当前位置: 仪器信息网 > 行业主题 > >

地流速流定仪

仪器信息网地流速流定仪专题为您提供2024年最新地流速流定仪价格报价、厂家品牌的相关信息, 包括地流速流定仪参数、型号等,不管是国产,还是进口品牌的地流速流定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地流速流定仪相关的耗材配件、试剂标物,还有地流速流定仪相关的最新资讯、资料,以及地流速流定仪相关的解决方案。

地流速流定仪相关的资讯

  • 热销美国进口直读式流速仪 现货供应
    直读式流速仪FP111\FP211\FP311 ● 水流监控操作简便● 数字显示单位英尺/秒或者米/秒● 重量轻,结实、可靠● 高精确度● 经历了世界各地专业水文工作者12年的使用检验● 使用涡轮测量● 带测量标尺的望远镜手柄● 即时显示,换算成平均速度● 防雨计算机读取数据● 可以装箱储存● 多语言支持:德、英、法、意、西、瑞士● 可以应用于地下水井、河流、溪流、废水处理、工业水处理 产品介绍FP111\FP211\FP311直读式流速仪是一种可以精确测量水流速度的仪器。它有一个涡轮位移传感器和一根可伸缩,顶端带有数字显示功能的直杆组成。该仪器将给出水流的平均速度,可以广泛应用于各种水流的测速工作。涡轮传感器仪器利用涡轮传感器实现精确的位移测定。水流带动涡轮沿摩擦很小的轴转动,旁边的磁性金属在涡轮转动时会产生电信号脉冲,通过转换装置可以将转速转换成水流速度在手柄屏幕上显示出来。涡轮的清洗非常方便。数字显示屏数字显示装置将涡轮传感器传来的电信号放大并转换成水流速度显示出来。防水屏可以显示水流的瞬时速度和平均速度,并且有四个按钮来变换功能和屏幕清零。供电电池可以使用五年,屏幕也可以显示最大速度,测量日期和秒表功能。探测手柄流速计手柄可以在一定范围内延长:1.1~1.8m(FP111) 或1.7~4.6m(FP211)或0.76~1.7m(FP311)。表面镀铝使其重量轻,寿命长。真实平均速度首先按RESET按钮将屏幕清零,将流速仪置入水中开始读数,当流速显示稳定后,仪器会得到真实的平均速度。该数值将一直保存到下一次清零操作。流量测量流量=流速× 横断面面积。导管的截面积由型号决定,水渠,河流的截面积可以通过多点测量计算出来。对于小型导管,截面各处的流速很均匀,只需测一处的平均流速即可;对于河流,需要多测几个点处的流速得到平均速度。 参数适用范围:清水和浑水河流 测量范围: 0.1~6米/秒 温度范围: -20~+70℃ 标称精度:± 0.03米/秒 显示:四位液晶 ,测杆伸缩管长度5米
  • 应用案例|声学多普勒流速测量仪
    现状马来西亚雨水管理和公路隧道("SMART")项目的规模宏大--隧道长度为12公里,直径为11.8米,可收集多达400万立方米的洪水--这是一个艰巨而伟大的项目。这条隧道的设计概念极富创意,让人叹服,可以在旱季通过地下隧道疏导吉隆坡拥挤的交通,并在洪灾期间将雨水安全地分流到市中心地下。同时,支持这项大规模隧道和大型集水盆地的系统也同样令人惊叹,它被称为SMART工程的智能系统。这是一个由洪水检测设备和自动化管理机械组成的网络,与监控数据采集和控制 (SCADA)“大脑”连接,利用其收集的信息自动启动洪水管理闸门和水泵。技术由系统集成商Greenspan Technology Pty Ltd,设计的洪水检测和自动化管理系 统通过28个远程监测站来指导项目沿线31个闸门、7个大型水泵和4个独立发电装置(发电机组)的决策。三级系统Greenspan公司驻新加坡的国际经理Bruce Sproule解释,SMART项目设计为分三个阶段运作,以防止类似2007年那样的洪水对城市造成严重破坏。准确及时的流量和流速信息对SMART项目的成功和吉隆坡180万居民 的安全至关重要。为了确保高质量的数据流,Sproule的团队在项目总监Mark Wolf和项目经理Marc Schmidt的带领下,布置了一个由22个雨量计、50个与气泡系统相连的压力传感器和16个SonTek Argonaut声学多普勒测流组成的阵列。Greenspan公司的控制中心运营小组在Mark Van Elswyk的带领下,维护着由高频电台、GSM、光纤信号和微波传输组成的通信系统,以保持传感站点和SCADA系统之间的持续通信。通过以太网连接的Argonauts每分钟报告一次数据;通过高速VHF连接的Argonauts每5至10分钟广播一次。SCADA工程师Jarrah Watson、Nick Hitchins和Peter Johnson保持控制/采集系统精细地调整。河流、暂存池和隧道的数据与Greenspan公司的时间序列数据库中的降雨信息相结合,然后通过该公司的预测模型进行传输。结果驱动自动闸门,控制进入SMART集水井和隧道的流量,并在下游水量可以积累到排放水平时,启动大型水泵,对隧道进行排水。这是更准确的信息,Sproule说。如果受到潮汐影响或回水影响,可能会出现滞后现象,水深得来的流量数据是不准确的。Sproule说,当水位上升并且下游潮汐对吉隆坡洪水的影响越来越大时,预警模型就会从气体吹扫压力传感器的读数切换到声学多普勒测流仪的数据,以跟踪流量情况。他解释说,下游潮汐效应会产生滞后现象,从而减缓了洪水对来自上游力量带来的通常变化。关键是要追踪河流中到底发生了什么,而不是依赖于基于无障碍重力驱动条件的简单数学估计,这点非常重要。“这是更准确的信息,”Sproule说。“如果受到潮汐影响或回水影响, 水深换算的流量可能会出现滞后现象,而且数据不准确。”他补充说,Greenspan公司开发了自己的流速率定软件,以确保流量的准确计算。由于具有多个测量方向,SonTek-IQ非常适合存在滞后的情况。专有流量算法非常适合在灌溉渠道、天然河流和管道中收集数据。该仪器采用SonTek独有的SmartPulseHD自适应采样。使用垂直声束和压力进行水位自动校准。精心布置Sproule指出,在隧道内部和周围,SonTek Argonaut SL(侧视)测流仪布置在精心确定的高度,以便为高流量情况做好准备。两个Argonaut SW(浅水)测流仪测量下游排放点的双箱涵的流量和流速,为流量模型提供信息。即使洪水没有来临,信息流也提供了有价值的洞察力。Sproule指出,事实上,来自SW的数据显示,在洪水事件发生后,发现在其潜水面中储存了惊人数量的水,并在比Greenspan模型最初假设的更长的时间内才可以释放了这些水。Sproule指出,在洪水期间保护贵重设备可能是一项挑战。Greenspan公司的Wayne Farrell设计了“骑士头盔”站,用自动缩回的头盾保护传感器,让人想起中世纪的骑士头盔。“骑士头盔”站精心放置在测量系统中高水位的最佳高度,每次洪水过后都必须进行维护。Sproule 指出:“设计这些装置是为了防止仪器被大型残片冲走,但这些装置确实已经变成淤泥收集器。”他补充说,Greenspan公司开发了自己的校准软件,以方便测流仪的日常和暴雨后维护。该公司还开发了一个专有系统,为每个采样点建立8万个点的横断面。Sproule说,Greenspan团队还包括水文测量技术员BenNoble Clem Williams和Faizal Yusoff,他们认为SonTek Argonauts是SMART项目的必然选择。他解释说:“我们曾考虑过雷达/声纳,但价格非常昂贵,而且我们有很多使用SonTek设备的经验。”“在这个项目中,这是最简单、最准确的方法。我们在新加坡有一个八人的雨水监测小组,使用SonTek的设备已经14个月了,所以我们知道它能做什么,不能做什么。”服务支持很好,设备也很可靠。他补充道。仪器很可靠,一旦出现问题,公司会迅速做出响应。对于像SMART这样大规模的项目,快速响应至关重要。在2007年9月的一次系统测试中,该系统提前30分钟准确预测到了河流水位会上升,成功分流50万立方米水。随着车流穿过巨大的隧道,无声的传感器网络向Greenspan公司的SCADA系统报告时,Sproule对SMART项目进行了反思。“这是Greenspan公司设计过的最复杂的系统,”他指出,该系统平稳运行和保护吉隆坡11.8米高的隧道一样,是一个令人惊叹的奇迹。
  • 国瑞力恒发布烟气流速检测仪新品
    GR-3020型烟气流速检测仪产品概述GR-3020型烟气流速检测仪(以下简称检测仪)为便携式监测仪,广泛应用于锅炉、炉窑以及各种排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数的测定。适用范围本仪器采用皮托管法测量管道中气体流速,可对各种锅炉、工业炉窑以及排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数进行检测,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测。采用标准JJG 518-1998 《皮托管检定规程》GB/T 16157 -1996《固定污染源排气中颗粒物测定与气态污染物采样方法》主要特点1. 采用进口高精度微压差传感器,24小时压力漂移小于0.15Pa。;2.流速测量精度高,测定下限可达0.3m/s;3.内置可充电锂电池,一次充连续电工作48小时以上;4. 手持式测量监测仪,轻巧便携,操作简便;5. 自动计算气体的平均流速、平均压力、烟气流量等参数。 6. 具有自动零点修正,软件校准功能,保证测量精度;7.具有烟道布点功能,自动推荐采样点数和测点距离;8.大容量数据存储,可存储800组数据文件;9.宽温液晶显示器,中文操作界面;10.大尺寸、宽温高亮彩色显示屏显示;11.具有掉电保护功能,采样中掉电采样数据不丢失;12.内置蓝牙模块,可选配蓝牙打印机进行数据打印工作原理将皮托管正端正对气流方向,负端背向气流方向,烟道气流经皮托管正负气嘴时会产生压力差,微处理器根据采集的动压、全压、烟温信号计算出静压、流速和风量的值,然后根据大气压、湿度、管道截面积等参数的输入值自动计算出标杆流量。技术指标流速检测仪主要技术指标详见表1。表1 检测仪主要技术指标技术指标参数范围分辨率准确度烟气动压(0~2000) Pa0.01Pa不超过±2.0%烟气静压(-35~35) kPa0.01 kPa不超过±4.0%烟气温度(0~600) ℃1 ℃不超过±3 ℃大气压(50~110) kPa0.1 kPa不超过±4.0%烟气流速(0.3~45) m/s0.1 m/s不超过±5.0%外型尺寸(长×宽×高)190mm×95mm×50mm连续工作时间≥48小时功耗约0.5W整机重量0.6kg创新点:GR-3020型烟气流速检测仪 采用皮托管法测量管道中气体流速,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测;内置可充电锂电池,一次充连续电工作48小时以上;手持式测量监测仪,轻巧便携,操作简便。烟气流速检测仪
  • PP刊登旭月IAA新成果 旭月IAA流速技术值得信赖
    2018年7月,Plant Physiology刊出了佛山科学技术学院喻敏教授与澳大利亚塔斯马尼亚大学Shabala教授的铝毒最新研究成果Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport。研究利用了非损伤微测技术(Non-invasive Micro-test Technology, NMT),检测了豌豆根部IAA流速及根表pH。IAA流速数据全部利用扬格NMT Physiolyzer(NMT活体生理检测仪)完成,根表pH数据利用扬格NMT Physiolyzer以及MIFE(非损伤微测技术的一种)共同完成。除了两家通讯单位外,华中农业大学资环学院石磊教授、中科院南京土壤所沈仁芳研究员、南京农业大学资环学院朱毅勇教授课题组,以及德国波恩大学Franti?ek Balu?ka教授,均参与了此项研究。硼能够缓解高等植物的铝毒,但机制尚不够明确。本研究利用非损伤微测技术、溴甲酚绿pH检测等技术,证明了铝毒抑制根表pH梯度时,硼提升了根表pH梯度,促进过渡区碱化,伸长区酸化。硼明显降低了过渡区的铝积累,从而缓解了铝导致的根部伸长受阻。利用基于非损伤微测技术的NMT Physiolyzer,检测IAA流速发现,在IAA极性运输最活跃的过渡区,硼部分缓解了因为铝而受到抑制的IAA极性运输过程。该研究成果解释了硼缓解铝毒的新机制,为在酸性土壤施用硼肥,降低植物铝积累和减轻植物铝的毒性作用,保障酸性土壤地区农业生产和农产品质量安全等,提供了有力的科学技术支撑,且具有重要的应用前景。-/+B时,Al胁迫不同时间后,根表各区域的pH值。研究利用非损伤微测技术,检测根表pH发现,铝胁迫下,硼可以使过渡区在一定时间内维持相对较高的pH。无论是否施加铝胁迫,硼处理后根部的伸长率明显高于对照组。H+-ATPase抑制剂处理后,硼处理组与对照组相比,伸长率的差异消失。同样,IAA极性运输抑制剂NPA处理后,硼处理组与对照组相比,原本高于对照组的伸长率的差异(铝胁迫下)。并且,因为硼所致使的过渡区根表相对较高的pH,因NPA的抑制作用,也消失了。这表明,硼缓解铝毒,不仅与H+-ATPase有相关性,而且与IAA极性运输存在某种关联。-/+B及-/+Al胁迫后,根表各区域IAA流速。正值代表外排。IAA流速数据结果显示,过渡区根表IAA外排最大,提示IAA向顶性运输是从静止中心经过渡区到达伸长区。这一结果与根表pH梯度的数据是相吻合的,即IAA外排大的位置,根表pH相对较高(过渡区),反之则较低(伸长区)。过渡区较大的IAA外排也一定程度上反映了此区域细胞胞质内的IAA含量较低,从而调控质膜H+-ATPase促进根表碱化。-/+B及-/+Al胁迫后,各处理、各基因型样品根表pH值。最终结果显示,硼促进了被极性运输生长素外排转运体PIN2驱动的生长素极性运输,并且引起下游信号对质膜H+-ATPase的调节,使得根表pH升高。这一过程对降低铝在根尖的积累至关重要。佛山科技学院喻敏教授,从2011年开始利用旭月非损伤微测系统,开展离子流、分子流实验,并于2018年采购了扬格非损伤微测系统。扬格NMT Physiolyzer除可以检测离子流外,还可以检测MIFE等设备无法检测的IAA、H2O2、O2等分子的流速。
  • 实验小技巧丨教您几招,治疗SPE小柱流速慢难题!
    小柱流速慢怎么办?在进入主题之前,先简单介绍下固相萃取(SPE)技术。  固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段,在实验室中得到了越来越广泛的应用。它利用分析物在不同填料中被吸附的能力差将目标物提纯,有效地将目标物与干扰物分离,大大增强对分析物,特别是痕量分析物的检出能力,提高了被测样品的回收率。使用SPE效果对比图  万千世界的奇妙,造就了样品基质的千差万别,蔬菜,水果,肉蛋奶,水,土壤,橡胶,纺织品等等,不管是食品还是环境的样品,复杂程度也是各不相同。复杂程度一般的样品可以用简单提取作为前处理方法,但是对于特别复杂的样品就需要经过特殊的前处理,比如用SPE小柱,做进一步的净化,把目标物和杂质分离,进而在色谱仪器上得到一个漂亮色谱图,大家看现行的一些标准就会发现,有些样品基质的前处理肯定是会用到SPE手段的。  在用到SPE前处理的时候,各位分析检测工程师碰到最烦人最令人抓狂的问题是不是流速慢、流速不均、堵、下不去的情况;过小柱过到令人崩溃,既然流速都保证不了,怎么敢奢求回收率。 没关系,聚光科技(杭州)股份有限公司下属子公司上海安谱实验科技股份有限公司凭借多年来在样品前处理领域的深厚积累,教您几招,治疗小柱流速慢的难题。  SPE的基本操作,包括活化、平衡、上样、淋洗、洗脱,五个步骤。问题无外乎出现在这几个步骤里面,别急,我们一个个过来看。 SPE操作过程活化平衡  一般反相或者离子交换类型的小柱分别用到甲醇和水进行活化和平衡,正相小柱会用到石油醚或者正己烷来活化平衡。  1) 填料装填过紧导致流速过慢。可以通过加压加快流速,或者购买对流速有严格质控厂家的产品解决,安谱实验对CNW小柱每个批次的流速都有严格的质控范围,质控范围之外的小柱会被剔除。  2) 填料粒径过小导致流速变慢。比如同样的活化溶剂下,100-200 目的 florisil 就会比60-100 目的更慢些。可以根据样品基质类型和使用习惯选择合适规格的小柱。  3) 柱管体积差异。500mg 3mL;500mg 6mL,这两种规格形成的填料高度不一样,显然500mg 6mL,直径大,填料高度低,流速相对就快,就像地铁站早高峰,闸口多,通过速率快,闸口少,自然就拥堵,通过速率慢。可根据样品基质类型和使用习惯选择合适柱管的小柱。  4) 溶剂顺序加错。对于反相类型小柱,如果不小心把水当成活化溶剂,就会出现流速很慢的问题,因为水对于疏水性反相填料的浸润性是很差的,所以不小心把水当成甲醇来活化,可能等到花儿都谢了,它还是流不下来,注意别加错哦。  5) 活化和平衡溶剂不互溶。比如二氯甲烷活化,水平衡小柱,大家就会发现,水加入后,流速也会慢到让你崩溃。这是因为水和二氯甲烷的互溶性差造成的,可以加入过渡溶剂甲醇来解决,甲醇既可以与二氯甲烷互溶也可以和水互溶。  6) 空气进入填料。这个原因比较常见但也是比较难发现的原因,SPE小柱是由筛板,填料,柱管组成,不是有机的整体,所以在运输尤其是长途运输的过程中,就会出现微小的松动,导致空气进入填料,一般不容易被肉眼所发现。含有空气的填料在气压的作用下导致活化溶剂流下速度很慢。说到这大家可能就容易理解为什么同一批次的小柱,会出现轻微的流速参差不齐的情况,可以用 SPE 装置加正压的方式抽掉空气后,再一起加溶剂。上样  由于样品基质的复杂性,筛板孔径在 20um,在上样之前需要把颗粒物给过滤掉,比如含蛋白的样品需要加酸、盐、有机溶剂、加热等方式将蛋白处理掉;对于一般的基质,应采用过滤,离心或者高速离心,换大孔径填料等方式进行处理,现在好多第三方检测单位样品量非常多,但是该做的前处理步骤不能省,否则对仪器的损坏,对数据的可靠性都会有一定的影响。淋洗和洗脱  一般在淋洗和洗脱这两步出现流速慢的情形比较少,因为淋洗和洗脱都是不带基质的纯溶剂,一般上样步骤没有堵塞,就不会影响到淋洗和洗脱。可能出现流速慢的地方在于淋洗完小柱并干燥之后,因为一旦干燥小柱,就会使空气进入填料,这就回到了活化平衡导致流速慢的第 6 个原因,只要稍微加压就可以解决问题了。  当然我们在做实验的时候,不是每个步骤都要求快,鲁迅说过:欲速则不达,所以在小柱操作技巧里面,有两个步骤是需要控制流速的,分别是上样和洗脱;这两个过程是目标物与柱填料通过分子间作用力进行吸附和解吸附的过程,需要时间慢慢作用,大家一定要注意呦!
  • 隆重推出:地下水流速流向探测仪
    我公司隆重推出AquaVISION地下水流速流向探测仪。AquaVISION地下水流速流向探测仪通过采用专有的硬件和AquaLITE软件来完成测量地下水实时流速、流 向和粒子尺寸的艰巨任务。 AquaVISION地下水流速流向探测系统可以在具体的深度区间里准确确定地下水流速、流向和粒子尺寸。它可以在持续数小时的时间里,每分钟产生数以千计的、具有统计可靠性的数据 欢迎光临我们的网上展位了解产品的详细信息!
  • 250万!广东工业大学计划采购便携式流速仪等设备
    一、项目基本情况项目编号:0809-2241GDG12245项目名称:便携式流速仪等设备采购项目采购方式:公开招标预算金额:2,500,000.00元采购需求:合同包1(便携式流速仪等设备):合同包预算金额:2,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表医用型洁净工作台4(台)详见采购文件60,000.00-1-2其他专用仪器仪表立式压力蒸汽灭菌器1(台)详见采购文件19,700.00-1-3其他专用仪器仪表藻类强化人工湿地试验设备2(台)详见采购文件198,000.00-1-4其他专用仪器仪表冷冻离心机2(台)详见采购文件84,340.00-1-5其他专用仪器仪表无人机2(台)详见采购文件40,000.00-1-6其他专用仪器仪表消解装置(20孔)3(台)详见采购文件20,400.00-1-7其他专用仪器仪表智慧屏1(台)详见采购文件32,000.00-1-8其他专用仪器仪表紫外分光光度计4(台)详见采购文件59,200.00-1-9其他专用仪器仪表户外GPS4(台)详见采购文件8,000.00-1-10其他专用仪器仪表便携式多参数水质测定仪4(台)详见采购文件272,000.00-1-11其他专用仪器仪表便携式流速仪4(台)详见采购文件275,600.00-1-12其他专用仪器仪表深度仪4(台)详见采购文件20,000.00-1-13其他专用仪器仪表持杆式D型拖网4(支)详见采购文件4,000.00-1-14其他专用仪器仪表彼得逊采泥器4(台)详见采购文件18,000.00-1-15其他专用仪器仪表全自动水质监测无人船1(台)详见采购文件159,800.00-1-16其他专用仪器仪表沉降柱6(台)详见采购文件55,800.00-1-17其他专用仪器仪表水质分析仪2(台)详见采购文件97,200.00-1-18其他专用仪器仪表混凝沉淀实验装置4(台)详见采购文件44,000.00-1-19其他专用仪器仪表实验室pH计6(台)详见采购文件19,200.00-1-20其他专用仪器仪表生物接触氧化池4(台)详见采购文件32,800.00-1-21其他专用仪器仪表膜生物反应器2(台)详见采购文件37,200.00-1-22其他专用仪器仪表生化培养箱3(台)详见采购文件24,600.00-1-23其他专用仪器仪表BOD测定仪4(台)详见采购文件91,200.00-1-24其他专用仪器仪表COD消解仪1(台)详见采购文件6,500.00-1-25其他专用仪器仪表智能数字微压计4(台)详见采购文件8,000.00-1-26其他专用仪器仪表污泥脱水装置4(台)详见采购文件44,000.00-1-27其他专用仪器仪表电热恒温鼓风干燥箱2(台)详见采购文件19,200.00-1-28其他专用仪器仪表电子天平14(台)详见采购文件32,400.00-1-29其他专用仪器仪表电子天平22(台)详见采购文件1,960.00-1-30其他专用仪器仪表生物显微镜10(台)详见采购文件87,000.00-1-31其他专用仪器仪表PCR仪1(台)详见采购文件42,000.00-1-32其他专用仪器仪表恒温加热搅拌器6(台)详见采购文件22,200.00-1-33其他专用仪器仪表旋涡振荡器6(台)详见采购文件7,800.00-1-34其他专用仪器仪表溶解氧仪4(台)详见采购文件13,200.00-1-35其他专用仪器仪表空气恒温摇床2(台)详见采购文件73,600.00-1-36其他专用仪器仪表马弗炉1(台)详见采购文件19,800.00-1-37其他专用仪器仪表超声清洗器2(台)详见采购文件9,200.00-1-38其他专用仪器仪表小型生态修复工程模拟系统4(台)详见采购文件122,000.00-1-39其他专用仪器仪表物候观测系统2(台)详见采购文件60,000.00-1-40其他专用仪器仪表手持式气象站2(台)详见采购文件24,000.00-1-41其他专用仪器仪表植物冠层分析系统1(台)详见采购文件60,000.00-1-42其他专用仪器仪表植物光合作用测量系统2(台)详见采购文件98,000.00-1-43其他专用仪器仪表鸟类声纹监测设备2(台)详见采购文件46,000.00-1-44其他专用仪器仪表双筒望远镜4(台)详见采购文件12,000.00-1-45其他专用仪器仪表单筒望远镜2(台)详见采购文件14,000.00-1-46其他专用仪器仪表三脚架2(台)详见采购文件4,100.00-本合同包不接受联合体投标合同履行期限:合同生效30天内完成货物安装调试并交付使用。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人,投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。如依法免税或不需要缴纳社会保障资金的,提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:提供2021年度财务状况报告或基本开户行出具的资信证明,或最近一期财务报表(适用在上一年度或本财务年度成立的法人或其他组织),或人民银行出具的个人信用报告(适用于自然人)。4)履行合同所必需的设备和专业技术能力:提供承诺函原件或填报设备和专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求:合同包1(便携式流速仪等设备)落实政府采购政策需满足的资格要求如下:本项目预留采购份额无法确保充分供应、充分竞争,或者存在可能影响政府采购目标实现的情形,不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:合同包1(便携式流速仪等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人或重大税收违法失信主体或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为记录名单”中的禁止参加政府采购活动期间。(以采购代理机构于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目(或采购包)投标(响应)。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参与本项目投标(响应)。投标(报价)函相关承诺要求内容。(3)本采购包不接受联合体投标。三、获取招标文件时间: 2022年11月18日 至 2022年11月24日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年12月08日 14时30分00秒 (北京时间)递交文件地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/开标地点:广州市越秀区广仁路一号广仁大厦6楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.本项目为教学科研设备采购项目。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393400322.采购代理机构信息名 称:广东华伦招标有限公司地 址:广州市越秀区广仁路一号广仁大厦七楼联系方式:020-83172166-8283.项目联系方式项目联系人:广东华伦招标有限公司电 话:020-83172166-828广东华伦招标有限公司2022年11月17日
  • 一招教会你快速制备稳定的微液滴!
    在基于液滴的微流控系统中,微液滴的稳定生成且不融合对后续实验操作有很大影响。本文将逐步探讨如何制备稳定的微液滴。图1.不同液滴生成油的效果对比介绍基于液滴的微流控技术正在成为生化分析筛选的有力工具。液滴微流控生成的液滴体积小至皮升级,且液滴单分散性极高,每个液滴都可作为独立的微反应器。此外,在这些液滴形成后,还可对其进行连续操作,如孵育、液滴融合和基于荧光的活化分选。高频率(kHz)的操作可以在小体积的反应器中进行,这使得这项技术非常适合小分子合成、药物发现和定向进化等领域的高通量筛选。这些应用通常基于荧光测定完成,而在测定之前荧光产物必须被有效的限制在液滴中。然而,在实际操作过程中,水相中化合物成分,如盐、微生物和细胞分泌物,均会对液滴的稳定性造成一定的影响,进而导致液滴间交叉污染或液滴间相互融合。因此,在制备液滴时,保证液滴的稳定生成且不融合至关重要。以油包水的液滴为例,常见的方法是在油相中添加表面活性剂降低液滴表面张力,以避免其融合。然而,不同的液滴生成油体系(油+表面活性剂)展现出的效果差异较大。本文以FluidicLab提供的微滴生成仪结合配套的PDMS标准芯片,以DMEM培养基为水相,以三种不同体系的液滴生油为油相,制备生成液滴并考察其稳定性。试剂与方法三种液滴生成油依次是在矿物油中加入6%Span-80的液滴生成油,在棕榈酸异丙酯中加入6%EM-180的液滴生成油,在HFE-7500电子氟化液中加入2%全氟表面活性剂的液滴生成油(Drop-Surf氟油);水相为DMEM培养基。FluidicLab提供的微滴生成仪结合配套的PDMS-FF-100标准芯片,以上述三种液滴生成油为油相,以DMEM培养基为水相,通过调整合适的流速生成100μm左右的液滴。随后,将生成的液滴收集到疏水的基底上,通过显微镜观察液滴形态。液滴稳定性对比由实验可知,在同一芯片中生成100μm左右的液滴,所用油相体系不同,稳定生成液滴的流速也很有大差异。以Drop-Surf氟油为油相制备液滴,可以实现极高的流速稳定生成液滴(Vwater=40μL/min)。这一结果由图2可知,在同一曝光时间和帧率下,相比于其他两种油相体系,相机更难捕捉到以Drop-Surf氟油为油相时液滴生成运动轨迹(图2.C)。图2.A、B、C三图分别为矿物油、棕榈酸异丙酯、Drop-Surf氟油三种体系的液滴生成状态在将生成的液滴接收到疏水的基底上后,通过显微镜可以准确观察到液滴的形态,且随着时间的延长,液滴的稳定性也有很大变化。由视频1可知,以矿物油体系为油相制备的液滴稳定性较差,高密集度液滴下融合显著;以棕榈酸异丙酯体系为油相制备的液滴,具有相对较好的稳定性,且随时间延长并未出现明显融合(有小部分大液滴存在);而以Drop-Surf氟油为油相制备的液滴,表现出极好的稳定性,高密集度下随时间延长无任何融合现象出现。结论在采用不同的油相体系(油+表面活性剂)制备油包水液滴时,液滴生成频率、水相流速和液滴稳定性有明显差异。采用矿物油体系制备的液滴不仅稳定性差,液滴生成频率和水相流速慢且后期收集的液滴更易融合;采用棕榈酸异丙酯体系制备的液滴稳定性虽相对较好,但同样存在液滴生成频率和水相流速慢的问题,此外,棕榈酸异丙酯熔点高(11~13℃),低温易凝固,这也很有可能影响液滴的正常生成。而采用Drop-Surf氟油制备的液滴则具有极高的稳定性,具有剪切频率、流速快等优点。
  • SonTek 发布新型 “FlowTracker2” 声学多普勒流速仪!
    我们很高兴的通知大家,赛莱默分析仪器旗下品牌SonTek新型“FlowTracker2” 声学多普勒流速仪正式上市! 在采集水流速和流量信息的仪器演变过程中,声学多普勒流速仪 (ADV) 被视为是旗舰性质的进步。多年以来,对于全世界的政府水务机构和环境监测组织而言,当需要测量河流、溪流和运河中水量和流速时,ADV 成为了一项不可或缺的工具。 利用世界知名水文学家、研究人员和科学家在技术和应用专业知识方面的成就,SonTek 很高兴能揭示一款全新的(但又广为人知的)涉水型流量仪 — FlowTracker2! FlowTracker2 具有原型 FlowTracker 的所有特性,用户对此已经有所了解并抱有信心。但现在的新型号包含现代化、人性化且直观的新特性,可优化数据采集过程,但又能持续为用户提供无与伦比的数据测量精度 — 尤其是在浅水的测验环境中。这些特性包括: SonTek 拥有专利的“SmartQC”,可确保用户知晓何时会出现质量问题,挽救数据(节省时间!); 改善的 ADV 声学测量技术:更高的采样频率、更低的噪音和更低的标准误差; 复杂但易用的高科技技术,可创建表格及时间序列图形,用于编辑复杂、专业的报告; 可通过 蓝牙 或 USB 接口与计算机连接; 还有更多! SonTek 总经理 Hakan Erdem 说:“由于流量测验的需求不断增长,我们承诺将致力于提供尖端技术,为我们地球村健康和安全重大决策的人们提供可靠数据。”另一方面,“在为客户研制可靠、顶尖的仪器领域,我们是骄傲的领先者,而且我们将沿着这一方向继续前进。” FlowTracker2 可用于以下领域:流量监测、灌溉规划、社区发展和可持续性、洪水模拟和响应等更多方面。 欲知更多有关 FlowTracker2 的详情,请联系赛莱默分析仪器区域销售,或拨打4008-150-062免费咨询电话。
  • 蠕动泵流速:提升效率的关键因素揭秘
    在工业领域,蠕动泵作为一种常见的输送设备,其流速对于工艺流程的效率起着至关重要的作用。本文将深入探讨蠕动泵流速的影响因素以及如何优化蠕动泵的性能,帮助读者更好地了解蠕动泵在工业生产中的重要性。蠕动泵的流速受多种因素影响,包括管道直径、泵头设计、泵的转速等。首先,管道直径直接影响着介质在管道中的流速,直径越大,流速越快。其次,泵头设计的优劣也会影响流速,优质的泵头设计能够提高泵的运转效率。此外,泵的转速对于流速也有显著的影响,适当调节泵的转速可以达到更理想的流速效果。为了优化蠕动泵的性能,我们可以从多个方面入手。首先是选择合适的泵型和规格,根据具体工艺需求选择合适的蠕动泵型号和规格,确保其满足工艺要求。其次是注意泵的维护保养,在日常使用中定期检查泵的运行状况,及时清洗维护,保证泵的正常运转。此外,定期对泵进行性能检测,及时修正问题,可以有效提升蠕动泵的流速和效率。除了以上提到的因素外,环境温度、介质粘度等也会对蠕动泵的流速产生影响。在实际应用中,需要根据具体情况综合考虑各种因素,全面优化蠕动泵的流速表现,以提升生产效率,降低能耗成本。通过对蠕动泵流速的细致剖析,我们不仅能更好地理解蠕动泵在工业生产中的关键作用,还能为工艺流程的优化提供重要参考。只有充分理解蠕动泵流速的影响因素,才能更好地利用蠕动泵的优势,提升生产效率,实现可持续发展。
  • 超精密3D流速测量Argonaut-ADV
    Argonaut-ADV采用SonTek的知名ADV技术,非常实用 ,可在湖泊、溪流或沿海岸部署,价格合理。而且,可以在低流速或浅水环境使用,是沼泽和湿地研究的最终解决方案。具备独特的自动流速范围缩放能力,无需预设流速范围,一切由仪器自动完成。内置记录器、SDI-12接口和电池使Argonaut-ADV可以自主工作,也可以连接数据记录仪实时报告数据。■ 低流速,分辨率为0.0001 m/s■ 浅水(使用2-D探头选项可浅至 2-3 cm)标配RS-232和SDI-12输出■ 自动流速范围设置■ 到边界的距离的监测■ 电池容量大,可长时间部署Argonaut-ADV软件示例
  • SonTek Argonaut-MD锚系式声学多普勒流速仪 停产通知
    尊敬的合作伙伴:●Argonaut-MD锚系式声学多普勒流速仪即将停产,且不会出现在我公司2014年的报价单中。●我公司接受该产品订单截止至2014年7月1日,其报价请参照2013年的报价单。●由于考虑到零部件及人员情况,2014年7月1日后需要本产品的,参照订制产品的价格。●该仪器我公司提供5年保修(至2019年1月1日,参照实际购买日期),维修安排视当时零部件及人员情况而定。●同类产品建议您详细了解并购买我公司Aanderaa产品(DCS head, RCM Blue, SeaGuard 等)。请关注以上信息。如有任何问题,请与我们联系。
  • 麦克仪器选择性吸附分析仪获2019优秀新品奖 两秘器淬炼优质流速数据
    p style="text-align: justify text-indent: 2em "2020年5月20日,由仪器信息网主办,“科学仪器优秀新品”评审委员会、“新品首发”栏目承办的科学仪器“优秀新品奖”在线发布盛典盛大召开,首次云端揭晓了a href="https://www.instrument.com.cn/zt/XP2019" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "2019年度科学仪器“优秀新品奖”获奖名单/span/a,22台仪器获此殊荣。麦克仪器(中国区总部:麦克默瑞提克(上海)有限公司)的Micromeritics 选择性吸附分析仪SAA—8100荣获大奖。中航工业失效分析中心/北京航空材料研究院副主任刘昌奎公布了获奖结果。/pp style="text-align: justify "script src="https://p.bokecc.com/player?vid=9820CE6F29E50DA19C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptbr//pp style="text-align: center text-indent: 0em "strong获奖仪器专家点评及厂商代表感言/strong/pp style="text-align: justify text-indent: 2em "SAA-8100选择性吸附分析仪是麦克仪器于2019年推出的一款基于气固平衡可逆系统的动态吸附分析仪。仪器集成了麦克仪器长期的技术积累和2018年刚收购的PID公司专有的高性能混合阀。仪器广泛应用于在气体分离、储存和纯化、突破曲线分析、二氧化碳捕获、吸附选择、评价下一代吸附剂材料以及储能,材料研究等领域。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 300px height: 220px " src="https://img1.17img.cn/17img/images/202005/uepic/cd9972b7-68ee-432e-9e3b-ca5c84ea0e90.jpg" title="SAA8100.png" alt="SAA8100.png" width="300" height="220" border="0" vspace="0"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100677/C333626.htm" target="_self" style="text-decoration: underline "strongMicromeritics 选择性吸附分析仪SAA-8100/strongstrong/strong/a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong“科学仪器优秀新品”评审委员会创新点评:/strong/span性能和操作有很大优越性,尤其是两项突出特点:采用动态法分析选择性吸附;配置的的精密系统,可增加不同的检测器和其他可选附件从而扩展其功能,从而确保提供高质量的分离和出色的流速数据,确保得到高质量的选择性数据。/p
  • 微流控纳米药物递送平台助力核酸药物开发
    自辉瑞/BioNTech和Moderna的2款mRNA疫苗上市以来,mRNA行业拥有的巨大前景已经得到了广泛的认可,诸多企业也已纷纷进军。然而,受限于核酸药物的开发难度,不少企业在研发初期都会遇到同样的问题:如何进行有效的核酸包裹? 为了给更多的读者提供可借鉴的参考,小编将重点介绍MicroFlow™ 系列微流控设备,阐述其在核酸药物开发中起到的助力作用!MicroFlow™ 系列设备MicroFlow™ 系列微流控设备由铭汰医药设备(上海)有限公司开发,其开发之初就有着长远的设计考虑:依靠独特的芯片技术,使纳米药物早期开发、临床前放大及未来GMP生产实现工艺的无缝衔接。知识梳理在介绍设备之前,我们先来梳理一下核酸药物制备相关的知识。核酸药物的制备过程包括合成、修饰和递送三个环节。之所以将药物制备为纳米级,是因为在递送环节中纳米级的颗粒更容易透过血管壁和细胞膜等生物屏障;修饰环节则主要依靠配方的调整以及优化;而首个环节—合成环节,则需要借助于专业的设备,铭汰的MicroFlow™ 系列微流控设备可以合成直径为40-500nm的纳米粒子,其合成粒子的主要类型可参考图1。图1.纳米粒子类型图接下来,小编将分别介绍MicroFlow™ 系列微流控设备的四款产品。铭汰 Microflow T产品特点:1.Microflow T合成量为25μL~250μL,用于早期大量配方的筛选,可节省研发初期的成本消耗。2.单次制备可在数秒时间内完成,可缩短处方筛选耗时。3.混合过程高度均一且可重复。4.设备根据大量实验确定了较为通用的反应比,降低了试错成本。铭汰 Microflow S产品特点:1.Microflow S合成量为0.5~60 mL,旨在从实验规模上开发变革性药物,可制备少量样品,应用于小动物实验。2.制备速度快,总流速为0.1~50 mL/min,可节省大量时间。3.产物纳米粒子,粒径高度均一且可调;批次间重复性高。4.操作简单,可通过调整总流速、流速比等参数,来合成不同粒径的纳米粒子。铭汰 Microflow M产品特点:1.Microflow M合成总流速可达120L/h,有效的扩大了实验室合成规模,适用于更大的体内研究,如非啮齿类模型。2.保留核心的芯片技术,产品粒径、PDI与Microflow S设备无差异,实现工艺放大的快速转移。3.所有核心部件均具有高寿命、低故障率等特点;所有相关配件耐用且易更换。4.操作软件终生免费升级,提高适用性。铭汰 Microflow G产品特点:1.合成速率:120L/h(可根据需求定制,提升制备量)。2.承袭 Microflow M 特性的同时,优化设备细节,使其符合 GMP 要求。可进行大规模临床生产。3.使用与Microflow M相同的芯片设计,减少放大过程中的影响因素。4.一次性液体管路,消除清洁负担。读到这里,相必大家对于铭汰的设备已经有了初步的了解。随之可能会产生一个疑问:每一款产品是否都有与之匹配的芯片?答案是肯定的,以Microflow S设备为例,图6即为与之匹配的FlowTech S芯片。其最大特点为:在合成均一纳米粒子的前提下,能进行多次重复使用,大大的减少了研发成本。图6. FlowTech S芯片图微流控设备已经成为核酸药物开发者们的常用设备,其在合成均一纳米粒子方面有着显著的优势,铭汰公司的MicroFlow™ 系列微流控设备更是着眼长远,努力为纳米药物研究各个阶段提供解决方案。
  • 清华大学林金明教授:微流控探针诱导化学质膜穿孔用于单细胞蛋白质递送
    将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。然而,质膜是阻止外源分子进入细胞的生物屏障。因此,如何在保持细胞活力的同时高效地将外源分子递送到细胞中是细胞生物学领域的一个重要课题。为了克服现有大规模细胞内递送方法的弱点,例如细胞活性和递送效率不一致,主要基于膜破坏介导机制的微技术已成为一种有前景的解决方案。利用化学质膜穿孔进行单细胞递送的尚未得到广泛研究。2024年4月26日,清华大学化学系林金明教授团队在《ACS Applied Materials & Interfaces》杂志在线发表了题为“Chemical Plasma Membrane Perforation Generated by a Microfluidic Probe for Single-Cell Intracellular Protein Delivery”的工作。该研究使用微流控探针将含有毛地黄皂苷和货物的溶液精确地作用到单细胞上。毛地黄皂苷与质膜中的胆固醇结合诱导质膜穿孔,货物通过孔进入细胞。碘化丙啶 (0.67 kDa) 和 FITC-葡聚糖 (10、40 和 150 kDa) 可以在3分钟内成功引入单细胞,同时保持细胞活力。两种蛋白质(细胞色素C和亲环素A)被递送进入细胞,并观察到它们在细胞中得生理功能。图1. 微流控探针诱导单细胞化学质膜穿孔首先,利用Comsol Multiphysics软件对微流控探针形成的微区域进行数值模拟。使用荧光素(扩散系数=500 μm2 /s)来指示溶质扩散。结果表明,注入的溶液可以被完全吸出,并且溶质被限制在液滴状微区域内而不会扩散。微区内溶质浓度分布均匀。计算了基质上的剪切应力,低剪切应力不会对细胞造成额外的机械损伤。实验在与模拟相同的条件下进行,使用荧光素显示微流控探针产生的微区域,与浓度分布模拟结果一致。溶液的连续流动使微区中毛地黄皂苷和货物的浓度几乎恒定,有利于维持递送过程的连续性和稳定性。图2. 流体的数值模拟通过微流控探针进行碘化丙啶(PI)的细胞内递送来验证该方法的可行性以及优化递送条件。尝试使用 20-100 μg/mL 毛地黄皂苷将 PI 递送至U87细胞。随着毛地黄皂苷浓度的增加,ts(PI开始进入时间)和tm(PI进入速度最大时间)逐渐减少,表明细胞穿孔加速。当毛地黄皂苷浓度为60 μg/mL时,ts约为20 s,1 min内即可观察到清晰的荧光。此外,还尝试了不同的PI浓度进行细胞内递送,较高的PI浓度也使得PI能够更快地进入细胞。还测试了流速对递送结果的影响。注入流量保持2 μL/min,抽出流量在6~14 μL/min之间调整。当抽吸流速大于8 μL/min时,进入细胞的PI量随着流速的增长而显着增加。图3. 毛地黄皂苷浓度、PI浓度和流速对细胞内递送的影响为了证明该方法的效率和通用性,使用该方法将PI递送至U87、HUVEC和A549细胞。当递送时间为20秒时,三种类型的细胞几乎不发出荧光。随着递送时间逐渐增加,细胞的相对荧光强度显着增加,递送处理50 s后观察到强烈的红色荧光。由于洋地黄皂苷的作用,质膜逐渐透化,PI通过质膜上形成的孔继续进入细胞。还检查了该方法递送大分子的能力,使用不同分子量(10、40和150 kDa)的 FITC-葡聚糖作为货物。FITC-葡聚糖可以在3min内进入细胞,并且FITC-葡聚糖进入的量随着递送时间的增加而增加。图4. PI和FITC-葡聚糖递送的结果在验证了这种方法用于单细胞胞内递送的可行性后,作者尝试了细胞内蛋白质递送。Cyt C ( Mw = 13 kDa) 是线粒体中的一种蛋白质,可将电子转移到呼吸链以维持ATP的产生。当cyt C释放到细胞质中时,它会引发细胞凋亡。由于外源cyt C在正常情况下不能进入细胞,利用微流控探针将cyt C递送至A549中作为抗肿瘤药物以诱导细胞凋亡。对照组和仅用毛地黄皂苷或cyt C处理的细胞之间未观察到caspase-3水平和Hoechst 33342染色结果的显着差异。毛地黄皂苷诱导的质膜穿孔不会引起细胞凋亡。仅用cyt C处理的细胞中caspase-3的水平也没有增加,表明正常情况下cyt C不能穿过质膜进入细胞激活凋亡途径。然而,在进行毛地黄皂苷介导的cyt C递送的细胞中,caspase-3水平显著增加,蓝色荧光显著增强。细胞形态发生明显变化,细胞体积缩小,并形成凋亡小体。这些结果表明,递送的cyt C成功诱导细胞凋亡,并且外源蛋白可以通过微流控探针有效地引入细胞内并发挥作用。图5. Cyt C被递送至A549以诱导细胞凋亡为了进一步探索这种方法在细胞研究中的潜力,作者利用它来研究肿瘤耐药性。CypA (M w = 18 kDa) 是一种广泛存在的细胞内蛋白质,可充当抗氧化剂。最近有报道称CypA通过重塑细胞氧化状态介导结直肠癌耐药。BCNU是一种常用的抗肿瘤药物,其诱导细胞毒性的机制之一是谷胱甘肽还原酶的抑制导致ROS的积累。利用微流控探针将CypA递送到U87中,研究CypA对胶质瘤耐药性的影响。与对照组相比,未经CypA递送的细胞经BCNU处理1小时后ROS水平显着升高,并且细胞形态发生改变。对于递送CypA的细胞,ROS含量显着低于未递送细胞,并且细胞保持正常形态。结果表明,递送的CypA在细胞中具有抗氧化作用,这可能增强U87对BCNU的耐药性。抑制CypA表达可能是治疗神经胶质瘤的潜在方法。图6. CypA对胶质瘤耐药性的影响总结作者开发了一种基于开放式微流控探针的方法,以方便高效地实现单细胞递送。该方法通过使用化学试剂对单个细胞进行质膜穿孔,将最大分子量为150 kDa 的外源货物递送到细胞中。与载体介导或场辅助递送方法相比,该方法不需要对货物进行额外处理,无需物理场辅助的温和递送条件也避免了对货物和细胞的额外损伤。作者展示了使用微流控探针进行cyt C和CypA的细胞内递送,证明了该方法能够研究外源蛋白质对细胞生命活动的影响。未来,各种货物(肽、蛋白质、mRNA、DNA、质粒、细胞器等)可以通过这种方法导入细胞内,调节细胞的生理功能和命运。而且该方法不需要昂贵的设备,操作简单,有望成为单细胞递送的一种理想方法。清华大学化学系林金明教授为该论文的通讯作者,清华大学化学系2022级博士生宋扬为本论文的第一作者。该研究受到国家重点研发计划(No.2022YFC3400700)和国家自然科学基金(No.22034005)的支持。关于林金明教授工学博士,分析化学专业。1984年福州大学毕业,1992年在日本昭和大学国际交流基金的资助下前往该大学药学部从事访问研究。1994年获得日本政府奖学金转入东京都立大学攻读博士学位,1997年3月获得工学博士学位,同年留校任教,2000年入选中国科学院“百人计划”,受聘中科院生态环境研究中心研究员、博士生导师;2001年获得国家杰出青年科学基金,2002年3月底回国工作,2004年入选清华大学“百名人才引进计划”,受聘清华大学化学系教授、博士生导师。2008年受聘教育部长江学者特聘教授,2014年入选英国皇家化学会会士。目前主要从事微流控芯片质谱联用细胞分析、化学发光/荧光免疫分析、复杂样品前处理分析、空气负离子检测与健康评估等研究。已培养博士研究生43名(含联合培养,其中留学生2名)、硕士研究生28名、博士后11名(其中留学生3名)、访问学者10名(其中外国访问学者1名)。
  • 中科大新成果:用于核酸药物递送的LNP规模化制备放大的微流控新策略、新芯片、新技术
    脂质纳米粒(LNP)是一种具有均匀脂质核心的脂质囊泡,广泛用于核酸药物的递送,近年来由于作为新冠病毒mRNA疫苗递送平台的巨大成功而备受关注。近期,围绕LNP从实验室筛选到工业化制备参数不一致和质量控制困难这一行业难题,中科大微纳米工程团队和化学生物学团队提出了LNP规模化制备放大的微流控新策略,发展了新芯片和新技术,并在siRNA递送和动物实验中实现了功能验证。相关研究工作近期已经被Nano Research接收并online发布。LNP制备方法很多,包括脂质体挤出法、薄膜水化法、纳米沉淀法以及微流控法等。近年来,通过微流控技术合成的mRNA 脂质纳米颗粒比传统的合成工艺更具优势,具有批次一致性良好、粒径可控、超低的PDI值、并且包封效果可达90%以上等优点。但是,基于微流控技术合成的LNPs在临床应用上面临着一个严峻的挑战:如何实现从早期开发到临床应用的稳健的制备规模放大。目前,制备放大的合成LNPs方法主要分为并行化策略和通道尺寸扩大策略。并行化策略需要复杂系统搭建,并在大规模生产时难以保持LNPs稳定性;通道尺寸扩大策略尽管能够实现稳定的大规模生产,但很难在不同流速下保持一致的粒径和尺寸分布。中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队经过深入研究,提出了一种“等比例缩放通道尺寸”的可扩展化脂质纳米粒子合成策略。该策略通过在三个维度上等比例缩放惯性微流体混合器,实现了LNPs的可扩展合成。合作团队设计并构建了高效的惯性流体微混合器,通过结合三种惯性流体效应,实现了溶液的在更低流速下的快速混合。接着,将该惯性流体微混合器等比例缩放,通过高精度3D打印以及激光加工制备出不同通道尺寸的芯片,以实现不同通量条件下的LNP筛选与规模化制备的一致性。合作团队基于流体力学的相似性理论并利用无量纲分析开发了一种理论预测方法,通过控制混合时间在不同芯片上保持一致,确保合成的LNPs具有一致的粒径和尺寸分布。实验结果表明,利用等比缩放的芯片在相同的混合时间下合成的LNPs,具有一致的物理特性,平均粒径偏差不超过5%。合作团队成功合成了包载siRNA的LNPs,并在小鼠模型中验证了这些LNPs的相同的基因沉默能力。这一创新性方法为LNPs的大规模生产提供了实际可行的途径,将极大加速核酸药物研发向临床应用的转化。该工作7月23日被Nano Research杂志接收,中科大生医部、安徽省多肽药物工程实验室主任田长麟教授和中科大工程学院精密仪器系李保庆副教授为该文章的共同通讯作者,中科大工程学院博士研究生马泽森与中科院强磁场科学中心博士研究生童海洋为共同第一作者。相关芯片制备及算法均已申请专利保护。笔者了解到,mRNA在给药过程中非常依赖载体,也不可以通过交联和深层修饰来解决给药问题。确保mRNA本身的稳定性具有挑战性,而且由于其化学修饰的空间有限,所以通常必须使用脂质纳米粒 (LNP)作为载体给药系统。一直以来多数LNP产品研发生产仍以国际大药企为主,目前国内众多科研单位也在纷纷开展相关研究。微流控设备在LNP制备方面具有一定的优势,期待看到此次新芯片、新技术的带来LNPs产能的提高。相关阅读:回放视频合集|核酸药物研发与质控的技术盛宴
  • 上海同田中标天津中医药大学高速逆流色谱仪项目
    3月底,上海同田高速逆流色谱仪销售部门捷报频频,再次中标天津中医药大学高速逆流色谱仪项目。本次中标仪器:分析型高速逆流色谱仪TBE-20A + 半制备型高速逆流色谱仪TBE-300B仪器简介:TBE-20A一 主要指标: 三分离柱设计,双六通阀设计,提供在线检测; 分离时间短,效率高,溶剂消耗小,适合进行前期最佳分离工艺的研究、指纹图谱的研究和样品分析检测研究。 采用HPLC 7725i样品进样阀。 二 技术参数: 电源: 220V± 20V50± 0.5HZ      主机功率:200 W 主机容量: 16ml          进样体积:20ul 主机尺寸:330× 600× 550mm 转速范围:0-2000 转/分      分离转速:1400-2000 转/分(无级变频调速) 流速范围:0.1-5.0ml/min       分离流速: 0.5-1.5ml/min 推荐工作转速1800 转/分      推荐工作流速1.0ml/min 压力:0-2MPa 紫外检测器波长:254、280nm(另可选择全波长检测器) 温控模块(接循环水浴):温度调控范围15~40℃,精度0.5℃,温控循环液量 1~10 L/min 三 描述: TBE系列采用三个螺旋柱串联连接,在高速转动时保持最佳平衡,稳定,噪音小; 快速,操作简便,系统平衡不受溶剂体系改变的影响,工作稳定性高; 无不可逆吸附;回收率高。四 其他: 增设了一体化设计的温控模块,可精确控制分离的温度,有效提高实验的应用范围和重复性,拓宽溶剂体系的选择范围; 对于对环境温度有严格要求的活性成分分离,更能发挥高速逆流色谱的优势; TBE-300B一 主要指标: 三分离柱设计,双六通阀设计,提供在线检测; 二 技术参数: 电 源: 220V ± 20V 50 ± 0.5HZ     主机功率: 200 W 主机容量: 260ml           进样体积:20ml 主机尺寸:563× 638× 368mm 转速范围:0-1000 转/分       分离转速:700-1000 转/分(无级变频调速) 流速范围:0.1-30ml/min        分离流速:2.0-4.0ml/min 推荐工作转速900 转/分        推荐工作流速3.0ml/min 压力:0-1MPa 紫外检测器波长: 254 、 280nm ( 标配 ) 温控模块(接循环水浴):温度调控范围 15 ~ 40 ℃,精度 0.5 ℃ ,温控循环液量 1 ~ 10 L /min 三 描述: TBE 系列采用三个螺旋柱串联连接,在高速转动时保持平衡,稳定,噪音小; 快速,操作简便,系统平衡不受溶剂体系改变的影响,工作稳定性高; 无不可逆吸附;回收率高。 四 其他 增设了一体化设计的温控模块,可精确控制分离的温度,有效提高实验的应用范围和重复性,拓宽溶剂体系的选择范围,有助于摸索最佳的实验条件; 对于对环境温度有严格要求的活性成分分离,更能发挥高速逆流色谱的优势; 上海同田 市场部2010.4.2
  • 盘管还是微反?倍他司汀的连续流工艺研究
    倍他司汀(Betahistine 1)是临床上常用的药物。主要用于治疗缺血性脑血管病,血管性头疼、眩晕综合征和梅尼埃综合征。方案 1. 倍他司汀合成示意图目前常见合成方法之一是甲胺(3)和2-乙烯基吡啶(2)之间通过氮杂迈克尔(胺烯加成)反应得到。(方案1, (a)) 常规釜式工艺中,需要较长的反应时间(8小时)来提高转化率(方案1,(b)); 2-乙烯基吡啶受热易发生聚合产生杂质(化合物4、5、6),很难获得高纯度产品; 2-乙烯基吡啶为易燃危险化学品,其蒸气与空气混合,能形成爆炸性混合物,生产中存在不安全因素。为了提高生产过程的安全性以及产品质量,该过程的连续流工艺研究具有重要意义。本文将介绍华东理工大学药学院叶金星课题组于2021.5.15发表在OPR&D上,关于倍他司汀连续流工艺研究成果(方案1,(d))。 该工艺以2-乙烯基吡啶和饱和甲胺盐酸盐水溶液为起始原料,同时使用哈氏合金盘管反应器和碳化硅微反应器进行了连续流工艺研究。研究过程考虑到生产成本和安全性,作者选用盐酸甲胺作为胺化试剂。为了避免连续流合成过程产生沉淀堵塞反应通道,作者首先对溶剂进行了筛选。二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、 i-PrOH、EtOH和水加热在110oC, 5 小时高压封管反应。如表1所示,在上述溶剂中均未观察到沉淀。实验表明,水作为溶剂可以得到较高的转化率和选择性(表1,entry 7)。表 1. 合成倍他司汀的溶剂筛选 二、哈氏合金盘管反应器连续流工艺研究1、研究者首先研究了在哈氏合金盘管反应器中的连续化工艺(如图1)。 图 1. 倍他司汀合成的连续流设置经过实验分析在3.0 mL哈氏合金反应器上,可连续合成倍他司汀。在反应温度170 °C ,停留时间为2.1分钟,系统压力7bar的条件下,反应转化率可达98%,选择性为94%。三、在 SiC微反应器中的连续流工艺研究由于在高温高压条件下反应体系中氯离子的强腐蚀作用,哈氏合金反应器盘管在长期工业生产中不可避免地会被腐蚀。高的流量可能会使加热操作变得更加困难和危险,需要更安全的保护。烧结碳化硅 (SiC) 的耐腐蚀性远远大于哈氏合金,可应用于更苛刻条件下的高腐蚀性试剂。故在倍他司汀的连续流放大合成中,作者使用了带有静态混合元件的市售模块化 SiC 反应器(图 2)。图 2. 在 SiC 反应器中合成倍他司汀的连续流设置使用SiC微反应器,在 45 mL min-1 的总流速下,将甲胺盐酸盐的量增加到 1.9 当量,可实现完全转化(99.94%,表 4 Entry4)。表 4. 在 SiC 反应器中连续流动合成倍他司汀的放大实验SiC 反应器中的优化条件:2-乙烯基吡啶(流速:15 mL min-1),甲胺盐酸盐 (9.0 M) 水溶液(流速:30 mL min-1),在 170 °C ,停留时间为 2.4 分钟的条件下,转化率 99.94%,选择性为 94%。在上述条件下长时间运行,过程稳定,没有发生堵塞现象。 连续流反应与釜式反应的比对研究者同时进行了纯化改进和杂质分析,得到高纯度产品(99.9%)。连续流工艺与间歇工艺的比较(表 5)。表 5. 合成 1.0 kg 倍他司汀的间歇法和连续流法的比较结果讨论本研究成功实现了倍他司汀的连续合成;在 SiC 反应器中, 170 oC, 2.4 分钟,总流速为 45 mL min-1 的条件下,实现了高转化率 (99.94%) 和高选择性 (94%) ,该结果优于盘管反应器的实验结果;长时间连续运行,过程稳定,产品质量可靠;通过优化精馏提纯工艺,得到高纯度产品(99.9%);以水作为溶剂的新工艺节能、省时且经济,与釜式工艺相比,PMI 降低了 50%。参考文献:OPR&D, 2021,5(15)
  • 微通道连续流工艺中输送不准?点开解锁第二法!
    观至最后,文末有惊喜微通道连续流工艺探索中,您是否有遇到如下一些问题:questionsl 实际流速与设定流速不符合需要不断矫正怎么办?l 实验重复性不好,结果时好时坏怎么办?l 输送过程中有晶体析出造成泵液故障实验停滞怎么办?l 泵着泵着堵塞又堵心怎么办?l ??????让EMO为您抽丝剥茧,正本清源第二期 :说好的安好便是晴天,为什么总是阴晴圆缺?在流体工艺中,影响泵在输送物料过程中使用效果的最首要的因素是什么?我们走访了合全药业,天津凯莱英,南京药石,浙江普洛家园药业等著名CRO,CDMO企业的流体化学部门技术人员。答案不谋而合——流量稳定在同一个设计工艺下,输送的流量稳定性决定了实验结果的差异。而流量稳定靠什么参数指标来评判呢? 流量精密度!——是指在规定条件下,同一个设定流速下,经过多次取样测定所得测定流速结果之间的接近程度,代表了测定的重现性。流量精密度又可以从三个层次来考察:重复性、中间精密度、重现性。1. 重复性:在一组测量条件下(包括相同测量程序、相同操作者、相同测量系统、相同操作条件和相同地点),在短时间段内对同一或相似被测对象重复测量。2. 中间精密度:是指处于重复性条件与重现性条件之间的条件下得到的精密度。3. 重现性:是指不同实验室之间不同分析人员测定结果的精密度。当分析方法将被法定标准采用时,应进行重现性试验。衡量流量精密度的指标——相对标准偏差RSD,也可以称作流量变异系数CV相对标准偏差(RSD)=标准偏差(SD)/计算结果的算术平均值(X)*100%RSD(CV)可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。变异系数越小,变异(偏离)程度越小,风险也就越小。反之,变异系数越大,变异(偏离)程度越大,风险也就越大。例如,高效液相色谱法测定含量或效价时:当含量限度50.0%时,相对标准偏差不得超过1.0%;当含量限度20.0~50.0%时,相对标准偏差不得超过5.0%;标准偏差(SD)即各个测量数据偏差的平方和除以数据个数减1的平方根。由于式中对单个数据偏差平方后,较大的偏差更能突出地反映出来,所以标准偏差能更好地说明数据的离散程度,在实际使用中更加常见。参考资料来源:百度百科-相对标准偏差泵的流量标准差公式我们用EMO-AP-10K这个型号来展示一下我们的流量实测曲线:EMO-AP-10K的流量精准度检测结果如下精确可靠地执行设计实验中所需的流量实验重复可靠性99%希望我们的EMO-AP系列产品可以帮助您解决连续流工艺中遇到的输送不准问题下一期微通道领域哪些问题是大家最关心的呢?可以联系我们,若被小编收录,还有惊喜礼品哦~不容错过~
  • 上海同田中标浙江中医药大学高速逆流色谱仪项目
    4月底,全球顶级的逆流色谱仪供应商上海同田生物中标浙江中医药大学高速逆流色谱仪项目。 本次中标仪器: 半制备型高速逆流色谱仪TBE-300B 国产标配:TBE-300B + TBP-1002双柱塞恒流泵 + TBD-2000紫外检测仪具体参数: 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 厂商简介: 上海同田生物是国内乃至全球唯一一家有着十余年高速逆流色谱仪开发制造史的高科技企业,公司致力于高速逆流色谱技术的研发推广,力争将高速逆流色谱技术应用到更广阔的专业领域。 点击这里了解更多! 上海同田生物 市场部 2010.3.12
  • 利用微纳微尺度3D打印技术制备微流控液滴生成芯片
    许多食品(烘焙食品、乳剂、冷冻产品等)是含有多种成分的分散体系,其中乳液是最常见的。传统的乳液制备通常需要高速均质、高压均质等方法。这些常用方法制备的乳液其大小、形状和分布是不可控的,存在多分散液滴。然而,微流控技术可精确控制多相流,以形成具有所需直径的单分散液滴。它在许多行业都有潜在的应用,包括食品、制药、化妆品和生物材料等行业。但其液滴生成效率低,不能满足工业化的要求。此外,传统方法不能很好的实现多重乳液的制备,而微流控技术可以较好的实现多重乳液的生成,但实验时需用有机试剂对微流控芯片(玻璃毛细管,PDMS)进行局部表面处理。近日,华南农业大学食品学院蒋卓副教授课题组基于微立体光刻3D打印技术(深圳摩方材料科技有限公司nanoArch P140),利用光敏树脂材料实现微流控芯片的制备。此工作利用一种新技术制造了单乳液和双乳液的微流控生成芯片。这些芯片采用微纳微尺度3D打印技术制作,实现宏观结构和微观结构的有机结合,可以同时满足不同乳液类型的制备和生成,清洗后可多次重复使用。同时实现了五个平行通道的单乳液生成,为高通量微流控技术的改进奠定了基础。基于此,该微流控芯片成功实现了W/O/W(水/油/水)和O/W/O(油/水/油)双重乳液的制备。此外,由于制备芯片所使用的树脂材料对油和水都具有良好的润湿性,因此不需要使用有机试剂对芯片进行局部改性。该工作以“Microfluidicdroplet formation in co-flow devices fabricated by micro 3D printing”为题发表在Journal of FoodEngineering上,第一作者是华南农业大学硕士生张佳。微流控芯片的设计及3D打印制得的装置基于Co-flow原理,通过3D打印技术,制备了单乳液生成芯片(图1),五个平行流道的单乳液生成芯片以及双重乳液生成芯片(图2)。图1 单乳液生成装置图2 五个平行流道的单乳液生成装置和双重乳液生成装置微流控芯片的评价为了验证和评估该装置的可用性,我们选取不同的乳液配方进行试验。选取不同的油包水和水包油乳液,对乳液生成过程进行记录,并对收集后的乳液进行分析(图3)。收集到的油包水乳液单分散性较好,其CV为2.7%。同一装置上实现了水包油乳液的生成,所得液滴的CV仅为2.2%。图3 单乳液生成装置用于油包水(a、b)和水包油(c、d)乳液的生成及其分散性利用五个平行流道的单乳液生成装置进行试验,可以在同一装置上实现油包水和水包油两种不同类型乳液的生成(图4),所得油包水液滴的CV为2.6%,水包油液滴的CV为3.1%。本研究使用的微流控芯片制作简单,集成度高,可重复使用。但其生产效率和液滴直径仍需进一步提高,这也是我们后续研究的重点。图4 五个平行流道的单乳液生成装置用于油包水(b、c)和水包油(d、e)乳液的生成及其液滴的分散性基于上述实验结果,我们进行了双重乳液的生成。在实验中,通过改变内相、中间相和外相的速度可以调节液滴的尺寸和核壳比例。图5展示了不同流量下W/O/W双乳状液的形成过程和收集的液滴,可以看到明显的核-壳层。对于O/W/O双乳状液的形成(图6),实验过程中可以清楚地看到乳状液的形成过程,但收集后的乳液稳定性极差,不能观察到均匀分散的双乳状液滴,尝试了多种O/W/O乳液配方,暂未得到可靠的实验结果。图5 采用双乳液生成装置在不同流速下生成和收集W/O/W双重乳液图6 采用双乳液生成装置生成O/W/O双重乳液目前,对于3D打印微流控芯片的性能评价还处于实验室阶段,所使用的乳液配方是在现有参考文献的基础上进行修改的。为了进一步促进微流体在食品工业中商业化,需要进一步开发相关的乳液配方。此外,微流体的一些问题需要解决,如高通量,稳定性,生物相容性等。参与该工作的合作者有华南农业大学食品学院的硕士生徐文华,工程学院的徐凤英教授,无限极(中国)有限公司的鲁旺旺、张晨,深圳摩方材料科技有限公司的周建林等。原文链接:https://doi.org/10.1016/j.jfoodeng.2020.110212(以上相关介绍内容由华南农业大学蒋卓副教授提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对蒋卓副教授进行了更进一步的访谈,以下为部分内容:BMF:请问目前您与BMF的合作进展情况如何?蒋教授:2018年6月前后开始与BMF的合作,最开始了解摩方所做的微尺度3D打印技术之后,有通过3D技术打印微流控芯片的想法,画出设计图之后,与工程师沟通交流后,进行了装置打印,并进行了实验验证,发现其可以实现液滴的生成,且可以看到液滴的生成过程。通过设计图的不断修改以及实验验证,最终完成了单乳液生成装置,五个平行流道的单乳液生成装置,以及双乳液生成装置的设计制造。BMF:能否概括总结液滴反应器这个案例,以及BMF高精密3D打印在其中发挥的作用?蒋教授:目前进行微流控芯片的研发,大多是在PDMS上进行,基于T-连接和流动聚焦原理。本论文基于流动聚焦原理进行了微流控芯片的开发设计,具有流动阻力小的优点,前期了解到微尺度3D打印技术的发展,可以实现微米级或亚微米级通道的制造,因而进行了相关芯片设计。实验发现3D打印过程中所使用的光敏树脂具有良好的特性,能较清晰的记录液滴生成过程,且材料具有两亲性,能够在同一装置上实现两种不同类型乳液的生成。在此基础上,无需对装置进行表面改性就能实现双重乳液的生成。此外,采用3D打印,可以制备具有复杂立体结构的芯片。这些为微流控在食品、化妆品及保健品乳液的产业化应用提供了另外一种可行的选择。BMF高精密3D打印是我们这项实验的基础,正是由于BMF帮助我们把芯片设计图变成实物,才能开展后续的实验,并发现这么多有趣的实验现象,也为我们后续的研究奠定了一定的研究基础。官网:https://www.bmftec.cn/links/7
  • 上海同田中标吉林农业大学高速逆流色谱仪项目
    3月底,上海同田中标吉林农业大学高速逆流色谱仪项目。本次中标型号为:TBE-300B+AKTA Prime中标仪器介绍:上海同田生物,作为多分离柱高速逆流色谱仪国家新型专利的拥有者、行业领导者;通用电气医疗集团生命科学部,作为中国天然产物和中药纯化工业的首选设备和介质供应商。 TBE300B-AKTA Prime是由上海同田生物和通用电气医疗集团共同推出的高速逆流色谱系统,该系统由TBE-300B和AKTA Prime组成,是不用任何固态载体的液-液分配色谱,尤其在天然产物有效成分的分离纯化中有独特的优势。一 主要指标: 双通道泵,可梯度洗脱,体系平衡快,提供在线检测,全自动收集; 三分离柱设计,双六通阀设计,配套自动收集器; 二 技术参数 电 源: 220V ± 20V 50 ± 0.5HZ   主机功率: 200 W 主机容量: 260ml         进样体积:20ml 主机尺寸:563× 638× 368mm 转速范围:0-1000 转/分     分离转速:700-1000 转/分(无级变频调速) 流速范围:0.1-30ml/min      分离流速:2.0-4.0ml/min; 压力:0-2MPa 紫外检测器波长:使用汞灯 - 滤光片选择 254 、 280nm ( 标配 ) 多种滤光片可选: 313 、 365 、 405 、 436 、 546nm( 选购 ) 温控模块(接循环水浴):温度调控范围 15 ~ 40 ℃,精度 0.5 ℃ ,温控循环液量 1 ~ 10 L /min 三 描述: TBE 系列采用三个螺旋柱串联连接,在高速转动时保持平衡,稳定,噪音小; 快速,操作简便,系统平衡不受溶剂体系改变的影响,工作稳定性高; 快速优化工艺;梯度洗脱,系统配置灵活;无不可逆吸附;回收率高。 四 其他 增设了一体化设计的温控模块,可精确控制分离的温度,有效提高实验的应用范围和重复性,拓宽溶剂体系的选择范围,有助于摸索最佳的实验条件; 对于对环境温度有严格要求的活性成分分离,更能发挥高速逆流色谱的优势; 了解详细请点击这里!上海同田生物 市场部2010.4.1
  • 电位滴定仪的原理和使用,禾工电位滴定仪的优点和特点
    电位滴定仪原理:电位滴定法是一种用电极电位的突跃来确定终点的滴定方法。在滴定过程中,滴定容器内浸入一对适当的指示电极和参比电极,随着滴定剂的加入,待测离子浓度发生改变,指示电极的电位也发生变化,在化学计量点附近可以观察到电位的突变(电位突变),因而根据电极电位突跃可以确定终点的到达,这就是电位滴定法的原理。 电位滴定仪的结构组成:电位滴定的装置1.电位计2.滴定装置3.工作电池4.磁力搅拌器 一阶微分图 二阶微分图滴定终点判断的方法手工滴定(指示剂的颜色变化)自动电位滴定(电极的信号响应代替人眼对指示剂颜色变化的判断 自动电位滴定的优点: 1.滴定速度更快速, 准确 2.提高结果的重现性 3.减少人为错误 4.自动化进行复杂的滴定程序 5.没有合适指示剂或者有色或浑浊的溶液都可以进行测试 CT-1plus全自动电位滴定仪主要优点和特点:1、自动颜色判定,机器人视觉原理精确颜色判断,大大提高滴定准确度,大大降低了操作人员的误差。2、自主知识产权的计量管活塞,使得滴定控制更精确。3、测试报告符合GLP/GMP规范,U盘存储防伪pdf实验报告。4、测试方法和测试记录条数无限制。 电位滴定种类:1、pH滴定(酸碱滴定) 指示电极:pH玻璃电极 参比电极:饱和甘汞电极2、氧化还原滴定 指示电极:铂电极 参比电极:饱和甘汞电极3、沉淀滴定 指示电极:不同的沉淀反应采用不同的指示电极,如测卤素时使用银电极 参比电极:双盐桥甘汞电极4、络合滴定 指示电极:Hg/Hg-EDTA电极 参比电极:饱和甘汞电极 参比电极:参比电极是电极电位恒定且重现性良好的电极。标准氢电极的电位为零,是参比电极中的一级电极。但由于氢电极制作麻烦,使用不便,故实际工作中少用。分析测试工作中使用的参比电极主要是甘汞电极和银-氯化银参比电极。 电位滴定仪应用行业:石化行业:总酸值TAN和总碱值TBN、皂化值、碘值、溴价和溴指数、硫醇硫含量及含盐量的检测。水质分析中还要检测钙离子、氯离子、氟离子、碳酸根离子等的检测。原油中的盐含量测定;石油产品酸值的测定;三聚磷酸钠中氯化钠含量测定;卷烟纸中碳酸钙含量测定。 医药行业:沉淀滴定:丁溴东莨菪碱、苯巴比妥(银电极);酸碱滴定(非水滴定):门冬氨酸、己酮可可碱、马来酸伊索拉定、双氯芬酸钠等;酸碱滴定(水相滴定):五氟利多、牛磺酸、甘油磷酸钠等;氧化还原滴定:维生素C、青霉素钠、聚维酮碘; 食品行业:酸碱滴定:乳化剂中的酸值、植物油中的酸值、酱油中总酸、淀粉酸度等;氧化还原滴定:糖中的二氧化硫、糖品中亚硫酸盐、植物油中过氧化值;络合滴定:牛奶中钙含量;沉淀滴定:酱油中食盐(以氯化钠计)的含量; 化妆品行业:硼酸及其硼酸盐含量;卤酸盐含量;酯值或含酯量的测定;羰基化合物的测定;
  • 上海同田中标新疆石河子大学高速逆流色谱仪项目
    3月初,国内顶级的逆流色谱仪供应商上海同田生物再次中标新疆石河子大学高速逆流色谱仪项目。本次中标仪器:半制备型高速逆流色谱仪TBE-300B国产配置:TBE-300B + TBP-5002双柱塞恒流泵 具体参数:立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 厂商简介:上海同田生物是国内乃至全球唯一一家有着十余年高速逆流色谱仪开发制造史的高科技企业,公司致力于高速逆流色谱技术的研发推广,力争将高速逆流色谱技术应用到更广阔的制备色谱领域。更多详细信息请点击这里! 上海同田生物市场部2010.3.8
  • 上海同田中标吉林师范学院高速逆流色谱仪项目
    3月上旬,国内顶级的逆流色谱仪供应商上海同田生物中标吉林师范学院高速逆流色谱仪项目。 本次中标仪器: 半制备型高速逆流色谱仪TBE-300B 国产标配:TBE-300B + TBP-5002双柱塞恒流泵具体参数: 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 厂商简介: 上海同田生物是国内乃至全球唯一一家有着十余年高速逆流色谱仪开发制造史的高科技企业,公司致力于高速逆流色谱技术的研发推广,力争将高速逆流色谱技术应用到更广阔的制备色谱领域。点击这里了解更多! 上海同田生物 市场部2010.3.12
  • 上海同田中标白城师范学院高速逆流色谱仪项目
    3月上旬,国内顶级的逆流色谱仪供应商上海同田生物中标白城师范学院高速逆流色谱仪项目。 本次中标仪器: 半制备型高速逆流色谱仪TBE-300B国产标配:TBE-300B + TBP-5002双柱塞恒流泵具体参数: 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 厂商简介: 上海同田生物是国内乃至全球唯一一家有着十余年高速逆流色谱仪开发制造史的高科技企业,公司致力于高速逆流色谱技术的研发推广,力争将高速逆流色谱技术应用到更广阔的制备色谱领域。点击这里了解更多!上海同田 市场部2010.3.15
  • 上海同田中标哈尔滨医科大学高速逆流色谱仪项目
    2月底,逆流色谱行业领先的上海同田公司中标哈尔滨医科大学高速逆流色谱仪项目一套。中标仪器:TBE-300B+AKTA PRIME此配套设备是上海同田联合GE共同推出的半制备型高速逆流色谱仪 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 点击这里查看更多高速逆流色谱仪信息! 上海同田生物 市场部 2010.3.1
  • 有望提高2个数量级微流控介电泳分离通量!清华大学王文会Advanced Materials封面成果速递
    原标题:Advanced Materials封面文章:清华大学王文会课题组报道基于毛细作用的用于紧凑和高通量介电泳微流控的大阵列液态金属电极近日,清华大学精密仪器系王文会课题组提出了基于毛细作用的液态金属厚电极大阵列加工方法,并应用于微流控介电泳高通量分离。该方法可按需制备任何数量的液态金属厚电极图案,将现有介电泳分离通量提高1个数量级,并有潜能继续提高2个数量级。该成果近日以“毛细作用赋能的用于紧凑和高通量介电泳微流控的大阵列液态金属电极”(Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics)为题在期刊《先进材料》(Advanced Materials)上发表,并被选为封面(Front Cover)。 研究背景与成果 在生物技术、细胞生物学和生物医学分析中,高效分离生物粒子至关重要。传统使用标记的方法存在设备昂贵、耗时和对下游分析的潜在影响等问题。微流控技术中的介电泳(DEP)技术作为一种无标记方法,提供了可控、低损伤、低成本的分离方案。然而,DEP技术长期受到两方面限制,一是低通量的限制,难以满足实际临床样本的大样本量处理需求;二是多依赖于尺寸差异进行分离,难以分离尺寸相近的生物粒子。针对以上难题,清华大学精仪系仪器科学与技术研究所王文会课题组提出了一种独特的微电极加工方法,采用液态金属作为电极材料,通过在电极通道中设计不同阈值的毛细阀(CBVs)结构,从而实现对液态金属的精准控制,在紧凑的DEP微流控芯片中制造大阵列液态金属厚电极(图1)。实验证明,这种方法可以在拇指大小的空间中集成5000对液态金属厚电极。在100微升每分钟的高流速下,该芯片对流过5000对电极的PS微球产生显著的DEP累积作用(偏转40微米),通量是同类技术的10倍;并具备基于粒子介电性质差异与尺寸差异的高通量分离能力,突破了DEP对于尺寸相近的粒子样本难以分离的局限。 图1:基于毛细作用制备的大阵列液态金属厚电极微流控芯片技术成果展示本工作利用毛细阀(CBVs)提供的强大被动流体控制能力实现液态金属厚电极自组装(图2)。电极通道通过具有高阈值压强的小孔与样品通道连接,小孔作为截止阀防止液态金属进入样品通道。此外,每组电极行和列的交叉点处放置了中等阈值压强的CBVs结构,充当被动切换阀,能在液态金属流动时自动改变路径。根据所设计的结构,当液态金属注入电极通道时会按照预设路径自动填充满电极通道,形成紧凑的大阵列液态金属厚电极。由于每组电极在液态金属填充过程中具有相同的结构和工作条件,因此电极数量可以无限扩展。图2:基于毛细阀的液态金属电极阵列自组装工作流程制备液态金属厚电极只需要普通注射器手动完成,自组装过程方便快捷,成品率仅受芯片流道的质量影响。使用制备有5000对液态金属厚电极的微流控芯片,验证了粒子偏折的高通量能力。如图3所示,电极阵列对高速流过的PS微球施加介电泳推力,5000对液态金属厚电极的累积介电泳偏折(ADD)效应使得在最高100微升每分钟(约0.28 m/s)的高通量场景下仍能实现约40微米的DEP偏转,该通量是当前技术所能实现通量的10倍。图3:高通量介电泳PS微球偏折该芯片进一步用于分离各种混合样品,充分展示了其独特的能力和广泛的可用性。这些样品包括尺寸差异较明显的MCF7癌细胞和小鼠红细胞、尺寸相近的MCF7癌细胞和马白细胞、尺寸基本一致的HeLa癌细胞和A549人肺癌细胞,展示出芯片具有优异的基于介电性质差异和基于尺寸差异的分离能力。特别地,在模拟血液中CTCs分离的实验中,以尺寸相近的人体外周血单核细胞PBMCs和A549的混合样品为例,根据两种细胞的介电特性计算,选择100 kHz作为工作频率,使PBMCs受到负介电泳力,A549细胞受到正介电泳力。在实验过程中,样品流速保持在70微升每分钟,图4展示了芯片出口处在有无DEP作用对比下的细胞流线和概率密度分布,印证了A549细胞与PBMCs连续高速分离效果,展示出巨大的临床应用潜能。图4:高通量介电泳细胞分离值得强调的是,在原理展示的基础上,芯片电极数量和分离通量等指标还可以持续提升。电极结构可以灵活调整以适应特定的DEP应用场景需求,其数量根据需要可以无限扩展;在芯片制作采用更坚固的封装条件下,分离通量还可以提升多达2个量级。本工作提出了一种简便灵活的方法,在紧凑的微流控芯片中制备大阵列液态金属厚电极,通过介电泳在各电极对的累积作用效应,实现高通量生物样本(细胞)分离。基于毛细作用的液态金属填充通道的方法为液态金属自组装成为复杂的图案提供了新思路和新手段,其应用不局限于本研究中重点展示的微流控分离芯片,也可应用于其它需要液态金属电极图案的场合中,如柔性电子、功能材料等蓬勃发展的广大领域。本工作的完成单位为清华大学精密仪器系、精密测试技术与仪器全国重点实验室。精仪系博士研究生柴惠超为第一作者,精仪系王文会副教授与合肥工业大学黄亮副教授为共同通讯作者。中国人民解放军总医院吴其艳研究员、鞠忠建研究员、精仪系博士生朱焌文、丰泳翔、梁非为论文工作做出了重要贡献。本研究得到了国家自然科学基金的资助。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202310212
  • 上海同田中标内蒙古医学院高速逆流色谱仪
    国内顶级的逆流色谱仪供应商上海同田生物中标内蒙古医学院高速逆流色谱仪项目。本次中标仪器: 制备型高速逆流色谱仪TBE-1000A国产配置:高效逆流色谱议 TBE-1000A TBP-2H02 恒流泵 TBD-2000 四波长紫外检测器 溶剂选择软件 三分离柱设计,双六通阀设计,提供在线检测; 主机容量: 1000ml  进样体积:80ml 主机尺寸:628× 918× 1048mm 转速范围:0-600 转/分  分离转速:400-550 转/分(无级变频调速) 流速范围:0.1-90ml/min      分离流速:5.0-10ml/min 压力:0-2MPa 紫外检测器波长: 254 、 280nm (可选择更多波长)温控模块(接循环水浴):温度调控范围 15 ~ 40 ℃,精度 0.5 ℃ ,温控循环液量 1 ~ 2 0 L /min 制备量大,分离效果佳,重复性好;适合于生产工艺放大。厂商简介: 上海同田生物是国内乃至全球唯一一家有着十余年高速逆流色谱仪开发制造史的高科技企业,公司致力于高速逆流色谱技术的研发推广,力争将高速逆流色谱技术应用到更广阔的制备色谱领域。更多详细信息请点击这里!上海同田生物市场部2010.3.9
  • GE医疗中标西南地区高速逆流色谱仪项目两台
    本月,GE医疗中标成都医学院,四川农业大学高速逆流色仪项目两台;中标仪器简介:半制备型高速逆流色谱系统--TBE -300B -AKTA primeTBE300B-AKTA Prime是由上海同田生物和通用电气医疗集团共同推出的高速逆流色谱系统,该系统由TBE-300B和AKTA Prime组成,是不用任何固态载体的液-液分配色谱,尤其在天然产物有效成分的分离纯化中有独特的优势。一 主要指标: 双通道泵,可梯度洗脱,体系平衡快,提供在线检测,全自动收集; 三分离柱设计,双六通阀设计,配套自动收集器; 二 技术参数 电 源: 220V ± 20V 50 ± 0.5HZ   主机功率: 200 W 主机容量: 260ml  进样体积:20ml 主机尺寸:563× 638× 368mm 转速范围:0-1000 转/分     分离转速:700-1000 转/分(无级变频调速) 流速范围:0.1-30ml/min      分离流速:2.0-4.0ml/min; 压力:0-2MPa 紫外检测器波长:使用汞灯 - 滤光片选择 254 、 280nm ( 标配 ) 多种滤光片可选: 313 、 365 、 405 、 436 、 546nm( 选购 ) 温控模块(接循环水浴):温度调控范围 15 ~ 40 ℃,精度 0.5 ℃ ,温控循环液量 1 ~ 10 L /min 三 描述: TBE 系列采用三个螺旋柱串联连接,在高速转动时保持平衡,稳定,噪音小; 快速,操作简便,系统平衡不受溶剂体系改变的影响,工作稳定性高; 快速优化工艺;梯度洗脱,系统配置灵活;无不可逆吸附;回收率高。 四 其他 增设了一体化设计的温控模块,可精确控制分离的温度,有效提高实验的应用范围和重复性,拓宽溶剂体系的选择范围,有助于摸索最佳的实验条件; 对于对环境温度有严格要求的活性成分分离,更能发挥高速逆流色谱的优势;了解详细请点击这里! 上海同田市场部2010.7.7
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制