当前位置: 仪器信息网 > 行业主题 > >

悬浮物固定仪

仪器信息网悬浮物固定仪专题为您提供2024年最新悬浮物固定仪价格报价、厂家品牌的相关信息, 包括悬浮物固定仪参数、型号等,不管是国产,还是进口品牌的悬浮物固定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合悬浮物固定仪相关的耗材配件、试剂标物,还有悬浮物固定仪相关的最新资讯、资料,以及悬浮物固定仪相关的解决方案。

悬浮物固定仪相关的资讯

  • 悬浮物污泥浓度计是如何测量悬浮物浓度的
    悬浮物污泥浓度计是为测量市政污水或工业废水处理过程中悬浮物浓度而设计的在线分析仪表。无论是评估活性污泥和整个生物处理过程、分析净化处理后排放的废水还是检测不同阶段的污泥浓度,悬浮物污泥浓度计都能给出连续、准确的测量结果。   悬浮物污泥浓度计由变送器和传感器组成。传感器可以方便地安装在池内、排水管、压力管道或自然水体中,光电式污泥浓度计能自动补偿因污染而引起的干扰。传感器带有空气清洗功能,能根据预先设置的时间自动定时清洗,从而大大降低了仪器维护的工作量。   传感器上发射器发送的红外光在传输过程中经过被测物的吸收、反射和散射后仅有一小部分光线能照射到检测器上,透射光的透射率与被测污水的浓度有一定的关系,因此通过测量透射光的透射率就可以计算出污水的浓度。   四光束技术利用两个发射器和两个检测器,每个发射器发送的光线经过透射后照射到两个检测器上,这样就产生一系列的光路,得到一个数据矩阵,然后通过分析这些数据信号,即可得到介质中悬浮物的准确浓度,并能有效消除干扰,补偿因污染产生的偏差,使仪器能在较恶劣的环境中工作。   传感器的校准:   悬浮物(污泥浓度)传感器在出厂前已经经过校准,若需要自行校准可以按照如下步骤进行。悬浮物(污泥浓度)校准要求使用标准液,通过校正菜单,可以进行二点或者四点校正。以两点为例,具体步骤如下:   1)将传感器连接至变送器。   2)设置好相关参数(进入“校正”菜单,然后选择“校准方式”中选择“因子”   模式,将因子设为1),并擦净传感器。   3)将探头放入头一点标液中(一般将纯水作为头一点),待数据稳定后,读取   测量的实际值并记录数据。
  • 陆恒生物发布陆恒悬浮物浊度检测仪LH-XZ03新品
    测定参数 浊度 悬浮物量程范围 0-1000NTU 0-1000mg/L示值误差 ±0.3NTU或±8% ±0.3NTU或±8%重复性 10NTUN, ±0.1NTU; ≥10NTUB, ±1%; 10mg/Lly, ±0.1mg/L; ≥10mg/Ll, ±1%; 标定方式 4点校准(最多8点校准 一点校准零点漂移 ≤±0.3%FS/30分钟工作温度 5-40°C 存储温度 -10-55°C 湿度 0-80%RH 供电 锂电池防护等级 IP65 尺寸 170×72×44mm 重量 290g如何使用仪器?1.加入待测溶液10ml,以上,拧紧瓶盖。2.通过静置、超声、真空等方式,消除气泡 。3.用软布或者擦镜纸擦拭瓶身。4.将比色瓶放入比色槽内,比色瓶的丝印“△”要和比色槽边上的“△”对准。5.电极读数进入正在检测界面。6.检测结果显示,点击“返回”则返回主界面点击“读取”则进行下一次检测。创新点:仪器内部设置滤光片,可以减少光源带来的误差。便携式设计携带更加方便,采用可充电电池设计,更加方便。IP65级防水,性能更好更稳定。陆恒悬浮物浊度检测仪LH-XZ03
  • 【案例】71套在线悬浮物分析仪(innoCon6800T)用于深圳水务集团坪山河河道排水监测项目
    安装时间:2019年12月安装地点:深圳坪山河仪表品牌:英国jensprima(杰普)仪表型号:innoCon6800T+innoSens810T深圳市水务(集团)有限公司(以下简称深圳水务集团)是集自来水生产及输配业务、污水收集处理及排放业务、水务投资及运营、水务设施设计及建设等业务为一体的大型综合水务服务商。承担着深圳市97%的供水业务以及特区内99%的污水处理业务,供水能力达到771万吨/天,居全国首位,同时污水处理能力居全国前列,公司的供水能力、技术服务、生产质量广受认可!项目简介: 现场安装图:英国jensprima杰普仪器在这次河道监测项目中提供了71套innoCon6800T在线悬浮物(SS)分析仪,仪表配备进口传感器,采用斜面设计,有效的保障了河道水质监测的数值准确。而且为了满足客户实际使用要求:包括电缆线不同规格的延长、安装方式、河道流速等等因素,我们私人订制的为客户提供了多种解决方案,反复进行测试,并且派出技术人员到现场安装调试,并对现场相关的仪表维护人员进行培训,保证了产品的正常运行,客户对杰普仪器的售前、售中、售后服务比较满意,后续也会继续采购我司的产品。技术人员现场培训: 杰普仪器将继续努力为客户提供性价比更高、更能满足客户测量需求的产品,2020年我们会陆续推出一些新的产品,欢迎大家继续关注我们杰普仪器,共同成长、合作共赢! 案例提供: 售后 曹工
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法—— HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。  首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。  一.早期使用的气相色谱固定液  气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。  马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。  后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。  1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。  为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。  在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。表1 McReynolds 固定液表  说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶  McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。  McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。  后来Hawkes推荐的较常用的气液色谱固定液有下列一些:  (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)  (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 ( 含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。  他还推荐了最常用的 6 种气相色谱固定液如下表2。表2 最常用的6种气相色谱固定液  自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。  有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。  二、硅氧烷是现时气相色谱固定液的主体  尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。  (一)热稳定性好的固定液  目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。  (1)耐高温聚二甲基硅氧烷  有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。  前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。  (2)使用交联的聚硅氧烷固定液提高其热稳定性  在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。  (a)引入乙烯基  早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。  (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合  1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。  (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性  在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1:图1 硅氧烷/硅亚芳基共聚物结构  其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据  (4) 在聚硅氧烷链中引入硼烷提高热稳定性  在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。  Dexsil有三个品种及其结构和极性如下表4:表4 三个品种Dexsil的结构及极性  HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2:图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图  色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m  载气:氦,18 mL/min, 在 35下测定  拄温:30-430 ℃,程序升温,10℃/min  检测器温度:FID 450 ℃  三、极性固定液  小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。图3 使用DB-17ms分析22种杀虫剂的色谱图  另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱)图4 DB-1701 分离22种杀虫剂的色谱图  各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。表5 五类典型气相色谱固定液的使用情况  四、选择性固定液  选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。  第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。表6 ASTEK公司的9种环糊精衍生物毛细管商品柱  五、近年商品柱所使用的新固定液  近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。  室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。表7 几种商品离子液体固定相的极性(Supelco公司)  *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性  小结:  气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)  (作者:北京理工大学傅若农教授)
  • 生态环境部发布《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)》等两项国家生态环境标准征求意见稿
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》等法律法规,规范环境空气颗粒物来源解析工作,我部组织编制了《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则》等两项国家生态环境标准,现公开征求意见。征求意见稿及其编制说明可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见建议。请于2024年2月29日前将意见书面反馈我部,电子版材料请同时发送至联系人邮箱。  联系人:生态环境部大气环境司谢燕红  电话:(010)65645562  传真:(010)65645567  邮箱:daqichu@mee.gov.cn  地址:北京市东城区东长安街12号(邮编:100006)  附件:  1.征求意见单位名单  2.环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)  3.《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)》编制说明  4.环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)  5.《环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)》编制说明  生态环境部办公厅  2024年1月26日  (此件社会公开)
  • 《固定污染源废气 气态污染物的测定 便携式傅立叶变换红外光谱法》国标来了
    生态环境部近日发布了《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653—2021)《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法》(HJ 1240-2021)两项 国家生态环境标准,自2022年6月1日起实施。关于发布《环境空气颗粒物(PM 10 和PM 2.5 )连续自动监测系统技术要求及检测方法》等两项国家生态环境标准的公告为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,现批准《环境空气颗粒物(PM 10 和PM 2.5 )连续自动监测系统技术要求及检测方法》等两项标准为国家生态环境标准,并予发布。标准名称、编号如下。一、《环境空气颗粒物(PM 10 和PM 2.5 )连续自动监测系统技术要求及检测方法》(HJ 653-2021)二、《固定污染源废气 气态污染物(SO 2 、NO、NO 2 、CO、CO 2 )的测定 便携式傅立叶变换红外光谱法》(HJ 1240-2021)以上标准自2022年6月1日起实施。标准内容可在生态环境部网站(http://www.mee.gov.cn)查询。生态环境部2021年12月30日生态环境部办公厅2021年12月30日印发《固定污染源废气 气态污染物的测定 便携式傅立叶变换红外光谱法》.pdf
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • 崂应助力2016年固定污染源低浓度颗粒物手工监测培训班
    为提高国家固定污染源低浓度颗粒物手工监测技术水平,根据环保部2016年度业务培训计划,中国环境监测总站于2016年11月29日到12月1日,在环保部北京会议与培训基地举办了2016年固定污染源低浓度颗粒物手工监测培训班。青岛崂应相关技术人员有幸以授课主讲的身份为此次培训班服务。参与此次培训的学员主要包括各省、自治区、直辖市环境监测中心(站),新疆生产建设兵团环境监测中心站固定污染源废气监测技术人员等共计80余人。培训的内容涵盖了低浓度颗粒物标准内容、环节要点及质控措施;现场采样操作及质控行为、在线仪器检测、调试、验收时的手工比对流程和要求等,旨在通过从理论基础到操作细节的全面深入培训,切实提高一线技术人员的理论水平和操作人员的动手能力,兼承2016年工作之总结,顺启2017环保之新序。 培训班现场崂应在此次培训班中主要担任了“低浓度颗粒物采样器和采样枪的结构”及“设计和低浓度颗粒物采样技术要点”的主讲任务。“崂应3012H-D型 便携式大流量低浓度烟尘自动测试仪”与“崂应1085D型 低浓度烟尘多功能取样管”等相关产品曾获得多个奖项,而崂应也曾多次为客户提供完备的低浓度颗粒物采样的技术解决方案,在相关领域有着极为丰富的理论和实践经验。此次授课中,崂应主讲人员从实际出发,深入浅出,通俗易懂的讲解,配合大量的事实依据和数据支持,获得了一众学员的广泛认可。 崂应副总经理王启燕讲课现场 学员与崂应王启燕交流沟通能够应邀参与中国环境监测总站培训班的主讲工作,充分说明了中国环境监测总站领导对于崂应的认可,这对于崂应人而言,无疑是值得骄傲的;在过去,崂应人孜孜不倦的以“为国家服务”为经营宗旨,默默无闻的奉献和耕耘;在未来的环保大潮中,崂应人将一如既往,奏响凯歌,扬帆远航!
  • 《山东省固定污染源 低浓度颗粒物的测定 重量法》正式发布实施
    2014年9月22日,由山东省环境监测中心站等单位编制的《山东省固定污染源废气 低浓度颗粒物的测定 重量法》(DB37/T 2537-2014)正式发布实施。此前山东省环境保护厅与山东省质量技术监督局组织召开了该方法标准专家审查会,与会专家一致同意通过审查。该方法标准是我国首次发布实施的低浓度颗粒物测定方法标准,也是山东省首次制定环境保护监测方法标准。标准规定了测定固定污染源废气中低浓度颗粒物的手工重量法,扩展了相关国家标准中低浓度颗粒物的测定方法。经现场验证,该方法操作性强,适用于固定污染源低浓度颗粒物的测定。标准的制定实施对于山东省乃至全国做好燃煤电厂超低排放技术应用试点新技术推广以及加快推进大气污染防治工作具有非常重要的意义。 来源:山东省环境监测中心站
  • 关于固定污染源低浓度颗粒物测定方法标准,你应该知道的几件事
    p  span style="color: rgb(0, 112, 192) "为什么要针对低浓度颗粒物测定制定一个新标准?/span/pp  目前,许多地方已根据政府工作报告中提出的“推进燃煤电厂低浓度排放改造”要求,确定了相关规定,明确颗粒物排放不得高于 10 mg/m3,某些省份规定不得高于 5 mg/m3。/pp  我国现阶段颗粒物监测方法采用GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,在颗粒物浓度较低、烟气湿度较大的情况下,此方法易造成监测结果不准确,主要原因是:(1)沉积在采样嘴及采样管前段的颗粒物无法回收,导致结果偏低 (2)在湿烟气情况下长时间采样容易造成滤筒纤维损失或破损,产生的误差降低颗粒物采样准确度。/pp  为解决这些问题,满足现行污染源排放的监测需求,总站制定了《固定污染源废气 低浓度颗粒物测定 重量法》标准。/pp  span style="color: rgb(0, 112, 192) "低浓度颗粒物方法标准的技术路线是什么?/span/pp  标准的技术路线为“烟道内过滤-恒温恒湿平衡-整体称重”。/pp  烟道内过滤,就是在烟道或烟囱内对颗粒物进行等速采样,并将颗粒物截留在位于烟道或烟囱内的过滤介质上的方法。目前国际上主要有烟道内过滤和烟道外过滤两种方式,和烟道内过滤比,烟道外过滤存在仪器结构复杂,方法检出限高,现场工作量较大的缺点。/pp  恒温恒湿平衡,就是样品在采样前后要在温度20± 1℃、湿度50± 5% RH的状况下稳定后称量,和以往的冷却干燥称量方式相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性。/pp  整体称重,就是将滤膜封装在金属采样头内采样,并将采样头整体在采样前后进行称量的方式。这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样品得到回收。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/c5fe7ff7-4aee-43fc-9f79-1fb023f4b0ec.jpg" title="微信图片_20170706105924.png"//pp style="text-align: center "整体式采样头结构图/pp  span style="color: rgb(0, 112, 192) "这个标准的方法检出限是多少?/span/pp  当采样体积为 1 m3(标准状态下的干废气)时,本标准方法检出限为 1.0 mg/m3。/pp  span style="color: rgb(0, 112, 192) "什么是测量系列?/span/pp  本标准提出了测量系列的概念,测量系列指在工况基本相同、污染处理设施保持稳定运行的条件下,在同一采样平面内进行的一系列测量。也即是说,测量系列内的样品,采集时的锅炉和污染处理设施运行是基本相同的。/pp  span style="color: rgb(0, 112, 192) "什么是全程序空白?它有什么意义?/span/pp  本标准提出了全程序空白的概念,全程序空白指除采样过程中采样嘴背对气流不采集废气外,其它操作与实际样品操作完全相同获得的样品。/pp  采样全程序空白时,采样嘴应背对废气气流方向,采样管在烟道中放置时间和移动方式与实际采样相同。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。为防止在采集全程序空白过程中空气或废气进入采样系统,必须断开采样管与采样器主机的连接,密封采样管末端接口。/pp  全程序空白是一种质控措施,是衡量样品在测定过程中是否受到污染的一种手段。任何低于全程序空白增重的样品均无效。全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。另外,颗粒物浓度低于方法检出限时,对应的全程序空白增重应不高于 0.5 mg,失重应不多于 0.5 mg。/pp  span style="color: rgb(0, 112, 192) "什么是同步双样?同步双样的意义是什么?/span/pp  本标准提出了同步双样的概念,可作为衡量测定是否准确的一种质控措施。同步双样是指固定污染源颗粒物测量过程中,使用同一测量系列(使用同一采样孔采样时)或在同一时间使用两个对称的测量系列(使用不同的采样孔时)得到的两个样品。/pp  也就是说,同步双样的两个样品在采集过程中的任何时刻均处于大致相同的位置(同一采样孔)或烟气状态基本相同、对于烟道采样平面基本对称的位置(不同采样孔)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/632eeb9a-5c45-4487-9709-3c4efa06f35d.jpg" title="微信图片_20170706105930.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/3746759c-aebf-4554-acf4-fc2c9109524d.jpg" title="微信图片_20170706105934.jpg"//pp style="text-align: center "strong采样头现场安装/strong/p
  • 青岛容广发布固定汚染源挥发性有机物采样器新品
    R G K - 3 0 0便携式大气采样器主要应用于大气中挥发性有机化合物(V O C s)的采样。采样器可以连续定时进行顺序采样,设置一次数据最多可采集1 2个样品;采集平行样品,设置一次数据最多可采集6组平行样品。仪器整体设计紧凑, 小型轻便, 方便实用,操作简单。H J / T 1 9 4《环境空气质量手工监测技术规范》H J 6 4 4 - 2 0 1 3《环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法》(1)体积小巧,便于携带,易于使用,适用于现场采样。(2)4 . 3寸触摸屏显示,分辨率4 8 0 * 2 7 2。(3)采样器选用吸附管采样,采样模式自由选择:平行采样,序列采样。(4)采样器每路安装有1个候补吸附管,用于检测所采集数据是否有效。(5)采用交直流两用供电电源。当现场不具备A C 2 2 0 V供电条件时,可以用内部电池供电。内部电池在满电状态下至少可供仪器使用2小时。(6)采样时,泵控制的采样流量为(1 0~2 0 0)m l / m i n之间,保持恒定采样。(7)流量采用质量流量计控制,精确度高,误差低于5 %。(8)吸附管连接采用四氟乙烯材料,防止材料挥发或吸附有机物。(9)可顺序采集1 2个样品,或平行采集6组样品。(1 0)符合国际E P A标准。(1)采样流量范围:( 1 0~2 0 0 ) m l / m i n(2)采样流量示值误差:≤±5 %(3)采样流量重复性:≤2 %(4)采样方式:吸附管(5)连续采样工作一小时,采样器流量稳定性:≤5 %(6)环境湿度:≤8 5 %(7)环境温度:( - 1 0~4 0 )℃(8)吸附管连接材质:四氟乙烯(9)显示方式:触摸显示屏(1 0)工作电源:( A C 2 2 0 V±1 0 % ) / 5 0 H z,内置锂电池,2 4 V / 6 A H创新点:吸附管法VOC采样器,可根据客户指定成多路VOC采样设备固定汚染源挥发性有机物采样器
  • 水中硫化物的测定 你要注意这些“东西”
    试剂的影响1实验用水将蒸馏水新煮沸并加盖冷却,所有实验用水均为无二氧化碳水。2硫酸铁铵溶液的配制配制硫酸铁铵溶液,常常出现不溶物或混浊现象,应过滤后使用。3显色剂的使用显色剂质量的好坏是整个分析过程的关键。对氨基二甲基苯胺盐酸盐为白色粉末,酸性溶液为无色透明液体,冰箱保存时间较长。存放时间过长的对氨基二甲基苯胺盐酸盐因被空气氧化,为黑色,配制出的溶液为褐色,空白值偏高,且很快变为蓝色失效。失效的蓝色显色剂不和硫离子作用生成亚甲蓝,用失效的蓝色显色剂测定硫化物会导致严重错误监测结果。4硫化钠标准溶液用于配制标准溶液的硫化钠,其结晶表面常含亚硫酸盐,从而造成测定误差,所以用水淋洗要称量的硫化钠其除去亚硫酸盐。5硫化钠标准使用溶液在配制使用液以及标准样品时,在容量瓶中加入乙酸锌-乙酸钠后,容量瓶内会出现较大絮状悬浊液。在取用已经稀释的标准样品前,必须将容量瓶摇晃使样品均匀,否则由于样品不均匀产生测定误差。水样保存过程中的影响由于硫离子很容易氧化,硫化氢易从水样中逸出。采样时每100 mL水样加0.3 mL1 mol/L的乙酸锌,摇匀,放置3~5 min,使水样中游离的S2-与Zn2+充分反应,生成ZnS悬浮物。再滴加0.6 mL1 mol/L的氢氧化钠溶液,使水样的pH值在10~12之间。加氢氧化钠一是使水样中的H2S、HS-转化成S2-,二是生成Zn(OH)2絮状沉淀,这种絮状物有吸附作用,在沉淀过程中吸附ZnS共沉淀,达到现场固定目的。不要加过多氢氧化钠,否则生成沉淀,取样时不易摇匀造成误差。进行预处理取样时,一定充分摇匀已固定的样品,使预处理样品均匀,真实代表水样。样品预处理过程中的影响水样中的还原性物质都能阻止氨基二甲基苯胺与硫离子的显色反应而干扰测定;悬浮物、色度等也对硫化物的测定产生干扰。所以需对样品进行预处理。最常用的是酸化吹气法。吹气时,氮气纯度应大于99.99%,否则,空白值增大;整个吹气装置密封性必须好,接口处应用标准磨口,否则漏气影响测定结果的准确度;水浴锅温度要保持60~70 ℃,水温过高而室温较凉时,反应瓶内上部壁上沾有水雾将吸收少量硫化氢气体,影响测定结果准确度;注意磷酸的质量,当磷酸中含有氧化性物质时,可使测定结果偏低。样品分析过程中的影响预处理过的含硫离子的水样与对氨基二甲基苯胺的酸性溶液混合,加入Fe3+后,溶液先变成红色,生成中间体化合物,继而生成蓝色的亚甲基兰染料。酸度影响亚甲基兰染料的生成,所以水样的测定必须与校准曲线相同;显色时,加入的两种试剂(对氨基二甲基苯胺溶液与硫酸铁铵溶液)均含有硫酸,应沿管壁徐徐加入,并加塞混匀,避免硫化氢逸出而损失;文献报道亚甲基蓝分光光度法测定硫化物标准样品时,实验的温度选择在18~22 ℃为宜,随着显色温度的增高或降低,亚甲基兰的吸光度均降低;试剂加入顺序不能颠倒,否则,显色度明显降低。
  • 实现监管全覆盖!全国330多万个固定污染源全部纳入排污许可管理
    中共中央宣传部5月12日在京举行“中国这十年”系列主题新闻发布会。生态环境部副部长叶民与中央财办、国家发改委、科技部、商务部、中国人民银行相关负责人一起,围绕经济和生态文明领域建设与改革情况,回答了媒体提问。发布会介绍了“中国这十年”经济和生态文明领域建设与改革基本情况。党的十八大以来的十年是扎实推进绿色发展的十年,是我国经济体制和生态文明体制不断改革完善的十年,我国的生态环境状况实现了历史性的转折,雾霾天气和黑臭水体越来越少,蓝天白云、绿水青山越来越多。  关于构建现代环境治理体系的进展情况,叶民介绍,生态环境治理体系是国家治理体系和治理能力现代化建设的重要内容,也是实现美丽中国目标的重要制度保障。其中,在健全市场机制方面,全国碳排放权交易市场启动上线交易,绿色财税金融作用不断增强;在引导企业责任方面,将全国330多万个固定污染源纳入排污管理,引导企业低碳绿色转型发展。   关于推进排污许可制改革方面的工作,一是建立体系,将排污许可制度纳入多部法律;二是全面覆盖,将全国330多万个固定污染源全部纳入排污许可管理,实现了排污许可环境监管的全覆盖;三是融合制度,对40多个排污量比较小的行业,将环评登记与排污许可登记管理合并,稳步推动排污许可与各项制度衔接;四是严格监管,2021年共查处排污许可案件3500多件,罚款超过3亿元;五是做好服务,建成全国统一的固定污染源排污许可管理信息平台,实现一网通办、跨省通办、全程网办。下一步,生态环境部将以排污许可制为核心,积极衔接各项固定污染源环境管理制度,贯彻落实《关于加强排污许可执法监管的指导意见》,全面推进“一证式”管理,努力构建企业持证排污、政府依法监管、社会共同监督的执法新格局。
  • 固定源颗粒物空白样怎么采最省时省力?崂应有妙招!
    什么是全程序空白?在HJ 836-2017《固定污染源废气 低浓度颗粒物的测定 重量法》(以下简称“HJ836”)中针对“全程序空白”给出了明确的定义,并且要求全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。关于全程序空白样的采集,当前存在的困难主要有:1、大多数工况受条件限制,无法再开孔进行同步测量,单独采集全程序空白样需要额外增加采样时间2、对于少数具备条件的工况,要想节约空白样采集的时间,就需要两套设备、两套人员同步进行,额外增加人力物力成本崂应解决方案为了有效解决以上客户困扰,崂应特别研发了“空白样取样支架”,可以帮助您在采集正常样品时,同步进行空白样采集,极大地节约采样时间,降低劳动强度。崂应空白样取样支架主要用于固定污染源废气低浓度颗粒物采样时,采集全程序空白使用。
  • 微反应、固定床、釜式反应器杂化,实现硝化、加氢、环化、还原全连续
    个前言在化学合成中,每一步反应都有其独特性。对应于其独特性,化学化工研究者需要寻找合适的反应器来研究其工艺参数,实现放大生产。今天给大家介绍一篇多步反应全连续的文章。作者应用微反应器、固定床反应器以及釜式反应器杂化,实现硝化、加氢、环化、还原全连续操作,实现了Afizagabar (S44819)关键中间体的连续生产。研究背景Afizagabar (S44819) 是一种首创的、有竞争性和选择性的 α5-GABAAR 拮抗剂。由于临床研究需要相对较高的剂量,在产品的开发阶段需要生产约150kg的Afizagabar。然而,在釜式工艺放大的过程中,特别是在硝化和氢化的步骤中,安全及放大问题阻碍了产品生产的进程。图1. Afizagabar方程式研究过程Afizagabar(S44819)的合成,涉及了两个关键中间体INT15和INT23 ,如图2所示,两者经过一系列反应最终合成产品S44819。图2. Afizagabar(S44819)合成路线INT15的合成过程:原料STM1先硝化后得到中间体11,中间体11经过Dakin−West反应、还原得到中间体13,中间体13关环、再经过硼氢化钠还原得到关键中间体INT15。本文主要介绍INT15的多步串联合成研究过程。一. 硝化工艺过程研究1. 釜式硝化工艺研究合成INT15的第一步硝化,釜式工艺是以硝酸-硫酸混酸为硝化剂,反应时间50−90分钟。但当温度升高,会生成危险的二硝基衍生物而安全风险大。硝化反应放热量大,步骤本身的反应热存在安全风险。而且后续步骤的反应热也存在安全风险。从DSC数据可知(图3),中间体11和中间体12的分解能量非常的高, (ΔHINT11 = −745 J/g, onset: 205 °C ΔHINT12 = −1394 J/g, onset: 187 °C),如果发生分解那么后果将会变得非常严重。图3. 中间体11和中间体12的DSC谱图2. 微反应连续硝化工艺研究作者对传统的硝化工艺进行了重新设计,使用微反应器代替间歇釜来实现硝化过程。图4.连续流硝化反应作者选用硝酸(HNO3)和冰醋酸(AcOH)作为硝化剂,对连续反应条件做了优化。通过实验得到硝化步骤的操作参数范围为:温度为35~45℃,停留时间30S,流速范围为1-6mL/min,反应转化率接近100%。该连续流工艺与传统釜式工艺相比:连续流微反应反应时间大大缩短(由釜式50−90分钟缩短到30秒);连续流无低温操作,节省能耗(微反应可以在35~45℃下进行,釜式在-65°C下进行);反应可控性好,易于放大;消除了二硝的产生,生产的安全性大大提升。二. 固定床加氢过程研究图5. 氢化步骤反应方程式针对INT12加氢的过程,作者采用了固定床工艺。作者选用Pd/Al2O3做为催化剂,在固定化床式加氢反应器中进行反应,通过加入HCL将INT13分批成盐的方式解决其不稳定的问题。并且,作者打通了微反应器硝化和固定床反应器氢化的两步连续过程。同时,为了减少单元操作和溶剂置换工序,作者对氢化、关环以及还原步骤的溶剂进行了优化。表1.不同溶剂对氢化和环化反应的影响研究发现,使用四氢呋喃/二氯甲烷/乙腈体系不仅有很高的氢化以及环化的转化率,而且可以将硝化、氢化、环合以及还原工序串联,实现连续化生产。多步反应全连续,溶剂的选择往往是成败的关键。三. 多步串联合成中间体INT15图6. 连续串联合成中间体INT5工艺流程图作者选用微通道反应器、固定化床加氢反应器、釜式反应器杂化的方式,经过溶剂筛选、工艺条件优化,将硝化、氢化、环化、还原反应步骤串联,中间不经过分离,实现了多步反应的全连续(图6)。多步全连续工艺不仅可以减少操作步骤,而且生产效率大幅度提高。串联后,实验室规模稳定运行5小时,并以11.95g/h的通量得到97.1%纯度的INT15。实验小结连续流技术改变了药物研究的时空产率,有了更广的参数窗口。与在线分析仪器的良好的兼容性,可以更好地实现自动化和智能化,有助于提高研发效率和快速转化,从而获得更好的技术优势;微通道连续流技术,由于其较低的持液量、强大的传质和换热能力,对于在传统间歇生产模式下具有安全风险的反应,例如涉及剧毒试剂、不稳定中间体的反应,具有较好的优势;此外,连续流生产是降低API合成工艺放大的有效工具,可以更快地应对市场变化,节省中试放大成本,提升企业的竞争力。参考文献:Org. Process Res. Dev. 2022, 26, 1223−1235编者语康宁反应器模块化的组装方式和开放的接口,非常适合与其他类型的反应器、在线检测设备以及后处理装置联用。康宁反应器无缝放大的技术,可以帮助客户实现更高效的工业化生产,尤其是硝化、加氢、重氮化、卤化等危险反应工艺。在过去的几年中,康宁已实施了多套杂化的多步连续工艺,帮助客户实现了传统间歇反应釜工艺向连续流技术的升级和改造,取得了非常好的社会效应和经济效应。
  • 废水处理厂如何节省测量浊度和总悬浮固体的时间和成本
    某家公司的废水处理厂是为600万人口设计的,每年处理、清洁和排放的废水超过1.2亿立方米(42亿立方英尺)。▲ 在水池侧安装的IQ SensorNet 2020 XT终端提供持续的过程监控该处理厂主要处理来自这个公司的生产废水,以及来自三个相连城市的城市废水,这三个城市的人口大约225,000人。由于其来源和成分,这个废水处理厂的废水流入物是一种比市政的单一工厂的流入物更难清洁的混合物。这意味,无论是对于工厂操作,还是随后用于帮助监控和控制过程的仪表选择,都必须满足特别高的排放限值要求。在给定条件下,设备所需的浊度测量要求严格,以确保合规性并提高工艺效率。测量任务浊度水平连续监测是确定最佳工艺操作的关键指标。报警功能对于识别液压过载的存在和早期检测以解离形式出现的不稳定生物变化至关重要。监控过程中稳定准确的可靠系统对于该过程的正常运行至关重要。测量位置所选定位置是处理厂的最终出水,在最终沉淀和机械污泥清理后。传感器安装在净水井的6米(19.6 英尺)深度。挑战由于废水的特殊成分,生物群落非常丰富,这导致在原本光滑的表面上,微生物膜更快地形成。这种累积或生物淤积会对用于监控过程的ViSolid 和 VisoTurb 传感器的光学测量窗口有负面影响。废水处理厂取样位置的石灰含量也带来了额外的测量挑战。随着生物污垢产生,污垢层无法通过机械清洁刷系统永久去除。这造成了大量的维护以及数据不准确。实际上,这意味着操作员几乎每天都要执行维护工作。解决方案传统清洁刷系统被证明是不可靠的,并会导致过多的维护量。必须找到一种替代步骤来保持传感器清洁。已测试带有集成超声波清洗功能的浊度 (VisoTurb) 传感器和总悬浮固体 (ViSolid) 传感器。集成的超声波源产生高频率振荡,从而显著减少或完全防止在光学窗口上积聚生物污垢。▲ ViSolid 和 VisoTurb 的超声波清洗功能可防止光学传感器结垢。它们安装在净水井中,以监控工厂出水。结果对于在这种困难条件下的应用,带有超声波清洗系统的传感器被证明能够成功消除生物污垢。与通常必须每天清洁的带有机械清洁刷系统的传感器(以及没有清洁刷系统)的传感器相比,VisoTurb 传感器(根据DIN标准方法进行浊度测量)可以可靠准确地测量四周以上。在这段时间之后,由于系统的高污垢特性,也需要手动清洁传感器。▲ 用于浊度和悬浮固体测量的光学传感器是废水应用的理想选择。此处显示了 VisoTurb 浊度传感器在连续运行30天后的状况。左方图像显示了带有超声波清洁系统的传感器,右方图像为未使用清洁系统的相同设置的传感器。在此特殊应用中,ViSolid 总悬浮固体传感器(采用比DIN标准规定的锐角更小角度测量浊度)能够可靠地测量,并且超过六周时间不需额外的手动清洁。结论两款传感器,连同连续监测终端IQ SensorNet 2020 XT都非常适合废水处理应用。超声波清洁功能是一个显著优势,大大减少维护需求,从而节省时间和成本。在这个位置,遵循浊DIN标准的要求是不必要的,因此将使用ViSolid 传感器替代现有浊度传感器,ViSolid 传感器被验证是最能抵抗极端生物污染的传感器。这种独特的应用,大大降低了维护和相关成本。数据的准确性和可靠性显着提高。
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
  • 【安捷伦】“拎包入住”式应用解决方案 | 轻松解决固定污染源中的苯系物检测/升级改造您的气相色谱仪
    “拎包入住”式应用解决方案轻松解决固定污染源中的苯系物检测/升级改造您的安捷伦气相色谱仪苯系物包括全部芳香族化合物,狭义上的特指包括BTEX在内的在人类生产生活环境中有一定分布并对人体造成危害的含苯环化合物。由于生产及生活污染,苯系物可在人类居住和生存环境中广泛检出,并对人体的血液、神经、生殖系统具有较强危害。因此很多国家把大气中苯系物的浓度作为大气环境常规监测的内容之一,并规定了严格的室内外空气质量标准和污染源排放标准。2022年7月14日我国首次发布了《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),并即将于2023年1月15日全面实施。标准采用直接进样结合毛细管色谱柱,用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB16297-1996)等13项污染物排放标准实施。安捷伦自成立以来一直致力于可持续发展和环境保护,为环境检测提供了大气、水污染、土壤等众多应用解决方案,为环境监测单位和环境检测企业提供硬件设备、技术培训、应用支持和一站式应用解决方案服务。针对《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),安捷伦结合用户实际需求,定制专属的固定污染源废气中苯系物的测定应用解决方案,不论您是购买全新安捷伦8890/60系列气相色谱仪,还是基于原有安捷伦气相色谱仪进行升级改造+工厂级别的深度维护或翻新(原有仪器焕然一新),亦或单独进行升级改造,均能实现最快速的达到标准方法的检测要求。无论您原有的气相色谱是6890、7890、7820、8890、8860系列均可升级改造,并完全适用HJ1261-2022标准方法检测要求。(图二)标准色谱图安捷伦阀气体进样技术,拥有极好的准确性和重复性,并支持多种进样方式,无论是气体采样袋手动进样,还是气体自动进样器进样和在线监测连续进样,均能轻松实现。结合安捷伦专利技术聚乙二醇毛细管色谱柱,提供良好的乙苯、间对二甲苯分离效果和较好的保留时间重复性。工程师现场对方法调试、验证,并针对方法进行系统的操作培训,让您轻松应对全新标准。(图三)用户气体进样装置改造实例联系我们即可定制您的专属应用解决方案我们也提供专属GC升级改造方案进行PAMS和VOCs、温室气体、非甲烷总烃、CO2还原气分析、N2检测等各种应用升级改造检测方案关注安捷伦微信公众号,获取更多市场资讯
  • 固定污染源单组分挥发性有机物(VOCs)分析方案(下)-北京博赛德
    在固定污染源单组分挥发性有机物(VOCs)分析方案(中)-中我们讨论了 固定污染源单组分挥发性有机物(VOCs)分析难点及常见问题以及造成的原因。今天我们继续分享一些解决办法和方案,希望给到广大环境监测机构和企业一些思路。4 方法依据和解决方案为了满足固定污染源的监测需求,结合多个已经颁布的相关标准,北京博赛德科技有限公司针对该方法面临的难点,提供了多方面的解决思路,使方法更稳定,适用性更强。《固定污染源废气VOC的采样 气袋法》 HJ732-2014《固定源废气监测技术规范》 HJ/T 397-2007《固定污染源废气 VOCs 的测定气相色谱-质谱法》DB 50/T 679—20164.1 采样真实性方法用玻璃真空瓶采样,废气中所有组分都被采集,样品更真实,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。4.2 高沸点物质进样时的残留尽管玻璃材质本身惰性无吸附,但高沸点组分在常温下会产生凝结现象,因此本方法可选自动加热进样功能,提高高沸点物质的进样效率,大大降低了吸附。4.3 高沸点物质在整体系统内的残留4.3.1小体积定量环进样满足污染源的定量范围,又避免了污染物过量对系统造成的污染。4.3.2空阱聚焦空阱聚焦,可保证高沸点物质快速释放。4.4 自动添加内标方法可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。4.5 内标添加方式 方法采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致。4.6 扩展功能方法可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。5 结果展示 由谱图可见,高沸点物质灵敏度高。经方法验证数据可知,所有可测组分精密度高、准确度合格。烷烃、烯烃、芳香烃、卤代烃类组分响应稳定,检出限低;醛、酮、酯类物质检出限虽高于烃类物质,但响应稳定,可准确检测中低浓度以上的该类化合物。6 结论空气中挥发性有机物检测。本方法用玻璃真空瓶采样,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。可自动加热进样,大大降低了高沸点物质的吸附。小体积定量环进样,空阱聚焦,可保证高沸点物质快速释放,提高灵敏度。可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致,内标可准确反映样品在系统内的状态,增加检测的准确性。可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。 希望这篇纷享方案为全国的环境监测机构、各企业自查自检提供一些的支持,早日实现低碳环保的生态环境。
  • 关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知
    p  7月5日上海市环境保护局发布关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知,内容如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/45b659d1-949c-4eae-aeae-5e983777b457.jpg" title="上海市环境保护局_副本.jpg"//pp style="text-align: center " 关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知/pp style="text-align: center "沪环保总〔2018201820182018〕231 号/pp  各区环保局,各有关单位:/pp  根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,在完成试点工作的基础上,我局制定了《上海市固定污染源挥发性有机物在线监测体系建设方案》。现印发给你们,请遵照执行。/pp style="text-align: right "  上海市环境保护局/pp style="text-align: right "  2018年7月4日/pp  抄送:上海化工区管委会/pp  附件:/pp style="text-align: center "上海市固定污染源挥发性有机物在线监测体系建设方案/pp  根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,制定本方案。/pp  一、实施范围本市固定污染源挥发性有机物(VOCs)在线监测体系的实施范围,包括以下排污单位涉及VOCs排放的排口:/pp  (一)纳入排污许可证管理的排污单位 /pp  (二)大气环境重点排污单位 /pp  (三)国家和本市规定应当实施在线监测的排污单位。/pp  二、安装要求/pp  (一)安装范围。纳入排污许可证管理的排污单位的主要排口 重点排污单位处理设施设计风量大于10000立方米/小时的排口。受监测技术及设备限制,处理设施进口和火炬系统排口暂不纳入安装范围,待相关技术要求出台后另行规定。/pp  (二)安装位置。涉及VOCs排放的排口或烟道。/pp  (三)安装设备。采取非燃烧方式治理VOCs的,在排口直接安装非甲烷总烃在线监测设备,包含非甲烷总烃、烟气温度、烟气压力、烟气流速或流量、烟气含湿量等监控项目 采取燃烧方式治理VOCs的,除上述监控项目外,还需在排口同时加装氮氧化物在线监测设备。/pp  针对《石油化学工业污染物排放标准》(GB 31571-2015)、《石油炼制工业污染物排放标准》(GB 31570-2015)以及其他行业标准有明确排放限值的VOCs单项指标,排污单位还应选择重点排口试点开展重点指标的在线监测工作。/pp  三、工作要求/pp  (一)建设进度。已核发排污许可证的企业在2018年12月31日前完成设备的建设、联网和备案 其他排污单位应当于纳入挥发性有机物在线监测体系实施范围之日起的6个月内完成设备的建设、联网和备案。/pp  (二)运行维护。依据《上海市固定污染源非甲烷总烃在线监测系统安装及联网技术要求(试行)》和《上海市固定污染源非甲烷总烃在线监测系统验收及运行技术要求(试行)》,以及《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》(HJ 75-2017)开展运行维护。/pp  (三)其他监管要求。本市固定污染源挥发性有机物在线监测体系建设的其他监管要求,按照《上海市固定污染源自动监测建设、联网、运维和管理有关规定》(沪环规〔2017〕9号)执行。/p
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(下)-北京博赛德
    在固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)我们介绍样品的采集与稀释、空白测试以及样品分析工作过程,今天我们来介绍结果计算、设备附件以及该方案的优势。5、结果计算标准状态下目标化合物浓度按照公式(2)计算: ρ=ρx×M/22.4×f/1000 公式(2)式中:ρ——标准状态下样品中目标化合物的浓度,mg/m3;ρx——经校准曲线计算得到的目标化合物的浓度,nmol/mol;M——目标化合物的摩尔质量,g/mol;22.4——标准状态下(273.15 K,101.325 kPa)下气体的摩尔体积,L/mol;f——稀释倍数,无量纲。6.附件针对污染源VOCs采样、分析的种种难题,博赛德推出一套污染源采样稀释系统。采样杆自带加热功能,可以避免污染源废气样品冷凝而导致样品组分丢失;管路采用熔融硅涂覆,系统不易污染或残留,也大大增加了分析数据的真实性;高精度的数字稀释系统,稀释比例易于控制,稀释范围大,单次BCT大稀释倍数100倍,BCT大可稀释BCT500倍。 7.方案优势7.1 样品预调查和预检测时,样品直接进入质谱系统,不经过色谱柱,避免了色谱柱的污染,耐污染能力强。7.2 对于预调查浓度高的样品,采用样品稀释的方式,稀释方式相对于小体积进样,样品的代表性更强,可更有效的评估固定源的排放浓度。7.3 样品稀释过程可任意控制稀释比例,扩大了检测样品浓度范围。7.4结果定性采用国际标准和技术研究所(NIST)与(AMDIS)的质谱库,不采用自定义的其它普库,提高定性结果的准确性和可靠性。7.5 采样袋采样和真空瓶采样两种方式可选择,真空瓶采样方式,整个采样过程无工具连接,真空瓶材质惰性比采样袋更好,耐污染程度高。7.6 真空瓶可重复利用,使用成本低。7.7 真空瓶可提高样品的存储时间,可用于样品备份。BCT此,固定污染源废气中的挥发性有机物现场测试方案介绍完毕,更多精彩,请持续关注我们吧。
  • 山东省发布《山东省固定污染源废气 低浓度颗粒物的测定 重量法》
    我们通常所说的固定污染源废气,也就是工业废气在排放时是需要经过处理的,必须要达到国家废气对外排放标准。 废气对人体的危害是极大的,世界卫生组织称,2012年空气污染造成约700万人死亡(部分人死亡原因与室内/外空气污染均有关),也就是全球每八位死者中就有一位。大气污染物对人体的危害是多方面的,主要表现是呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病。 为了控制工业废气排放浓度,各级政府分别出台相关奖励措施给予限排企业一定的补贴。山东省在全国率先制定《山东省固定污染源废气 低浓度颗粒物的测定 重量法》以弥补对低浓度颗粒物检测的空白。 我公司生产的“崂应3012H-D型 便携式大流量低浓度烟尘自动测试仪”正是针对此类烟尘检测的仪器,自上市来深受广大用户好评,此次标准的修订我公司应邀前往参与意见审核,经多次会谈与现场测试终于促成“标准”的出台。 采样中的滤膜是什么材质的? 我们通常采用的滤膜有石英滤膜和玻璃纤维滤膜等等。 石英滤膜由超纯的石英纤维素制成,不含玻璃纤维或黏合剂树脂。纯石英合成物可防止滤膜与酸性气体发生反应,这使得石英滤膜非常适用于重金属浓缩物及少量颗粒的检测。石英膜同时具有良好的重量和结构稳定性。像我们的产品“废气智能重金属采样仪”、“废气智能二噁英采样仪”等采用的就是石英滤膜。 玻璃纤维(glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。玻璃纤维滤膜中含有少量的易燃烧或易解灰化物质,在烟尘的高温采样过程中会产生滤筒失重现象,因此,必须对滤筒进行高温处理。由于纤维滤膜成本较低深受广大用户的青睐。像我们的产品“自动烟尘(气)测试仪”、“空气/智能TSP综合采样器”采用的就是玻璃纤维滤膜。
  • 新增紫外法 固定污染源废气氮氧化物/二氧化硫的测定标准征求意见
    p  近日,生态环境部印发《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》和《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》两项国家环境保护标准。两项标准均为首次发布。/pp  对于两项标准中提到的氮氧化物以及二氧化硫的危害,我们不得不知。/pp  随着工业及交通运输等事业的迅速发展,特别是煤和石油的大量使用,将产生的大量有害物质如二氧化硫、氮氧化物、一氧化碳等排放到大气中,当其浓度超过环境所能允许的极限并持续一定时间后,就会改变大气特别是空气的正常组成,破坏自然的物理、化学和生态平衡体系,从而危害人们的生活、工作和健康。/pp  在自然界中含硫物质及硫元素在燃烧过程中都能产生二氧化硫(SOsub2/sub)形成大气污染。但与自然源相比,造成大气污染的硫氧化物,主要来自有色金属冶炼(例如:铜、锌、铅的粗炼等)和硫酸制造以及化石燃料(煤、石油等)燃烧过程等人为排放。SOsub2/sub对人及植物的危害很大:如SOsub2/sub进入血液能破坏酶的活动,损害肝脏;当大气中SOsub2/sub的浓度为400μmol/mol时会使人呼吸困难,机体免疫受到明显抑制等。其危害程度与SOsub2/sub的浓度和暴露时间有关。/pp  作为公认的三种主要的大气污染物(即烟尘、二氧化硫、氮氧化物)中的两种,氮氧化物以及二氧化硫受到人们的高度关注,其测定方法也尤为重要。/pp  img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201909/attachment/362996a1-700a-4877-8dff-8e4d8c50ec04.pdf" target="_self" title="2.pdf" textvalue="固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿).pdf" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿).pdf/span/a/ppspan style="color: rgb(0, 112, 192) "  /spanimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201909/attachment/b702ec86-7a68-4506-8bb7-e733479c70bd.pdf" target="_self" title="3.pdf" textvalue="《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》编制说明.pdf" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》编制说明.pdf/span/a/pp  本标准为首次发布。/pp  本标准规定了测定固定污染源废气中氮氧化物的紫外吸收法。/pp  strongimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "//stronga href="https://img1.17img.cn/17img/files/201909/attachment/bfd6ebec-432b-4d6d-91ba-e76376bdbc12.pdf" target="_self" title="4.pdf" textvalue="固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿).pdf" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿).pdf/span/a/ppspan style="color: rgb(0, 112, 192) "  /spanimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201909/attachment/f78ec9f0-393a-47f2-94f0-bc6067f9e48a.pdf" target="_self" title="5.pdf" textvalue="《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》编制说明.pdf" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》编制说明.pdf/span/a/pp  本标准为首次发布。/pp  本标准规定了测定固定污染源废气中二氧化硫的紫外吸收法。/pp  与现行有效的定电位电解和非分散红外吸收方法相比,紫外吸收法具有预热时间快、分析精度高、抗干扰能力强等优势,对我国固定污染源中二氧化硫测定的技术体系是一个良好的补充。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201909/uepic/aa06461c-44b7-4514-958f-41f82d8f7d68.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更过环境监测精彩资讯!/spanbr//p
  • 内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案
    p  内蒙古自治区环境保护厅近日印发了 《内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案》,方案中不仅规定了内蒙古自治区固定污染源VOCs检查监测工作安排,还对不同行业不同点位监测项目、监测标准、监测技术等进行了详细规定。/pp style="text-align: center "内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案/pp  为贯彻落实《“十三五”生态环境保护规划》、《“十三五”节能减排综合工作方案》、《“十三五”挥发性有机物污染防治工作方案》和环保部办公厅《关于加强固定污染源废气挥发性有机物监测工作的通知》(环办监测函〔2018〕123号)相关工作要求,全面推动我区固定污染源废气挥发性有机物检查监测工作,特制定本工作方案。/pp  一、总体要求/pp  以改善环境空气质量为核心,以重点行业和重点污染物为主要控制对象,全面加强固定污染源废气挥发性有机物监测,进一步掌握VOCs排放及治理情况,切实加强VOCs排污单位监督管理,为实现2020年建立健全以改善环境空气质量为核心的VOCs污染防治管理体系夯实基础。/pp  二、工作原则/pp  ----属地管理原则。各级环境保护部门要落实环境质量属地管理的要求,对VOCs排污单位履行监管职责,统筹规划,稳步推进。/pp  ----“谁污染、谁监测、谁治理”原则。VOCs排污单位严格履行主体责任,认真按照要求开展VOCs自行监测并对相关信息进行公开。/pp  ----双随机原则。各级环境保护部门按照抽查时间随机、抽查对象随机的原则,对VOCs排污单位污染物排放情况开 展日常抽查,对照已出台的污染物排放标准开展检查监测。/pp  三、主要工作内容/pp  (一)强化排污单位自行监测/pp  排污单位要按照环境保护法的要求,严格落实主体责任,将VOCs指标纳入自行监测方案,对污染物排放口及周边环境质量状况开展自行监测,并主动公开污染物排放、治污设施建设及运行情况等环境信息。没有监测能力的要委托有资质的第三方开展监测。/pp  (二)加强工业园区监测监控/pp  园区管理部门要对园区周界及内部VOCs开展监测,具备条件的园区要建设VOCs环境风险预警体系,及时了解园区周边的VOCs污染情况,建立环境风险预警和应急响应机制,建成“早发现、早报告、早预警”的预警体系。/pp  (三)建立VOCs排污单位名录库/pp  各盟市环保部门要根据本行政区域内VOCs排放源的种类、分布、产排污特点,筛查确定VOCs排污单位,作为日常监管和监测的重要依据。VOCs排污单位应覆盖石化、化工、工业涂装、包装印刷、电子信息、合成材料、纺织印染等行业。/pp  (四)开展VOCs专项检查监测/pp  各盟市环境保护部门要按照抽查时间随机、抽查对象随机的原则,对VOCs排污单位污染物排放情况开展日常抽查,对照已出台的污染物排放标准开展检查监测。/pp  1.检查要求/pp  重点检查排污单位自行监测开展情况、监测信息公开情况及VOCs达标排放情况,详见附件1。/pp  2. 监测要求/pp  (1)监测范围:火电及锅炉、氮肥、电池、纺织印染、钢铁、工业炉窑、合成革与人造革、焦化、铝工业、农药、排放恶臭气体单位及垃圾堆场、石化、水泥、橡胶制品、制糖、制药行业及其他产生VOCs的排污单位。/pp  (2)监测内容:废气挥发性有机物有组织排放浓度,一般有固定的排气系统。废气的无组织排放浓度,一般为厂界,储油罐及法兰、阀门、泵压缩机等连接装置的无组织排放源。/pp  (3)监测时间和频次/pp  各盟市环境保护部门按照时间随机、抽查对象随机的“双随机原则”对所有VOCs排污单位进行随机抽测,重点行业不得少于2家。/pp  (4)任务分工/pp  盟市环境监测站负责承担本地区内挥发性有机物排污单位的抽测工作。确不具备监测能力的可以委托有资质的第三方监测机构开展抽测工作。自治区环境监测中心站组织开展对盟市、旗县级VOCs监测人员的培训工作,承担重点行业、重点排污单位挥发性有机物排污单位的检查性抽测工作。/pp  具体监测要求详见附件2。/pp  四、工作进度/pp  2018年3月31日前,各盟市环境保护部门完成VOCs排污单位筛查工作,形成VOCs排污单位名录,报自治区环境监测中心站。/pp  2018年5月1日前,石化、化工行业VOCs排污单位完成自行监测工作。/pp  2018年5月15日前,完成石化、化工行业VOCs排污单位检查监测工作,并将检查监测结果报自治区环保厅。/pp  2018年11月1日前,所有行业VOCs排污单位完成自行监测工作。/pp  2018年11月15日前,完成所有行业VOCs检查监测工作,并将检查监测结果报自治区环保厅。/pp  自治区环保厅将于2018年11月30日前,完成对VOCs排污单位的检查性抽测工作,并将检查结果上报环保部。/pp  2019年起,将VOCs排污单位污染物排放检查监测工作纳入监测计划,按照抽查时间随机、抽查对象随机的原则开展检查监测,并于每季度第1个月15前将检查监测报告报自治区监测中心站。/pp  五、保障措施/pp  (一)提高认识,切实加强组织领导/pp  VOCs是导致臭氧污染的重要前体物,对二次PM2.5生成具有重要影响。各级环境保护部门要充分认识加强VOCs排放监测的重要意义,切实加强组织领导,督促企业严格落实主体责任,按要求开展自行监测并对环境信息进行公开 组织开展本地区检查监测工作 指导园区管理部门对园区周界及内部开展VOCs检查监测 建立本地区VOCs排污单位名录库,并通过全面加强VOCs检查监测,为VOCs污染防治工作打下坚实基础。/pp  (二)落实责任,扎实推进各项工作/pp  排污单位是污染治理的责任主体,要切实履行责任,按照要求,按时开展VOCs污染物自行监测并及时公开相关信息 各盟市环保部门要按照属地管理要求,履行监管职责,通过排查筛选、建立名录库、日常检查、随机抽测深入推进VOCs检查监测工作,全面了解掌握本地区VOCs排污单位分布、排放和治理情况,切实加强环境监管。/pp  (三)加强能力建设,强化VOCs监测管理能力水平/pp  我区各盟市VOCs监测能力较薄弱。各盟市环境保护部门要切实保障VOCs监测所需人员、工作经费和工作条件。加强监测人员的培训,强化人才队伍培养,切实提高VOCs监测能力水平。/pp  (四)强化质控,保证VOCs监测工作质量/pp  自治区环境监测中心站负责对承担抽测工作的监测(检测)机构开展技术指导、技术监督和质控检查。质控检查包括被检查单位的污染源监测质控管理、有关技术人员上岗资质、实验室质量管理、监测原始记录和监测报告等内容。根据需要开展实验室内比对监测。/pp  承担抽测工作的各级监测(检测)机构要对本单位出具的所有监测数据和报告质量负责,严格按照环境监测相关质量控制的要求进行监测,不得弄虚作假。/pp  各级监测(检测)机构发现监测结果超标时,要及时向同级环保主管部门和监察机构汇报。/pp  (五)落实信息公开制度,引导公众参与/pp  排污单位应主动通过各种便于公众知晓的方式公开污染物排放、治污设施建设及运行情况的环境信息,加大宣传力度,鼓励、引导公众主动参与VOCs减排。/pp  附件1/pp  固定污染源废气挥发性有机物检查监测要点/pp  为掌握固定污染源废气挥发性有机物排放情况,指导地方做好对挥发性有机物重点排污单位的VOCs专项监测工作制定本要点。企业开展自行监测和自查可参照本要点。/pp  一、检查要点/pp  (一)企业自行监测开展情况/pp  检查监测人员可通过查阅企业自行监测方案,污染防治设施运行台账,自行监测数据结果报告,实验室质控管理制度等,检查企业自行监测执行情况。重点检查企业自行监测方案是否完整,自行监测指标是否与方案一致。/pp  (二)企业监测信息公开情况/pp  检查监测人员可询问企业信息公开途径,并通过现场检查证实。重点检查公开信息是否完整,公开监测数据是否与实际数据一致。/pp  (三)VOCs污染因子达标情况/pp  检查监测人员可在企业现场,选取多个主要VOCs污染源开展现场监测,监测因子主要包括非甲烷总烃、苯、甲苯、二甲苯、臭气浓度等VOCs特征污染物。重点检查企业主要VOCs污染源的达标排放情况。/pp  二、监测要点/pp  环保部门开展的VOCs专项检查监测,按照“双随机”原则,可随机抽取企业监测点位和监测项目开展监测。各行业不同点位的监测项目和监测依据等见附表。/pp style="line-height: 16px "  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201803/ueattachment/e5e28fb0-6759-4fc9-94c6-0c393c051bb3.docx"内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案.docx/a/ppbr//p
  • 青岛众瑞-固定污染源超低排放解决方案
    政策背景为了控制燃煤火电污染,国内针对火电污染物的排放标准提出了更加严格的要求。2014年9月,国家发改委、环境保护部、国家能源局联合发布《煤电节能减排升级与改造行动计划(2014-2020年)》,提出到2020年,东部地区现役的机组通过改造基本达到燃气轮机组排放限值的要求,烟尘、SO2、NOx排放浓度分别不高于10mg/m3、35mg/m3、50mg/m3,完成超低排放改造。与此同时,多个省份陆续发布了燃煤电厂大气污染物地方标准,无一例外的将“超低排放”写入了排放限值。据统计,目前公布大气污染地方标准的省份有5个,分别是河南、河北、上海、山东、浙江。这些地方标准除了规定烟尘、SO2、NOx排放浓度外,也将汞及其化合物的排放限值 30μg/m3写入到了标准中。监测难点解决方案烟尘采样→采样头组装《固定污染源废气低浓度颗粒物测定重量法》征求意见稿中要求颗粒物采样前后对一体化采样头整体称量,采样头组装要求整体密封效果良好。众瑞ZR-L03型自动滤膜压紧器,操作简便,装配过程一键完成。烟尘采样装置ZR-3260D型低浓度自动烟尘烟气综合测试仪配备高负载、低噪声大流量抽气泵,可有效克服颗粒物滤膜法采样相对于滤筒采样存在阻力大的问题,配合ZR-D09ET型高湿低浓度烟尘采样管(钛合金材质),可实现超低浓度颗粒物的采样功能。烟气分析ZR-3211型便携式紫外烟气综合分析仪,采用紫外光谱差分吸收技术(DOAS)测量固定污染源排放中的SO2、NO、NO2等气体浓度,测量精度高,不受烟气中水蒸气影响,特别适合高湿低硫工况,配合ZR-D05BT型烟气预处理器使用,可实现超低工况烟气的采样和分析功能。烟气汞采样部分省份将汞及其化合物的排放限值也写入到了地方标准中,众瑞研发生产的ZR-3700A型烟气汞综合采样器和ZR-3701型烟气总汞采样器,配合相应的采样管可实现分价态汞、气态总汞及颗粒态汞的监测。颗粒态汞和气态汞:ZR-3701烟气总汞采样系统从烟气中等速取样,取样管线的温度维持在120℃以上,以防止烟气中的汞(尤其是气态二价汞)在取样管线上凝结。烟气样品依次经过采样管、过滤器和冰浴吸收瓶箱(三个氯化钾吸收瓶、一个双氧水/硝酸吸收瓶、三个高锰酸钾/硫酸吸收瓶)。烟气样品中的颗粒态汞被过滤器(玻璃纤维滤筒)捕集,气态二价汞被前三个吸收瓶捕集,气态零价汞被后四个吸收瓶捕集。颗粒物上的汞在热解或消解之后采用冷原子吸收分光光度法进行测定,吸收液中的汞被还原后使用冷原子吸收分光光度法进行测定。气态汞:ZR-3700A烟气汞综合采样器兼配湿法HJ543-2009和干法EPA 30B两种采样要求1. 废气中的汞被酸性高锰酸钾溶液吸收并氧化形成汞离子,汞离子被氯化亚锡还原为原子态汞,用载气将汞蒸气从溶液中吹出带入测汞仪,用冷原子吸收分光光度法测定。2. 通过ZR-3700A烟气汞综合采样器,从固定污染源以低流量、恒速抽取定量体积废气,使废气中气态汞有效富集在吸附管中经过碘或其它卤素及其化合物处理的活性炭材料上。采用直接热裂解原子吸收法或者其它分析方法测定吸附管中二段分隔活性炭材料中汞的含量和采样体积,计算出气态汞浓度。质控方案ZR-5410A便携式气体、粉尘、烟尘采样仪综合校准装置,内置罗茨流量计,流量直读,一套设备即可满足对空气采样器、颗粒物采样器、烟尘测试仪的流量、压力标定。
  • 固定污染源单组分挥发性有机物(VOCs)分析方案(中)-北京博赛德
    在固定污染源单组分挥发性有机物(VOCs)分析方案(上)-中我们讨论了 固定污染源单组分挥发性有机物(VOCs)分析在国家环境保护中的地位以及实际的检测现状,今天我们继续分析一下污染源样品分析难点及常见问题以及造成的原因。2 污染源样品分析难点及常见问题2.1 采样真实性污染源废气成分复杂,干扰因素多。待测组分之间可能存在化学反应,生成新的组分或者某一组分快速分解。因此,采样过程需要尽量保持样品在当时环境条件下的真实状态,以反映出待测组分对生态环境的影响。2.2 高沸点物质进样时的残留高沸点物质难以解析和释放,易残留在采样系统内,无法测得真实值。2.3 高沸点物质在整个系统内的残留高沸点物质易残留在进样系统内,对整个系统造成污染。2.4 仪器聚焦和检测过程中信号的波动样品在传输、聚焦过程中,会产生一定的损失。质谱检测器随着样品含氧量或含水量的变化,导致真空度变化,会对样品的电离效率产生影响,导致检测稳定性差。2.5 内标添加方式内标添加方式,直接影响内标是否能真实地反映样品在处理和检测过程中的损失。3 污染源样品分析难点原因分析3.1 采样真实性市面上有多种采样方式,需详细比较和选择。吸附管:特定填料采样,选择性强,存在组分代表性差、样品易损失、易穿透的弊端。采样袋:成本不高,但不易运输和保存,采样过程复杂苏玛罐:采样代表性强,组分稳定易保存,但成本高,容易污染玻璃真空罐:采样代表性强,组分稳定易保存,成本低。3.2 高沸点物质进样时的残留吸附管:填料的吸附,释放不完全。采样袋:有一定程度的残留,可手动加热。苏玛罐:可手动或自动加热,可添加一定比例的水分来降低高沸点物质在罐内的残留。玻璃真空罐:本身无吸附,需解决高沸点物质本身的凝结现象。3.3 高沸点物质在整体系统内的残留为了减小高沸点物质的残留污染,需要样品在进入系统后,能快速聚焦、快速解析,这样可以改善高沸点物质的响应强度,减小峰宽,提高灵敏度。3.4 仪器聚焦和检测过程中信号的波动方法采用内标法,可降低样品处理过程和仪器状态对检测的影响。3.5 内标添加方式方式一:定量环进样、手动稀释内标;方式二:质量流量计进样、定量环进内标。上述两种方式,都存在内标和样品路径不一致的现象,将导致内标无法准确地表征样品的损失和波动,二者标准曲线无法共用,定量方式不合理。在添加内标时,要保证内标和样品在整个系统中路径一致,才能使内标表征样品在进样、传输和检测过程中的损失。未完待续~
  • 《固定污染源挥发性有机物综合排放标准》强制性地方标准9月1日实施
    广东省市场监督管理局、广东省生态环境厅联合发布省级地方标准《固定污染源挥发性有机物综合排放标准》(DB44/ 2367-2022)(以下简称《标准》)(点击下载原文),《标准》规定了固定污染源挥发性有机物有组织排放、无组织排放、企业厂区内及边界污染的控制要求、监测和实施与监督要求。适用于现有工业固定污染源挥发性有机物排放管理,以及新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的挥发性有机物排放管理。在国家和我省现有的大气污染物排放标准体系中,凡是无行业性大气污染物排放标准或者挥发性有机物排放标 准控制的污染源,应当执行本《标准》。国家或我省发布的行业污染物排放标准中对VOCs无组织排放控制未做规定的,应执行本《标准》中无组织排放控制要求。《标准》重点内容如下:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制