/c79c2dc9-dc52-45a2-9c40-da860593a6cd.jpg" title="06.jpg" alt="06.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "来自CyTek网站,不代表本人观念/spanbr//pp  必须注意的是,多色分析提供了多种细胞特性的相互关系图,从而更加精确地界定一种细胞亚群,更好地对不同细胞进行分类。但是,同时检测的荧光染料越多,需准确调节各通道之间的补偿,技术难度更大,因为其中包含的信息量非常大,错误信号掺杂的概率也相应增加,所以数据分析时需格外注意,一般需采用不同的标记方案多次相互验证才能得出重要结论。光谱流式和质谱流式的出现克服了补偿问题。/pp  但是,荧光染料匹配仍未解决,毕竟不是每个激光器都能如设计所愿,同时激发6色,7色到10色,甚至如光谱流式所希望的16色或者32色。所以,对20色以上多色分析仪器来说,标称往往都是理论,至少在目前还是设计师的想象。/pp  strongspan style="color: rgb(0, 112, 192) "7.数据处理能力不断提升/span/strong/pp  随着数字化技术的引入,以及数据处理系统的升级,流式细胞仪的数据处理能力得到极大提升。/pp  数据处理速度:反映数据扫描频率,用Hz表示。/pp  处理精度:信号采集精度,用比特表示,反映采集通道多少。目前仪器一般在20比特(2的20次方,100万通道)以上,最高达32比特(43亿通道)。/pp  线性范围:目前一般在105以上,最高到107。/pp  单文件存储能力:反映文件储存能力,对稀有细胞分析有利。/pp  数据能力的提升直接影响到仪器的分析和分选速度。/pp  速度的提升是光路,流路和数据采集系统三者共同优化改善的结果。/pp  传统的流式细胞仪,分析速度不超过10000 events/s,新上市产品基本达到25000 events/s(注意:不是细胞/s)以上,如Beckman Coulter公司CytoFlex为30000 events/s,Cytek公司Aurora 为35000 events/s ,BD公司的LSRFortessa 为40000 events/s with beads,Bio-Rad公司ZE5为100000 events/s。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201901/uepic/eb697251-c070-476d-8a38-812717426182.jpg" title="07.jpg" alt="07.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Bio-Rad ZE5/spanbr//pp  BD公司FACSCalibur的机械分选,速度只有300/秒,对少量细胞收集困难,须配用浓缩系统进行细胞回收 捕获管的移动和浓缩系统对细胞的机械损伤大,影响分选目的细胞功能特性 由于捕捉器移动不可避免地影响到流路稳定,造成不确定性 机械装置较难彻底清洗消毒。机械式分选已被速度更高的电荷分选所完全取代。/pp  如BD公司FACSAria III(70 psi /90 kHz)和InFlux(60 psi /100 kHz) 四路分选,纯度 98%,得率 80%, 分选速度25000 events/s,继续提高分选速度,纯度不受影响,得率会按Poisson分布下降。/pp  Beckman Coulter公司的MoFlo XDP和MoFlo Astrios EQ,据称有效分选速度达到70000细胞/s。/pp  strongspan style="color: rgb(0, 112, 192) "8.仪器不断小型化到微流控/span/strong/pp  追求小型化,几乎是所有流式制造商开发新产品的共识。/pp  看一组数字:主机W x D x H/pp  span style="color: rgb(192, 0, 0) "strongBD/strong/span Accuri C6 plus / FACSVia/pp  37.5 x 41.9 x 27.9 cm/pp  span style="color: rgb(192, 0, 0) "strongBD/strong/span FACSVerse / FACSlyric/pp  63.2 x 57.9 x 57.9 cm/pp  span style="color: rgb(192, 0, 0) "strongBD/strong/span FACSCelesta/pp  58 x 61 x 59 cm/pp  span style="color: rgb(192, 0, 0) "strongBeckman Coulter/strong/span CytoFlex/pp  42.5 x 42.5 x 34 cm/pp  span style="color: rgb(192, 0, 0) "strongMiltenyi Biotec/strong/span MACSQuant/pp  60 x 35 x 40 cm/pp  span style="color: rgb(192, 0, 0) "strongThermo/strong/spanstrong /strongAttune NxT/pp  58 x 43 x 40 cm/pp  span style="color: rgb(192, 0, 0) "strongCytek/strong/span Aurora/pp  54 x 52 x 52 cm/pp  span style="color: rgb(192, 0, 0) "strongMindray/strong/span BriCyte E6/pp  50 x 55 x 50 cm/pp  “小”意味着节省空间,容易安装和转移,“小”更值得期许的是减少样本体积,降低试剂消耗,提高检测速度,以及缩小空间所带来的光电及液路的改善。/pp  微流控技术兴起于上世纪90年代,顾名思义就是使用微通道(尺寸为数十到数百微米)处理或操纵微小流体。/pp  On-chip公司于2012年推出了世界上第一台微流控芯片流式On-Chip Sort,以低压对细胞进行分选,降低对细胞的损伤 简化实验操作 容易实现系统的无菌 使用一次性交换型模块,减少样品间交叉污染 无需清洗流路通道。Miltenyi Biotec公司的MACSQuant Tyro、Namocell公司的Namocell等亦先后推出类似的微流控流式分选产品。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/4447d8ae-2611-4183-8988-ecc0f9183d53.jpg" title="08.jpg" alt="08.jpg" width="485" height="215" style="width: 485px height: 215px "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "on-chip公司之on-chip sort/spanbr//pp  Sony公司分选平台的两大核心技术即为所谓的CoreFinder全自动校准技术和可更换式微流体芯片的液路设计。最新型号MA900,全自动光路及液流校准 立体式双光斑四激光激发,最多同时检测12色荧光 四路分选。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201901/uepic/16b8cd31-0eb3-44ff-bd93-1450cf1ba662.jpg" title="09.jpg" alt="09.jpg" width="415" height="293" style="text-align: center width: 415px height: 293px "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Sony MA900/spanbr//pp  专门生产分析型微流控流式的制造商Handyem公司,针对微流控装置容易导致细胞黏附和堵塞的问题,于2015年推出HPC-150(国内品牌深圳芯凯瑞),采用双高精度玻璃注射泵代替蠕动泵或单注射泵,据称克服了上一代产品易见的流路堵塞沉积等问题。/pp  span style="color: rgb(0, 112, 192) "strong9.融合显微成像技术和流式细胞术/strong/span/pp  细胞生物学两大技术平台分别基于显微镜和流式,前者以形态分析为优,可提供详细的细胞图像信息,但解释主观、费时费力 后者以统计学见长,却缺乏成像能力,因此无法了解亚细胞定位。/pp  融合显微成像技术和流式细胞术的图像流式细胞仪,以Amnis平台为代表(现被Luminex公司收购),最新型号ImageStreamX Mark II,从细胞经过流动池开始即按线性分拆进行分线性照相,其冷CCD采用时间延迟积分方式进行信号采集,每一个样本的分析都生成该样本中所有细胞的荧光强度测量参数和图像数据库,包括“每个细胞”的明场、暗场以及荧光图像。/pp  对于微弱荧光信号可以通过明视野细胞图像辅助设定遮罩,特定加强遮罩下细胞荧光信号,实现对微弱荧光图像的捕捉和分析。/pp  系统可以对每个细胞分析超过500种量化参数,包括细胞整体的散射光和荧光信号强度,以及对细胞形态,细胞结构及亚细胞信号分布的分析。/pp  图像流式细胞仪无须为了得到细胞群统计学资料而损失丰富的形态信息,也无须为了获得细胞细节而损失统计学功能。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/9d9b7215-7328-4a75-9018-1c4425cc45d0.jpg" title="010.jpg" alt="010.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Amnis图像流式细胞仪ImageStreamX Mark II/span/pp  Sysmex公司最近推出MI-1000,自动检测多达10000细胞的图像荧光。/pp  Union Biometrica公司的气流分选平台COPAS VISION也加入了明场图像。/pp  span style="color: rgb(0, 112, 192) "strong10.专业化和临床型仪器纷纷面世/strong/span/pp  CytoBuoy公司生产多种用于水体微型生物分析的流式细胞仪,如CytoBuoy安放在浮标上 CytoSub具有特殊的耐压装置,以及内部鞘液循环处理装置,不需外部加入鞘液,可在水下200米使用。Bentley Instruments 公司和Delta Instruments 公司公司专门提供牛奶场使用的专项检测仪器。/pp  临床市场是商品流式细胞仪最具潜力的发展方向。但是,诊断流式试剂的研发和报证,以及符合检验流程的仪器开发,与不断增长的临床应用需求并不匹配。/pp  一些公司推出了专门的小型流式细胞仪,用于CD4细胞的快速计数,如FACSCount、CyFlow Counter等。/pp  迈瑞公司面向临床用户工作流程和场景推出BriCyte E6,针对淋巴细胞亚群分群等临床常规分析,可以实现检验仪器常有的一键得结果,免去繁复的电压和补偿调整,其LIS的双向通信,数据管理都非常符合临床诊断的期望。类似思路在后来上市的BD公司FACSlyric也有体现。/pp  老牌血球生产厂商Sysmex 在收购Partec后的第五年,推出了PS-10流式样本前处理系统,配合新款流式XF-1600,实现样本处理、离心和检测的全自动化流程。详情请见:/pp  全自动流式检测时代的来临!/pp  可以期待,流式细胞仪未来将会作为一个重要的组成部分被整合到血液细胞分析流水线上,在这个系统中,血液细胞分析仪提供血常规结果和异常报警信息,流式细胞仪则根据这些信息对异常细胞进行不同策略的精细鉴别。/pp style="text-indent: 2em "strong style="text-decoration: underline color: rgb(0, 112, 192) "span style="text-decoration: underline color: rgb(0, 112, 192) "了解a href="https://www.instrument.com.cn/zc/144.html" target="_self" style="text-decoration: underline color: rgb(0, 112, 192) "详情请进入流式细胞仪专场/a/span/strong/p
  • 这项流式标准,9月1日实施!增加流式细胞仪性能验证,流式细胞术检测外周血淋巴细胞亚群指南发布
    2024年4月1日,卫健委发布WS/T360-2014《流式细胞术检测外周血淋巴细胞亚群指南》,本标准于2011年首次发布,本次为首次修订。与WS/T360-2011相比除结构调整和编辑性改动外,主要技术内容变化如下:【1】增加了流式细胞仪性能验证内容(见5.1);5.1流式细胞仪的性能验证5.1.1 验证时机当新仪器启用前、搬移后、仪器发生重大维修(如更换激光、光纤、光电倍增管或流动室等)后、仪器软件系统更新后、仪器性能出现问题或环境严重失控时,需对流式细胞仪进行性能验证,所用流式细胞仪应符合医疗器械注册要求。荧光通道线性应在流式细胞仪常规使用过程中每年至少进行1次验证。5.1.2 验证参数验证参数应包括灵敏度、分辨率、荧光通道线性、仪器稳定性和携带污染率等。5.1.2.1 灵敏度5.1.2.1.1 散射光灵敏度采用己知大小的校准微球检测仪器的FSC和SSC。在散射光FSC/SSC散点图上,应检测出直径0.5μm或更小的微球,或满足制造商声明的要求。5.1.2.1.2 荧光灵敏度即流式细胞仪能检测到标准荧光微球上的最少荧光分子数,可用等量可溶性荧光分子(MoleculesfEquivalent Soluble Fluorochrome,MESF)表示。可采用2~4种不同荧光素校准微球针对所用激发光源进行检测,其中FITC、PE及APC等通道的平均荧光强度(x)与其荧光分子数(y)分别进行双对数线性回归,得公式y=a+bx,其截距a的反对数值即为流式细胞仪的荧光灵敏度。FITC的荧光灵敏度应≤200MESF、PE的荧光灵敏度应≤100MESF、APC≤200MESF,或满足制造商声明的要求。5.1.2.2 分辨率5.1.2.2.1 散射光分辨率采用EDTA盐或肝素抗凝全血,取适量样品稀释后直接上机测定,标本在FSC/SSC散点图可将红细胞和血小板清晰地区分开 取适量样品裂解红细胞后上机测定,标本在FSC/SSC散点图可将淋巴细胞、单核细胞、粒细胞清晰地区分开,即认为散射光分辨率符合要求。示意图参见附录A。5.1.2.2.2 荧光通道分辨率采用校准微球上机测定,各荧光通道的分辨率CV值应符合制造商声明的要求。5.1.2.3 荧光通道线性可采用含有不同荧光强度的校准微球(已知其相应荧光素的可溶性荧光分子数)进行检测,计算每-种荧光微球的MFI,MFI与己知理论值的相关系数r应≥0.98,此方法适用于校准微球上的荧光素可被定量检测的荧光通道。亦可同时使用两种荧光强度不同的微球,在待测荧光通道下,通过改变光电检测器的电压,使两种荧光微球的实际MFI检测值由低到高分布,两种荧光微球的荧光强度比值应保持不变。此方法适用于流式细胞仪所有荧光通道。5.1.2.4 仪器稳定性连续开机条件下,采用荧光微球在开机稳定后0h和8h各检测一次FSC及各荧光通道的IFI,以第一次检测时间点测定的各通道MFI值作为基线值,荧光微球8h上机测定的每一通道的MFI变化范围均应在基线值土10%范围内。5.1.2.5 携带污染率使用浓度为5000个/HL~10000个/HL的校准微球上机进行测定,获取至少100000个颗粒,连续测定3次,计算检测通道内设定区域的颗粒数,分别记为H1、H2、H3:再使用空白溶液上机测定,获取颗粒303,连续测试3次,计算该检测通道内设定区域的颗粒数,分别记为L1、L.2、L3。按照此步骤重复循环3次。按携带污染率公式[(L1-L3)/(H3-L3)]X100%进行计算,取最大值。携带污染率应≤0.5%。【2】完善了仪器质量控制和项目性能验证内容(见5.2、7.2.2);5.2外周血淋巴细胞亚群检测系统的性能验证5.2.1 验证时机及验证内容淋巴细胞亚群检测项目临床开展初期、更换试剂品牌、更换检测系统或仪器的重大部件维修后,应对检测项目的精密度、稳定性、线性范围、可比性和正确度等参数进行验证。5.2.2 验证方法建议使用配套试剂盒时开展性能验证,使用自选试剂时实施性能确认:需要分别描述性能验证和性能确认的方法和评价标准。5.2.2.1 精密度5.2.2.1.1 批内精密度选取至少5个新鲜全血样品,样品的淋巴细胞亚群细胞计数应覆盖低中高水平。每个标品从荧光染色到上机检测重复3次,并确保所有测试都在同一台仪器的同一批内测定,整个操作过程由同一个操作人员完成。先计算每个样品重复3次后检测结果的CV,然后计算所有样品的平均CV,所有样品的平均C宜10%,最大不超过20%。实验室可根据不同水平的淋巴细胞亚群细胞计数设定不同程度的可接受Q标准。5.2.2.1.2 日间精密度宜使用正常和异常两个浓度水平的全血质控品,每天从荧光染色到上机测定重复操作3次,至少市复4天,整个操作过程可由不同操作人员完成。先计算每天每个全血质控品重复3次检测结果的CV值,然后据此计算每个全血质控品4天的平均CV,最后得出两个全血质控品检测结果的平均CV。结果判定同本标准第5.2.2.1.1条。5.2.2.2 稳定性5.2.2.2.1 样品稳定性验证样品在确定的抗凝及处置条件下的稳定性。采集健康人或患者的样品至少5份,即刻染色-裂晖-固定并上机测定,以此结果作为基线参考水平,按照实验室的具体环境温度控制条件和预期的样品待检时间,在抗凝剂保存时间内,设置不同的时间点对上述样品进行重复处理和上机测定,获取检测结果,并与基线水平结果进行比较以相对偏差或绝对偏差表示,检测结果应符合实验室制定的验证要求。险证要求的制定应考虑不同水平的淋巴细胞亚群计数设定不同程度的偏差值,淋巴细胞亚群计数过低者,宜以绝对偏差进行验证:亦可对试剂说明书声明的稳定性条件进行验证。5.2.2.2.2 处理后标本稳定性旨在明确处理后标本的最长待检时间。采集健康人或患者的样品至少5份,对完成染色-裂解-固定后的标本即刻上机检测结果作为基线水平。按实验室获得检测结果的最长可接受时间为期限,设置不回的时间点对固定后标本进行上机检测。结果判定同本标准第5.2.2.2.1条。亦可对试剂说明书声明的稳定性条件进行验证。5.2.2.3 线性范围适用于淋巴细胞亚群绝对细胞计数。根据试剂说明书声明的线性范围,取一份淋巴细胞计数或亚群计数接近线性范围上限的临床样品,采用样品稀释液按照比例制备5~9个不同浓度的标本(如0、25%、50%、75%、100%等),浓度范围应覆盖临床医学决定水平:通过染色-裂解-固定后,上机测定,每个标本重复测定4次,取均值。分析实际测定的亚群细胞数量均值与理论值之间的相关性,相关系数应≥0.975。5.2.2.4 可比性5.2.2.4.1 不同检测系统间的可比性验证宜使用至少5份新鲜全血样品(样品的淋巴细胞亚群细胞计数应覆盖低中高水平)和2份不同浓度水平的全血质控品,完成染色-裂解-固定后,分别采用待评价检测系统和比对检测系统进行检测。比对检测系统应为仪器性能良好、规范开展室内质量控制、室间质量评价成绩合格的淋巴细胞亚群常规检测系统,以比对检测系统的测定结果为参考,计算相对偏差或绝对偏差。检测结果应符合实验室制定的验征要求。验证要求的制定应考虑不同水平的淋巴细胞亚群计数设定不同程度的偏差值,淋巴细胞亚群计敬过低者,宜以绝对偏差进行验证。5.2.2.4.2 抗体试剂批次变更前后的可比性验证宜使用至少3份健康人的新鲜全血样品和2份不同浓度质控品采用新批号抗体试剂和当前批号抗体试剂进行荧光染色、上机检测,以当前批号试剂检测结果为参考,计算相对偏差或绝对偏差。检测结果立符合实验室制定的验证要求,验证要求的制定应考虑不同水平的淋巴细胞亚群计数设定不同程度的偏叁值,淋巴细胞亚群计数过低者,宜以绝对偏差进行验证。5.2.2.4.3 不同检测人员间的可比性验证宜使用至少5份新鲜全血样品和2份不同浓度水平的全血质控品分别由实验室内淋巴细胞亚群检测培训合格的不同检测人员完成染色-裂解-固定、上机检测和数据分析,计算不同检测人员间检测结果的相对偏差或绝对偏差。验证结果应符合实验室制定的验证要求。5.2.2.5 其他可使用室间质评回报结果验证淋巴细胞亚群项目的准确度亦可采用包含正常和异常浓度水平的具有溯源链的定值样品验证正确度,每一样品重复测定3次,每次测量值均在给定范围内且3次测量值的均值与标准值的偏倚在允许范围内为通过。选择至少20份表观健康人样品按照常规方法进行淋巴细胞亚群参考区间验证。7.2.2 仪器稳定性验证7.2.2.1 光路/液路稳定性验证检测当天宜使用校准微球进行光路/液路稳定性验证。记录每个检测通道的分辨率的变异系数(CV),CV值应满足本标准第5.1.2.2.2条荧光通道分辨率要求。7.2.2.2 检测通道电压稳定性验证和调整应使用标准微球进行各检测通道电压验证检测通道电压的浮动应在标准微球的说明书允许范围或者实验室自建的可接受范围内。自建方法如下:在相同的电压设置下,10~20个工作日内检测标准微球20次,使用Levy-Jennings图建立每个参数的可接受范围(均值士2SD和均值士3SD)。【3】梳理和保留了检验前、检验中、检验后过程的内容及要求(见第6、7、8章);【4】删减了标本采集和处理及临床意义内容(见2011年版的第4、10章);【5】增加了淋巴细胞亚群六色分析方案(见4.1.3、附录C)。以下为完整内容:本标准由国家卫生健康标准委员会临床检验标准专业委员会负责技术审查和技术咨询,由国家卫生健康委医疗管理服务指导中心负责协调性和格式审查,由国家卫生健康委员会医政司负责业务管理、法规司负责统筹管理。本标准起草单位:中国医学科学院肿瘤医院、北京医院/国家卫生健康委临床检验中心、北京大学第一医院、中国医学科学院北京协和医院、上海市交通大学医学院附属第一人民医院、上海交通大学医学院附属新华医院、上海长征医院、苏州大学附属第一医院/江苏省血液研究所。本标准主要起草人:崔巍、彭明婷、屈晨雪、黄春梅、李莉、沈立松、周琳、朱明清、崔婵娟、李臣宾。
  • 细胞培养实验室设备配置及用途
    茂默科学以客户为本、合作共赢的理念,致力于帮忙客户提供整体实验方案。力求解决行业内客户对科学仪器选型难、维护难的处境。通过不断优化公司运作和提升服务质量,目前已赢得业内人士和广大客户广泛认可,拥有广泛而稳固的合作伙伴和客户群体。茂默科学现介绍细胞培养实验室设备配置及用途,想要了解更多仪器、实验室仪器选配、实验室整体打包方案制定,敬请咨询~1. 超净工作台实验室设备目前绝大部分细胞实验室使用超净工作台实现无菌操作,具有操作简单、安装方便、占用空间小且净化效果很好。安徽人和净化为您介绍两种主要超净工作台-侧流式(垂直式)和外流式(水平层流式)。工作原理一般是将室内空气经粗过滤器初滤,由离心风机压入静压箱,再经高效空气过滤器精滤,由此送出的洁净气流以一定的均匀的断面风速通过无菌区,从而形成无尘无菌的高洁净度工作环境。(1) 侧流式工作台:空气净化后的气流由左或右侧通过工作台面流向对侧,也有从上向下或从下向上流向对侧,形成气流屏障保持工作区无菌,工作台结构为封闭式;(2) 外流式工作台:净化后的空气面向操作者流动,因而外方气流不致混入操作,工作台结构为开放式,但进行有害物质实验操作对操作者不利。 超净工作台应需要定期请有关部门检查洁净度,符合要求的超净工作台其洁净度应达到100级,用尘埃粒子计数仪检测粒径≤5μm的尘埃粒子数量不应超过3.5个/L;空气流量应控制在0.75-1.0m3/s;细菌菌落数平均1个,根据无菌状况必要时需要置换过滤器。 2. 显微镜倒置式显微镜是细胞培养实验室日常工作常规必备设备,主要用于日常了解细胞的生长情况并观察有无污染发生。如资金允许,建议选用配置有照相系统的高品质相差显微镜、解剖显微镜、荧光显微镜、录像系统或缩时电影拍摄装置等,可随时拍摄并记录细胞生长情况。3. 培养箱体外培养的细胞和体内细胞一样,需要在恒定的温度下生存,一般适生长温度为37℃,温差变化不应超过±0.5℃。温度升高2℃时,变不利于细胞生存,温度达到40℃以上细胞将很快死亡。因此,可精确控温的恒温培养箱、CO2培养箱是、佳选择。(1) 恒温培养箱:应选隔水式或晶体管式自控温培养箱,此类培养箱灵敏度高,温度控制较稳定。一般的恒温培养箱价格较便宜,其缺点是只宜于作密闭式培养。(2) CO2培养箱:目前多数的细胞培养室已广泛使用。CO2培养箱的优点是能够提供进行细胞培养时所需要的一定量的CO2(常用浓度为5%),易于稳定培养液pH,适用于开放或半开放培养。使用培养瓶时,为使培养瓶内与外界保持通气状态,可将瓶盖略微旋松,为避免细胞被污染,使用这种培养方式时,培养箱内空气必须保持清洁,需定期用紫外线照射或酒精消毒,同时培养箱内应放置盛有无菌蒸馏水的水槽,防止培养液蒸发,保持箱内相对湿度。(3) 细胞培养耗材:培养细胞的器皿可用培养皿、培养板或培养瓶。4. 烘箱(干燥箱)用于细胞培养的一些器械、器皿必须烘干后才能使用,玻璃器皿等须干热消毒。干热消毒时,烘箱内温度一般要达到160℃以上,通常使用鼓风式烘箱。其优点是温度均匀、效果较好,缺点是升温过程较慢。升温时不能先升温后鼓风而应鼓风与升温同时开始,至100℃时,停止鼓风。需注意避免包裹器皿的纸或棉花烧焦,烧焦的碎屑可影响细胞的生长。消毒后不能立即打开箱门,以免骤冷导致玻璃器皿破裂,应等温度自然下降至100℃以下后可开门。5. 水纯化装置细胞培养对水的质量要求较高,细胞培养、细胞培养相关液体的配制用水以及清洗细胞培养器皿用水都必须事先经过严格的纯化处理。目前有多种纯化方法相结合,可使普通水纯化为纯水和超纯水的纯水装置使用非常灵活方便,可挂壁式、台式、可配储水箱、也可直接用分液枪、还可根据各类实验用水要求选择配置杀菌功能,有效去除DNA酶、RNA酶、蛋白酶等,更有可有效去除掉热源、内毒素的超滤型纯水装置。6. 冰箱细胞培养实验室必备设备,应专用,不得存放易挥发、易燃烧等对细胞有害的物质,且应保持清洁。一般包括普通冰箱、低温冰箱和超低温冰箱。普通冰箱:储存培养液、生理盐水、Hanks液试剂等培养用的物品,可短期保存组织样本。-20℃低温冰箱、超低温冰箱:用于储存需要冷冻以保持生物活性以及需长时期存放的制剂,如酶、血清等。7. 细胞冷冻储存器储存器常用的液氮容器,根据使用需要分为不同类型和规格。选择液氮容器时需要考虑三个因素:容积大小、取放使用方便、液氮挥发量。液氮容器的大小一般在25-500L,可以储存1ml的冻存管250-15000个左右。液氮温度、低温度可达-196℃,使用时应注意避免冻伤。由于液氮易挥发,需注意观察剩余液氮量,及时补充,避免液氮不足使细胞受损或死亡。目前有许多智能型细胞冷冻储存器可供选择,可配置有电子控制器的液氮储存器,实现冻存自动化;并可监测液氮水平和样品温度,确保样品温度始终处于设定温度点;可配置报警系统,设置液氮液面、温度、电池、电压、电源等失常情况下报警;同时具备热气体旁路系统,防止高于-130℃的暖空气进入液氮罐,从而更有效地保护样品,防止容器内升温。另外,可选择液氮供应罐通过连接管给储存罐补充液氮,保证样品安全。8. 离心机细胞培养时,通常使用离心机制备细胞悬液、调整细胞密度、洗涤和收集细胞。一般常规配置4000rpm台式离心机;若要做细胞沉降,需要使用80-100G离心力,因为离心力过大会损伤细胞。根据不同要求,有大容量、可调温度离心机、高速离心机和低温冷冻离心机等更多功能离心机可选择。9. 天平常用的有精密天平和分析天平。 分析天平的精确度一般为0.1mg、0.01mg和0.001mg。一般根据取样量量和精度要求选择合适的天平:取样量大于100mg宜选用精确度0.1mg的天平;取样量100-10mg,选用精确度0.01mg的天平;取样量10mg宜选用精确度0.001mg的天平。天平需要定期校准,可选择有自动校准功能的天平,方便维护。天平使用需要注意清洁,避免腐蚀性粉末、液体直接接触称量台。
  • 青岛能源所单细胞拉曼流式分选技术研究获进展
    日前,中国科学院青岛生物能源与过程研究所单细胞研究中心在基于微流控的单细胞拉曼流式分选技术研究中取得新进展,相关成果于2月5日在线发表在Analytical Chemistry (Zhang PR, et al, Anal Chem, 2015)。  单细胞拉曼分选(RACS)是一种极具潜力的活体细胞功能分选技术。与目前通用的荧光激活细胞分选(FACS)相比,RACS具有直接基于细胞功能分选、无需标记、不需预知生物标识物的关键优势,因此在海洋资源挖掘、生物能源种质筛选、肿瘤监测与分选、环境微生物监控、农业生态研究等诸多领域具有广阔应用前景。但由于细胞固有拉曼信号弱所导致的细胞分选通量低这一问题限制了其应用与推广。开发高速流动细胞拉曼信号的快速采集和识别已经成为发展高通量拉曼流式细胞分选的关键技术挑战之一。  由研究员徐健和马波领导的研究团队针对上述瓶颈开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。通过对高速流动单细胞的介电操控,实现了单细胞流在电极上的捕获/释放,并在细胞捕获期间(毫秒-秒)完成拉曼信号的采集识别(下图A)。通过耦合该团队同期建立的基于电磁阀吸吮的微流控细胞分离技术(Zhang Q, et al., Lab on a Chip 2014, Cover page, 2014 HOT Articles 下图B),实现了产色素工程酵母和普通酵母细胞的拉曼流式分选。前述工作首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。  单细胞中心前期建立的单细胞弹射分选方法(Wang Y, et al, Anal Chem, 2013)适用于贴壁生长的细胞、微生物生物膜等固相细胞的分选。而该研究开发的单细胞流式分选方法针对于流动相细胞的分选。这两种方法学的建立和相互结合,为研制广谱性适用于自然界各种细胞存在状态的单细胞拉曼分选装备提供了可行性。  该研究得到了科技部创新方法专项、国家自然科学基金面上项目、微进化重大研究计划及中科院重点部署方向项目等的支持。  原文链接:  1. Raman-activated Cell Sorting based on dielectrophoretic single-cell trap and release, Anal. Chem., 2015, doi: 10.1021/ac503974e.  2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip, 2014 Dec 21 14(24):4599-603. doi: 10.1039/c4lc00833.  3. Raman activated cell ejection for isolation of single cells, Anal. Chem., 2013. doi: 10.1021/ac403107p.     (A)基于阵列介电单细胞捕获/释放单细胞拉曼分选示意图 (B)基于电磁阀吸吮的微流控细胞分离技术(Cover Article)。
  • 俄开发能找到血液中癌细胞的新技术
    俄罗斯萨拉托夫国立大学科研人员确定了黑素瘤细胞受到激光辐射发热并产生的超声波信号参数,从而开发出找到血液中癌细胞的有效技术。相关研究结果近日发表在《科学报告》上。 众所周知,大约90%癌症患者的死亡与癌细胞转移有关,初生肿瘤的癌细胞进入淋巴和血管,并进一步通过生物液流扩散至全身。在许多情况下,可以通过外科手术成功切除初生肿瘤,非转移性癌症可以治愈。然而,发生在不同器官中的转移性恶性肿瘤很难被治愈。在这种情况下,当治疗尚有效时,尽早在患者血液中发现循环肿瘤细胞是很重要的,而流式细胞测定法可根据光散射和荧光信号研究血液。 俄研究人员称,为了“看到”血液中感兴趣的外来物,如循环肿瘤细胞,在研究中使用了光声学技术,它集激光医学(如使用激光脱毛)和超声波装置于一体。如果细胞吸收了激光波长上的辐射,它们就会发热,材料会发生热膨胀,产生与信号非常相似的声音,它用于超声波医疗设备。因为信号水平受癌细胞生长条件和阶段的影响很大,据此可以寻找在哪些激光参数下黑素瘤细胞开始有效加热并产生超声波信号。 俄科研人员根据研究结果开发出人工“癌细胞”,它们在相同的参数下开始“发声”,整体上表现得像癌细胞一样。人工“癌细胞”具有完全生物相容性,将它们注射到实验室的小鼠血液中,借助已开发的光声学流动式血细胞计数器“看到”了它们。 目前,研究人员正在完善光声学流动式血细胞计数器并明确实验模型的参数,这些参数可将测量技术从动物转移到人体组织。在不久的将来,研究人员将创建一个模型,可在激光安全参数下直接在人体血液中寻找癌细胞。
  • 一文知晓流式细胞术市场现状
    首先感谢以下同仁向本文提供资料和信息:Sherrie女士,李增强先生;科瑞斯生物孙胜虎;微信公众号《竞逐IVD原料江湖》版主古井秋筠。——01—— 流式细胞术市场有多大?新的报告预估全球流式细胞术市场将从2022年的52亿美金增长到2027年的76亿美金。往前一年,则是估算2021年43亿美金,增长到2026年为63亿美金。司空见惯的市场预测,都是画一个基数,拍一个年复合增长率(这里是8%左右)。但,2022年回看估算的2021年43亿到2023年估算的2022年的52亿,增长20%,这其中发生了什么?其后能维持或者不能维持的理由又是什么?——02—— 大陆流式细胞术市场有多大?首先,终端销售额,流通商数据,制造商数据,大相径庭,不能混为一谈,甚至重复计算。累加制造商出货口径,大陆流式细胞市场容量大概在40亿左右。如果采信全球报告数据,按我们占全球10%~15%计算,则是5.2亿~7.8亿美金。——03——大陆流式公司有多少?不完全不确切统计,大陆流式公司生产及研发分布如下图。表中共收录140家公司,其中35家公司生产流式细胞仪或(和)微球流式细胞仪。看到表格,多数人的第一反应是“卷”——此词似乎已经成了人们的口头禅。生而为人,卷为宿命。什么事情不卷?一个事但凡少人做,原因不外乎难如乔(戈里)峰,想做做不到;或是轻如鸿毛,做也没意思。卷也符合事物发展的逻辑。生产商希望原料商卷以减低成本,终用户希望生产商卷以丰富选择。在卷的世道选择同卷,是乐观于百舸争流,无畏浪遏飞舟。在不卷的时候选择入,是坚定了俏不争春,守望山花烂漫。共性是底牌一张,你与众不同的是什么?应用、性能、价格、渠道还是人员?否则就是与快乐的小猪一起等风来。——04——光谱流式是流式发展的未来吗?是的,不然呢。至于质谱流式,其核心是质谱。让细胞流动起来并加上标签,本质上就是进样器。无论是光谱流式,还是质谱流式,过去一直执着于多色“军备竞赛”。其实,多色的应用面和话语权从来都在少数专家手上,懂的人不觉得正在使用的分光流式有什么不好;不懂的人如笔者,以为40色以上的应用在仪器层面上形成不了产业规模的需求。把目光放到20色以下——光谱流式把10色,15色,20色的细胞分群做得漂亮,简单上手,而且价格不比分光型流式贵,你会选择谁?当然,光谱流式高度依赖荧光染料(另文分析),目前染料倒是层出不穷,不谈价格的优越就是耍流氓。更重要的是,荧光染料最大发射波长和发射光谱的批间波动,用于分光型流式倒是无所谓,反正是带宽检测,但是用到光谱流式就不是一回事,这是亟待解决的问题。光谱流式区分两种发射光谱接近的荧光染料。图片由李增强先生提供——05—— 微球流式走向何方?参见 《发光向左,荧光向右:微球流式荧光未来在何方?》与传统流式相异,微球流式以微球为载体,以编码微球为特色,以同时多参数分析为优势。如果说光谱流式扩展了流式的生存空间,微球流式则拓宽了流式的应用边界。流式市场将因微球流式的日益普及而加速增长——增速8%还是20%,全村人希望所在!流式需要的编码微球,国内已经有10余家公司可以提供,并且多数是磁性微球,重数基本满足目前临床多参数分析的需要。当下的难点在于发现临床价值明显的项目,实现多而不费,同时相比单检速度快的项目有更好的性价比。——06—— 多联检细胞因子还有继续增长的空间吗?一般而言,流式临床项目普及,国内延循国外。除了细胞因子以外。目前,已有9家公司注册了29个细胞因子联检试剂盒——联检需要注册而非备案无需多言。这其中又涉及34个细胞因子及其它可溶性蛋白受体。求多求新的组合方式,借着”细胞因子风暴“在新冠三年带来大陆流式市场的一个高潮。但,医保控费的压力,以及疫情后临床选品趋于理性的趋势,让越来越多的人看到:这么多因子放在一起,价值何在,是否都不可或缺?同为促炎或同为抑炎的结果矛盾,是机制没有理清还是实验结果的误差?仅仅因为是可溶性受体合并为一个试剂盒,而对应基本不会同时发生的疾病,这样的联检意义何在?笔者有理由相信,接下来将是微球流式细胞因子的一个调整阶段,调整的结果是继续增长还是如同FITC 516nm之后的发射表现,见仁见智。——07—— 国内抗体原料厂家的生存空间何在?《竞逐IVD原料江湖》曾经发布过名单国内IVD抗原抗体厂家分布其中,能够提供CD分子抗体的公司不多,其中还有些是国外进口分装。据内部人士透露,大陆能够大规模生产CD分子抗体的公司不超过3家,至多5家。至于可溶性蛋白检测的抗体对和抗原,理论上化学发光、酶联免疫等厂家都可以提供,但至少在目前,大家的注意力还没有转移过来,甚至在网站主页上都不屑于一提。当然,国产绝对不应该成为厂家的第一甚至唯一优点,稳定的质量才是自产的生存基本,一票否决。顺便说到,国产化的定义是什么?是国内品牌,那么大家只好也不要出口。是国内设厂,这对国际大品牌来说日益成为常态。是国内出厂,那么原料依赖进口是不是另外一种形式的媚外?笔者会希望,如果我们以国产化为特点,以自主创新为优势,那么80%以上的成分都应该产自中华大地。图片来自网络
  • 国内首个获CFDA批准的小型化流式细胞仪上市
    p style="text-align: justify "strong——国内首个获CFDA批准的自主品牌小型化流式细胞仪上市。/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201902/uepic/6156a5d1-e90f-47e2-999c-f211947b5201.jpg" title="1.jpg" alt="1.jpg" width="553" height="410" style="width: 553px height: 410px "//pp style="text-align: center "赛雷纳Sparrow流式细胞仪/pp style="text-align: justify "  近日,由位于四川成都的高新技术企业-赛雷纳(中国)医疗科技有限公司自主研发的新一代小型流式细胞仪span style="color: rgb(192, 0, 0) "获得国家食品药品监督管理局(CFDA)批准的二类医疗器械注册证,成为国内首个获批上市的自主品牌的小型流式细胞仪产品,相关配套试剂也同期获取CFDA批准上市证书。/span/pp style="text-align: justify "  strong流式细胞仪具有广泛的应用领域/strong/pp style="text-align: justify "  流式细胞仪(Flow cytometer )是对细胞进行自动分析的装置。它可以快速测量(分析速度可达每秒数千个细胞和更多)、存贮、显示悬浮在液体中的分散细胞的一系列重要的生物物理、生物化学方面的特征参量(信息主要来自特异性荧光信号及非荧光散射信号)。流式细胞仪主要由四部分:流动室和液流系统 激光源和光学系统 光电检测系统 计算机和分析系统。/pp style="text-align: justify "  流式细胞仪常用于临床检测、细胞生物学研究、农林畜牧养殖研究、微生物学应用以及食品药品检测等领域。在临床检测中的感染科、呼吸系统、消化系统、泌尿系统、内分泌功能、风湿免疫性疾病、血液疾病科等科室中检测多达上百种疾病。目前,国内相关疾病检测需求巨大,科研应用也是种类繁多,流式细胞仪是不可或缺的检测仪器。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/560dd19e-27c6-4970-acb5-701810371cf5.jpg" title="2.jpg" alt="2.jpg" width="627" height="343" style="width: 627px height: 343px "//pp style="text-align: justify "  strong常见流式细胞仪无法有效满足临床市场发展需求/strong/pp style="text-align: justify "  流式细胞仪大多数为国外产品,基本分布在三甲及以上大型医院,面对中国庞大的患者人群,无法提供高效廉价的检测服务,有如下主要原因:/pp style="text-align: justify "  1、价格高昂:仪器一般在50万人民币以上,且配套试剂价格昂贵,超过基层医院的财务承受能力。/pp style="text-align: justify "  2、操作复杂,使用不便:各类检测内容需要调整多项设备参数和数据分析流程,操作人员需要专业培训定岗操作,加剧了流式细胞仪在中国以及基层医院使用的难度,无法满足国内临床市场刚需。/pp style="text-align: justify "  strong小型化、易普及——赛雷纳流式细胞仪/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/0f481b74-aec1-4b9e-8668-6e154ef519bd.jpg" title="3.jpg" alt="3.jpg" width="601" height="115" style="width: 601px height: 115px "//pp style="text-align: justify "  span style="color: rgb(192, 0, 0) "赛雷纳研发的Sparrow流式细胞仪,/span基于企业多年技术研发和产品转化能力,在系统集成方案,器件选择,数据分析智能化等内容取得了关键突破,实现了小型化,低成本的智能化操作。/pp style="text-align: justify "  Sparrow流式细胞仪配备双色高性能激光器,自主设计的光路无需调整,同步检测6个信号参数,具备准确绝对计数能力,并配套全自动样本处理功能、极大提高了工作效率 自主研发AISFCM全中文分析软件,傻瓜化一键操作模式,无需用户设置相关参数,仅需5分钟学习即可掌握仪器使用,降低人员的专业能力要求,使得仪器操作更方便、检测结果准确度更高、以更低的检测成本满足中国基层医院的需求。/pp style="text-align: justify "  目前Sparrow流式细胞仪已应用于多家医疗机构和检测中心。Sparrow流式细胞仪以小型化、以简驭繁的特点,可将重要检测拓广至基层单位,为流式细胞仪广泛应用提供了低成本高精准的解决方案,翻开了中国医疗流式广泛应用的新篇章。/p
  • 低压直流细胞电穿孔微流芯片系统
    成果名称低压直流细胞电穿孔微流芯片系统单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:电穿孔(电转染)是一种利用外加电场击穿细胞膜,使平时不能穿透细胞膜的大分子(核酸、蛋白质、药物等)进入细胞的技术。电穿孔技术已在细胞实验、基因治疗等领域广泛应用。但目前的技术均需要金属电极,金属电极产生的金属离子渗出、气泡等对细胞有不利影响,降低了转染效率。此外,高压脉冲电源的使用使得目前此类仪器操作复杂、价格居高不下。这些都大大限制了电穿孔技术的广泛应用。针对上述问题,北京大学工学院熊春阳课题组采用微流芯片技术,实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。2009年,熊春阳副教授申请的&ldquo 低压直流细胞电穿孔微流芯片系统&rdquo 项目得到了第二期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用微流体中因尺度效应而产生的层流,用高电导率的液体来代替电极,将细胞悬浮液通过流动聚焦技术夹在高电导率溶液之间,形成三个平行流动的稳定流层。通过将电极与两侧的高电导率溶液相连,再与直流电源相连,电压会大部分施加在中间电阻较大的细胞流层。由于微流尺度较小,即使很低的电压都可产生较大的场强,从而可以实现细胞电穿孔。这项工作在基金的支持下得以顺利的推进,通过相关设备的购置和实验测试,课题组完成了微流控芯片的设计和加工、液体导电层的引入、不同类型细胞电转染参数的优化等工作。该项目目前已经顺利结题,相关成果已经申请中国专利,正在申请国际专利。应用前景:该项目实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。由于课题组具有完全的自主知识产权,这一工作可以打破目前国外同类仪器建立的技术壁垒,具备较强的市场推广前景。
  • 中国学者权威期刊发表流式细胞新技术
    流式细胞技术与相关的荧光激活细胞分选技术(fluorescence-activated cell sorter,FACS)对生物学研究产生了深远的影响,但是它们还是存在一些局限性,近年来,科学家们研发出了一些新的策略,但他们并没有修改传统的流式细胞仪,而是在新型微流控装置上进行精简。这些微型芯片实验室能帮助研究人员在更为多样的物理和分子特征基础上进行筛选和分型,而且也不需要抗体。以下是几位学者提出的新型流失细胞技术与研究策略。  研究人员:中科院青岛生物能源与过程研究所单细胞研究中心主任徐健研究员  当前项目: 微生物生物燃料发展  存在问题: 生物燃料研发需要标识出那些能进行特殊碳化学反应的细胞,但是这些细胞无法正常培养和研究,因此研究人员也不清楚是否有一些能识别和分拣细胞的分子标记。  解决方案:  徐健研究组以单细胞拉曼分选(RACS)为基础,研发出了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。  单细胞拉曼分选(RACS)是一种极具潜力的活体细胞功能分选技术。与目前通用的荧光激活细胞分选(FACS)相比,RACS具有直接基于细胞功能分选、无需标记、不需预知生物标识物的关键优势,因此在海洋资源挖掘、生物能源种质筛选、肿瘤监测与分选、环境微生物监控、农业生态研究等诸多领域具有广阔应用前景。但由于细胞固有拉曼信号弱所导致的细胞分选通量低这一问题限制了其应用与推广。开发高速流动细胞拉曼信号的快速采集和识别已经成为发展高通量拉曼流式细胞分选的关键技术挑战之一。  为此,这一研究组开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。通过对高速流动单细胞的介电操控,实现了单细胞流在电极上的捕获/释放,并在细胞捕获期间(毫秒-秒)完成拉曼信号的采集识别。  通过耦合该团队同期建立的基于电磁阀吸吮的微流控细胞分离技术(Zhang Q, et al., Lab on a Chip 2014, Cover page, 2014 HOT Articles),实现了产色素工程酵母和普通酵母细胞的拉曼流式分选。前述工作首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。  单细胞中心前期建立的单细胞弹射分选方法(Wang Y, et al, Anal Chem, 2013)适用于贴壁生长的细胞、微生物生物膜等固相细胞的分选。而该研究开发的单细胞流式分选方法针对于流动相细胞的分选。这两种方法学的建立和相互结合,为研制广谱性适用于自然界各种细胞存在状态的单细胞拉曼分选装备提供了可行性。  如何入手:  徐健研究员表示,在国内已经配置了两台微流控RAC系统,同时还有另外两台正在组装中。第三台RAC系统在牛津大学,研究人员可以申请使用这些仪器,他表示,&ldquo 欢迎提出任何问题,我们的一些资助资金也鼓励项目合作。&rdquo
  • 新!苏州医工所研制的流式细胞仪已在吉大一院投入临床使用
    p (文:宋明轩)近日,苏州医工所将自主研发的两台流式细胞仪提供给吉林大学第一医院的白求恩转化医学研究院和血液科使用,经过初步装机验证,确认其结果不亚于临床日常使用的进口品牌,基本满足临床检验和医院科学实验的需求,这标志着中科院苏州医工所与吉林大学第一医院的实质性合作进一步深入,就实现双方互惠互利、双收双赢又迈出了坚实的一步。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/fb53d44d-5cfe-4cad-be00-c72fdc17aefe.jpg" title="1.jpg" width="463" height="348" style="text-align: center white-space: normal width: 463px height: 348px "//pp  2018年11月,苏州医工所与吉林大学第一医院签订了先进自主知识产权医疗器械产品临床应用示范合作协议,并成立了“苏州医工所-吉林大学第一医院先进自主知识产权医疗器械产品临床应用示范基地”,为积极促进临床医学和工程技术的紧密融合,使先进自助知识产权医疗器械产品通过临床应用示范市场推广,总结经验,从而进一步拓展临床需求和工程技术合作的深度及广度。/pp  流式细胞仪是在国家“十二五”863重大项目支持下,由中科院苏州医工所团队历经5年自主研发出的,是通过测量单列流动中标记细胞的荧光,实现细胞或者其它生物颗粒的快速、准确定量分析和分选。流式细胞仪中集成了激光技术、计算机技术、流体力学、图像技术、微弱信号处理、细胞化学和生物探针等众多领域的知识和成果,被誉为生物实验室的“CT”。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/568d1f2e-31fc-4841-864c-0a94197e6b3a.jpg" title="2.jpg" width="457" height="335" style="width: 457px height: 335px "/br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/c1ab10c5-2e84-441d-baf4-b02d538a7a75.jpg" style="width: 455px height: 339px " title="3.jpg" width="455" height="339"//p
  • 贝克曼库尔特发布新品细胞计数仪和活率分析仪
    p style="text-align: justify text-indent: 2em "2019年4月19日,贝克曼库尔特发布新品细胞计数仪和活率分析仪Vi-CELL BLU。/pp style="text-align: center " /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/38079ac9-e5ad-4a80-8f18-19e574016a90.jpg" title="110.jpg" alt="110.jpg"//pp style="text-align: center "strong贝克曼库尔特 细胞计数仪和活率分析仪Vi-CELL BLU/strong/pp style="text-align: justify text-indent: 2em "全新的Vi-CELL BLU应用台盼蓝染色排除法(台盼蓝染色排除法是用于判断细胞存活率的经典方法,常结合显微镜、移液器和血球计数板等手动操作使用),结合全自动化的操作,完美地解决了生物制药和科研领域中细胞计数和活率的快速、准确、标准化分析。具备全自动样品制备、快速样品测量、更少样品量、仪器间高重现性、更大样品通量等特点。/pp style="text-align: justify text-indent: 2em "Vi-CELL BLU是在Vi-CELL XR的基础上实现了多处创新:全自动样品制备和细胞计数;24位样品架,可连续加样测量;兼容96深孔板;试剂包由台盼蓝、缓冲液、消毒剂和清洗液组成等。得益于先进的液体处理技术和成像技术,Vi-CELL BLU的整个测试流程从吸样、染色、拍照、图像分析再到测试后仪器清洗完全由新一代的触摸屏软件设定并控制完成,简捷高效,操作灵活。另外该产品符合21 CFR第11部分要求,满足GMP要求的IQ/OQ验证程序。/pp style="text-align: justify text-indent: 2em "Vi-CELL BLU具备高速摄像技术可捕获连续流经流动池的样品图像,无需暂停拍照,因此测量速度更快,减少样品处理总时间;优化了导管长度和内径大小,使样品的分析用量更少;优化了注射泵的速度,既缩短了混样和清洗的时间,又最大限度的减少了气泡的产生。因此,Vi-CELL BLU真正实现了细胞测量的快速性、准确性和可靠性。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/4c705de6-5fe9-4ce4-b3e8-cd5355c47486.jpg" title="图片1.png" alt="图片1.png" width="396" height="291" style="width: 396px height: 291px "//pp style="text-align: center "strongVi-CELL BLU/strong/pp style="text-align: justify text-indent: 2em "Vi-CELL BLU使用浓度斜率提高浓度线性度和准确度,重新分析功能可实现细胞类型的优化。其气泡检测功能可提醒操作人员图像中是否存有气泡并且能够检测和消除流动池上的灰尘影响等。/pp style="text-align: justify " 此外,该仪器具备灵活且易于使用的特点(试剂包易于安装、一次性质控品、数据导出便捷等)且满足洁净室需求。/pp style="text-align: justify " /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/1ff75509-5444-4fc5-a661-adcbd477d282.jpg" title="1111.png" alt="1111.png" width="167" height="77" style="width: 167px height: 77px "//pp style="text-align: justify "strong关于贝克曼库尔特生命科学事业部/strong/pp style="text-align: justify text-indent: 2em "贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。贝克曼库尔特公司为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和完善的技术服务与支持,不断促进生物学科研的新技术发展。贝克曼库尔特公司不仅在离心机和流式细胞仪的行业位于前列,而且长期以来一直是生命科学仪器和解决方案的创新者,其产品主要用于前沿的重要研究领域,包括基因组学、蛋白质组学等。/pp style="text-align: center text-indent: 0em "span style="text-decoration: underline " /spanbr//pp style="text-indent: 0em text-align: center "strongspan style="text-decoration: underline color: rgb(84, 141, 212) "关注3i生仪社,更多生命科学资讯等你看/span/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/9902e1d1-c247-4ae2-9261-23d9f8f73006.jpg" title="qrcode_for_gh_91d290758d40_344.jpg" alt="qrcode_for_gh_91d290758d40_344.jpg" width="180" height="180" style="width: 180px height: 180px "//p
  • Amnis量化成像流式细胞仪在血液学研究中的应用
    Amnis量化成像流式细胞仪在血液学研究中的应用 白血病是一类造血干细胞恶性克隆性疾病。克隆性白血病细胞因为增殖失控、分化障碍、凋亡受阻等机制在骨髓和其他造血组织中大量增殖累积,并浸润其他非造血组织和器官,同时抑制正常造血功能。白血病的诊断、分类和预后分层需要综合运用形态学、免疫表型和遗传分析方法,而传统上这需要在多个平台上进行检测以便得到最终结果。 成像流式细胞术可以在一个仪器上产生以上所有结果,从而为白血病的诊断和研究开辟了新的工具。基于图像的流式细胞术结合高分辨率数字图像和标准流式细胞仪所获得的定量荧光信息,可以确定细胞抗原的定位(即细胞表面、细胞质、细胞核),并且可根据荧光强度、细胞形状、细胞大小和纹理信息等组合变量选择特定的细胞群体进行分析,而这是标准流式细胞仪无法实现的特征。 急性早幼粒细胞白血病(APML)为急性髓细胞白血病的一种特殊类型,急性早幼粒细胞白血病可以通过观察早幼粒细胞中粒细胞白血病蛋白- PML蛋白的异常弥散分布来进行快速检测。在正常细胞中,大部分PML蛋白以不连续点状方式分布在细胞核内,而在APML细胞中PML蛋白会呈弥散性分布。常规检测方法为显微镜观察,免疫组化,荧光原位杂交以及传统流式细胞术,但这些方法主观性很强,灵敏度低。Lizz Grimwade等人[1]尝试利用Amnis量化成像流式技术,根据 PML蛋白分布的模式的不同,对正常细胞和APML细胞的PML蛋白分布进行客观的区分。对病人样本进行自动检测,通过统计发生PML蛋白聚集的细胞比率来评估 APML发病的风险。结果表明,Amnis量化成像流式技术能够分析大量样本,确定PML蛋白的分布形式,从而找到潜在的异常细胞,增加了检测的灵敏度和准确率。图1. 急性早幼粒细胞白血病(APML)免疫荧光显微镜染色显示(A)在非APML患者中聚集的PML小体和(B) APML患者中弥散性PML小体 (红色,罗丹明抗PML;蓝色,DAPI核染色)。Modulation纹理分析分别显示在非APML病例(C)和(D)在APML病例中的结果。(E)和(F)分别显示非APML患者FITC标记的PML聚集体和APML患者弥散性PML。(G) 显示非APML患者和APML患者之间弥散染色的细胞百分比差异。 慢性淋巴细胞白血病(CLL)是最常见的白血病,其特征表型和预后在很大程度上取决于是否存在细胞遗传学畸变。检测这些细胞遗传学异常的金标准是在载玻片上的细胞涂片或组织切片上进行荧光原位杂交(FISH)。荧光原位杂交(FISH)是一种显微镜技术,使用荧光探针检测DNA序列,通常在载玻片上完整细胞的中期细胞涂片或间期细胞核上进行。来自澳大利亚的科学家Henry Hui等[2]展示了使用自动、高通量的Amnis量化成像流式细胞仪评估数千个细胞悬液中CLL细胞染色体的特异性FISH探针信号。成像流式细胞仪的EDF景深扩展能力使FISH探针信号能够被解析并定位在免疫表型细胞的(染色的)细胞核内。多色流式细胞术免疫表型分析最常用于诊断白血病,因为CLL细胞具有特征性表型,它们是成熟B淋巴细胞(CD19、CD20阳性),特征为共表达CD5和CD23抗原。CLL还表现为异质性遗传不稳定性。超过80%的病例预先存在细胞遗传学畸变,最常见的是11q、13q或17p缺失和12三体(15%的病例),这些可用于将患者分为高、中、低和极低预后风险类别。图2展示利用Amnis成像流式进行12号染色体三体CLL细胞的分析方法。使用Amnis ImageStreamX Mk II平台在血液样品上开发的自动化“immuno-flowFISH”方法在CLL中评估12号染色体的临床方法可能应用于疾病分层的诊断和后续治疗以评估疾病预后。这些应用将帮助临床医生优化治疗决策,从而改善患者的治疗效果。 图2. Amnis成像流式细胞仪进行12号染色体三体CLL细胞的分析方法。(A)分别根据明场图像的清晰度、面积、宽长比等参数对聚焦细胞进行识别。(B)细胞通过SYTOX AADvanced荧光强度(Intensity_MC_Ch05)进一步鉴定有核细胞,排除增殖细胞或紧密重叠的细胞。(C)和(D)根据CD19-BV480 (Ch07)、CD3-AF647 (Ch11)和CD5-BB515 (Ch02)表达差异对细胞进行分群,分为T细胞(CD3+CD5+CD19-), B细胞(CD3-CD5-CD19+)和CLL细胞(CD3-CD5+CD19+)。(E-G)对每个细胞亚群在CEP12-SpectrumOrange探针(Ch03)通道进行FISH小点计数的结果。(H)可在图像库中查看细胞免疫表型或FISH小点计数的亚群,以确认定量分析。259细胞为CD19-BV480阴性,CD3-AF647阳性,CD5-BB515阳性,12号染色体正常T细胞;细胞4419是一个CD19+CD3-CD5-12号染色体正常B细胞;细胞7805是一个CD19+CD3-CD5-12号染色体三体CLL细胞;细胞1851是一个CD19+CD3-CD5+12号染色体正常B细胞;和细胞1828是一个CD19+CD3-CD5+12号染色体三体CLL细胞。 Amnis量化成像流式细胞仪可以让科学研究更加生动,富有乐趣,其高灵敏度的检测和成像分析的大数据则让文章充满亮点,是您科学研究的好帮手。 相关阅读:Amnis量化成像流式细胞仪系列 利用传统流式细胞检测技术,研究人员可以分析成千上万个细胞,获得每个细胞的散射光信号和荧光信号,从而得到细胞群体的各种统计数据,但是传统流式细胞检测技术获得的细胞信息相对有限。细胞对研究人员来说,只是散点图上的一个点,而不是真实的细胞图像,缺乏细胞形态学、细胞结构及亚细胞水平信号分布的相关信息。要想获得细胞图像,研究人员就必须使用显微镜进行观察,但显微镜能够观察的细胞数量是非常有限的,很难提供细胞群体的量化与统计数据。Luminex公司Amnis量化成像流式技术开创性地将流式细胞技术与荧光显微成像技术结合于一体,在传统流式抽象的统计学数据基础上,既能提供细胞群的统计数据,又还可以获得单个每个单细胞的明场和荧光图像,从而为研究人员提供了细胞形态学、细胞结构和亚细胞信号分布的完整信息。 Amnis量化成像流式细胞仪具有高达12个检测通道,可以对通过流动室中的每个细胞进行成像,并对图像进行多参数量化分析,获得全新的细胞形态统计学数据。系统配有功能强大的数据分析软件IDEAS,可以对每个细胞图像通道分析超过上百种量化参数。这些参数不仅包括细胞整体的散射光和荧光信号强度,还包括对细胞形态,荧光分布、小点计数、荧光共定位等多种信息的分析。随着Amnis高速显微成像流式细胞技术的发展成熟,越来越多的科研人员开始将这种革命性的技术手段运用到自身的研究领域,并发表了大量有影响力的论文。图3.路明克斯Amnis量化成像流式细胞仪,左为FlowSight,右为ImageStreamX Mk II 参考文献: [1] Grimwade, L., Gudgin, E., Bloxham, D., Scott, M. A., & Erber, W. N. (2010). PML protein analysis using imaging flow cytometry. Journal of Clinical Pathology, 64(5), 447–450. doi:10.1136/jcp.2010.085662 [2] Hui, H., Fuller, K. A., Chuah, H., Liang, J., Sidiqi, H., Radeski, D., & Erber, W. N. (2018). Imaging flow cytometry to assess chromosomal abnormalities in chronic lymphocytic leukaemia. Methods, 134-135, 32–40. doi:10.1016/j.ymeth.2017.11.003
  • 中科院分子细胞卓越中心俞珺璟博士:流式细胞技术平台发展与使用心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。本篇为中国科学院分子细胞科学卓越创新中心细胞分析技术平台副主任俞珺璟撰写,俞老师根据多年工作经验,详细介绍了流式细胞术的发展,并分享了长期工作中仪器使用的心得体会。以下为供稿内容:流式细胞术最初诞生于20世纪60年代末,发展之初主要应用于计数和评估颗粒的大小。随着硬件和软件的不断升级发展以及各种荧光试剂的迭代更新,流式细胞术作为一种能够对细胞群、细胞亚群及单个细胞或者颗粒进行多参数、快速的定性/定量的分析手段,已经被深入应用于细胞生物学、免疫学、病毒学、肿瘤生物学、传染病检测、食品和环境监控及生物制药等多个研究领域。流式细胞技术部门作为中国科学院分子细胞科学卓越创新中心细胞分析技术平台的一个重要分支,从成立最初的只有一台2激光4色流式细胞检测仪和2激光7色流式细胞分选仪发展至今已经具备了高低不同配置的流式细胞检测仪8台、流式细胞分选仪7台、高活性全自动磁珠分选仪1台(http://sjzx.sibcb.ac.cn/Cn/Index/pageView/catid/32.html/list/48 ),最大程度地满足中心及周边乃至全国科研院所在流式细胞仪方面的实验需求。平台流式的建设和发展与流式技术的不断更新、科研方向的转变是息息相关的。现就平台在流式方面的使用心得进行分享及对未来流式潜在的需求做一些展望。一、流式细胞检测传统流式细胞仪的硬件系统通常由一个或者多个激光器组成的光照系统、二向色镜以及带通/长通滤光片组成的分光光学器件、高灵敏度光电倍增管(PMT)或雪崩光电二极管组成的检测系统组成。传统流式细胞仪内一个激光器可以搭配2个或多个PMT通道,一个PMT对应一个检测通道,接收发射光谱的峰值信号。激光器越多检测通道越多,可检测荧光信号也越多。平台根据中心各课题组的实验需求配置了不同型号的基于传统检测原理的流式细胞检测设备。1.1 细胞內源荧光蛋白或自发荧光的流式细胞检测细胞内源荧光蛋白或自发荧光的检测主要包括三个方面的应用:1.细胞系转染质粒后阳性比例的检测;2.组织来源带有内源性荧光标记蛋白的细胞比例情况,例如细胞示踪实验;3.细胞自发荧光的测定,比如细胞富含某类化合物,而该类化合物具有较强的自发荧光,可以作为该类细胞的识别标志物。这三类实验基本只用单色或者两色的流式设备配置就可以开展实验。通常转染了只带有GFP标签蛋白的质粒细胞进行流式检测时,只需有488nm激光器,但是如果有mCherry之类的荧光蛋白,必需要有561激光器进行激发。如果带有GFP和mCherry两种融合荧光蛋白的小鼠组织来源细胞进行实验时,要注意两种荧光蛋白的表达水平,尤其是mCherry表达强而GFP表达弱时,mCherry的荧光溢漏会影响GFP通道,所以要利用合适的单荧光样品管作为单染管进行补偿调节。对于一些自发荧光的细胞,例如富含维生素A的细胞类型,可以用405nm激光器激发,450/50带通滤光片进行收集。对于这些荧光蛋白检测的实验,平台需要配备405nm/488nm/561nm的流式检测设备即可。1.2 常规细胞生理健康的流式细胞检测细胞凋亡、倍型、周期是流式平台做的最多的和细胞生理健康相关的实验。细胞凋亡实验一般会采用PI/Annexin V-FITC双指数染色,只有488nm激光器的设备就可以满足实验需求,但是如果有488nm/561nm独立光斑的仪器就可以省略调补偿的过程。细胞倍型一般会采用Hoechst 33342进行染色,以区分单倍体、二倍体等。Hoechst和双链DNA结合后最大激发波长为350nm,最大发射波长为461nm,因此需要配备了355nm激光器的设备,450/50带通滤光片收集。细胞周期一般会采用PI染色的方法,488nm或者561nm激光器都可以激发。因此,对于细胞生理健康的检测,如果使用上述染料基本配备355nm/488nm/561nm激光器的流式检测设备即可。1.3 多色流式细胞检测平台在多色流式细胞检测上主要围绕免疫细胞、造血干细胞、成体干细胞等的分型鉴定。多色流式检测从配色方案设计、设备选择、样品制备、上机和数据分析,过程相对更为复杂。因此,平台配备了4激光12色,4激光14色,5激光18色,5激光19色,5激光28色等多参数流式细胞仪,以满足各种实验需求。在实验过程中,如果多色实验,补偿调节依然是许多用户困惑的地方。如何获得正确的补偿矩阵是保证后期样品数据分析准确性的前提。现在的流式细胞分析仪基本都具备自动调节补偿的功能,因此可以用样品来确定各检测通道的电压后,用补偿微球进行补偿调节可以避免细胞阳性群不明显的困扰。随着仪器光路结构/检测器、电子元器件和分析软件的不断迭代,光谱流式技术的实用性得到了发展。在2005年的时候,Robinson等人提出了可以通过使用棱镜或光栅系统进行分光,配合32通道PMT或CCD检测器阵列可实现500-800nm波长范围内的全光谱信号检测技术。与棱镜分光相比,光栅分光系统可以通过单缝衍射原理对复合荧光实现均匀色散分光,在保证荧光信号真实性的基础上确保所有波段的荧光信号可以同时到达PMT检测器阵列中,实现全光谱信号检测的时空一致性,确保染料光谱的真实性。全光谱流式细胞仪可以跨越所有激光线,检测到可见光波长范围内(360-920nm波长)的全光谱信息,获得每一种荧光的整个发射光谱信息,最后利用WLSM算法(最小加权二乘法)对多个光谱进行拆分,获得每个单一荧光探针的完整光谱信号,从而避免使用传统的补偿计算矩阵,收集到更加全面与准确的荧光信号。因此,通过引入光谱流式技术,可以避免传统流式实验中高参数实验的补偿困扰。比如,通过光谱流式,平台已经实现了小鼠肠道23色免疫细胞分析方案、28色肿瘤免疫细胞亚群分析实验等。但是值得注意的是,光谱流式需要正确的光谱信息,比如样品固定会影响光谱信号,所以固定前后需要建立不同的荧光光谱库。1.4 高通量流式细胞检测流式分析上样方式除了传统的5ml流式管上样外,现在的注射泵和蠕动泵进样方式还可以支持1.5ml EP管上样。而对于一些高通量筛选的时候,尤其是悬浮细胞,利用高通量上样器可以很好地解决这类实验数据采集问题。尤其是带有声波聚焦技术的出现,可以将待测细胞精确聚焦在样本流的中心位置,每个细胞样本都可以准确地聚焦在激光检测区,即使在高流速1ml/min进样速度也能保证信号的变异系数较小,数据质量更高。同时伴随注射泵式的上中下三点混匀模式和推入式进样可以最大限度避免细胞堵塞,从而实现提高样本通量的同时,保证读取样品速度及获取的数据质量和精度。平台配备这种高通量流式检测设备可以提升科研的效率,有效节约科研工作者的时间成本。二、流式细胞分选2.1 传统流式细胞分选常规流式细胞分选早期是基于空气激发原理,此类流式分选仪低压高频的分选特点保证样品分选速度快,对分选后细胞的活性保持得更好。但是它需要手动校准光路和液路,对仪器操作者的技术要求很高,对环境条件的要求也比较苛刻。随着技术发展,现在大型仪器平台都会配备基于石英杯激发原理的流式分选仪,因为是固定光路,只需对仪器进行基本的质控校准和液滴延迟校准,使得分选仪开机工作变得相对简便。加电式的分选模式基本对细胞的活性都会有损伤,所以在分选速度、纯度和活性三者之间如何进行条件优化也是对仪器操作者的一种考验。对激光器的配置要求可以根据实验需求来决定。以我们平台为例,因为有大量的分选实验涉及单倍体细胞的分选,需要使用核酸染料Hoechst 33342,以区别不同倍型细胞中处于不同减数分裂时期的细胞,因此需要功率可调的355nm激光器进行激发,保证此类核酸染料的激发效率。根据DNA浓度和DNA构型,使用450/50(Hoechst Blue)和670/30 (Hoechst Red)带通滤光片双指数显示获取数据。但是核酸染料的使用也往往造成管路、流动室等位置会有样品或染料残留,需要更多的维护时间和人力成本,同时不可避免地减少了可使用机时。因此从平台的用户群角度出发,可以将355nm激光器和405nm激光器分开配置到两台设备,这样可以兼顾保证核酸染料用户群和多色分选用户群的使用需求,也最大程度地避免了两类样品的交叉污染。2.2 芯片式流式细胞分选芯片式流式分选仪最大的特点在于“分选芯片-喷嘴一体化”代替传统的石英杯与喷嘴,因此避免了因流动室或喷嘴支架无法更换造成的样品残留和污染。更换了新的芯片后,可以真正将样本在流动室中的残留率降低到零,这种设计对细胞移植和生物危害性样本分选等对交叉污染零容忍的分选应用更为友好。传统流式细胞分选仪在实验前须对仪器进行一系列复杂的调试步骤,包括光路校准,液流断点优化、侧液流校准和液滴延迟计算等,对仪器操作人员的依赖性更大,普通用户短时间内难以掌握。微流体芯片分选仪已经实现了上述所有调试和校准步骤自动化,并能在分选过程中对液滴状态进行实时监控和自动调节,简化了仪器操作过程,保证了每日仪器状态的稳定性,而且还能匹配不同规格的微流体芯片(70um,100um,130um)可以适用于更多的细胞类型。校准模式中还设计了大液滴模式,液流会更加稳定,更加适用于大细胞和多孔板(96或者384孔板)的分选。鉴于这种芯片式流式分选的特性,平台中一些抗体的单克隆筛选,384孔板测序建库,原代神经细胞等实验会借助这种分选平台进行。2.3 磁珠分选免疫磁珠分选主要基于细胞表面抗原能与连接有磁珠的特异性单抗相结合,在外加磁场中,通过抗体与磁珠相连的细胞被吸附而滞留在磁场中,而没有这种表面抗原的细胞由于不能与连接着磁珠的特异性单抗结合而没有磁性,先被洗脱下来,撤离了磁场后,带有抗体的细胞再被洗脱下来。因此,可以快速地分选得到阴选和阳选的细胞。作为一种功能较为独立的分选设备,磁珠分选主要应用于简单抗体标记的细胞分选和稀有细胞样品前期的富集,提高目的细胞的比例,可以帮助缩短在后期的流式细胞分选的时间提高获取细胞的纯度。分选后细胞纯度高、活性大,通过阳选,还能有效去除细胞碎片。但是对于一些需要内源蛋白标记的细胞还不能通过这种技术实现快速的分选。三、流式平台管理心得和未来可提升空间第一、 在流式使用方面,日常的维护是必不可少的,特别是使用频率特别高或者使用核酸染料样品较多的设备,可以将仪器维护频率提高到一周一次大清洗,同时在每一个用户实验结束后配合使用高浓度clean液-Rinse液-去离子水的冲洗流程,最大程度地保证管路和流式室的清洁,保证仪器正常的使用状态。第二、 对流式技术人员的要求日渐提升,除了会日常的开关机、维护、指导学生上机实验外,需要技术人员对不同样品的特性有更多的认知,判断其数据采集或分选过程中结果不如预期的潜在关键所在,此外还需要具备简单故障排除和硬件故障断定的能力,以缩短流式维修时间成本。第三、 平台设备需要密切结合用户群的实验特性、使用频次、科研目的等关键指标进行合理的配置,同时也要关注平台的技术空白和短板,予以填补和提升。第四、 随着对外泌体、病毒、细菌、亚细胞结构如线粒体等天然纳米颗粒检测需求的提升,可识别直径小于100nm颗粒的纳米级流式细胞术因其在外泌体研究、囊泡运输、纳米药物开发等方面的应用,可以作为纳米尺度小颗粒检测的金标准。第五、 随着光谱分析技术的提升,解决了光谱数据实时解析的问题后,整合了空气激发、低压高频、全自动校准、生物安全等功能的全光谱流式细胞分选仪势必在高参数高速流式分选中发挥更重要的作用。最后,国产流式技术团队在整机开发、配套试剂、技术能力、科研应用、售后服务等方面的不断提升,例如国产光谱流式、国产质谱流式在科研平台的落地化比例逐年上升。作者简介:俞珺璟 细胞分析技术平台副主任/高级工程师俞珺璟,中国科学院分子细胞科学卓越创新中心(生物化学和细胞生物学研究所)细胞分析技术平台副主任,博士,高级工程师。2004-2009中国科学院生物物理研究所获博士学位;2007-2009年美国密苏里州Stowers Institute for Medical Research访问学者;2010-2018在中国科学院生物物理所感染与免疫重点实验室从事细胞生物学及天然免疫学相关研究;2018年9月加入中科院生物化学和细胞生物学研究所细胞分析平台,副主任,主要负责流式平台仪器运维、大型仪器理论及实操培训,承担院级功能开发研制项目等,曾作为特邀主编,编撰《流式细胞术实验手册》,已在线发表于Bio-Protocol。2021年被评选为"中国科学院关键技术人才"。相关阅读:细胞生物学研究的利器——仪器平台负责人经验谈点击进入话题页面
  • 从现代流式细胞仪发展看高校共享平台搭建——北京大学医药卫生分析中心高级工程师苏黎
    “流式细胞仪商业化历程刚过半百,国产化流式细胞仪才刚满10岁。如何从名头巨多的流式细胞仪类型中选择出适合自己的设备类型是所有高校共享平台一直在不断探索的永恒话题。”——苏黎博士 北京大学为帮助广大用户加强对流式细胞技术应用及发展,进一步了解流式细胞平台的建设与管理经验,仪器信息网开设话题专栏【流式细胞平台建设与管理经验分享】,特别邀请北京大学医药卫生分析中心高级工程师 苏黎博士,就流式细胞仪商业化55年的发展史、常见类型以及共享平台建设管理经验与读者分享。 本文作者:苏黎博士,北京大学医药卫生分析中心 高级工程师苏黎,博士,高级工程师,专硕基地导师,北京大学医药卫生分析中心细胞分析室副主任,负责流式及单细胞平台搭建、运行等全面工作,熟悉流式、scRNAseq、空转及原位转录组等技术。主要研究 GPCRs 相互作用,神经免疫及药理;微粒、蛋白聚合体及囊泡等微小颗粒的定量检测与纯化,痕量细胞(CTC 等)检测与纯化,免疫细胞分型,细胞因子检测,实验大数据分析等。先后承担并完成国家自然科学基金等各级项目 8 个,参与国家级项目 7个;以第一或通讯作者在《Experimental & Molecular Medicine》、《Journal of Inflammation Research》、《Frontiers in Immunology》等发表 SCI 文章 10 篇,参与在《Adanced Science》、《Cell Stem Cell》等发表 SCI 文章 15 篇。现任中国医学装备医学实验室分会委员、北京神经科学学会-疼痛与感觉障碍委员会委员等。流式细胞术(Flow Cytometry, 简称FCM)是一种运用流动相包裹、对单个细胞或生物颗粒的物理或化学特性进行快速测量和定量分析的方法,同时也是一项可以用物理方法对细胞亚群或亚细胞结构进行分离和富集的技术。而流式细胞仪(Flow Cytometer)则集成了激光技术、流体力学技术、电子物理技术、光电测量技术、电子计算机技术、细胞化学技术、抗体技术等等为一体的新型高端精密设备,在临床检验和生物、医学、药学及农林等基础科研领域的应用都非常广泛。一、现代流式细胞仪的发展史现代流式细胞术的发展可回溯到上世纪三十年代,1934年Moldavan将显微镜技术与稳定压力和毛细管结构巧妙结合在一起,发明了细胞自动计数装置,成为人类史上有关流式细胞术的第一个大胆创新性尝试。随后人们发现流式细胞计中,细胞流过狭窄管道时的阻塞问题成为了限速。1953年,Grosland-Taylor将鞘液流原理运用到流式细胞计,并设计了流动室,让悬浮的细胞慢慢注入快速流动的液柱中并只在轴心流动,解决了颗粒阻塞线下,同时还可以精确控制粒子进入液柱的位置,从而建立了流体动力聚焦,再利用光学法计数血细胞。这一液流原理奠定了流式细胞仪的液流基础,至今仍有很多流式细胞仪采用。1959年,Wallance Coulter利用他自己发明的“流动的悬浮粒子计数方法”的专利(即Coulter效应),生产了Coulter计数器。1965,Kamentsky提出了用分光光度学定量测量细胞组分,实现细胞分类,测量速度可达500个/秒。同时,他也是首个用计算机接口到仪器,用直方图线上分析参数的人。1967,Van Dilla和Los Alamos,设计了三轴相互垂直的流式细胞计,真正现代意义上的流式细胞仪的经典结构,可进行DNA定量分析。直到1968,第一台商品化流式细胞仪ICP出产。1973,Len Herzenberg在斯坦福研制成功分选仪FACS,商品化时代到来。二、现代流式细胞仪的主要类型及检测原理01传统型流式细胞仪的发展传统流式细胞仪是通过对特定波长范围内的光信号的检测来实现对样本中特定分子的定量分析:通过前向散射光和侧向散射光的检测,来识别流动样本中,待测样本的粒径、胞内物质及膜结构的复杂程度;通过对样本所携带的特异性荧光的检测,来判定样本中待测分子的表达高低及群体分布。随着现代单克隆抗体技术、生物工程及生物材料等技术的发展可用来特异性标记细胞或生物颗粒的物质越来越多,荧光蛋白、荧光标记抗体、荧光探针及纳米颗粒等,都可以成为荧光流式检测的特异性荧光的来源,大大拓宽了传统荧光流式的检测范围。到了2010年代,利用传统流式细胞仪,已可以在单一样本中同时检测20种分子。这几乎是传统流式细胞仪发展的瓶颈,通过设定不同带宽的滤光片来判断特异性荧光的有与无、高与低的检测原理,注定了同时检测荧光信号类型越多、荧光间光谱交叉越严重,信号干扰越厉害。如何拓宽流式细胞仪的检测能力,成了各流式大厂、流式新秀角逐的重心之一。与此同时,如何扩大流式细胞仪的检测粒径范围、使流式细胞仪的检测样本类型更广,设备大型趋于小型化以适应实验室空间需求,是流式细胞仪发展的另外两个焦点。英国的Apogee公司算是最早商业化销售的具有小颗粒检测模块的流式细胞仪,其检测范围可以从几十nm囊泡到几十微米的细胞。与此同时,国内厦门福流的NanoFCM则专注做纳米级颗粒检测。而陈永勤博士所研发的CYTOFLEX在诞生之初,就可轻松识别200nm的颗粒,最新产品已可检测75nm的颗粒,它同时也是一款稳定的小型化产品。而传统流式细胞仪老大BD公司,也在其经典的流式分选系统Aria的定制款设备上,增加了SP SSC检测通道,使其检测及分选颗粒粒径下限延伸到了200nm。至此,传统流式细胞仪发展的三大方向——小型化、小颗粒及多色检测,已基本稳定、成型。02交叉型流式细胞仪在传统流式发展的同时,流式细胞术与其他技术融合、不断拓宽流式细胞仪的检测能力和范围。成像流式细胞仪成功将显微成像的高清晰度与流式的高通量检测能力融合在了一起,使流式细胞仪的定量分析技术变得有图有真相、“更可信”。光谱流式细胞仪则成功的把光谱拆分技术应用到流式细胞仪系统,打破了以波长论荧光素、算分子定量的限制,从而将流式细胞仪的检测能力扩大,再配合激光器,单个样本已可实现四五十种分子的同时检测,甚至更多。质谱流式更是将质谱仪的精准定量能力引入流式细胞仪,借助每种金属元素都有特定的核质比的特性,客服了光谱交叉的限制,使单一样本同时检测上百种分子成为了可能。近些年,如何实现无标记即可定量分析细胞或生物颗粒又成为交叉型流式细胞仪发展的另一个热点。AI视觉流式、拉曼流式、细胞力学流式细胞仪等都应运而生。随着2022年BD带成像功能的光谱流式细胞分选仪S8的上市,更是意味的未来会有更多种技术交叉融合在一起,成就功能更强大的流式细胞仪。三、高校共享流式平台的搭建原则高校是基础研究的主力军,而高校大型设备共享平台一方面可以有效节省人力、物力及空间等资源,使大型设备得到最有效的利用;另一方面,高校共享平台也是高校加强基础研究,实现高水平科技自立自强的根基。如何建设出一个高水平的基础研究支撑平台是高校共享平台的共同使命。流式细胞仪强大的单细胞“原位”检测能力,使之已经成为生物、药学及医学等相关领域基础研究必不可少的精密设备。如何在繁杂的设备类型中,选择和搭建高校适用的流式平台设备是个很值得探究的话题。北京大学医药卫生分析中心流式细胞平台作为全国最早的流式平台之一,已拥有近四十年历史,简单总结下我们的一点经验、供大家探讨。 设备需求量及技术难度是首要考虑因素:流式细胞仪发展至今,不同的设备其主要功能侧重不同。同样的,不同的研究领域研究需要的设备功能也会略有不同。高校共享流式平台更多要考虑未来设备的使用者的需求,需求量的多少来确定购买设备的类型。比如物美价廉的小型化流式细胞仪更适合个人实验室或对流式细胞仪的高阶使用功能要求不高的平台使用。大型的流式分选仪或质谱流式细胞仪则对操作人员有更高要求,更适合专业的流式平台。 设备技术先进性:不同级别的设备共享平台需要解决的一线需求侧重点不同,能获得的经费支持来源和力度不同,同时设备可实现的共享程度也不同,积累的设备管理经验也会有差异。通常校级平台会放置更为先进、功能更全面的设备类型。 不同设备间的功能互补性:由于商业化产品定位及市场占有份额、功能兼容性因素,流式细胞仪发展至今,不同设备间总会有不同的功能取舍。这也是大型设备共享的重要起因之一,通过集中采购不同共功能侧重的设备类型,可以使不同功能的仪器都能实现充分利用和最大化的机时饱和度。 设备的使用及维护成本:大型共享设备的采购不是一锤子买卖,平台在搭建时必须要考虑后面的使用问题。待采设备销售方是否拥有良好的技术支持及维修团队,后期的维修或维保价格是否合理,设备使用过程中的科研试剂及耗材的供货情况及价格等等,都是设备选择时要考量的因素。这些会直接影响设备最终的使用率。相似的设备类型,性价比高的自然是更优的选择。总而言之,虽然流式细胞仪商业化历程刚过半百,国产化流式细胞仪才刚满10岁,但国内科研及临床的需求却越来越广泛、影响也越来越大。繁花迷眼,如何从名头巨多的流式细胞仪类型中选择出适合自己的设备类型是所有高校共享平台一直在不断探索的永恒话题。采购前做些设备间比对、甚至样机试用等,不失为一个好的选择方法之一。请在评论区留下你的看法吧!欢迎关注北京大学医药卫生分析中心 官方微信 征稿启示 欢迎各位流式细胞术相关仪器技术研发、应用专家、资深用户、平台管理负责人踊跃投稿,共话流式细胞技术进展,切磋流式平台建设与管理经验。一经采纳并发布,将有稿费发放。投稿邮箱:liuld@instrument.com.cn
  • 清华大学林金明教授:开放式微流控及其在细胞研究中的应用
    细胞操纵是生化研究的基础,它需要用户友好,多功能和精确的工具。基于流动限域原理,开放式微流控技术可以精准控制液体在微尺度开放空间中的运动。不同于传统的封闭式微流控体系,开放式微流控系统中的任意位置都可以被外部装置所触及,因此人们可以对该体系内任意目标位置的细胞样品选择性地进行高时空精度的刺激、取样、原位分析等操作。得益于该系统独特的优势,图案化细胞培养、3D 组织建模、原位在线细胞因子分析、单细胞局部化学刺激、原位单细胞采样、亚细胞修饰等多种操作可轻易实现。在本文中,作者总结了开放式微流控设计的两个基本思想,解释了主流开放微流控方法的原理,介绍了它们最近的重要应用,并讨论了开放微流体的挑战和发展趋势。两个基本设计思想是开放式微流控网络和探针。微流体网络可以通过移除封闭通道的固体壁得到,它可以被用来操控流体在 X-Y 方向的流动,适用于大规模、长时间、多功能的细胞培养和刺激操作,典型的方法有槽状通道、悬浮微流控、“free style”微流控等。微流控探针可以被认为是将封闭通道折断,然后将通道折起来,使其断口对准细胞进行操作:它通常是在竖直(Z)方向上操控流体流动,适用于高时空分辨率的细胞操作,典型的装置有微纳玻璃管、流体力显微镜、推拉式探针及多出口微流控探针等。微流控网络和探针相互配合可以很好地满足多种多样的细胞研究需求,尤其是在单细胞乃至亚细胞水平。该成果以题为" Emerging open microfluidics for cell manipulation "发表在英国皇家化学会期刊Chemical Society Review 上,该文章被选为封面文章(front cover)。该工作第一作者为清华大学化学系博士研究生张强,通讯作者为清华大学化学系林金明教授和北京工商大学生物工程系林玲教授。本研究工作得到国家自然科学基金资助(22034005, 21727814, 21804026, 21621003)。论文信息• Emerging open microfluidics for cell manipulationQiang Zhang, Shuo Feng, Ling Lin,*(林玲,北京工商大学) Sifeng Mao and Jin-Ming Lin*(林金明,清华大学)Chem. Soc. Rev., 2021, 50, 5333–5348http://doi.org/10.1039/D0CS01516D第一作者• 张强本科毕业于清华大学化学系,现于清华大学化学系林金明教授课题组攻读博士学位,主要从事用于单细胞研究的开放式微流控探针方法开发工作。通讯作者林金学 教授,博导清华大学化学系1984 年福州大学本科毕业,1992-2002 年在日本留学和工作,1997 年 3 月获得日本东京都立大学工学博士学位,同年留校任教。2000 年入选中国科学院“百人计划”,受聘中国科学院生态环境研究中心研究员,博士生导师。2001 年获得国家杰出青年科学基金,2004 年入选清华大学“百人引进”,2008 年受聘教育部长江学者特聘教授,2014年入选英国皇家化学会会士。目前主要从事微流控细胞分析、空气负离子制备与应用、化学发光免疫分析的研究。在 Angew. Chem.、Adv. Sci.、Chem. Sci.、Anal. Chem.、J. Chromatogr. A 等期刊发表研究论文 400 余篇,授权专利 30 项,并在专利基础上研制成功多款仪器设备,得到普及推广。目前兼任中国化学会监事会监事、分析化学专业委员会副主任、质谱分析专业委员会副主任,中国药学会药物分析专业委员会副主任委员,中国分析测试协会常务理事等多种学术委员会委员。Trends in Analytical Chemistry 责任编辑,Journal of Advanced Research、Luminescence、J. Pharm. Anal.、Chinese Chemical Letters 、《质谱学报》和《分析试验室》等期刊副主编。《分析化学》、《药物分析杂志》、 Sci. Rep.、Talanta、Anal. Chim. Acta、Science China Chemistry 等多种国内外期刊编委。林玲 教授北京工商大学生物工程系2016 年 3 月获得东京大学博士学位,同年留校从事博士后研究,从事纳米/微流体活体单细胞分析。2016 年底加入国家纳米科学和技术中心担任助理研究员,2020 年晋升为副研究员,2021 年受聘北京工商大学教授。目前兼任中国药理学会分析药理学专业委员会青年委员,《生命科学仪器》编委、Journal of Analysis and Testing 青年编委。主要研究方向为 3D 细胞微球培养和细胞药物代谢分析方法研究,系统地研究了细胞在不同微环境条件下,药物分子对特定细胞的作用机制,为新药的开发提供理论依据。在 Angew. Chem. Int. Ed., Chem. Sci., Anal. Chem., Small, Biosens Bioelectron, Chem. Comm. 等国际刊物上发表论文 32 篇,参编书籍 2 章。(文源RSC英国皇家化学会)探索细胞分析技术的奥秘细胞是生命组成结构的基本单位,同时细胞研究是生命科学的根基。近年来,单细胞分析逐渐成为一个热门的研究领域,其揭示在形态、功能、组成和遗传性能上看似相同的细胞的异质性。得益于微流控技术的发展,单细胞分析在各个领域中得到了空前的进步和发展。单细胞分析技术的进步极大了推进了单细胞生物学,为生命科学研究开辟了新的研究领域。然而,如何精准研究单个细胞,特别是细胞与基底间的关系,是当前单细胞研究面临的重大挑战。为更好地了解中国科学仪器市场的实际情况和仪器应用现状,仪器信息网特别策划了“走进宝藏实验室”系列活动,以生动细腻的文字记录各行各业科技工作者的工作内容,以极具风格的拍摄手法呈现科学仪器行业实验室的多样性,领略国内顶尖实验室的独特魅力!仪器信息网特别策划了“走进宝藏实验室”系列活动,第二期我们就走进清华大学化学系林金明教授实验室,近距离接触国内顶级学府科研实验室的风采。林金明教授为广大网友介绍了课题组实验室的背景情况、主要仪器设备和其在实验室相关测试、研究业务中发挥的重要作用。此外,我们也随机对林金明教授研究组三位同学进行了快问快答对话,听听他们的研究方向,以及揭秘他们在繁忙科研工作中缓解压力的小窍门… … 快来点击查看!
  • 流式细胞仪新品盘点|光谱流式、成像流式正在成为技术发展潮流
    ——2022上半年生命科学仪器新品盘点系列今年上半年BD率先将光谱流式细胞术与CellView™ 图像技术融合推出看点十足的新品,或将定义细胞分选的新标准、新潮流;赛默飞则是在Attune NxT流式细胞仪的基础上增加了明场成像功能,实现高速、高分辨率巧妙融合;国产流式细胞仪也在今年实现了3激光“零”的突破,为临床用户带来更自由、更灵活的解决方案。为了方便大家熟悉了解这3款流式细胞新品的看点与亮点,小编特别进行了一期简评,供大家学习交流。碧迪:光谱流式细胞术与图像技术结合 重新定义细胞分选标准2022年6月2022年6月,全球领先的医疗科技公司BD(Becton Dickinson)率先将光谱流式细胞术与可分选成像相结合推出新品BD FACSDiscover™ S8 细胞分选仪。区别于传统流式细胞术,该新品所采用的光谱流式细胞术能够捕获样品制备发出的全光谱信号,让科学家使用更多参数对细胞进行分类。同时采用突破性BD CellView™ 图像技术,该技术曾登上过《科学》杂志的封面,可捕获流经系统的单个细胞的图像,并根据每个细胞的详细显微图像分析以高速分选对它们进行分选。通过整合光谱流式细胞术与实时空间和形态学信息,将细胞分析和分选的能力扩展到新维度,使科学家能够进行高参数实验,同时快速查看和分选具有特定、可视化感兴趣特征的细胞,这一进步填补了生物医学研究中长期存在的空白。BD FACSDiscover™ S8 细胞分选仪小编简评:新品FACSDiscover™ S8细胞分选仪代表了BD流式细胞仪创新和领先地位的新篇章,通过将高参数光谱流式细胞仪的功能与前所未有的细胞图像及其内部运作相结合,能够以前无法识别的细胞进行分选,该新品正在定义细胞分选的新标准、新维度。赛默飞: 声波聚焦与高速相机结合 推出全新图像增强流式分析仪2022年1月2022年1月,赛默飞世尔科技发布了新一代Attune CytPix成像型流式细胞仪,Attune CytPix是在Attune NxT流式细胞仪的基础上增加了明场成像功能,既保留了传统流式高速、高参数、大数据分析的优势,又增加了明场观察细胞形态、活性等信息。Attune CytPix成像型流式细胞仪应用声波聚焦专利技术,上样速度相比传统流式细胞仪快10倍。此外,采用专利抗堵设计,大细胞、黏细胞均可轻松上样。赛默飞 Attune CytPix成像型流式细胞仪小编简评:Attune CytPix流式细胞仪是一款图像增强型的流式细胞仪,将声波聚焦流式细胞术与高速相机相结合。用户能够从细胞中收集高性能的荧光流式数据,同时捕获高分辨率的明场图像,从而将图像与流式数据进行匹配,以便更好地了解细胞形态和质量。层浪科技:国产3激光“零”的突破2022年2月2022年2月,北京层浪生物科技有限公司推出国产首台3激光14色16通道流式细胞仪LongCyte,采用全新专利设计的光路系统、电路系统以及信号处理系统,可配置红(638nm)蓝(488nm)紫(405nm)三个激光器;标配自动进样器,适配96孔板(U、V、平底)、流式管、EP管等;强大的软件系统,提供细胞因子、报告编辑、质控监测、LIS连接等功能;可视化用户体验,可深度观察流动室液流状态。依托3激光14色流式细胞仪LongCyte,临床和科研端可用的试剂种类和荧光染料种类更加丰富,能够在仪器上开展的项目更多,实验方案也会更自由、更灵活,兼容性更强。目前,该仪器26种型号已经获得CE认证、NMPA注册批准。层浪科技 LongCyte流式细胞仪小编点评:LongCyte流式细胞仪实现了国产3激光“零”的突破,将国产流式细胞仪技术推向更高水平,为临床用户带来更自由、更灵活的解决方案。中生医疗:新一代高性能智能流式细胞仪2022年6月针对科研检测领域,中生(苏州)医疗科技有限公司于今年6月推出新一代高性能智能流式细胞仪SinoCyte,搭载了全新椭圆光斑激光器和全新WDM分光模块,进一步提高检测灵敏度和稳定性。此外,中生流式细胞仪SinoCyte最高可配置3个激光器,18个检测参数,全自动的检测流程,采集与分析同步进行,大大提高了工作效率。中生医疗 SinoCyte流式细胞仪小编点评:中生流式细胞仪SinoCyte操作简单高效,检测结果精确,代表着中生医疗针对科研检测的高端流式细胞仪迈出重要一步,希望中生医疗能够源源不断为用户带来高品质、高性价产品。后记:BD作为流式细胞行业领头羊,一举一动都备受业界关注,本次新品FACSDiscover™ S8细胞分选仪首次融合了高参数光谱流式技术与细胞图像技术,引起了业内广泛关注,或成为未来流式细胞仪市场的新导向。此外,该新品也是BD首次应用光谱流式技术,在一定程度上说明了光谱流式新技术正被主流制造商认可。而从赛默飞发布的新一代Attune CytPix成像型流式细胞仪可看出,高速、高分辨率图像技术正成为未来流式细胞仪发展的又一新潮流。国产流式细胞仪也取得长足进步。层浪科技推出的桌面式LongCyte流式细胞仪在技术上实现了3激光14色,外观上呈现为桌面型,极大地节约了宝贵的实验室空间。中生医疗面向科研领域用户推出的高性能流式细胞仪SinoCyte,是国产流式细胞仪走向科研市场的节点性动作。
  • 超越流式细胞术?珀金埃尔默推出全新图像式细胞分析仪,加速简化细胞和基因治疗发制造流程
    加速简化细胞和基因治疗的研发及制造流程Cellaca® PLX图像式细胞分析仪带来工作流程的革新,一站式满足多个关键质量属性的分析致力于以创新技术打造更健康世界的技术型企业--珀金埃尔默日前推出Cellaca® PLX图像式细胞分析系统,这是业界第一款能让研究人员在单个自动化工作流中实现对细胞样本多个关键质量属性(CQA)进行分析和评估的台式平台,包括对细胞性质、质量和数量的分析评估。拥有尖端技术的Cellaca PLX系统由珀金埃尔默旗下的Nexcelom公司设计,它整合了一流的图像式细胞分析仪的硬件、软件、经验证的耗材和可跟踪的数据报告功能于一体,无需复杂的校准程序或严格的培训要求,即可操作。为了进一步提升客户体验,这一专利解决方案中还使用了来自珀金埃尔默旗下BioLegend公司经验证的抗体试剂盒对试剂方案进行优化。这一新产品可为研究人员提供超越流式细胞术和染色方法的扩展细胞样本CQA分析选项,而这些分析选项历来都需要采用各种不同的仪器和分析方法进行分析。通过这些功能的整合,Cellaca PLX系统能够让研究人员在一台仪器中同时检测多个标记物(多路技术),并通过简单易用的现代化用户界面在短短数秒内即可执行免疫表型分析和细胞活性测定。Cellaca(R) PLX Image Cytometer图像式细胞分析仪珀金埃尔默生命科学事业部高级副总裁Alan Fletcher表示,"制药公司在细胞和基因治疗领域大举投入,然而他们面临的一项重大挑战是如何对复杂的细胞样本进行评估,以满足其研究和制造过程中巨大的科研需求和严苛的法规要求。目前我们仍在对Cellaca PLX Image Cytometer图像式细胞分析平台在治疗领域的应用加以开发,我们预计它对于从事CAR-T细胞治疗研究,简化免疫细胞表型分析的下游流程而言,将具有重大意义。"珀金埃尔默旗下Nexcelom公司是细胞分析领域自动化细胞计数技术和图像式细胞仪产品的领先供应商,其产品包括现有的应用广泛的Cellaca® MX高通量自动化细胞计数仪。有关新平台Cellaca PLX及其它图像式细胞分析仪和试剂的更多资讯,可在11月5日至10日在第五届中国国际进口博览会上了解,珀金埃尔默将在国家会展中心(上海)8.1号馆B4-03展示其生命科学及细胞和基因治疗产品组合的最新创新。
  • 千亿合成赛道,该如何运用“流动监测核磁联用”成为黑马?
    ——要节省能源、要绿色发展还要反应速率快??——不是合成研发要太多,只是光化学更有优势!以在药物发现和天然产物合成中受到极大关注的高度官能化环丁烷为例,就采用了[2+2] 光环加成的合成方法。合成方法限制有利自然有弊。这种方法常受到设备、耗时耗力以及非常低的批量处理能力的限制。当采用人工方式进行化合物库合成时,大量繁琐且重复的工作很可能导致人为错误或失误,更可怕的是,实验人员中途可能不知道自己做错了,导致实验结果不可信赖,中途停下实验的一步步验证也耗时耗力。 随着时代发展,越来越多的合成设备开始出现,以前沿技术优化传统合成流程。今天这篇文章介绍的“自动化流动化学合成+在线流动核磁监测”连用:● 采用流动合成仪实现高可复现率,代表了实验的稳定性,连接自动进样器方便进行条件筛选;● UV/Vis光谱用于保障产品收集的准确性,有效保证了实验记录的及时性、完整性和可追溯性;● 实验过程中通过NMR实时在线监测,优化反应条件,及时消除副产物,有效保证新药筛选过程的高效率!案例介绍:[2+2]光环加成库合成实验 在50mg量级下,迅速合成12个[2+2]光环加成产物的化合物库快速筛选一系列光敏剂对两种产物进行优化和规模化生产01、实验装置Vapourtec R系列流动合成仪配备一个5ml盘管反应器和一个容积为10ml的UV-150光化学反应器进行。 图1:连续流反应器示意图,用于[2+2]光环加成库的合成系统连接了一个自动进样器,由Flow Commander&trade 控制。试剂由自动进样器加载到盘管反应器中,与乙烯混合,进入UV-150光化学反应器。内联UV分析用于监测反应进展,而处于压力调节模式的SF-10(独立的V-3泵)用于维持反应压力。02、合成产物在线监测 图2:使用Vapourtec UV-150连续光化学反应器合成代表性小型药用分子库该库的合成花费了350min(约6h),并在工作日结束时设置为在Flow Commander&trade 的控制下在实现无人值守情况下夜间运行。 图3:[2+2]光环加成库的结果a由1H NMR测定,b由于存在大量脂肪聚合物而无法分辨。c起始物质完全消耗,但水解产物获得率 99%,没有任何[2+2]环丁基加合物。d高度不溶的产物,无法获取核磁共振数据。 图4 a) 由内联UV/Vis光谱测量的从反应器中产物的洗脱; b) 反应过程中输送试剂和收集产物的位置。紫色表示试剂正在输送,试剂瓶上显示了编号。橙色条表示收集,并指示收集到哪个瓶中。从核磁共振分析中明显可见存在大量脂肪烃聚合物材料。考虑到使用了乙烯气体,猜测这是聚乙烯!已知在氧气存在且足够高能量的波长下,聚乙烯可以光化学反应生成。于是在后续实验阶段进行脱气处理,脱气处理后,再也没有检测到聚乙烯的形成。通过NMR的及时检测,使得实验很快调整优化,加快库合成进程!03、反应优化在成功合成库后,选择了两种化合物进行优化和扩大规模生产,即马来酰亚胺和尿嘧啶的环丁烷加合物。光敏剂的筛选也由Flow Commander&trade 自动控制,历时4h完成,同时也通过流动合成仪主机控制温度,研究了温度和乙烯过量对尿嘧啶转化的影响,最终选定45°C为最佳库合成反应温度。04、规模化和纯化在进一步研究了几个反应参数的影响后,进行马来酰亚胺和尿嘧啶环加成物的合成扩大规模生产。仅用了2.5h,转化率分别为80%和85%,扩大规模近35倍!05、总结在本文中描述了使用 UV-150光化学反应器和配备自动进样器的Vapourtec R系列流动合成仪主机合成了一系列小型、具有药用价值的分子。Flow Commander&trade 的自动控制能力可以实现在无人值守时进行安全操作,如有需要还可以进行远程监控。通过NMR的及时监测,优化反应条件,及时消除副产物;内联UV/Vis光谱用于保障产品收集的准确性,并成功地将两种产品放大到几克的数量,并且获得了较高的转化率。产品联用方案:流动化学和流动核磁 – 自我优化和控制 --更高的安全性;--更低的能耗;--更好的收益 ;--更好的反应选择性;--体积小,安装紧凑;--最小化放大→缩短产品上市时间;Vapourtec R系列流动合成仪— 微通道光热电连续合成 — ● 特别的灵活性能根据需要增加更多试剂馈送通道的反应器组合,轻松满足实验室需求;● 高精度自动化泵监测系统可维持正确流速。温度控制更精确,反应重现性好;● 高生产率可排队自动执行无数次无人监控的反应,能迅速达到反应温度,实现反应高效率!Bruker Fourier RxnLab— 在反应器旁边的反应监测 — Bruker Fourier80是一款经济高效、性能强悍的紧凑型台式核磁共振波谱仪,为科研工作人员提供多方位的核磁共振分析能力。Fourier 80现可通过Fourier RxnLab实现先进的反应监测功能。用于Fourier 80的RxnLab可在高达10 bar的压力和可调节的温度控制下运行。温控传输线和可调节的样品温度确保了混合物整个反应路径上的温度控制,以尽可能大的限度减少温度损失,并精确地优化反应结果,实时监测化学反应和生物过程:● 过程控制● 结构信息● 即时定量信息如果您对上述产品感兴趣,欢迎随时联系德祥科技德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!Vapourtec英国Vapourtec是德祥集团旗下代理品牌之一。英国Vapourtec公司成立于2003年,专业致力于研发和生产流动合成仪。并在世界上诸多制药公司中被广泛使用。其生产的R系列产品质量可靠、性能成熟,高效能模块系统可随您的生产需要无缝扩大,能满足您的业务发展需求。新型的E系列操作界面清晰、简单、触摸屏操控,开机即用式、无需培训或少量培训即可上手使用。同时针对性的反应器如光化学反应器、离子电化学反应器等提高对应反应的效率。Bruker德国Bruker是德祥集团旗下代理品牌之一。Bruker的使命在于通过突破性的技术和创新来支持科学界,从而推动科学研究向前发展。从高性能磁体、高效配件到新颖且精简的软件,Bruker致力于投资新的解决方案来实现这些科学发现。Bruker的产品帮助科学家不断取得突破性进展,并开发出能够提高人类生活质量的全新应用。其高性能科学仪器以及极具价值的分析诊断解决方案,使科学家能够在分子、细胞和微观层面上对生命和物质进行探索。通过与客户的密切合作,Bruker致力于帮助实现创新、生产力提升以及客户成功,领域涉及生命科学分子研究、应用材料与制药行业应用、显微技术、纳米级分析、工业应用,以及细胞生物学、临床前成像、临床表型组学与蛋白质组学研究、微生物学和分子诊断。
  • 陕西师大130万单一来源采购国产分析型流式细胞仪(附详细技术指标)
    p  日前,陕西师范大学发布分析型流式细胞仪单一来源招标公告,项目名称:分析型流式细胞仪,项目编号:SDJC-2017-0127-XK,开标时间:2017年09月21日 08:00。/pp  招标公告内容显示,此项目是为陕西师范大学生命科学学院大型仪器设备共享平台购置的用于快速分析细胞及其他生物颗粒的物理或化学性质,对多个细胞特征进行定量或定性分析。项目建设单位在研究中需要进行多荧光标记和大量样本的检测,需要具备四个固态激光器,13个独立的荧光检测器且配备96孔板自动上样器,专家组在建设单位提交的相关采购材料的基础上进行充分的调研和论证,决定采用单一来源形式从西安信泰生物科技有限公司进行采购。/ppstrong  技术标部分/strong/pp  仪器名称:分析型流式细胞仪/pp  数量:1 套,国产/pp  用途:用于细胞、微生物、微纳米荧光材料等小颗粒的检测与分析。/pp  技术指标:/pp  1. 光学系统:/pp  1.1 激光配置:四激光系统平台。激光器配置:第 1 激光:488nm 蓝色固态激光器 第 2 激光:630-640nm 红色固态激光器 第 3 激光:405nm 紫色固态激光器 第 4 激光:紫外固态激光器 375nm,完成≥13 色荧光 14 参数检测。/pp  1.2 检测器:所有荧光检测通道分别对应独立荧光检测器,即最少配备≥13 个独立荧光检测器 高浓度样本无漏检、无死时间。/pp  1.3 光路设计:固定校准的光路设计,智能监控确保激光稳定工作 用户可自行安装开机,无需专业人员调校。/pp  1.4 激光器要求:机时达到 2000 小时,并提供免费质保服务。/pp  1.5 流动室:光耦合物镜石英杯流动室。/pp  1.6 颗粒检测能力:最小检测颗粒大小为 0.2μm。/pp  1.7 检测灵敏度: FITC≤30MESF,PE≤10MESF。/pp  1.8 荧光信号检测分辨率:CV≤3%。/pp  2. 液体系统/pp  2.1 管路清洁:带自动管路清洁功能,保持管路清洁,排除样本之间的干扰和污染,交叉污染 0.1%。/pp  2.2 样本流直径:样本流直径可调:5-40um,或流速 5μl-120μl /min,保证数据的精准性,鞘液流直径也可以调。/pp  2.3 样本检测速度(上样速度):≥30000 个细胞/秒。/pp  2.4 液流系统:注射泵驱动非加压液流系统,带液流控制报警系统,避免堵管。/pp  2.5 上样系统:注射泵负压上样,上样管类型开放,可以用 5ml,1.5ml 试管,以及 96 孔板(保证不堵管)。/pp  2.6 绝对计数:有细胞绝对计数功能且不需要使用绝对计数管。/pp  2.7 鞘液系统:可商品化鞘液或超纯水,经 0.2um 过滤器过滤的超纯水/pp  3. 数据处理/pp  3.1 数据信号分辨率:数据信号分辨率≥24bit(≥16,777,216 channels),结果显示动态范围不低于 7 个数量级,无需 PMT 增益电压调节,同时可调节电压。/pp  3.2 荧光补偿:全矩阵荧光补偿,可脱机补偿,自动补偿,离线分析。具有预设荧光补偿库功能 用户自建补偿库,可以存储多色实验中荧光染料的溢出值,调节电压补偿矩阵自动计算,无需补偿方案。/pp  3.3 分析软件:提供分析软件,可以完成所有检测分析,软件开放,所有软件负责及时、无限期免费升级。/pp  3.4 标配台式电脑:CPU 主频 2.4G HZ 内存≥8G,硬盘≥1TB,独立显卡, DVD 刻录机,显存 4G windows 操作系统或 iOS 系统,要求与设备相匹配,并可处理存储充足的实验数据 /pp  23 寸液晶显示器,两台。/pp  4.工作条件/pp  4.1 电源:220V,5050/60Hz。/pp  4.2 变压器及洁净稳压电源:1 套。/pp  5.试剂、耗材开放/ppbr//ppstrong  项目联系方式:/strong/pp  项目联系人:郭老师/pp  项目联系电话:13572907905/p
  • Cytek 发布全新台式高维细胞分选仪,助力超高分辨单细胞分析
    仪器信息网讯 6月7日,Cytek Biosciences宣布推出全新的台式高维细胞分选仪- Cytek Aurora CS。全新台式流式细胞分选仪发布,实现超高分辨细胞分析Cytek Aurora CS流式细胞分选系统据了解,该流式细胞分选仪采用Cytek独特的全光谱分析技术(Full Spectrum Profiling, FSP™ ),Aurora CS可在单细胞水平提供超高分辨率的数据结果,帮助科学家和研究人员将复杂实验简单化,轻松解决最具挑战性的细胞分析,如高自发荧光的细胞分析、或关键生物标志物表达水平低的细胞分析等。使用Aurora CS,研究人员可以从微孔板或试管中轻松分选活细胞或其他颗粒,用于下游分析实验,如单细胞RNA测序、蛋白质组学和细胞生物学研究等。Cytek于2017年首次推出了其旗舰级产品-Aurora流式细胞分析系统,Aurora系统利用突破性的Cytek FSP™ 技术,采集来自多个激光器激发的荧光素全光谱信号,轻松分辩单细胞上的多种荧光标记,显著提高了高参数细胞分析的灵敏度,极好的解决了流式检测受技术局限的问题。Aurora CS基于同样的FSP™ 技术,保持了与Aurora一致的优秀特性和强大功能。独特的光学设计和解析方法能让使用者体会到更高的灵活性, 不仅可广泛选择大量新的荧光染料,且无需为每个应用重新设置仪器。先进的光学系统和低噪音电子系统,带来超强灵敏度和卓越分辨率的细胞分析体验,包括分析那些高自发荧光或关键生物标志物表达水平低的细胞。Cytek Aurora分析系统和Aurora CS分选系统,利用Cytek独有的FSP™ 技术,可以检测标记在每个细胞上的多种荧光探针的全光谱信号,在单管样本中,即可完成高度复杂方案(40色方案)的分析和分选,使科学家们能够更深入更完整的了解生物系统。结合FSP™ 技术和高端分选特性,Aurora CS为研究人员提供了一个可应用于多种生物学场景和分选条件的解决方案。搭配SpectroFlo CS软件,在更短的设置时间下,即可轻松实现6路分选、自定义分选、自动液滴延迟和分选液流监控等操作,满足各种科学研究与应用的需求。网络会议预告 点击报名参会
  • 简化生物制药实验室流式细胞术管理|珀金埃尔默推出OneSource 新服务
    珀金埃尔默宣布将流式细胞术仪器礼宾服务添加到其 OneSource 实验室服务组合中。全面而灵活的产品将为生物制药实验室提供专业的现场流式细胞术专家,以帮助更有效地管理他们的仪器和流程——促进减少停机时间、提高生产力以及更好的数据完整性和可重复性。 PerkinElmer 的专家与制药实验室经理并肩工作,可以为每个实验室在整个流式细胞术工作流程中的独特需求提供一系列基于支持的服务,包括: 对细胞仪、仪器清洁和预防性维护、现场故障排除、电话支持和初步维修进行定期质量检查 (QC);全方位服务细胞分选;仪器和软件培训与教育;SOP 文件和实验室安全支持;耗材管理。与制药公司合作的这些新 OneSource 流式细胞术服务的早期试点项目展示了实验室可能获得的潜在好处,将故障排除时间减少了 90%,服务电话减少了 45%。新的流式细胞仪服务是珀金埃尔默广泛的OneSource服务组合的一部分,包括资产、搬迁、合规、信息技术和科学服务。这也是珀金埃尔默在流式细胞术方面深厚专业知识的一部分,BioLegend是流式细胞术研究试剂的行业领导者。其中包括从生物标志物发现到细胞功能和免疫反应监测的抗体和其他创新产品。PerkinElmer OneSource 企业实验室服务副总裁/总经理 Gary Grecsek 表示:“流式细胞术是药物发现实验室的重要组成部分,但在内部管理这种复杂的技术可能既乏味又耗时,尤其是对于缺乏该领域的专业知识或正在经历人员流动率高的情况。借助我们用于流式细胞术的 OneSource 礼宾服务,实验室经理和科学家不必花时间管理这些仪器和流程,而可以专注于其他关键工作和发现新的候选药物。“
  • 走进干细胞于生物学国家重点实验室
    p style="text-indent: 2em "2020年3月初的一天,武汉战“疫”正紧。武汉市金银潭医院院长张定宇接待了一批特殊的客人,他们带来了一种治疗新冠肺炎的新型干细胞药物。/pp style="text-indent: 2em "干细胞药物,即便对很多专业医学人士来说,也是个新鲜事物。“干细胞是什么?”“有用吗?用了会有什么后果?”“做可以,你们要承担所有责任!”这支来自干细胞与生殖生物学国家重点实验室的战“疫”科技攻关团队,一腔热血逆行武汉,却吃了不少闭门羹。/pp style="text-indent: 2em "幸运的是,张定宇信任他们。/pp style="text-indent: 2em "strong多年积淀 一朝亮剑/strong/pp style="text-indent: 2em "3月5日,CAStem细胞注射液治疗新冠病毒致呼吸窘迫综合征(ARDS)临床试验在金银潭医院正式启动。/pp style="text-indent: 2em "CAStem是一款干细胞药物的名字,意为“中科院的干细胞”,是实验室自主研发的干细胞药物。干细胞与生殖生物学国家重点实验室副研究员、国家干细胞库执行主任郝捷请同事把这几个字母写在自己的防护服上,坚定地走进了医院的隔离区。/pp style="text-indent: 2em "在这里,她看到凝聚了大家智慧和心血的细胞药物一滴一滴输入新冠肺炎患者体内。医护人员发现,这些接受了干细胞药物治疗的病人的呼吸功能、肺部病灶特别是肺纤维化症状均有改善。/pp style="text-indent: 2em "在送接受过干细胞药物治疗的痊愈患者出院时,一位患者激动地对他们说:“你们研发的药物太好了,给了我第二次生命!”/pp style="text-indent: 2em "不仅在武汉,这支队伍还先后在北京、哈尔滨开展相关临床研究工作,三地共救治74名患者。/pp style="text-indent: 2em "CAStem——这个带有鲜明中科院烙印的产品,成为新冠肺炎疫情期间国家药品监督管理局批复的唯一一个具有自主产权的干细胞药物,更入选了国家救治新冠患者的“三药三方案”。/pp style="text-indent: 2em "4月14日,科技部负责人在国务院联防联控机制召开的新闻发布会上郑重宣布:干细胞应用于新冠肺炎的临床治疗安全性良好!/pp style="text-indent: 2em "此次抗疫攻关中,干细胞与生殖生物学国家重点实验室亮出两件利器:CAStem干细胞注射液和新一代恒温CRISPR法核酸检测试剂盒(CASdetec)。后者革新了核酸检测的技术原理,有望摆脱对昂贵PCR仪器的依赖,让检测走进社区甚至家庭。/pp style="text-indent: 2em "多年关注呼吸系统疾病、把干细胞药物推向临床一线、开发新一代核酸检测技术、致力于相关标准及知识产权政策发布和完善、全链条布局打通创新成果转化渠道… … 干细胞与生殖生物学国家重点实验室积淀多年的工作,在疫情暴发的非常时期发挥了重要作用。/pp style="text-indent: 2em "“这次疫情的考验让我们知道,这是一支召之即来、来之能战、战之能胜的队伍,是一群有家国情怀的人的聚集体。”中科院院士、干细胞与生殖生物学国家重点实验室研究员周琪说。/pp style="text-indent: 2em "strong时代变迁 奋斗不变/strong/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室的前身是“计划生育生殖生物学国家重点实验室”,于1991年成立。它是我国最早开展生殖生物学研究的基地,是美国洛氏基金会在全世界设立的“二十一世纪生殖与避孕研究网络”7个成员之一,也是世界卫生组织在全世界设立的6个“胚胎着床研究中心”之一,在世界和中国生殖研究领域占有一席之地。/pp style="text-indent: 2em "进入新世纪,世界科技格局和研究范式发生全新变化,实验室前瞻性布局了生殖工程研究方向,把前沿生殖技术的创建及应用列为实验室的重要发展目标,并以此为核心,不断壮大干细胞研究团队,到2015年,实验室从事干细胞与再生医学领域研究的研究员达到9位。/pp style="text-indent: 2em "干细胞等先进技术与传统生殖生物学的交叉融合,为实验室生殖学科的发展带来了新的机遇,在生殖生物学研究方向产出了多项具有里程碑意义的重大创新成果,如利用四倍体补偿技术证明iPS细胞的全能性、同性生殖、人工配子、表观遗传新机制、非人灵长类胚胎超长时间培养等,使传统学科焕发了新的生机。/pp style="text-indent: 2em "到2015年,实验室已成长为我国干细胞和生殖生物学领域领先的研究实体。与此同时,“计划生育”已经不再是国家需求,这4个字已经不能代表实验室所承担的使命,通过申请、论证、现场评估,获科技部批准,实验室成功更名为“干细胞与生殖生物学国家重点实验室”,并在2016年国家重点实验室评估中,进入“优秀类”国家重点实验室序列。/pp style="text-indent: 2em "strong基础研究 硕果累累/strong/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室主要从事生殖生物学、干细胞与再生医学和创新细胞技术研究,近年研究成果多次入选“年度中国生命科学十大进展”或“年度中国十大科技进展”,并入选 “改革开放40年40项标志性研究成果”。/pp style="text-indent: 2em "在基础理论研究方面,干细胞与生殖生物学国家重点实验室面向世界科技前沿,深挖领域内最基本的科学问题,探索生殖、发育、遗传、衰老全生命周期的调控机制,不断突破领域内科学认知的边界,获得了诸多重大理论突破:首次将胚胎第一次细胞命运分化的选择推到了2—细胞胚胎时期,成果入选2019年度中国生命科学十大进展;首次实现灵长类胚胎长时程体外培养,开启哺乳动物繁衍新方式;发掘跨代遗传新机制,发现个体内代谢环境通过改变生殖细胞基因组甲基化或tsRNAs介导(RNA而非DNA),可将获得的代谢紊乱表型跨代传递给子代,成果入选2016年度中国十大科技进展;揭示了灵长类器官(血管、胰岛、卵巢等)退行的特异性机制,发展通过基因或干细胞治疗干预退行性疾病的有效策略。/pp style="text-indent: 2em "在技术原始创新方面,干细胞与生殖生物学国家重点实验室面向国家人口健康领域的重大需求,取得了多项原始创新成果:构建了多种新型干细胞,包括小鼠孤雄单倍体干细胞(2012年度中国十大科技进展)、大鼠孤雄单倍体胚胎干细胞、异种杂合二倍体胚胎干细胞;开发了具有自主知识产权的基于Cas12b的基因编辑技术;建立同质性原始态人类胚胎干细胞,首次在体外模拟了人类X染色体的随机失活;实现了哺乳动物的无性生殖(入选了The Scientist杂志评选的“2018年度科技进步”);首次建立衰老研究的灵长类动物模型,例如LMNA基因突变的“儿童早衰症”灵长类动物模型,以及“长寿基因”SIRT6敲除的食蟹猴(2018年度中国生命科学十大进展);同时规模化制备了大动物的突变体,建立了多个能准确模拟人类疾病的大动物模型和可用于猪新品系培育的育种新材料,如创制了首例猪甲减模型、提高生产性状猪等。/pp style="text-indent: 2em "strong转化研究 成果卓著/strong/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室强化基础和应用基础研究,布局转移转化研究,促进基础研究和应用研究的融通发展,以保持实验室的创新性、先进性和引领性。/pp style="text-indent: 2em "实验室站在时代前沿,积极尝试自我审视和革新。在学科建设方面,始终以“四个面向”为出发点,布局有发展前景、有重大创新产出潜力的学科;在团队建设方面,搭建良性人才流动机制,聚集国内外一流人才;实验室大胆尝试体制和机制革新,如联合国内相关领域的国家重点实验室或优势力量成立联盟或创新实体,通过标准引领、知识产权保护支撑成果转化。/pp style="text-indent: 2em "实验室从解决国家人口健康领域重大需求出发,锚定健康领域重大疾病的诊治,以治疗重大疾病切入口,找寻这些重大疾病治疗的方案和手段,围绕产业链部署创新链,围绕创新链部署产业链,从而实现从基础研究到产业应用全链条的研究模式。/pp style="text-indent: 2em "实验室面向国家重大需求和国民经济主战场,围绕产业链布局,临床转化成果卓著。早在2007年实验室就前瞻性地布局建设北京干细胞资源库,于2019年获批成为国家干细胞资源库,是我国首家通过人类遗传资源(CNAS)许可的干细胞资源库,也是国际首个IOS20387认可机构。实验室借助国家干细胞资源库独特的干细胞资源,突破“干细胞药物”质控、制剂等核心技术,建立了临床级人胚干细胞及多种功能细胞分化平台,并自主创新开发近十种干细胞药物的全链条关键平台技术,研发包括多巴胺神经前体细胞、运动神经前体细胞、视网膜色素上皮细胞、M类细胞、肝细胞、心肌细胞等一系列干细胞。/pp style="text-indent: 2em "实验室承担首批国家药品监督管理局和国家卫生健康委员会备案干细胞治疗帕金森病、老年黄斑变性等重大疾病临床研究项目,其中开展的干细胞治疗帕金span style="text-indent: 2em "森病临床试验被Nature跟踪报道,认为“这标志着中国使用人胚胎干细胞进行临床试验的开始,也是世界上首次使用这些细胞治疗帕金森病的试验”。目前开展包括帕金森病、黄斑变性、卵巢早衰、半月板损伤等十余种疾病临床研究9项。/span/pp style="text-align: center text-indent: 2em "img src="https://img1.17img.cn/17img/images/202010/uepic/ef6a5ace-393a-4dc2-b4bb-54f837870626.jpg" title="20201020424171511.jpg" alt="20201020424171511.jpg" width="482" height="265" style="text-align: center max-width: 100% max-height: 100% width: 482px height: 265px "//pp style="text-align: center text-indent: 2em "①武汉科技攻关团队圆满完成抗疫任务,获金银潭医院“荣誉职工”称号。img src="https://img1.17img.cn/17img/images/202010/uepic/b0ef0ab8-18f3-44c9-8619-b68c5980a372.jpg" title="2020102042585420.jpg" alt="2020102042585420.jpg" width="483" height="326" style="max-width: 100% max-height: 100% width: 483px height: 326px "//pp style="text-align: center text-indent: 2em "②郝捷身穿防护服在武汉市金银潭医院隔离区。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 446px height: 298px " src="https://img1.17img.cn/17img/images/202010/uepic/b14f967a-93c4-4c59-810b-7e82dd1661f9.jpg" title="20201020424171360.jpg" alt="20201020424171360.jpg" width="446" height="298"//pp style="text-align: center text-indent: 2em "③首次实现雄性同性生殖。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 442px height: 309px " src="https://img1.17img.cn/17img/images/202010/uepic/b6083866-3223-45bc-a86d-a97403816979.jpg" title="20201020424171512.jpg" alt="20201020424171512.jpg" width="442" height="309"//pp style="text-align: center text-indent: 2em "④实验室与瑞士辉凌公司达成战略合作协议。/pp style="text-align: center text-indent: 2em "span style="font-size: 18px "strong向国际化迈进/strong/span/pp style="text-indent: 2em "2018年底,干细胞与生殖生物学国家重点实验室周琪课题组和李伟课题组合作,在《细胞》上发表了一项重要成果——哺乳动物的第一次细胞命运决定。/pp style="text-indent: 2em "对绝大多数生物来说,生殖的起点就是精卵融合,最初的一颗受精卵,经过无数次细胞的分裂和分化,最终变成一个完整个体。在这个过程中,每个细胞的命运是如何决定的?这是生殖与发育生物学和细胞生物学的一个核心问题。/pp style="text-indent: 2em "在此之前,科学家已经确证在4—细胞期时就已出现了能调控细胞命运选择的分子差异。那么在2—细胞期,也就是受精卵一分为二的时期,这两个细胞的命运是否已经注定不同?/pp style="text-indent: 2em "经过探索,他们发现一种内源逆转录病毒来源的基因——LincGET在两个细胞中的表达量存在差异,LincGET表达量高的那个细胞,更倾向于选择内细胞团的命运倾向,也就是更有可能发育为胎儿,而另一个细胞则更有可能发育为胎盘。/pp style="text-indent: 2em "这项研究得到了瑞士辉凌医药公司的资助。“一项值得做的工作。”辉凌公司相关负责人对这项研究如此评价,“尽管我们是一家制药公司,但是我们与实验室的合作,并不是希望研究成果能直接创造财富,而是希望让自己始终保持创新能力。”/pp style="text-indent: 2em "瑞士辉凌医药公司于2017年与实验室达成战略合作协议,2018~2022年资助2000万美金,支持实验室开展生殖生物学领域的基础及转化研究,促进科研成果转化及临床应用。双方合作成立辉凌生殖医学研究所,设立“辉凌生殖健康基金”,面向全国科研院所、高校和医院征集项目,截至目前共资助46项生殖医学转化研究项目。此项合作探索了国有科研机构开展国际合作和产业化研究的新模式。/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室一直注重国际合作交流,在科研布局、项目组织、标准制定等方面向国际化迈进。/pp style="text-indent: 2em "中国于2007年加入国际干细胞组织(ISCF),自2014年起周琪担任ISCF轮值国主席,他倡导国际大科学计划,与多家国际组织和知名科学家搭建起交流渠道,并联合英国、美国、法国、日本等多国推动多项干细胞国际标准提案,引领干细胞国际标准制定。实验室推进中日韩合作项目,建立中日韩三方的干细胞生物学与再生医学研究合作框架体系;2019年3月实验室与韩国干细胞学会、日本再生医疗学会签署中日韩三边合作备忘录,共同约定在国际范围内开展再生医学领域国际合作研究项目,加强国际学术交流;同时,实验室主持中韩科技部双边合作项目——针对东亚人群的临床级干细胞研发及应用。/pp style="text-indent: 2em "实验室推动细胞学会干细胞分会与学术期刊出版商Wiley达成合作备忘录;实验室于2010年发起“国际生殖生物学前沿大会”,该大会每两年举办一次,历届会议都特别邀请国际生殖生物学领域顶尖科学家,交流领域最前沿成果,同时设有“青年科学家专场”报告,为领域后备人才提供提升机会。2021年实验室将承办“世界生殖大会”,这是我国第一次作为东道主主持由生殖生物学领域多国学术组织联合发起的专业届会。/pp style="text-indent: 2em "多年来,干细胞与生殖生物学国家重点实验室始终以“四个面向”为出发点,以实现“四个率先”为发展目标,以脚踏实地的工作和丰硕的科研成果为我国建成世界科技强国提供有力支撑。(李晨阳)/pp style="text-align: center text-indent: 2em "span style="font-size: 20px "strong干细胞与生殖生物学/strong/span/pp style="text-align: center text-indent: 2em "span style="font-size: 20px "strong国家重点实验室简介/strong/span/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室是我国干细胞与生殖健康基础研究领域唯一的国家重点实验室,于1991年开始组建,并于1993年底通过验收。/pp style="text-indent: 2em "实验室的研究定位是面向我国人口安全和人民健康的重大需求,在干细胞与生殖生物学领域开展前瞻性和引领性研究,深入探索重大基础科学问题,研发新型研究工具和疾病治疗方法,服务国家创新驱动发展战略,提升国民健康水平和人口质量。主要研究方向包括再生医学研究、生殖健康研究和创新细胞技术研究。/ppbr//p
  • 国家重点研发计划 | 智能化全自动医用流式细胞仪研发项目启动
    3月9日,由谱育科技牵头的国家重点研发计划“诊疗装备与生物医用材料”重点专项---“智能化全自动医用流式细胞仪研发” 项目启动会暨实施方案研讨会在杭州青山湖召开。本次项目由谱育科技牵头承担,清华大学、北京大学、山东大学、北京大学第一医院、浙江大学邵逸夫医院、北京大学口腔医院、北京锐光仪器有限公司、北京清分稳同科技有限公司8家单位共同参与。清华大学 张新荣教授、中国科学院电工研究所 韩立、中国科学院生物物理研究所 韩玉刚、中国科学院生态环境研究中心 胡立刚、中国仪器仪表学会分析仪器分会秘书长 吴爱华、上海交通大学 丁显廷教授、陆军军医大学 万瑛教授、新疆医科大学 张峰波教授、中国电子科技集团公司电子科学研究院 袁苏文组成的专家组;项目负责人北京大学 韩国军及项目各参与单位负责人,聚光科技总经理 谱育科技董事长 韩双来、副总经理 俞晓峰等共计40多人参与本次会议。国家重点研发计划项目启动青山湖科技城管理局 黄寅副书记致辞表示此项目意义重大,将提供切实保障条件,确保项目顺利开展实施。清华大学 张新荣教授对本项目的获批立项表示了祝贺,并对项目实施组织、预算、进度、成果等管理实施提出了明确要求与期望。聚光科技总经理 谱育科技董事长 韩双来表示,谱育科技作为项目牵头单位,会积极履行责任、认真执行项目,定将全力协调倾斜研发资源,充分结合“产学研医”合作创新的优势,推进公司自动化智能化流式细胞仪器的研制开发进度,满足国内临床免疫细胞诊断的需要,推动国内临床免疫细胞检测技术的发展。 项目实施方案汇报阶段,北京大学 韩国军研究员汇报了项目整体情况,5个课题负责人分别汇报了具体实施方案,专家组认真听取汇报、充分讨论并表示项目论证材料完备,目标明确,实施方案和技术路线可行,任务清晰合理,符合项目任务书要求,预期成果与考核指标基本明确,一致同意通过实施方案论证。承接国家重仪专项,高端装备国产化,提升硬核实力谱育,主要承接项目仪器研发及产业化任务 通过突破核心关键技术,实现一体化流动池、多重多色光学系统或元素质谱分析模块、样本处理反应自动化模块等核心部件国产化,研制出国产化的全自动、智能化的高端质谱流式与全光谱流式细胞仪,及其配套试剂、分析软件; 打破科研领域高端分析仪器设备“卡脖子”难题,推进高端装备国产化及提升硬核实力,推动国内高端临床检测仪器关键零部件、整机产业链的全面发展,实现我国医疗器械产业的创新升级。打好科技仪器设备国产化攻坚战,以高质量发展推进中国式现代化谱育科技专注于重大科学仪器研发和产业化创新应用,承担了国家发改委技术攻关专项、国家重点研发计划、国家重大科学仪器设备开发专项等国家重大项目十余项,积累了二十余项新型技术平台,率先实现了三重四极杆液相色谱质谱联用仪、电感耦合等离子体质谱仪、气相色谱离子阱质谱联用仪等系列产品的产业化。今年上半年,谱育科技高端科学仪器创新基地二期将建设完成并投入使用。届时,将成为规模化的高端科学仪器研发及生产基地,为今后打造先进精密仪器全产业链“硬科技”创新策源高地和先进制造业基地夯实基础,形成产业化创新能力,推动产业链、供应链、创新链深入融合及自主可控稳定发展。
  • Cell:细胞如何避免过度膨胀?
    所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。数十年来,人们一直在寻找实现这一功能的蛋白,现在来自斯克里普斯研究所(Scripps Research Institute)的科学家们终于找到了它。这个称为 SWELL1 的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。论文资深作者、斯克里普斯研究所教授 Ardem Patapoutian 表示:&ldquo 认识这种蛋白及其编码基因,为人们开辟了新的研究方向。&rdquo 相关研究作为封面文章发表在近期的《细胞》(Cell)杂志上。 揭晓谜底水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。&ldquo 实际上水是跟着溶质走的,&rdquo 文章的第一作者 Zhaozhu Qiu 说。&ldquo 细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。&rdquo 几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为 VRAC (体积调控的阴离子通道)。当细胞膨胀时 VRAC 就会开启,允许氯离子和其他一些带负电的分子流出。这时水分子也会跟着流出,从而减轻细胞的膨胀。&ldquo 在过去三十年中,科学家们已经知道 VRAC 通道的存在,但对它并不了解,&rdquo Patapoutian 说。由于技术限制,人们一直未能找到组成 VRAC 的蛋白及其编码基因。现在,Qiu及其同事在这项新研究中进行了快速的高通量荧光筛选。他们改造人类细胞使其产生一种特殊的荧光蛋白,当细胞膨胀 VRAC 通道打开时,这种蛋白发出的光会淬灭。在诺华制药研究基金会基因组学研究所(Genomics Institute of the Novartis Research Foundation)的自动化筛选专家的帮助下,研究人员培养了大量供筛选的细胞,并通过RNA干扰分别在这些细胞中阻断不同基因的活性。他们主要寻找能持续发光的细胞,持续发光表明基因失活破坏了细胞的 VRAC 。研究团队经过几轮测试,最终找到了一个基因。2003年科学家曾发现过这个基因,并将其称为LRRC8,不过当时人们只知道它可能编码一个跨膜蛋白。现在,研究人员将它重新命名为 SWELL1 。涉及的疾病研究人员通过进一步实验发现, SWELL1 的确位于细胞膜上,而且该蛋白的特定突变能改变 VRAC 通道的性能。&ldquo 它至少是 VRAC 通道的一个主要部件,是细胞生物学家长期追寻的蛋白,&rdquo Patapoutian 说。下一步,研究团队将进一步研究 SWELL1 的功能。例如,在小鼠模型中观察不同细胞类型缺乏 SWELL1 所造成的影响。2003 年人们最初发现这个基因,是因为该基因突变会导致一种非常罕见的无丙种球蛋白血症(agammaglobulinemia)。这种疾病的患者缺乏生产抗体的B细胞,因此很容易受到感染。这也说明, SWELL1 是B细胞正常发育所需的蛋白。&ldquo 此前有研究指出,因为中风会导致脑组织肿胀,所以这种体积敏感性的离子通道与中风有关。另外,这种蛋白可能还涉及了胰腺细胞的胰岛素分泌。&rdquo Patapoutian 说。&ldquo 这样的线索有待我们一一解析。&rdquo
  • 层浪科技高端流式细胞仪LongCyte上市!3激光14色16通道,多达26种配置方案自由选择
    层浪科技新推出3激光14色16通道流式细胞仪LongCyte,全新专利设计的光路系统、电路系统以及信号处理系统,可配置红(638nm)蓝(488nm)紫(405nm)三个激光器,将国产流式细胞仪技术推向更高水平!产品亮点:1. 专利设计的光学系统,多达26种配置方案自由选择;2. 强大的软件系统,提供细胞因子、报告编辑、质控监测、LIS连接等功能;3. 精致优雅的外观,简洁灵动科技感,令人眼前一亮;4. 专利设计的磁吸置物装置,节省空间方便维护;5. 一键关机,自动清洗,无需等待;6. 可视化用户体验,可深度观察流动室液流状态;26种光路配置:荧光通道参数:快速选型、比价,点击进入仪器信息网流式细胞仪专场查看。
  • 长春光机所在多色拉曼微流控稀有细胞分选研究获得进展
    近期,长春光机所吴一辉研究员团队在国际顶级期刊《Biosensors and Bioelectronics》以“Multistage microfluidic cell sorting method and chip based on size and stiffness”为题发表了研究论文,报道了他们在基于微流控芯片的肿瘤细胞无标记分选领域的重要研究进展。   这项研究建立了细胞在侧向位移芯片内的流体动力学模型,定量分析了基于细胞体积、杨氏模量等物理参数下的微流控芯片无标记高通量、无堵塞分选方法,优化了芯片阵列,研制出了一种多物理参数分级分选的微流控阵列分选芯片,解决了高通量与高准确性的矛盾;这项研究将细胞刚度有效地纳入分类依据,给出了一种控制流体流速使癌细胞与正常细胞间微小刚度差得以在微流动中体现和放大的细胞分离方法和理论依据,构建了从外周血细胞中捕获和分析肿瘤细胞的分选分析系统,并进行了实际临床血液样本测试,这是目前报道的全微流体无标记CTCs较为完整的分选分析系统,结合拉曼光谱分析系统,该系统有可能发展成一站式无标记高性能CTCs分类分析设备。这项工作为利用多种物理性质来分选CTCs提供了一个新的视角,这些物理性质的组合使用可以提高分离特异性并减少细胞异质性的影响。图1 多级侧向位移微流控分选及拉曼光谱无标分析系统研究人员使用液滴形微柱新开发了临界尺寸为8μm和13μm的两级阵列DLD芯片,该芯片结构简单,重复性好,对CTCs的分选纯度为98.25±2.48%,回收效率为96.30±2.10%,通量高达2mL/min,性能达到国际先进水平。该文研究的相关内容是在国家自然科学基金国家重大科研仪器研制项目《多色拉曼光谱微流控芯片高通量稀有细胞分选系统》的支持下,联合清华大学、吉林大学团队于今年3月完成。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制