当前位置: 仪器信息网 > 行业主题 > >

低温等离射仪

仪器信息网低温等离射仪专题为您提供2024年最新低温等离射仪价格报价、厂家品牌的相关信息, 包括低温等离射仪参数、型号等,不管是国产,还是进口品牌的低温等离射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低温等离射仪相关的耗材配件、试剂标物,还有低温等离射仪相关的最新资讯、资料,以及低温等离射仪相关的解决方案。

低温等离射仪相关的资讯

  • 辉瑞疫苗:不再需要超低温储存,单次注射有效
    根据BioNTech/辉瑞向美国监管机构提交的稳定性数据,辉瑞疫苗目前能够在-15℃至-25℃下保存至多两周,而之前的储存条件是-60℃至-80℃。据英国金融时报,最新研究结果显示,BioNTech/辉瑞新冠疫苗不再需要在比南极冬天更冷的超低温下保存,这将使疫苗的分发范围扩大,一些没有冷链基础设施的偏远医疗诊所、药店也能够获得该疫苗。BioNTech首席执行官Ugur Sahin表示,疫苗能够在更高温度下储存,将给疫苗接种带来“更大的灵活性”。他补充成,该公司将继续研发新的配方,以使疫苗更易于运输和使用。参与运送该疫苗的物流公司之一DHL本月早些时候表示,除了专业配送和储存中心之外,各国政府未能为“最后一英里”交付做好准备。但新的储存要求会减少这些限制,使疫苗更具竞争力。同样基于mRNA技术的Moderna新冠疫苗已经可以在2℃到8℃的温度下保存30天,而德国CureVac公司正在研发的另一种mRNA疫苗可以在类似温度下保存3个月。除此之外,BioNTech/辉瑞疫苗在注射次数和有效性上也有了新进展。近日,以色列发表在《柳叶刀》上的一项研究表明,单次注射两剂BioNTech/辉瑞的疫苗有85%的效果。以色列著名研究医院Sheba Medical中心对9000名医护人员进行的研究发现,在接种疫苗15至28天后,单次给药可使出现症状性新冠患者的人数减少85%。此外,研究人员还得出结论,单剂量注射可以减少75%的无症状感染,这表明人们一旦接种一次疫苗,就不太可能感染和传播新冠。在临床试验中还发现,两次间隔三周注射,有效率可以达到95%。Sheba医疗中心副主任Gili Regev-Yochay表示,这项开创性的研究成果将支持英国政府决定给公民只接种一剂疫苗。
  • iCEM 2016特邀报告:透射电镜低温样品制备技术
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong透射电镜低温样品制备技术/strong/pp style="TEXT-ALIGN: center"strongimg title="祝建.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/b666ec1a-e107-4a24-8192-3c9f104bf9ba.jpg"//strong/pp style="TEXT-ALIGN: center"strong祝建 教授/strong/pp style="TEXT-ALIGN: center"strong同济大学生命科学与技术学院/strong/ppstrong报告摘要:/strong/pp  透射电镜低温样品制备的目的除了与常规样品制备一样,既要符合电镜观察、分析的需要(样品足够薄,而又有足够的强度,不被电子束破坏),而又不会在制样过程中破坏样品的原始状态。使得该样品的分析结果足够真实。通常包括冷冻固定(冷冻、喷射冷冻、高压冷冻固定)、低温脱水(冷冻替代、冷冻干燥)和冷冻超薄切片技术等。这些透射电镜的样品制备技术逐渐成为电镜样品制备的发展趋势,更真实地反映样品的结构和生命现象。/ppstrong报告人简介:/strong/pp  祝建,同济大学生命科学与技术学院教授,博士生导师。主要研究方向:植物细胞的全能性及其超微结构。1982年毕业于宁夏农学院,后留校任教。1982—1992年宁夏农学院生物系,教师。1992-1995年在苏黎世瑞士联邦理工学院学习并作博士论文(中瑞联合培养博士生),1996年获西北大学博士学位。1996年上海铁道大学医学院,2000年至今,任职于同济大学生命科学与技术学院。/pp  现任中国植物学会第十四届理事会植物结构与生殖生物学专业委员会委员,中国电子显微学会低温电镜技术专业委员会委员,上海市显微学学会理事。/ppstrong报告时间:/strong2016年10月26日上午/ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//a /p
  • 新品上市:月旭科技低温型蒸发光散射检测器
    待测样品物质没有生色基团,无法用紫外-可见光检测器检测该怎么办?别担心,这期小编给大家带来了月旭科技的低温型蒸发光散射检测器,无论物质是否具有生色基团都逃不过他的“眼睛”。下面就由小编给大家介绍一下月旭科技新推出的低温型蒸发光散射检测器吧!蒸发光散射检测器检测原理 仪器优点高灵敏度,优化了对非挥发性、热不稳定和半挥发性化合物的敏感性;专用的高效液相色谱雾化器和创新的流通池设计,使谱带展宽最小化;容易拆卸和安装的雾化器,流量范围涵盖200μl /min~2ml/min;通过自动增益调整,检测器可以自动调整增益设置;完全远程控制,气体、加热器、光电二极管、光源均可在分析结束之后自动关闭;可以为符合GLP和验证程序提供了完整的SOP方案;仪器寿命长,具备很高的可靠性和稳定性;低温蒸发,避免温度过高化合物分解导致的检测不准。Welch ELSD-5450可用工作站列表应用案例同步测定银杏中萜烯内酯和类黄酮:采用HPLC/ELSD法对四种萜烯内酯和三种黄酮类化合物进行了色谱分析。1 -银杏内酯,2 -银杏内酯C, 3 -银杏内酯A,4 -银杏内酯B,5 -槲皮素,6 -异鼠李皮素,7 -山奈酚
  • 低温蒸发光散射检测器的技术规格包括哪些?
    低温蒸发光散射检测器是一种常用于液相色谱分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。 以上是常见的一些技术规格,不同型号和品牌的低温蒸发光散射检测器可能会有细微差别和附加功能,可根据具体需要选择符合实验要求和预算限制的型号。
  • 低温蒸发光散射检测器的技术规格包括以下几个方面
    低温蒸发光散射检测器的技术规格包括以下几个方面低温蒸发光散射检测器(LowTemperatureEvaporativeLightScatteringDetector,LT-ELSD)是一种常用于液相色谱(LiquidChromatography,LC)分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。
  • 1500万!东南大学理科平台低温散射式扫描近场光学显微镜采购项目
    一、项目基本情况项目编号:0664-2360SUMECTY005D(SEU-ZB-230698)项目名称:东南大学理科平台低温散射式扫描近场光学显微镜采购预算金额:1500.000000 万元(人民币)最高限价(如有):1460.000000 万元(人民币)采购需求:东南大学理科平台采购低温散射式扫描近场光学显微镜1套,主要技术参数:低温散射型扫描近场光学显微镜平台1.1基于低温AFM的无孔径近场扫描显微镜系统。冷却系统需基于一个完全阻尼且封闭循环低温恒温器,保证底板温度 20 K,并集成到光学平台中。通过自动低温恒温器操作来调节,可变温度范围需满足10k T 300k。XY扫描级的开环扫描范围不小于30 × 30µm @ 300K,不小于24 × 24µm @10K。要求低温AFM测量的形貌噪声 1nm (RMS) @10K。1.2低温AFM需基于轻敲模式AFM技术,通过基于轻敲振幅的AFM反馈进行形貌成像。悬臂偏转的读取需基于光学杠杆原理,采用激光二极管反射在悬臂背面,由光象限二极管读取。最高限价:人民币1460万元整(不含外贸代理费)本项目接受进口产品。本项目所属行业:工业。合同履行期限:境外产品:开具信用证后10个月设备安装调试合格。境内产品:自合同签订之日起30天内到货并安装调试合格。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月02日 至 2024年01月08日,每天上午9:00至11:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:微信公众号“苏美达达天下”方式:在线获取(详见补充事宜)售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:东南大学     地址:南京市玄武区四牌楼2号        联系方式:技术咨询:电子科学与工程学院:骆老师 电话:19852843441; 实验室与设备管理处:刘老师 电话:025-83792693      2.采购代理机构信息名 称:苏美达国际技术贸易有限公司            地 址:南京市长江路198号苏美达大厦5楼502室            联系方式:杨 扬 025-84532455、葛晓菲025-84532451            3.项目联系方式项目联系人:葛晓菲电 话:  025-84532451
  • 2168万!大湾区大学(筹)射线、低温和光谱设备采购项目
    一、项目基本情况项目编号:M4400000707021884001项目名称:大湾区大学(筹)射线、低温和光谱设备采购项目采购方式:公开招标预算金额:21,680,000.00元采购需求:合同包1(X射线(Cu靶)衍射仪等设备1批):合同包预算金额:7,590,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1射线式分析仪器X射线(Cu靶)衍射仪1(套)详见采购文件4,250,000.00-1-2射线式分析仪器X射线(Ag靶)透射仪1(套)详见采购文件3,340,000.00-本合同包不接受联合体投标合同履行期限:(1)合同签订后240个日历天内,将所有设备交付到采购人指定地点;(2)所供货物交齐后,10个日历天内安装调试完毕、交付使用、培训并验收合格。合同包2(X射线(Mo靶)单晶衍射仪等设备1批):合同包预算金额:5,620,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1射线式分析仪器X射线(Mo靶)单晶衍射仪1(套)详见采购文件3,250,000.00-2-2射线式分析仪器波长色散型X射线荧光光谱仪1(套)详见采购文件2,370,000.00-本合同包不接受联合体投标合同履行期限:(1)合同签订后240个日历天内,将所有设备交付到采购人指定地点;(2)所供货物交齐后,10个日历天内安装调试完毕、交付使用、培训并验收合格。合同包3(无液氦综合物性测量系统1套):合同包预算金额:7,820,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1综合测量仪无液氦综合物性测量系统1(套)详见采购文件7,820,000.00-本合同包不接受联合体投标合同履行期限:(1)合同签订后450个日历天内,将所有设备交付到采购人指定地点;(2)所供货物交齐后,30个日历天内安装调试完毕、交付使用、培训并验收合格。合同包4(电感耦合等离子体发射光谱仪1套):合同包预算金额:650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1光学式分析仪器电感耦合等离子体发射光谱仪1(套)详见采购文件650,000.00-本合同包不接受联合体投标合同履行期限:(1)合同签订后180个日历天内,将所有设备交付到采购人指定地点;(2)所供货物交齐后,10个日历天内安装调试完毕、交付使用、培训并验收合格。二、获取招标文件时间: 2023年11月15日 至 2023年11月22日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:大湾区大学(筹)地 址:广东省东莞市松山湖国际创新创业社区A5栋联系方式:0769-228987262.采购代理机构信息名 称:广东省机电设备招标有限公司地 址:广州市越秀区环市中路316号金鹰大厦13楼联系方式:020-83547060,020-835418373.项目联系方式项目联系人:黄工、蔡工电 话:020-83547060,020-83541837
  • 结构生物学里程碑:低温电子显微镜技术时代来临
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/noimg/fea33c3e-9d39-4848-8e95-052ebaa33259.jpg" title="1.jpg"//pp  strongX射线晶体衍射技术(X-RAY CRYSTALLOGRAPHY)即将成为历史,低温电子显微技术(CRYO-ELECTRON MICROSCOPY)引起了揭示细胞内隐秘机制的革命。/strong/pp  在剑桥大学一幢建筑的地下室里,一场技术革命正在酝酿。/pp  一个笨重的、大约3米高的金属盒子通过连接细胞的橙色缆线,安安静静地传输着以万亿字节计算的数据。这是世界上最先进的低温电子显微镜之一:低温电子显微镜通过电子束对冷冻的生物分子进行成像,从而得到分子的三维结构。站在这个耗资770万美金的仪器旁,英国医学研究委员会分子生物学实验室(UK Medical Research Council Laboratory of Molecular Biology, LMB)的结构生物学家 Sjors Scheres表示,低温电子显微镜非常敏感,一声喊叫就会带来极大误差,导致实验失败。“英国需要更多低温电子显微镜,因为未来它会成为结构生物学的主流。”/pp  低温电子显微镜震惊了结构生物学。过去30年里,低温电子显微镜揭示了核糖体、膜蛋白和其它关键细胞蛋白的精细结构。这些发现都发表在顶级杂志上。结构生物学家们表示,毫不夸张地说,低温电子显微技术正处于革命之中:低温电子显微镜能够快速生成高分辨率的分子模型,这一点远超X射线晶体衍射等方法。依靠旧方法获得诺奖的实验室也在努力学习这一技术。这种新模型能够准确地揭示细胞运行的必要机制,以及如何靶向针对疾病相关的蛋白。/pp  “低温电子显微镜能够解决很多以前无法解决的谜题。”旧金山加利福利亚大学(University of California)的结构生物学家David Agard这样说道。/pp  几年前Scheres被招进LMB,任务是帮助改进低温电子显微镜,最终他成功了。上个月,他们发表了这个领域最令人振奋的成就:阿兹海默症相关的酶的高清图片,图片包括该酶的1200左右个氨基酸,分辨率达到零点几纳米。/pp  生物学家们如今仍在努力发展该技术,以期用它解决小分子或可变形分子的精微结构——这对低温电子显微镜来说,也是一大挑战。来自加利福利亚大学(University of California)的结构生物学家Eva Nogales表示,叫它革命也好,飞跃也好,低温电子显微镜的确打开了一扇大门。/pp strong 蛋白结晶/strong/pp  结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,研究者们才能了解这个蛋白的功能。例如,核糖体是如何根据mRNA的序列来制造蛋白,分子孔道是如何开和关的。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,接着利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100,000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。很多诺贝尔奖也与这一技术相关,例如1962年揭示DNA双链螺旋结构的诺奖。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/noimg/fe5402ce-8a68-46ea-a731-d1b2f037ea42.jpg" title="2.jpg"//pp  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它有较大的限制。科学家们可能需要几年才能找到把蛋白形成大块结晶的方法。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。/pp  当Richard Henderson 1973年到LMB,研究菌视紫红质(一种利用光把质子运进膜内的蛋白)结构时,X射线晶体衍射是首选工具。Henderson和他的同事Nigel Unwin成功地做出了该蛋白的二维结晶,但却不适用于X射线衍射。因此他们决定使用电子显微镜。/pp  当时,电子显微镜主要用于研究用重金属染过色的病毒或组织切片。一束光子打在样本上,新生的电子被检测到,被用于解析样本结构。这种方法成功制作了第一幅病毒的精微图片——一种烟草病毒。但染色导致无法看清各个蛋白,更不要说原子细节了。Agarad表示,样本上要么满是斑点,要么没染上,你只能看到分子的轮廓。/pp  Herderson等人省略了染色的步骤,把菌视紫红质的单层晶体放到金属网格中,然后用电子显微镜进行成像。Agard表示,这个过程里,你看到的是蛋白的原子。这在当时是很大的进步,因为当时人们都认为不可能利用电子显微镜解析蛋白结构。Henderson等人在1975年发表了这一成果。/pp  20世纪80年代和90年代,低温电子显微镜领域发展迅速。一个关键性突破是利用液态乙烷来快速冷冻蛋白溶液。这也是为什么叫低温电子显微镜的原因。但这个技术的分辨率仅为1纳米,远远达不到针对蛋白结构进行药物设计的需求。而当时X射线晶体衍射的分辨率能达到0.4纳米。NIH等资助者投入了数亿美金来支持蛋白晶体领域的发展,但对于低温电子显微镜领域的资助却很少。/pp  1997年,Henderson参加了高登研究会议(Gordon Research Conference )关于3D电子显微镜的年会。一位同事以这样的话做为开幕致词,“低温电子显微镜技术非常有限,不可能超越X射线晶体衍射。” 但Henderson的想法完全不同,在下一场发言中,他做出了反击。Henderson指出,低温电子显微镜会超越其它各种技术,成为全球研究蛋白结构的主流工具。/pp strong 革命由此开始/strong/pp  在此之后,Henderson等人致力于提高电子显微镜的性能——尤其是感知电子的灵敏度。在数码相机席卷全球很多年后,很多电子显微镜学家仍然倾向于使用传统的胶片,因为比起数码感应器,胶片能更有效地记录电子。与显微镜生产商合作时,研究者们发明了一种新的直接电子探测器,这种探测器的灵敏度远高于胶片和数码相机探测器。/pp  大约在2012年,这种探测器能够以一分钟几十帧的高速得到单个分子原子的连续图像。同时,和Scheres一样的研究者们精心编写了将多张2D图片建成3D模型的软件程序。这些3D图像的画质可以媲美X射线晶体衍射获得的图像。/pp  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。/pp  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。/pp  5月,多伦多大学(University of Toronto)结构生物学家John Rubinstein等人使用了100,000张低温电子显微镜图片来生成V-ATPase 的“分子电影”,V-ATPase的作用是消耗ATP,把质子运进运出细胞液泡。”我们发现,这个酶非常灵活,可以弯折、扭曲和变型。” Rubinstein说道。他认为,这是由于这个酶的灵活性,它能够高效地把ATP 释放的能量传递到质子泵。/pp  2013年Nogales的团队拼接了调控DNA转录成RNA的复合体的结构。他们发现,复合体的一个臂上悬挂着紧绕DNA链的10纳米结构,这段结构可能影响基因转录。Nogales表示,这个结构很漂亮,它可以帮助我们分析这个分子起作用的机制。/pp strong 小而漂亮/strong/pp  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。/pp  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。“当我看到TRPV1的结构时,我激动得一晚上睡不着觉。”Rubinstein说道。/pp  研究者们可能面临更多这样无眠的夜晚。Agard表示,会有更多膜蛋白相继被解析出来。/pp  上个月由Scheres和清华大学的结构生物学家施一公合作发表的一篇文章就成功解析了一个膜蛋白。他们建立了& #947 -分泌酶的模型,& #947 -分泌酶负责合成与阿兹海默症相关的& #946 -淀粉斑。0.34纳米分辨率的图谱显示,比较少见的遗传性阿尔茨海默病的& #947 -分泌酶突变后会在图谱上呈现两个“热点”(突变或者重组频率显著增加的位点),并且这种突变最终会合成有毒性的& #946 -淀粉斑。& #947 -分泌酶的结构图帮助研究者发现为什么以往的抑制剂会无效,从而促进新药的研发。程亦凡表示,& #947 -分泌酶的结构非常惊人。/pp  类似的成功吸引了制药公司的注意。他们希望借助低温电子显微镜去解析那些无法结晶的蛋白,从而更好地研发药物。Scheres如今和辉瑞公司合作,攻克离子通道。离子通道包含很多膜蛋白,例如痛感受分子和神经递质受体。“我几乎被每一个人联系过。”Nogales这样说道。/pp  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。/pp  与任何热门领域一样,低温电子显微镜的发展也有烦恼。一些专家担心研究者们盲目追求该仪器会诱发一些问题。2013年HIV表面蛋白的结构图遭到了科学家们的质疑,他们认为用于建模的图片很多都是白噪声。此后,其他团队得到的X射线晶体衍射和低温电子显微镜模型也对原模型提出了质疑。但这些研究者们坚持相信自己的结果。今年6月,在高登研究会议(Gordon Research Conference )上,研究者们希望低温电子显微镜的结构图要有严格的质量控制。并且杂志要求作者们提供详细的建模方法。/pp  成本问题可能会限制低温电子显微镜的推广。Scheres估计,LMB每天用于支持低温电子显微镜的经费就达到近3万人民币,外加近1万的电费——这是由于存储和处理图片的电脑耗电量很大。Scheres表示,每天至少要花费近4万人民币,对于很多地方来说,这个费用太高。为了推广低温电子显微镜,很多基金会建立了对外公开的设备,各地研究者们可以预约使用。霍华德· 休斯医学研究所(Howard Hughes Medical Institute, HHMI)在珍利亚农场研究园区配备了一台。这台设备对所有HHMI资金的研究者公开。在英国,政府和维康信托在牛津大学附近建立了低温电镜公开使用平台。参与该平台搭建的伦敦大学(University of London)的结构生物学家Helen Saibil表示,有很多人想学习使用低温电镜。/pp  洛克菲勒大学(Rockefeller University)的生物物理学家Rod MacKinnon就是这些人之一。他在2003年因解析一些离子通道的结晶结构而获得诺贝尔奖。MacKinnon现在对低温电镜非常着迷。“我现在处于学习曲线的斜坡阶段,非常热切。” MacKinnon这样说道。他打算用低温电镜来研究离子通道是如何开和关的。/pp  1997年时,Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。/pp  原文检索:/pp  Ewen Callaway. (2015) The revolution will not be crystallized. Nature, 525(7568):172-174./p
  • 这台低温光学系统,再发两篇Nature,助力用户在量子自旋、量子光学领域持续发力!
    在量子材料与量子效应的研究中,无损的光谱学测量已经变得尤为重要。而在低温等极端条件下的原位显微光学测量是近十年来逐渐发展成熟的测量方法。近几年中大量重要的科研工作中都有低温光学测量的内容。Montana Instruments 生产的超精细多功能无液氦低温光学系统以其卓越的性能广受低温光学领域科学家的好评。超过千套设备分布在世界各地的重要高校和科研院所,并助力用户做出了大量的顶级科研成果。近期,超精细多功能无液氦低温光学系统用户的工作中又有两项问鼎了高水平学术杂志-Nature。1、正方晶格铱酸盐中的量子自旋向列相研究自旋向列是经典液晶概念的磁性类似物,是物质的第四种状态,同时表现出液体和固体的特征。特别是在价键自旋向列中,自旋具有量子纠缠效应,可以形成多极序而不破坏时间反演对称性,但目前为止,还难以在实验室进行透彻的研究。韩国浦项科技大学与浦项基础科学研究所的Hoon Kim, Jin-Kwang Kim, B. J. Kim等研究者利用变温拉曼光谱、磁光克尔测量和共振非弹性X射线散射等多种技术对Sr2IrO4进行测量,在正方格子铱酸锶 (Sr2IrO4) 中发现了自旋向列相和四极序,并利用共振X射线衍射技术确定了四极序的空间结构和对称性。其结果发表在Nature上(Quantum spin nematic phase in a square- lattice iridate)。本文中基于超精细多功能无液氦低温光学系统进行了大温区范围的变温拉曼测量。在冷却时,从拉曼光谱中获得了静态自旋四极磁化率的发散,以及伴随出现了与旋转对称自发破缺有关的集体模式。这标志着在Tc≈263K时向自旋向列相的转变,并且在Tn≈230K以下的反铁磁相中四极序持续存在。图:变温拉曼测量表明自旋向列相的相变。这一研究表明了在Mott绝缘相中存在自旋向列相等多重序,为我们提供了关于材料中隐藏序的新见解。研究还表明有可能通过电荷四极干涉来检测四极序。本篇研究的结果为探索具有强自旋轨道耦合的过渡金属氧化物等竞争相互作用材料中自旋向列相的产生提供了直接证据。揭示了人们普遍认为与高温超导机制密切相关的Néel反铁磁体的量子序。因此,这篇文章对于凝聚态物理领域的研究具有重要的推动作用。2、量子点-单光子超辐射研究量子光源发射器的亮度最终由费米黄金法则来决定,其辐射率与其振荡器强度乘以光子态的局部密度成正比。由于振荡器强度取决于固有的材料特性,因此对高发射率的追求依赖于使用电介质或等离子体谐振器来提高光子态的局部密度。相比之下,利用超辐射的集体行为来提高振荡器强度从而提高发射率这一途径研究还较少。最近,有人提出使用其巨振子强度跃迁可以使量子阱中的弱约束激子的相干运动延伸到许多晶胞上,从而明显提高振荡器的强度。图:载流子寿命的温度依赖特性瑞士苏黎世联邦理工学院Chenglian Zhu,Maksym V. Kovalenko & Gabriele Rainò等,在Nature上发文(Single-photon superradiance in individual caesium lead halide quantum dots),报道了单个铯铅卤化物量子点的单光子超辐射,在钙钛矿量子点中的单光子超辐射,辐射衰减时间低于100皮秒,几乎与报道的激子相干时间一样短。本篇工作中作者利用超精细多功能无液氦低温光学系统进行了系统的单量子点光谱测量。辐射率对量子点的大小、组成和温度的特性依赖性测量表明,系统形成了巨大的过渡偶极子,并且通过有效质量计算对测量结果进行了证实。本篇研究结果有助于开发超亮相干量子光源。本研究还证明了单光子发射的量子效应在比激子玻尔半径大十倍的纳米颗粒中持续存在。超精细多功能无液氦低温光学系统超精细多功能无液氦低温光学系统以超低振动和超高的温度稳定性被广泛应用于多种高精度的变温光谱和显微成像实验中。Montana Instruments推出的新一代超精细多功能无液氦低温光学系统——CryoAdvance,是基于模块化设计架构的新一代标准化产品。该系统采用特殊减振技术和温度稳定技术,在不牺牲任何便捷性的同时,为实验提供超高温度稳定性和超低振动环境。CryoAdvance系列产品具有多种型号、配置、选件与配件可选,能够满足每个研究人员的个性化需求。除了标准系统之外也可为用户提供整体光学测量系统的解决方案。 CryoAdvance技术特点:&blacksquare 自动控制:智能触摸屏,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。&blacksquare 模块化设计:多种配置可选,快速满足各种实验需求,后续升级简单。&blacksquare 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。&blacksquare 稳定性设计:新设计在变温和振动稳定性上进一步优化。&blacksquare 最低温度:3.2K&blacksquare 振动稳定性:5 nm(峰-峰值)&blacksquare 降温时间: 300K-4.2K~2小时&blacksquare 样品腔空间:Φ53 mm ×100 mm&blacksquare 光学通道:多个光学窗口,近工作距离、集成物镜、光纤引入等多种配置可选。Montana超精细多功能无液氦低温光学系统
  • HPD低温绝热去磁系统顺利验收,有望助力探索全新宇宙微波背景辐射分布图
    2016年12月,国内套50mK热去磁系统在清华大学天体物理中心崔伟教授课题组成功完成安装和调试,并顺利验收。该系统是由美国 High Precision Devices(HPD)公司长期精心研制的低温平台,此系列恒温器具有很好的稳定性,恒温器腔体使用优化设计,美国HPD公司突出的设计能力和先进的加工技术,可为用户量身定制更专业的低温环境测量平台。国内套50mK热去磁系统在清华大学天体物理中心崔伟教授课题组成功完成安装调试 宇宙起源时能量密度和温度均超高无比,随着宇宙温度的迅速降低,若干基本物质粒子相继浮现,宇宙“大爆炸”发端时空中的能量场或由量子涨落而产生,此类射线的探测及研究无疑需要低温环境的助力。当然,宇宙的起源我们不敢妄下定论,但低温环境下的科学探索是我们必须努力实现和完善的关键部分,科学家们一直在努力开发、改进各种低温环境,以更深入地探索宇宙中我们未曾跨及的领域和。 宇宙微波背景辐射分布图 由美国HPD公司长期精心研制的低温平台是胜任这项任务的选择,此系列恒温器低温度可达20mk,在低温下,具有很好的稳定性(低于100mk保持约150/200小时以上),恒温器腔体使用优化(热性,防震动性,大样品腔)设计,恒温器支架更便于移动腔体及恒温器位置。清华大学天体物理中心拥有较完整的天体物理研究体系,同时侧重理论、观测和数据分析的研究,依托清华大学强大的工科优势,相信可为下一代空间和地面天文设备研究做出实质性贡献。此次HPD低温热去磁系统的顺利验收,也将有望助力探索全新宇宙微波背景辐射分布图。相关产品: HPD低温热去磁恒温器:http://www.instrument.com.cn/netshow/C201745.htm
  • 岛津推出ELSD-LT II低温型蒸发光散射检测器
    ELSD-LT II低温型蒸发光散射检测器是ELSD-LT的改进型。新产品延续了前一代产品低温蒸发技术的特点,使得在蒸发管温度低于40度的情况下,流动相也能够有效的蒸发。保证了对于半挥发性或热不稳定性化合物的高灵敏度检测。ELSD-LT II型低温型蒸发光散射检测器在灵敏度和易操作性上均优于竞争对手。高灵敏度、优秀的重现性、出色的易用性和安全性是这一款产品的显著特点,加上更丰富的自动化功能,减少了操作成本。此外,由于ELSD-LT II是专为低温蒸发技术而设计的检测器,它还具有如下一些优点:  大部分被蒸发的流动相溶剂重新变成液体。因此,对于环境的影响很小。  在无人值守的状态下运行也具有高安全性。  节省开关机所需等待时间。 不必为每一次分析设定专门的操作温度。screen.width-300)this.width=screen.width-300"ELSD 检测器应用范围:ELSD 检测器是一种质量型通用HPLC检测器,对色谱柱流出物雾化并加热蒸发流动相,溶质形成的细小颗粒遇到光束引起光散射,通过对散射光强度的测量实现对目标化合物的检测。除了挥发性化合物以外的几乎所有化合物都能检测,并给出和质量数相应的响应值。因此,ELSD检测器非常适合应用于无紫外吸收或紫外末端吸收化合物,如糖、脂类、表面活性剂、甾体、合成聚合物等,这些化合物使用常规的紫外或荧光检测器很难检测。 ELSD检测器适合于所有能用示差折光检测器检测的化合物的测定,并且能提供更高的检测灵敏度和用于梯度洗脱分离化合物的测定。ELSD检测器可以使用和LC-MS 完全一致的流动相条件,因此易于对LC-MS分析的色谱条件进行评估并提供更为丰富的补充信息。
  • 国家同步辐射实验室在碳氢化合物低温氧化研究中取得突破性进展
    国家同步辐射实验室齐飞教授研究小组与法国Nancy大学Battin-Leclerc教授研究小组合作,将同步辐射真空紫外光电离质谱技术与射流搅拌反应器(Jet Stirred Reactor)结合,模拟发动机的点火过程,在丁烷低温氧化过程中探测到了多种过氧化物(烷基过氧化物和羰基过氧化物),如过氧化甲烷、过氧化乙烷、过氧化丁烷、C4羰基过氧化物等,首次在实验上验证了碳氢化合物低温氧化机理中广泛应用20余年的重要假定。该研究成果已于近期发表在国际著名期刊《德国应用化学》上(Angew. Chem. Int. Ed. 2010, 49, 3169-3172)。     汽车发动机与生活中随处可见的塑料和化纤制品之间似乎风马牛不相及,但它们却都与一种奇妙的化学现象──碳氢化合物的自燃(autoignition)密切相关。自燃是指可燃物质在没有外部火花、火焰等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧,是一种受低温氧化机理控制的过程。它是内燃机的主要点火方式之一,也是威胁石油化工中氧化过程安全的罪魁祸首。因此对碳氢化合物低温氧化机理的认识可以帮助我们扬长避短地利用自燃现象,对于内燃机设计和石油化工安全等实用领域意义重大。在低于自燃温度时,碳氢化合物低温氧化还会出现“冷火焰(cool flame)”(550 K左右出现的温度跳动,量级在数十K,伴随由甲醛发出的蓝光,形似火焰)和“负温度系数区”(650 K左右出现的反应活性随温度上升而下降的区域)等奇妙特性。射流搅拌反应器可以模拟自燃温度前后的工况,是研究碳氢化合物低温氧化的最佳实验平台之一。同步辐射真空紫外光电离质谱技术在射流搅拌反应器中的成功应用是揭示过氧化物存在及其浓度随温度变化趋势的关键,将从根本上推动碳氢化合物低温氧化机理的研究,揭开“星星之火,可以燎原”的秘密,为实用领域提供更加详细、精确的理论指导。  该工作得到国家杰出青年基金、中国科学院和科技部的支持。
  • 南方科技大学400万元购买1套低温散射式近场光学显微镜,仅限国产
    8月25日,南方科技大学公开招标购买1套低温散射式近场光学显微镜,预算400万元,仅限国产。  项目编号:SZDL2021339837(0868-2142ZD1010H-D)  项目名称:低温散射式近场光学显微镜(二次招标)  预算金额:400.0000000 万元(人民币)  最高限价(如有):400.0000000 万元(人民币)  采购需求:序号货物名称数量单位备注1扫描近场光学显微成像系统1套拒绝进口2闭循环低温系统1套拒绝进口3超高真空腔体及泵组1套拒绝进口  合同履行期限:签订合同后 180 天(日历日)内交货  本项目( 不接受 )联合体投标。  开标时间:2021年09月07日 14点30分(北京时间)
  • 快来参与#牛津仪器低温物理达人秀# 拿好礼!
    牛津仪器创始人马丁伍德爵士(Sir Martin Wood)于1962年制造了世界首个商用超导磁体,并于1969年创建牛津仪器,我们于2013年设立了马丁• 伍德爵士(Sir Martin Wood)中国物理科学奖。在60年来的发展中我们一直是全球商业界和学术界低温超导磁体先行者。本次低温物理达人秀是为低温物理领域研究人员提供一个展示别样风采的平台,如果您正在使用牛津仪器低温以及超导磁体设备,欢迎提供您与我们仪器的精彩互动作品,#牛津仪器低温物理达人秀#等您来!参赛方式可拨打热线电话 400-860-2711获得参赛方式!参赛时间截稿日期:2019年9月5日 12:00投票时间:2019年9月12日至10月7日 12:00评选方式牛津仪器根据评选要求筛选稿件进入决选列表;牛津仪器将在截稿后发布决选评奖页面,经公众在线投票后,在根据最终得票数依次决出各奖项。参赛结果将在2019年牛津仪器低温应用研讨会上现场公布并颁发奖品。活动奖品参赛作品需求作品中须包含牛津仪器的低温以及超导磁体设备;请尽量保持参赛作品高分辨率,格式不限,可以是照片或者是视频;照片的格式可提供gif, png或jpg,文件大小不超过20M;视频的格式可提供mp4格式,文件大小不超过20M,如有问题可拨打热线:400-860-2711参赛细则本次大赛不收取任何费用;牛津仪器员工以及家属不得参赛;参赛作品必须是投稿者本人所制作或拍摄。 参赛作品不得含有违反国家相关法律法规及违背我国社会公共道德观念的内容。已经获得过其他摄影比赛、展览的奖项和入选作品不能参加本次比赛。;参赛作品若得票相同,则按投稿先后顺序依次决定所获奖项;获奖信息将以邮件或电话形式通知,若获奖者无法联系则视为自动弃权,所获奖项将由下级获奖者顺位领取;获奖者所获奖品不可转让,亦不可兑换现金或者其他任何奖品;牛津仪器所有奖品均由正规渠道采购,售后问题由厂家负责;牛津仪器享有所有来稿作品和拍摄者信息的使用权,可用于样本、会议、展览等各种推广途径;截止日期或奖品可能会有略有调整,届时会以邮件或新闻形式通知;牛津仪器保留对于本次活动的最终解释权。
  • 未来低温光学实验我们更“近”一步 ——OptiCool发布近工作距离等多种选件
    超全开放强磁场低温光学研究平台-OptiCool发布以来就受到全球用户的广泛关注,目前国内销售已超过10台。7T强磁场、8个光学窗口、自由光路、超低振动等优异的性能让OptiCool突破了传统光学磁体对光学实验的多种限制。成熟易用的控制系统使用户从复杂的设备操作中解放出来更加专注于实验本身。Quantum Design从未满足于此,根据用户在具体实验需求中的反馈开发出了丰富的选件以满足各种具体需求。在探索真理的道路上不断前进。近工作距离选件——毫厘之间,追寻光谱本色!为进一步提高数值孔径,提高显微光谱的收集效率,Quantum Design开发出了近工作距离(LWD)窗口。标准的OptiCool系统窗室温环境到低温样品之间的小工作距离约为15 mm,使用LWD窗口选件后可以缩小到约3 mm。在对限低温要求不高的情况下,可以通过移除内窗的方式获得小于1 mm的工作距离。由于OptiCool系统配备了高均匀度磁体,在整个窗口处的磁场均匀度高于0.3%。LWD窗口选件配备室温物镜安装套环,标准的SM3螺纹兼容多种物镜,这样室温物镜也可以实现大数值孔径的低温测量。该选件安装简单,用户自己即可完成更换,使得低温强磁场显微光谱测量更加方便。本月国内近工作距离选件在清华现场升完成。左,近工作距离窗口示意图;右,清华大学近工作距离选件安装完毕真空物镜集成方案——百尺竿头,更进一步!为了满足对数值孔径和限低温的限追求,Quantum Design在近工作距离选件的基础上进一步开发了物镜集成方案。该选件兼容0.75 NA,Zeiss 100x LD EC Epiplan-Neofluar, infinity-corrected物镜。系统保证物镜工作在真空环境且接近于室温,使物镜可以发挥好的光学性能,物镜的工作距离2 mm,此时样品仍可实现1.7K限低温,这可能是集成镜头系统的佳典范。左,近工作距离窗口与外部室温镜头;右,室温真空镜头集成方案高频电学、光纤接口选件—— 想要光、电?全都配齐!系统在原有直流通道的基础上开发了高达20 GHz的高频电学通道。这对于高频电学测量或者对样品施加高频电信号调控都带来了巨大的帮助。系统的直流电学通道和高频电学通道都采用了良好的热沉处理,避免了电学通道漏热对样品温度的影响。此外系统为满足特定实验需要接入光纤的需求开发了光纤接口选件。该方案将系统的一个侧窗窗口用光纤面板替代,实现了光纤接入,这将满足更加多样化的高灵敏度光学实验。左,RF同轴线外部接口;中,同轴线样品台接口;右,样品台接线左,光纤接口选件;右,光纤接头位移器集成方案——让样品灵动自如!系统标配低阻通道,该通道专为集成位移器而设计。系统可以非常方便的安装集成attocube低温纳米位移器系列,在显微光谱方面可以实现样品对焦、特定区域测量、大范围扫描测量。系统配有位移器专用的导热连接让样品始终保持佳的低温性能。左,位移器集成示意图;右,大空间位移器集成示意图(下凹式样品台获取更多空间) 丰富多样的选件大的提升了OptiCool系统的适用性,体现了系统超全开放的理念。同时丰富的选件让低温强磁场光学实验像室温光学实验一样方便。拥有超全开放强磁场低温光学研究平台-OptiCool,让您的科研任何时刻都是高光时刻!
  • 低温强磁场磁力显微镜与共聚焦显微镜在微结构缺陷研究中的科研成果
    凝聚态物理研究中常会遇到微结构与纳米尺寸的结构。为了研究缺陷与控制缺陷,不仅需要精密测量仪器,同时要求大量精力的投入。德国attocube公司为前沿的研究提供了可行性良好的技术,公司产品既包含成套的测量系统也有精密的组件。下面,您可以发现三个令人兴奋的应用案例,案例展示了结合精密仪器与辛勤奋斗带来的高质量的研究成果。 磁场驱动的磁畴结构变化研究 近,挪威科技大学Erik Folven的课题组使用了德国attocube公司的attoAFM I低温强磁场原子力磁力显微镜研究了闭环低温恒温器attoDRY1000内的拓扑缺陷,该拓扑缺陷研究有助于材料的磁畴状态变化的进一步理解。通过具有原子尺寸与磁化的原子力显微镜探针在薄膜表面的扫描可以测量垂直平面的来源于样品本身的杂散磁场,该技术具有灵敏度高的特点。因此,磁畴壁与磁场缺陷等自旋结构的物理性质都可以被深入研究。在5K低温下测试的MFM(磁力显微镜)图像数据(图1)加深了对于微米尺寸磁畴状态转变的理解,同时测试后的样品依然具有高度稳定性。该成果可能为控制与转变微米甚至纳米磁体打开了一个新的方向。 图1:MFM测试磁畴结构随磁场变化的结果(图片来源:Appl. Phys. Lett. 112, 042401 (2018)) 耦合单个缺陷与纳米线 基于attoDRY1000低温恒温器与attoCFM I(低温强磁场共聚焦显微镜),马里兰大学的EdoWaks成功耦合了单层二硒化钨(WSe2)中的量子发射器与银纳米线的表面等离激元。结果显示量子发射器与银纳米线等离激元的平均耦合效率是26% ± 11%。该展示的实验技术(图2)可以组建结合不同种类等离激元结构与基于各种二维半导体材料中单分子缺陷发射器的耦合系统。 此测量系统可用于超快单光子源等应用方向,为超紧凑等离激元电路的研究铺平了道路。 图2:耦合WSe2中量子发射器与银纳米线中等离激元(图片来源:Nano Lett., 2017, 17 (11), pp 6564–6568) ANPz30位移台在强磁场扫描探针显微镜中的实践来自于荷兰拉德堡德大学强磁场实验室的Benjamin Bryant 与Lisa Rossi与同校的扫描探针显微镜课题组的Alex Khajetoorians合作,成功地创新设计了一套用于液氦温度与超强磁场(38T)的扫描探针显微镜。超强磁场使用了水冷降温的比特磁体:水冷降温会引入使扫描探针显微镜难操作的振动噪音。图3:ANPz30位移台,强磁场兼容原子力显微镜(图片来源: Review of Scientific Instruments 89, 113706 (2018))ANPz30纳米位移台被用于控制原子力显微镜的悬臂初步逼近样品表面。模块化设计的Attocube公司的位移台不仅易于更换,也具有兼容不同悬臂或者样品托的灵活性。由于位移台紧凑与坚固的设计,振动噪音被大大的降低。噪音是比特磁体端环境中扫描探针显微镜起到关键性影响因素。
  • 1200万!中国科学技术大学合肥先进光源国家重大科技基础设施项目-低温光发射电子显微镜采购项目
    一、项目基本情况项目编号:OITC-G240320591项目名称:中国科学技术大学合肥先进光源国家重大科技基础设施项目-低温光发射电子显微镜采购项目预算金额:1200.000000 万元(人民币)最高限价(如有):1200.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1低温光发射电子显微镜1是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年07月10日 至 2024年07月17日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:安徽省合肥市金寨路96号        联系方式:宣老师0551-63602706,丁老师0551-63602055      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:(北京):北京市海淀区丹棱街1号互联网金融中心20层;(合肥):合肥市高新区创新大道2809号置地创新中心28层2815室            联系方式:(北京):窦志超、曹山、王琪 010-68290502;(合肥):李文海、郑文彬0551-66030322            3.项目联系方式项目联系人:窦志超、曹山、王琪、李文海、郑文彬电 话:  010-68290502/0551-66030322
  • 探索纳米世界!低温强磁场原子力显微镜attoAFM及其升级的多重应用
    扫描探针显微镜(SPM)能够在样品表面的不同位置以及不同温度和磁场下关联材料的性质,如磁化、极化、开尔文电位、电导率和形貌等,是一种应用较为广泛的技术。原子力显微镜(AFM)为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的重要工具之一。基于此,attocube不断研发升级低温attoAFM I显微镜的各种功能,以得到不同模式下的多种重要表征数据。图1. 低温原子力显微镜的各种可选升级模式: MFM, PFM, ct-AFM, KPFM 本文将介绍attocube客户通过attoAFM I及其相关升级功能所获得的一些显著测量结果。结果将关联电极化(PFM)、定量开尔文势(KPFM)、定性开尔文电位(EFM)、电导率(ct -AFM)和形貌(topo)等。 KPFM, EFM, PFM & TOPO铁电半导体光电晶体管微光光电探测器(3LPD)在量子通信、自适应光学和空间成像等广泛应用中备受追捧。程志海教授(中国人民大学)和王振兴研究员(国家纳米科学中心)领导的团队制造并表征了具有固有高增益的低光级铁电半导体光电晶体管(FSP),其特点是光致铁电开关。通过将FSP设置为非易失性极化状态,实现极低的暗电流和高电阻状态(HRS)。为了解光电响应机制,作者采用了实空间成像与输运测量相结合的方法。在输运测量的基础上,在FSP器件上进行了原位EFM和KPFM测量,其中铁电半导体通道通过PFM识别。未载流状态下的KPFM测量证实了FSP的光致铁电转换,载流状态下的EFM验证了FSP的光响应性质。此外,原位的输运测量进一步验证了FSP的光响应性质。这些相关测量是通过attoDRY2100低温恒温器中的attoAFM I显微镜(升级了KPFM和PFM功能)实现的。由于其低工作电压、高性能和简单的结构,该FSP器件显示了新一代微光光电探测器的潜力。图2 :左图为FPS器件的形貌图和未载流状态下的KPFM测量;右图为线扫形貌图和载流状态下的EFM测量数据参考文献:J. Yang et al., Adv. Funct. Mater. 2022, 2205468 (2022) ct-AFM, PFM & TOPO量子材料中的导电畴壁导电畴壁(DW)是准二维导电路径,可在原位创建、定位和移除,为可重写纳米电子器件提供了机会。导电畴壁通常出现在宽带隙铁电体中,通常是响应极性不连续处的电荷积累而形成。István Kézsmárki(德国奥格斯堡大学)表明,导电畴壁也可以存在于窄间隙莫特绝缘体中。在这种情况下,纳米级导电路径的形成是因为畴壁周围的应变梯度改变了带结构。该团队在attoLIQUID2000低温恒温器中使用了带有ct-AFM升级和PFM升级的attoAFM I显微镜,将材料(GaV4S8)冷却到Jahn-Teller转变(~43K)以下,直接对电导率、形貌和压电响应进行成像。由此,他们排除了极性不连续性模型作为原点,而是将DW周围电导率的增加与表面重建高度的平方相关联:这是Jahn-Teller跃迁中产生的体积应变的特征。这有效地显示了一种利用应变梯度诱导的带结构变化来创建纳米级传导路径的新机制。这为畴壁纳米电子学的许多新材料打开了全新的大门。图3: cAFM图像显示GaV4S8中的导电之字形畴壁,明亮的颜色显示导电性增加参考文献:L. Puntigam et al., Adv. Electron. Mater. 2022, 2200366 (2022)PFM & TOPO磁电相变对称性破缺的复合氧化物可以呈现出各种各样的、突现的相。这可以通过设计复杂氧化物的超晶格来实现。张金星教授(中国北京师范大学)团队通过交替堆叠Ruddlesden–Popper和钙钛矿氧化物构建了超晶格,这导致了人工设计的铁电和磁电(ME)相变。通过在attoDRY1000低温恒温器中使用具有PFM功能的attoAFM I显微镜进行测量,PFM实验数据验证了温度低于90K时铁电畴的存在。通过布里渊光散射验证了Dzyaloshinskii–Moriya相互作用(DMI)和净磁化的伴随存在。此外,外部磁场抑制了电极化,证实了直接ME效应的存在。这项研究表明,界面DMI工程是在具有关联电子的系统中生成奇异相和有序的一种很有前途的工具。图4: 超晶格在3.7K下的PFM图像,图中相对暗和亮对比表示向上和向下的铁电畴 参考文献:X. Liu et al., Nature Commun. 12, 5453 (2021) 低温强磁场原子力磁力显微镜attoAFM/MFM I主要技术特点:-温度范围:1.8K ..300 K-磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)-工作模式:AFM(接触式与非接触式), MFM-样品定位范围:5×5×4.8 mm3-扫描范围: 50×50 μm2@300 K, 30×30 μm2@4 K -商业化探针-可升级PFM, ct-AFM, CFM,cryoRAMAN, atto3DR等功能图5. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器(点击查看详情)
  • 粉体材料表面改性良方一种——低温等离子体技术
    p style="text-align: justify text-indent: 2em "粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。/pp style="text-align: justify text-indent: 2em "改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。/pp style="text-align: justify text-indent: 2em "产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。/pp style="text-align: justify text-indent: 2em "改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。/pp style="text-align: justify text-indent: 2em "改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。/pp style="text-align: justify text-indent: 2em "改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。/pp style="text-align: justify text-indent: 2em "粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。/ppbr//p
  • NatureMethods年度技术:单粒子低温电子显微镜
    时近岁末,各大杂志接连进行了年终盘点,12月30日的《NatureMethods》也盘点了年度技术,选出了2015年最受关注,影响广泛的技术成果:单粒子低温电子显微镜(cryo-EM)。  一个蛋白质或蛋白质复合物的三维结构可以提供有关其生物学功能的重要见解。作为一种结构测定技术,单粒子cryo-EM的位次仅居于高分辨率方法X-射线晶体学及核磁共振(NMR)光谱法之后。由于近年来的技术进展使得现在能够利用cryo-EM解析近原子分辨率结构,这种情况正在迅速地发生改变。  数十年里,X-射线晶体学一直是解析蛋白质结构的首选方法。然而,许多的蛋白质,尤其是膜蛋白和蛋白质复合物却难以结晶。一些替代传统晶体学的方法存在各自不同的局限性。例如,串行飞秒激光晶体学(serialfemtosecondcrystallography)技术利用了X射线自由电子激光(XFEL),不再要求单一大蛋白结晶而是获得大量容易生成的微晶体,然而在高度专业化的XFEL下光束线时间(beamtime)的竞争是非常激烈的。NMR光谱法可用来解析小蛋白的结构,但仍然难以将其应用于较大的蛋白。  不同于晶体学,cryo-EM尤其适宜于获得大蛋白质复合物及显示多种构象或组成状态的一些系统的结构信息。过去的数十年,在这一最初很小的领域中的研究人员一直在稳步地前进,提高cryo-EM的分辨率并进而扩大它的生物适应性。EvaNogales在本期的NatureMethods杂志上介绍了cryo-EM成为一种主流结构生物学技术的开发史。  这一曾经很小的领域现正在突飞猛进。一种新型的高度敏感直接探测照相机可直接捕捉到电子,有可能实现分辨率的飞跃。第一批探索这些新型探测器的论文发布于2013年,2014年看到了几篇用cryo-EM解析一些重要的高分辨率结构的论文。2015年,多项研究已突破了3埃(?)的分辨率障碍——这一前所未有的壮举甚至让一些长期的cryo-EM从业者都感到惊讶。  但一台好的检测器并非是万能的。一项成功的cryo-EM研究很大程度上依赖于好的样本制备以及复杂的图像处理软件。AllisonDoerr在本期的NatureMethods杂志上探讨了这一问题。  cryo-EM分辨率变革才刚刚开始,RobertGlaeser在一篇评论文章中对此进行了探讨。检测器技术敏感度增高为开发出一些新的改良方法带来了机会,这些方法将进一步推动提高分辨率、适用性和易用性。尽管cryo-EM尤其适用于大型蛋白质复合物,到目前为止研究的这些蛋白质复合物都主要是一些容易摘到的果实。当前迫切需要一些实用、可重复的、通用样本制备方法来扩展cryo-EM的适用性,检测出迄今为止所有结构技术无法确定的结构。数据分析方法也需要进一步的改进,研究人员希望得到一些简单的、可靠的计算方法将原始的二维图像转变为三维的蛋白质结构,尤其用于检测具有结构异质性的系统。  像所有处于飞速增长期的科学领域一样,cryo-EM也有成长的烦恼。本期的NatureMethods杂志的一篇新闻专稿讨论了这一问题。令人鼓舞的是,许多的国家都在建设具有高端仪器的国家用户设施,然而当前这一高端仪器供不应求。许多研究人员都盼望能够利用这一技术,但cryo-EM并非是一种自动化技术(至少目前不是)。在样本制备和数据分析过程中有许多复杂的步骤,研究人员必须小心地正确应用、记录和验证以避免犯错误。确保新cryo-EM从业人员接受适当的培训至关重要。  不过,cryo-EM的这些发展并未意味着晶体学的终结,X-射线晶体学将仍然是一种用于解析容易结晶的蛋白质结构的强大技术。
  • 850万!苏州大学低温扫描探针显微镜&X射线光电子能谱互联系统采购项目
    一、项目基本情况项目编号:S2023041项目名称:低温扫描探针显微镜&X射线光电子能谱互联系统预算金额:850.0000000 万元(人民币)最高限价(如有):850.0000000 万元(人民币)采购需求:详见公告合同履行期限:合同签订后三个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年08月11日 至 2023年08月28日,每天上午8:00至12:00,下午13:30至17:00。(北京时间,法定节假日除外)地点:http://zbzx.suda.edu.cn/45/bf/c9291a542143/page.htm方式:网上自行下载售价:¥800.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:苏州大学     地址:江苏省苏州市东环路50号凌云楼0904室        联系方式:丁老师 0512-67504198,67504359      2.项目联系方式项目联系人:闫老师电 话:  0512-65883123,18600360696
  • 低温强磁场MOKE就选OptiCool!超精准全开放强磁场低温光学研究平台的MOKE应用
    一、扭曲二维材料磁性体系中的磁畴和莫尔磁性的直接可视化(Science)扭曲非磁性二维材料形成的莫尔超晶格是研究奇异相关态和拓扑态的高度可调控系统。近些年来在旋转石墨烯等多种二维材料中都观察到了很多奇异的性质。有鉴于此,来自华盛顿大学的许晓栋教授课题组报道了在小角度扭曲的二维CrI3中出现的磁性纹理。原文图1,层堆叠依赖的磁性和扭曲双层CrI3的磁光测量作者利用基于NV色心的量子磁强计直接可视化测量了纳米尺度的磁畴和周期图案,这是莫尔磁性的典型特征。该篇文章中研究者利用MOKE和RMCD(反射磁圆二色性)对样品的磁性进行了精细的测量。研究表明,在扭曲的双分子层CrI3中反铁磁(AFM)和铁磁(FM)域共存,具有类似无序的空间模式。在扭曲三层CrI3中具有周期性图案的AFM和FM畴,这与计算得到的CrI3莫尔超晶格中层间交换相互作用产生的空间磁结构相一致。本文的研究结果表明莫尔磁性超晶格可以作为探索纳米磁性的研究平台。原文图3,双三层扭曲CrI3的磁光和NV磁强计扫描测量图该研究工作中对扭曲CrI3的MOKE和RMCD测量中使用了基于超全开放强磁场低温光学研究平台OptiCool的低温磁光测量系统。OptiCool具有多个窗口,超低震动,1.7K-350K超大控温区间等诸多优点可以满足这种高精度的低温强磁场光学测量。二、铁磁缘体GdTiO3中相干声子模的磁弹性耦合(PHYSICAL REVIEW B)2020年8月,美国加州大学圣迭戈分校(UC San Diego)R. D. Averitt课题组在量子材料调控方面取得了重要进展。该研究工作利用超全开放强磁场低温光学研究平台 Opticool所搭建的测量系统,通过低温磁场环境下的超快泵浦测量详细研究了GdTiO3钙钛矿材料在光激发下自旋与晶格相互作用以及磁性变化在不同时间尺度上的各种演化机制。这对于可应用于量子信息领域的钙钛矿类量子材料实现超快的量子调控十分重要。相关研究成果以 “Magnetoelastic coupling to coherent acoustic phonon modes in the ferromagnetic insulator GdTiO3” 为题,刊登在PHYSICAL REVIEW B上。GdTiO3材料不同温度下的反射率泵浦测量,(a)反射率随时间的变化;(b)峰值反射率随温度变化;(c) 反射率在不同时间段的演变机制不同温度、不同磁场下时间分辨MOKE测量观察到的GdTiO3材料磁性的演变GdTiO3在钙钛矿材料相图中处于铁磁-反铁磁的边缘区域,在基态时Gd磁晶格与Ti磁晶格成反铁磁耦合排列,材料表现出亚铁磁性,同时材料还是莫特-哈伯德缘体和轨道有序态。该研究工作在不同温度和不同磁场环境下对GdTiO3材料进行了时间分辨的反射率和磁光克尔测量。材料的反射率和科尔转角在飞秒、皮秒时间尺度上表现出了多种演化机制。针对在皮秒量上的自旋-晶格相互作用机制,通过采用660 nm对应于Ti 3d-3d 轨道Mott-Hubbard带隙的光激发,对所得MOKE信号的分析可以得出,光激发先扰乱了Ti离子磁晶格的排布,减弱了与Gd磁晶格的抵消作用,使得材料的净磁矩增加。进而光激发所产生的热效应逐渐影响Gd磁晶格的稳定性使得材料的净磁矩减少。另外,实验观察到MOKE和反射率测量在皮秒尺度上都有相干振荡,且随着时间发生明显的红移。该振荡对应于光激发在材料中产生的应力波(相干声子)。通过分析,该应力波与材料的磁性也有密切的对应关系,表明通过声子与磁性的耦合来直接调控磁性也具有很大的可行性。时间分辨MOKE测量系统图片和光路示意图三、为什么OptiCool是更适合做强磁场光学测量的设备?OptiCool是Quantum Design于2018年2月推出的超全开放强磁场低温光学研究平台,创新特的设计方案确保样品可以处于光路的核心位置。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达±7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱传统低温系统对光路的各种束缚,真正实现自由光路的低温强磁场实验。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制实现一键变温、一键变场、部窗口90°光路张角让测量更便捷;控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验具有无限可能。为了进一步满足用户的大数值孔径测量需求,OptiCool先后开发出了近工作距离窗口和集成物镜方案,可以满足各种用户的需求。 OptiCool近工作距离窗口(左)与外部物镜(右)安装示意图内部集成室温物镜(左)与集成低温物镜(右)定制化方案示意图 OptiCool技术特点:☛ 全干式系统:完全无液氦系统,脉管制冷机。☛ 8个光学窗口:7个侧面窗口,1个部窗口;可升底部窗口☛ 超大磁场:±7T☛ 超低震动:10nm 峰-峰值☛ 超大空间:Φ89mm×84mm☛ 控温:1.7K~350K全温区控温☛ 新型磁体:同时满足超大磁场均匀区、大数值孔径的要求。☛ 近工作距离:可选3mm工作距离窗口或集成镜头方案(new!)☛ 底部窗口升:系统可升底部窗口,满足竖直方向的透射实验(new!)。☛ 多种接口:直流通道、射频通道、光纤通道、气体通道(new!)。 【参考文献】1、Song et al., Science 374, 1140–1144 (2021) 26 November 20212、D.J.Lovinger et al., PHYSICAL REVIEW B 102,085138(2020).
  • 30mK极低温近场扫描微波显微镜研发核心:attocube极低温纳米位移台
    关键词:低温位移台;近场扫描微波显微镜; 稀释制冷机 背景介绍扫描隧道显微镜(STM)[1]和原子力显微镜(AFM)[2]等基于扫描探针显微术(SPM)的出现使得科学家能够在纳米分辨率下去研究更多材料的物理特性及图形。以这些技术为基础的纳米技术、材料和表面科学的迅速发展,大地推动了通用和无损纳米尺度分析工具的需求。尤其对于快速增长的量子器件技术领域,需要开发与这些器件本身在同一区域(即量子相干区域)中能够兼容的SPM技术。然而,迄今为止,能够与样品进行量子相干相互作用的纳米尺度表征的工具仍非常有限。特别是在微波频率下,光子能量比光波长小几个数量,加之缺乏单光子探测器和对mK端温度的严格要求,更是一个巨大的挑战。近年来,固态量子技术飞速发展迫切需要能够在此端条件下运行的SPM探测技术。技术核心近场扫描微波显微技术(NSMM)[3]结合了微波表征和STM或AFM的优势,通过使用宽带或共振探头来实现探测。在近场模式下,空间分辨率主要取决于SPM针尺寸,可以突破衍射限的限制,获得纳米别的高分辨率图像。NSMM的各种实现方式已被广泛应用于非接触式的探测半导体器件[4],材料中的缺陷[5]、生物样品的表面[6]及亚表面分析,以及高温超导性[7]的研究。但是在低温量子信息领域中的应用还鲜有报道。英国物理实验室NPL的塞巴斯蒂安德格拉夫(Sebastian de Graaf)小组与英国伦敦大学谢尔盖库巴特金(Sergey Kubatkin)教授小组合作开发了一种在30 mK下工作的新型低温近场扫描微波显微镜,同时,该显微镜还结合了高达6 GHz的微波表征和AFM技术,旨在满足量子技术领域的新兴需求。整个系统置于一台稀释制冷机中(如图1(b)所示),NSMM显微镜的示意图如图1(a)所示:在石英音叉上附着了一个平均光子占有率为~1的超导分形谐振器。一个可移动的共面波导被用来感应耦合到谐振器上进行微波的发射和信号的读出。整个系统的核心是德国attocube公司提供的兼容低温的铍铜材质的纳米精度位移台,该小组使用一组ANPx100和ANPz100纳米位移器将样品与针在x,y和z方向上对齐,同时使用一个小的ANPz51纳米位移器进行RF波导的纳米定位和耦合。图1.(a)NSMM显微镜的示意图。(b) 稀释制冷机中弹簧和弹簧悬挂的NSMM示意图。测量结果如图2所示,Sebastian教授演示了在单光子区域中以纳米分辨率进行扫描的结果。扫描的区域与在硅衬底上形成铝图案的样品相同。扫描显示三个金属正方形(2×2μm2)与两个较大的结构相邻,形成一个叉指电容器。叉指电容器的每个金手指有1 μm的宽度和间距,尽管在图2中,由于的形状,这些距离看起来不同。图2. 在30 mK下扫描具有相邻金属垫的交叉指电容器.(a)得到的AFM形貌图。(b) 单光子微波扫描(~1)显示了微波谐振腔的频移,微波扫描速度为0.67 μm/s.(c)高功率微波扫描结果(~270)。(d) 在调谐叉频率(30 kHz)下解调的PDH误差信号,与dfr/dz(~270)成正比。(e) 扫描获得的信噪比(SNR)作为平均光子数的函数。attocube低温位移台德国attocube公司是上著名的端环境纳米精度位移器制造公司。拥有20多年的高精度低温纳米位移台的研发和生产经验。公司已经为各地科学家提供了5000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和扫描器。德国attocube公司的位移器以稳定而优异的性能、原子的定位精度、纳米位移步长和厘米位移范围深受科学家的肯定和赞誉。产品广泛应用于普通大气环境和端环境中,包括超高环境(5E-11 mbar)、低温环境(10mK)和强磁场中(31 Tesla)。图3. attocube低温强磁场纳米精度位移器,扫描器,3DR主要参数及技术特点参考文献:[1]. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982).[2]. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).[3]. Bonnell, D. A. et al. Imaging physical phenomena with local probes: From electrons to photons. Rev. Mod. Phys. 84, 1343 (2012).[4]. Kundhikanjana, W., Lai, K., Kelly, M. A. & Shen, Z. X. Cryogenic microwave imaging of metalinsulator transition in doped silicon. Rev. Sci. Instrum. 82, 033705 (2011).[5]. Gregory, A. et al. Spatially resolved electrical characterization of graphene layers by an evanescent field microwave microscope. Physica E 56, 431 (2014).[6]. Gregory, A. et al. Spatially resolved electrical characterization of graphene layers by an evanescent field microwave microscope. Physica E 56, 431 (2014).[7]. Lann, A. F. et al. Magnetic-field-modulated microwave reectivity of high-Tc superconductors studied by near-field mm-wave. microscopy. Appl. Phys. Lett. 75, 1766 (1999). 更多文章信息请点击:https://doi.org/10.1038/s41598-019-48780-3
  • JEOL极低温透射电子显微镜JEM-3200FSC落户中国科学院长春应用化学研究所
    中国科学院长春应用化学研究所高分子物理与化学国家重点实验室近期购买了日本电子株式会社(JEOL)的极低温透射电子显微镜JEM-3200FSC。该设备是世界顶级产品,其显著特点是①样品台具有双层冷冻保温设计,最内层的部分可灌入液氦,可在液氦温度下实现透射电镜的极限观察,最大程度地减小了电子束的热损伤效应;②独特的欧米伽能量过滤器可以把影响图像衬度的能量损失电子过滤掉,从而大大地提高样品的衬度和信息量,这些都是日本电子株式会社为高端研究开发的独有技术。 中国科学院长春应用化学研究所是集基础研究,应用研究和高技术创新研究为一体的综合性化学研究所,在国内外具有很高的影响力。该所的高分子物理与化学国家重点实验室定位于高分子科学的基础研究和高分子材料的高技术研究,选择高分子的高性能化、高分子复杂体系和功能高分子的分子工程为主要研究方向,以建设具有国际一流水平的高分子科学研究平台为目标。近年来,他们在高分子科学基础和应用基础研究方面取得了在国际上具有原创性的研究成果。不仅如此,在高分子材料应用研发领域,他们还获得了一批具有自主知识产权、有国际竞争力的重要成果,其中一些在产业化方面取得显著成效。在“国家化学学科重点实验室评估”中连续五次被评为优秀实验室。高分子样品的共同特点与生物样品很类似,都是由轻元素构成,经不住电子束的轰击和热损伤,图像衬度极差,为解决此类问题,必须对电子显微镜进行有针对性地设计和改进,而日本电子株式会社制造的JEM-3200FSC极低温透射电子显微镜正是突破了这些限制。JEM-3200FSC的引进标志着中国的冷冻电镜达到世界领先水平,为高分子材料的研究提供了一个新思路、高手段和高平台,必将进一步促进我国相关研究领域科研大发展。
  • 超低温制冷技术将成为量子研究的“卡脖子”技术
    近年来,低维材料、超导材料、量子科技等已成为科学研究关注的焦点,在日常生活上用不上超低温制冷技术,却在这些领域中发挥了重要的作用,为相关研究创造了极端条件,推动了相关科技的进步。近日,由全国纳标委低维纳米结构与性能工作组和中国科学院半导体研究所联合主办的第四届低维材料应用与标准研讨会(LDMAS2021)在北京西郊宾馆成功召开。在展会上,北京飞斯科科技有限公司的黄社松先生向我们介绍了超低温制冷技术的发展。氦是不可再生资源,无液氦制冷意义重大目前的超低温制冷技术离不开氦,但我国却是贫氦国家。据黄社松介绍,我国氦储量仅占全球2%左右,且开采难度大,目前我国还没有氦生产能力,氦气严重依赖于美国进口。虽然我国已通过资本注入等手段向卡塔尔等国家购买氦矿,但目前来讲氦还是不可再生资源,总量有限,如果不对其进行回收,在做完实验后会排入大气,现在无液氦系统传统替代氦气制冷已成为趋势。针对我国对无液氦制冷技术的需求,北京飞斯科科技有限公司在今年四月份推出了多功能高效闭环氦气循环系统,可以为用户提供一个低温的真空环境,最低温度小于1.7k且完全无液氦。同时设备消除了冷头的震动,解决了目前商用4K制冷机普遍存在的振动较大问题,特别适用于一些对振动敏感的实验(如STM、SEM、AFM、ARPES、显微镜、红外、高能物理、高压物理、单光子探测、布里渊散射和离子阱等)。黄社松表示,飞斯科的这款产品目前在同类产品中处于世界领先地位,虽然国际上仍有两家公司也有类似产品,但这些产品最低温度只能到3~4k,在两三年之内应该还不会有能匹敌该产品制冷效果的产品。此外,飞斯科还提供了相应的一些低温插件。黄社松先生还介绍了配套的ST-500显微型低温恒温器。恒温器采用低膨胀措施和低漂移设计,使样品振动水平降至纳米量级。采用新一代高效热交换器最低温度小于1.8K,可用作单量子点/单分子低温测试平台,紧凑型设计满足高倍放大的短焦距显微物镜要求,可与多数商用显微镜和Raman光谱仪匹配使用。黄社松透露,飞斯科推出的无液氦的多功能高效闭环氦气循环系统受到了用户的欢迎,目前已有20多套的订单在做。多功能高效闭环氦气循环系统国产稀释制冷机技术亟待突破除了已经实现商业化的多功能高效闭环氦气循环系统,飞斯科还在准备研发稀释制冷机。黄社松表示,消除震动和电磁噪音的稀释制冷机目前仍是空白,我们正在努力在做,但是时间比较长,不同于实验室研究产物,相关产品将直接推商业化。现在稀释制冷机的超低温制冷主要应用在量子领域、二维材料当中,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。最近中关村一个创新论坛上,飞斯科的客户于海峰研究员也介绍了突破500ms退相干时间的成果,创造了世界纪录。不过目前稀释制冷机还存在一些技术问题。一方面,稀释制冷机本身是有震动的,而且稀释制冷机制造难度大,再加上减震更难,所以大家先不考虑这个问题。另一方面,整机上的冷托有磁性会造成非常大的干扰,量子比特会大幅度无效。黄社松表示,应用分体式的创新可以解决这个问题,现在世界上还没有第二个厂家在做这些事情,飞斯科规划当中明年可以推出商用的机型,同时会以此为基础制造无震动、无磁性的稀释制冷机,虽然最后不一定成功,但是总是要做一些尝试。黄社松也向我们透露,稀释制冷机现在主流的还是500微瓦,明年飞斯科推出来也就是500微瓦,后年才能推出1毫瓦的,届时将采用新的设计,在理论上有望解决噪音和磁性震动等问题。氦三提纯技术已成为量子研究的“卡脖子”技术水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液体的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。值得注意的是,氦三是氦四的同位素,氦四实际上是天然的,在美国很多天然气矿里面有百分之几的氦四,但氦三却不是天然的,而是纯粹的人造的,但是在宇宙中氦三、氦四非常多,比如太阳中有大量的氦3、氦4,核聚变就是氕氘氚反应最后变成氦三和氦四。众所周知,月球存在很多氦三,实际上月球本身是没有氦三的,是因为太阳风上亿年日积月累把它吹到上面而形成,但月球上的资源开采不易。当前,稀释制冷机需要的氦三全部需要进口。现在氦三主要从氚中提取。我们国家不缺氦三,缺的是没有放射性的,不带氚的氦三。氦三无放射性,但氚是有放射性的,而只有俄罗斯和美国可以生产商业化的无放射性的氦三。目前来讲,我国还没有真正的把无放射性的氦三的提纯商业化,所以全进口且非常受美国管制。黄社松在采访中呼吁道,国家需要把无放射性氦三提纯技术提上日程,否则量子计算机的稀释制冷还没解决掉,氦三就没了,没有氦三我们就没法做稀释制冷。黄社松表示,实际上飞斯科稀释制冷机的研制已经准备了很多年,但闭关锁国是不行的,实际上有很多技术来自于先进的国家,这些技术不是我们讲我们憋着脑袋就能想出来的,真的很多需要全球联合。关于北京飞斯科北京飞斯科科技有限公司创建于2007年,集国内著名大学和科研院所的优秀人才,专门从事物理、化学和材料等领域的科学仪器研发、销售和技术咨询的国家高新技术企业。北京飞斯科不仅提供各种低温强磁场设备,如低温和超低温 (He-3、DR)恒温器,超导磁体,ADR恒温器,热电型恒温器,红外杜瓦,液氦杜瓦,SQUID传感器、Bolometer探测器,低温控温仪,金刚石对顶砧、低温低噪音放大器等,而且提供多种测试系统,如低温电导率测试系统、低温霍耳效应测试系统、交流磁化率测试系统、低温强磁场高压物性测试系统、低温磁光测试系统、瞬态光电流/光电压测试系统、Seebeck测试系统、热输运测试系统、RRR测试系统和多路温度巡检系统等。
  • Janis公司研发的世界首套极限低温100mK以下,用于5140m高海拔的低温系统问世。
    Janis超低温技术团队与众多科研团队合作(统称ACTPol),成功研发了一款新型超低温系统。该低温系统由3He-4He稀释制冷机JDry-100-ACTPol和脉管机PT-407组成,集成天文望远镜(ACT)使用。 ACT是一个长达6m的格雷戈里望远镜,位于智利北部的 Cerro Toco,海拔高达5140m处,用于观察在不同极化和弧分下的CMB辐射,来研究早期宇宙的结构和演化。ACT 的聚焦平面创新性的使用了3000个偏极化转变探测器(TES)热辐射测量计,系统运行时需冷却到100mK以下。PT-407 集成 ACTPol 研发的新型光学导管和探测器后,成为天文望远镜的感光器。运行时,三个感光器组件和光学系统的其他组件都会被Janis 研发的3He-4He稀释制冷机JDry-100-ACTPol冷却至超低温。其中第一个150GHz的感光器组件(PA1)于2013年春季进行现场测试。于 100mK 以下成功接收第一束光波,这也是世界上首次在如此低的温度下进行的宇宙微波背景实验。2014年初,第二个150GHz感光器组件(PA2)和第三个90/150GHz的感光器组件将被集成安装测试,整个系统的运行将于2014年春季完成。 美国Janis公司创建于1961年,Janis秉承其积极探索,追求卓越的优秀企业文化,在低温设备的设计、研发和制造等方面成为国际公认的领导者。Janis产品种类齐全,性能可靠,可提供液氦型低温恒温器、闭循环制冷机、低温真空探针台和稀释制冷机等低温系统,且能够根据客户不同要求定制。经过五十多年产品卓越品质的追求以及客户售前和售后的鼎力支持,Janis低温产品是众多科研人员的理想选择。图1 放置在微波防护屏的ACT天文望远镜,位于智利北部的Cerro Toco。图2 He3流量与制冷量和极限温度的关系。图3 JDry-100-ACTPol三维插件模型和和装配过程。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 这个光学低温恒温器太小了,还超低振动,量子光学实验必备!
    随着科学技术的发展,越来越多的研究人员希望在低温下进行量子光学实验,但却没有空间放置占用几立方米宝贵实验室空间的大型低温恒温器。针对此问题,国际知名低温显微镜领域制造商attocube systems AG公司推出了全新一代立光学低温恒温器attoDRY800xs。attoDRY800xs将attoDRY800的革命性概念提升到了一个新的水平,成为量子光学实验中紧凑的平台。该平台可定制低温护罩,配备您想要的光学设置,集成到光学平板中。attoDRY800xs是有史以来个立的光学低温恒温器,低温样品空间地嵌入到一个无障碍的工作空间中。图1. 全新一代立光学低温恒温器attoDRY800xs。 根据典型配置,我们设计了几种标准真空罩和冷屏,它们在定位器、样品架、工作距离和目标方面进行了优化。图2为可配置的低温物镜兼容真空罩,该真空罩内可配置attocube有的低温消色差物镜以及纳米精度位移台。如果仍然不够,可以根据用户的技术要求和偏好定制桌面上方的任何内容。图2:低温物镜兼容真空罩。 尽管设计紧凑,但attoDRY800xs仍能提供出色的超低振动性。图3中激光干涉仪直接测量冷头位置的振动,垂直方向的峰间振动小于2纳米(3纳米),而在横向上低于10纳米(40纳米),带宽为200赫兹(1500赫兹)。图3. attoDRY800xs样品区域振动水平测试结果 紧凑的光学低温恒温器attoDRY800xs保留了原始attoDRY800的所有关键优势,例如类似的低振动性能、通过可定制的真空护罩实现的多功能性,以及自动温度控制、气体处理和远程控制。 因此,attoDRY800xs可以直接在其光学平板上建立一个立的实验,也可以将其放置在现有较大的光学台附近,光学元件之间进行光纤耦合。简而言之, attoDRY800xs为您的科学研究提供一个小型紧凑但功能依然强大的光学低温平台。 attoDRY800xs主要技术特点:☛ 只需要17英寸x28英寸的实验室空间☛ 光学面包架和闭式循环低温恒温器地结合在一起☛ 宽温度范围(3.8 K… 300 K)☛ 用户友好、多功能、模块化☛ 与低温消色差物镜兼容☛ 可定制的真空罩☛ 与典型光学桌的高度相同☛ 自动温度控制☛ 包含36根直流电线attoDRY800应用案例:1. InGaN量子点作为单光子源的提升与改进 虽然量子点通常被认为是单光子源的佳候选,但它们的实际性能在很大程度上取决于化学成分。在氮化物量子点的特殊情况下,一方面它们即使在温度高达350 K的情况下可以发射单光子,另一方面它们的发射会显著加宽。为了了解优化其性能的佳方法,Robert Taylor小组(英国牛津大学)对InGaN量子点的光致发光进行了广泛的研究,发现在非性平面上生长的量子点与性氮化物点相比,光谱扩散率降低,寿命显著缩短。由于在配备有ANPxyz101位移台的attoDRY800低温恒温器中进行了低温光致发光测量,这些发现得以实现。【参考】Robert A. Taylor, et al Decreased Fast Time Scale Spectral Diffusion of a Nonpolar InGaN Quantum Dot. ACS Photonics 2022, 9, 1, 275–281 2. 悬浮纳米颗粒的量子控制 attoDRY800不仅能够为量子光学实验提供一个无障碍的实验平台,而且还可以确保非常干净的高真空条件。Lukas Novotny(瑞士苏黎世ETH)团队出色地利用了这些特性,他们次在低温环境中光学悬浮介电纳米颗粒,并实现了对其运动的量子控制。由于在低温环境中抑制气体碰撞和黑体光子发射所提供的低水平的退相干,从而允许将粒子的运动反馈冷却到量子基态,从而实现了这些结果,反馈控制依赖于粒子位置的无腔光学测量,该测量接近海森堡关系的小值,在2倍以内。此外,量子研究的重要性以及Novotny在其中的作用在ETH董事会2021年的年度报告中有所体现。【参考】Lukas Novotny, et al Quantum control of a nanoparticle optically levitated in cryogenic free space, Nature, 595, 378–382 (2021) 3. 增强单光子量子密钥分配 按下按钮即可发射单光子的工程量子光源是量子通信协议的基本组件。为了大限度地提高量子密钥分发的预期安全密钥和通信距离,柏林理工大学(德国柏林)的Tobias Heindel团队开发了一些工具,以优化使用此类工程单光子发射器实现的量子密钥分发性能。利用二维时间滤波,可以优化预期的安全密钥以及通信距离。该小组在一个基本的量子密钥分发试验台上完成了他们的常规工作,该试验台包括一个量子点装置,该装置向一个四端口接收器发送单光子脉冲,分析飞行量子比特的化状态。单光子源安装在光学attoDRY800光学恒温器的冷台上,冷台与光学平台的集成为光学平台上的冷点提供了简单的解决方案。该团队的方法进一步证明了通过光子统计进行实时安全监控,这是量子通信安全认证的重要一步。【参考】Tobias Heindel, et al Tools for the performance optimization of single-photon quantum key distribution.npj Quantum Information , 6, 29 (2020) 4. 易于使用的单光子实验平台 有效地产生单个、不可区分的光子对于光学量子信息处理的发展至关重要。具体而言,按需创建单光子的探索仅限于某些类型的源和技术。为了实现这一目标,Quandela公司提供光学配件和先进的固态源设备,这些设备每秒可发射数百万个量子纯光子。将attocube的闭式循环低温恒温器attoDRY800与Quandela的半导体量子点发射器相结合,可为复杂的实验和协议提供可靠且易于使用的先进固态单光子源。通过这种稳健的设置,很容易使用单光子源按需生成零、一或两个光子的量子叠加加速芯片多光子实验,并证明该技术可用于大规模制造相同的源。【参考】J. C. Loredo, et al Generation of non-classical light in a photon-number superposition,Nature Photonics ,13, 803–808(2019) 5. 高压下的纳米量子传感器 压力会影响从行星内部的性质到量子力学相位之间的转换等现象。然而,在高压实验装置(如金刚石砧座单元)中产生的巨大应力梯度限制了大多数常规光谱学技术的应用。为了应对这一挑战,由三个小组(按字母顺序)立开发了一种新型纳米传感平台:Jean-Francois Roch小组(法国巴黎大学)、Sen Yang小组(中国香港中文大学)和Norman Yao小组(美国加州大学伯克利分校)。研究人员利用集成在砧座单元中的量子自旋缺陷,在端压力和温度下以衍射限的空间分辨率检测到了微小信号。为此,Norman Yao及其同事使用了台式集成闭合循环attoDRY800低温恒温器,这是快速控制金刚石砧座温度的理想平台,同时提供了大的样品室和自由光束通道。【参考】N.Y.Yao, et al Imaging stress and magnetism at high pressures using a nanoscale quantum sensor,Science 2019:366, 6471,1349-1354 6. 低温拉曼研究气相沉积的二维材料NiI2晶体磁学性质 范德瓦尔斯磁性材料的发现引起了材料科学和自旋电子学界的大关注。制备原子厚度以下的超薄磁性层是一项具有挑战性的工作。纳米科学中心的谢黎明研究员团队报道了气相沉积的NiI2范德华晶体,在SiO2/Si衬底上生长的二维NiI2薄片为5−40纳米,在六角氮化硼(h-BN)上可生长原子层厚度的晶体。随温度变化的拉曼光谱揭示了生长的二维NiI2晶体中的磁性相变。该研究工作使用attoDRY800光学低温恒温器进行了样品冷却,低温物镜(LT-APO/VIS/0.82)用于激光聚焦和信号采集。这项工作为外延二维磁性过渡金属卤化物提供了一种可行的方法,也为自旋电子器件提供了原子层厚度的材料。【参考】Liming XIE, et al Vapor Deposition of Magnetic Van der Waals NiI2 Crystals, ACS Nano 2020, 14, 8, 10544–10551. 7. 范德华异质结构中局域层间激子间的偶相互作用 虽然自由空间中的光子几乎没有相互作用,但物质可以调解它们之间的相互作用,从而产生光学非线性。这种单量子水平上的相互作用会导致现场光子排斥,对于基于光子的量子信息处理和实现光的强相互作用多体态至关重要。美国Ajit Srivastava课题组报道了异质双层MoSe2/WSe2中电场可调的局部化层间激子之间的排斥偶-偶相互作用。具有平面外非振荡偶矩的单个局部化激子的存在将二激发的能量增加约2 meV:大于发射线宽的一个数量,对应于约7 nm的偶间距离。样品被装入闭循环低温恒温器attoDRY800中,课题组自制了低温(~ 4K)显微镜进行PL测量。在较高的激发功率下,多激子络合物以较高的系统能量出现。该发现是朝着创建激子少体和多体态迈出的一步,例如范德华异质结构中具有自旋谷旋量的偶晶体。 【参考】Ajit Srivastava, et al Dipolar interactions between localized interlayer excitons in van der Waals heterostructures, Nature Materials, 19, 624–629(2020) 8. 单层WS2范德华异质结构腔中的光吸收 单层过渡金属二卤化物(TMD)中的激子控制着它们的光学响应并显示出由寿命限制的光−物质强相互作用。虽然各种方法已被应用于增强TMD中的光激子相互作用,但所达到的强度远远不足,并且尚未提供其潜在物理机制和基本限制的完整图片。西班牙Koppens课题组介绍了一种基于TMD的范德瓦尔斯异质结构腔,它提供了在超低激发功率下观察到的近100%激子吸收和激子复合物发射。低温恒温器attoDRY800为光谱吸收实验提供了不同的温度条件(4K-300K)。实验的结果与描述光的激子−空腔相互作用的量子理论框架完全一致。研究发现,辐射、非辐射和退相衰变率之间的微妙相互作用起着至关重要的作用,并揭示了二维系统中激子的普遍吸收定律。此增强型光−激子相互作用为研究激子相变和量子非线性提供了一个平台,为基于二维半导体的光电子器件提供了新的可能性。 【参考】Frank H. L. Koppens, et al Near-Unity Light Absorption in a Monolayer WS2 Van der Waals Heterostructure Cavity, Nano Lett. 2020, 20, 5, 3545–3552图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5. 北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • 780万!上海交通大学低温强磁场扫描探针显微镜和原子力显微镜采购项目
    一、项目基本情况1.项目编号:0834-2441SH24A039项目名称:上海交通大学低温强磁场扫描探针显微镜预算金额:620.000000 万元(人民币)最高限价(如有):590.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1低温强磁场扫描探针显微镜1套1.4 *配备2路射频同轴电缆连接室温大气与扫描隧道显微镜,带宽10 GHz,高真空热隔绝腔与超高真空腔体间漏率10-8 mbar L/sec。 (详见第八章)签订合同后12个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同后12个月内本项目( 不接受 )联合体投标。2.项目编号:0834-2441SH24A037项目名称:上海交通大学原子力显微镜预算金额:160.000000 万元(人民币)最高限价(如有):160.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1原子力显微镜1台包含不少于三个全数字锁相放大器,能提供定量相位成像功能:-180°到+180°全线性相位成像。 (详见第八章)签订合同后6个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年02月21日 至 2024年02月28日,每天上午9:30至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市共和新路1301号D座二楼方式:详见其他补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:上海市东川路800号        联系方式:钟老师86-21-54747337,技术联系人:彭老师 86-21-68693117      2.采购代理机构信息名 称:上海中招招标有限公司            地 址:上海市共和新路1301号D座二楼            联系方式:林佳文、吴乾清 电话:86-21-66271932、86-21-66272327,13764352603@163.com、18930181850@163.com            3.项目联系方式项目联系人:林佳文、吴乾清电 话:  86-21-66271932、86-21-66272327
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制