当前位置: 仪器信息网 > 行业主题 > >

核振纤维上仪

仪器信息网核振纤维上仪专题为您提供2024年最新核振纤维上仪价格报价、厂家品牌的相关信息, 包括核振纤维上仪参数、型号等,不管是国产,还是进口品牌的核振纤维上仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核振纤维上仪相关的耗材配件、试剂标物,还有核振纤维上仪相关的最新资讯、资料,以及核振纤维上仪相关的解决方案。

核振纤维上仪相关的论坛

  • 国产低场核磁共振

    南京普江科学仪器有限公司是专门从事科学仪器的开发、生产、销售的专业公司。公司本着知识、科技、创新的宗旨,诚信、求实、服务的精神。整合优势资源,瞄准国际先进技术,不断开发、生产一流产品。特别致力于低场脉冲傅立叶变换核磁共振仪器的发展。我公司开发生产的PNMR系列核磁纤维含油率检测仪已接近世界同类仪器的水平。目前唯一国产脉冲傅立叶变换核磁共振纤维含油率检测仪PNMR系列核磁纤维含油率检测仪 简单、快速、准确地测定纤维的含油率纤维表面的纤维油剂含量是一个重要的质量控制参数,它直接决定纤维是否能满足工艺过程要求,以及是否能满足纤维将来的使用目的;同时在很多情况下纤维油剂与纤维原材料的成本相比,现场控制纤维涂层的含油量可限制并可能降低成本;另一方面,一些聚合体(如聚酰胺、聚脂、纤维胶)的合成物中自然含有不可忽略的水分(例如超过1% w/w),水分的含量直接影响纤维的质量及其经济价值,当测量值有明显变化时需现场及时加以控制。因此为了保证纤维 的质量和有效的控制成本,需要在纤维的生产过程中快速、准确地检测并控制纤维油剂的含量。我国在这方面还较为落后。我公司生产的PNMR系列核磁粮油检测仪为此项检测提供了一种达到国际标准的仪器。核磁共振检测的方法 传统的对纤维表面油剂含量测定方法是使用适当的有机溶剂对纤维进行溶解和萃取处理,而后用重量分析法(蒸馏法)或光谱分析法(红外光谱、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]光谱)进行油含量测定。这些方法的缺点是:过程复杂、耗时长、需要使用消耗品以及需要熟练的操作;同时由于表面油膜不可能100%被提取出来,其检测结果也不可能有很高的准确性。另外,由于提取油膜需要萃取剂,这些萃取剂不同程度对对个人及环境造成一些危害。萃取剂都会的引入一些化学组份而妨碍光谱学测量。 核磁共振技术可以测定样品成分中的氢质子的量,本公司生产的PNMR系列核磁纤维含油率检测仪正是使用了这一先进的核磁共振技术,可以精确的测定样品中油和水的含量。使用低磁场脉冲核磁共振(NMR)方法,不仅操作容易、速度快、准确度高,而且测量结果不受样品复杂基质和背景的影响,因此是一种非破坏性、准确、快速的测定方法。其测量过程非常简单:将油籽样品放入试管中,称重后再插入核磁共振检测仪即开始测定,几十秒钟就给出准确的分析结果。核磁纤维含油率检测仪能节省时间、节约原料、提高质量,因而为纤维生产带来显著的经济效益。这一检测技术重复性好,仪器的精度高业已成为纤维生产行业的一个工业标准,被欧美纤维生产厂家作为常规检测设备。一些公司以将此列入其纤维生产的工艺标准,并使用多年。PNMR系列核磁油料检测仪的特点 • 不需制备样品: 只需将样品称重后放入试管中,将试管插入样品池中就可进行检测。样品在无损环境下检测,测后可以回收利用。 • 检测极为迅速: 只需20几秒即可完成测试。• 不需任何试剂: 不象其他化学方法那样需要溶剂。核磁共振检测仪不需任何消耗品,避免了许多化学试剂对人体和环境造成的健康危害。 • 结果精确可靠: 分析精度高于其他检测方法。其检测结果的重现性是其他方法无法达到的。 • 软件简单易用: 全中文的操作软件简单易用操作人员不必接受专门培训就可日常操作。 • 专家系统强大:可配置功能强大的专家分析系统,特别适合新产品的研究开发请各位大虾帮助宣传,支持国内核磁共振事业

  • 电子探针测试碳纤维的氧元素分布问题

    各位专家各位朋友大家好!请教一下用电子探针测试碳纤维径向元素分布的问题(纤维直径20um左右,由于不是成品导电性不好)我的测试方法,是将纤维(直径20um左右)埋在树脂里制成金相,打磨抛光后,露出纤维截面,喷碳后,用导电胶粘在电子探针样品台上,在显微镜里观察纤维,但纤维总是飘动,且看不清,原因应该是导电不好或者是我的金相没有制备好。由于电子束难以聚集在纤维上,没能测出纤维截面上径向的氧元素分布。想请教一下你们是怎么做的呢?这个问题也困扰了我很久,期待大家的回复。

  • 显微镜隔振台特点及应用

    [url=http://www.f-lab.cn/vibration-platforms/vibration-isolation.html][b]显微镜隔振台[/b][/url]是专业为各种[b]显微镜隔振[/b]和消除振动或震动而设计的[b]显微镜隔震台,[/b]针对Zeiss,Leica,Olympus, Nikon等世界主流显微镜的每款型号都有相匹配的[b]显微镜减震台。进口显微镜隔振台特点:[/b]尺寸恰好能与显微镜的底座匹配,大小有30x46cm, 41x41cm, 46x61cm,61x76cm[b],[/b]采用三角配置,即能隔离振动,又可以大大节省工作台空间[b]。显微镜隔振台[/b]属于被动震动隔离类型的平台[b],[/b]与传统而笨拙的气浮式平台相比,它不仅尺寸小,而且免于维护,终身使用,寿命大大增加[b],[/b]小巧便携,它可以放置到任何桌面上,具有免维护的独特优势[b],[/b]不再需要笨重的防震桌,大大节省空间[b],[/b]使用时,直接把仪器放置到显微镜减震台上面即可使用[color=#000000][b][b]显微镜隔振台适合如下显微镜[/b]:[/b][/color][color=#000000]蔡司显微镜[/color]莱卡显微镜尼康显微镜奥林巴斯显微镜显微镜隔振台和欧洲的进口显微镜隔振台,是专业为各种显微镜的隔离和消除振动或震动而设计,可以适合所有显微镜减震更多[b]进口隔震台,显微镜隔震台[/b]请浏览官方网页:[url]http://www.f-lab.cn/vibration-platforms.html[/url]

  • 【分享】如何选购显微镜之显微镜供应商的正确选择

    相信很多显微镜采购者都还不是很清楚应该如何去选择适合的显微镜,而且我在平时也了解到很多客户一打电话进来,都会直接说要显微镜而没有很清楚自己要哪一种显微镜才是适合用的。针对这种情况,今天我倒想简单介绍一下在选购显微镜时应该如何去选择合适的供应商了。一、选择显微镜供应商时,您会遇到哪些风险?1 交货能力的风险。 2 货物质量控制的风险。 3 技术支持的风险。 4 售后服务的风险。对于显微镜的选购来说,好的供应商就是质量、售后、价格等一系列重要因素的保证。显微镜是经久耐用的精密光学仪器,其核心技术是光学技术和机械部位.这就要求有厂家有很强的技术实力和完善的售后服务. 现在市场上的显微镜的对外宣传的技术基本都一样,实际上质量相差很大,价格相差也大.有的甚至冒充著名厂家的牌子行骗.一个好的供应商能及时的交货,交出适合您使用的显微镜,能给您以质量和售后的保证,和这样的供应商合作无疑是愉快的,是一种享受。而一个不合适的供应商可能在产品价格上是低廉的,但是随之而来的就是产品供货时间的遥遥无期,产品质量的无保证,甚至连税票都无法出据,至于售后服务就更无法得到保障,而显微镜这种经久耐用的精密光学仪器的使用寿命是很长的,短则数年长则近十年,在这样长的时间内无售后保障将会给您带来一系列的麻烦和困扰。二:如何选择供应商?对供应商的考核方法,一般先就价格、品质、交货、协调等主要考核指标进行配分,比如价格占40%,品质占30%,交货占20%,协调占10%。建议现场考察,拿需要检测样品到公司来测试。俗话说"百闻不如一见",显微镜的种类很多,所以当自己选择显微镜的时候,最好是自己拿着样品在显微镜现场操作,亲自观看是否理想,是否可以满足要求。综合各个方面来决定。

  • 锡盟信息港为你介绍核磁共振方面的内容

    核磁共振是我们现在医学中应用的比较多的一项技术,锡盟信息港小编今天想要为大家介绍的就是关于核磁共振方面的内容,希望大家简单的了解一下。  核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。  核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查:即使安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。不能把监护仪器、抢救器材等带进核磁共振检查室。另外,怀孕不到3个月的孕妇,最好也不要做核磁共振检查。

  • 显微磨针仪优势特点

    [url=http://www.f-lab.cn/micropipette-grinders/eg-401.html][b]显微磨针仪EG-401[/b][/url]是[b]研磨微量注射针[/b]的[b]微针研磨器,显微磨针仪EG-401[/b]能够对[b]玻璃微针[/b]进行任意倾斜角度的切割抛光研磨,是微注射的理想工具。[b][url=http://www.f-lab.cn/micropipette-grinders/eg-401.html]显微磨针仪EG-401[/url]特点[/b]是Narishige公司的专利产品,装配有显微镜精确观察微量吸管或微量针管与研磨面的接触情况,从而精确控制微针研磨质量。通常用于斜切玻璃微毛细管显微注射针,锋利针具和各种针头,也可以用于任何的精抛光操作应用。具有稳定的变速电机旋转“磨刀石”研磨盘,进行快速研磨或超精密抛光。包括一个z轴显微操作器,一个提供连续的润滑的滴水器,和一台监控研磨进程显微镜,能够全程有效监控研磨过程,提高磨针效率和质量。[img=显微磨针仪]http://www.f-lab.cn/Upload/EG-401-micropipette.JPG[/img]

  • 生物大分子核磁共振教材之二--"生物大分子多维核磁共振"

    “生物大分子多维核磁共振”一书由夏佑林,吴季辉,刘琴及施蕴渝编著,中国科学技术大学出版社出版。该书介绍了多维核磁共振波谱学基本原理及其在结构生物学中的应用。全书分为13章,内容包括核磁共振基本理论,一维多脉冲实验,二维NMR基本原理,蛋白质结构测定,蛋白质的稳定同位素标记,三维四维NMR波谱,蛋白质折叠,酶反映机理研究,核酸和糖的结构测定,各种选择性实验,膜和膜蛋白的固态NMR研究以及核磁共振成像。该书参考了国内外一些核磁共振优秀教材的内容,并作了很好的归纳总结。

  • 【资料】直接显微镜检查真菌在实验室诊断中的应用

    真菌是一类具有典型细胞核和完整细胞器,无根、茎、叶,不含叶绿素的真核细胞型微生物。大多数真菌对人体无害,但少数也可引起感染性、中毒性以及反应型疾病。在临床上以浅部感染真菌的毛癣菌属和深部感染真菌的白假丝酵母菌最为常见。实验室诊断的真菌阳性确诊性报告需要经过采集标本、直接镜检以及分离培养、生化反应,免疫学、分子生物试验鉴定等程序。整个过程复杂,成本高、时间长,从标本采集到报告发出,一般需24~48小时。非常不利于医生在第一时间给病人特别是门诊病人诊断、用药,以致延误病情。因此直接镜检后发出的初步诊断报告就显得尤为重要,对真菌感染性疾病的诊断具有重要意义。而真菌在体积上比细菌大几倍到几十倍,在形态上具有典型的菌丝和孢子,在结构和化学组成上不复杂、易染色,这些都为提高直接显微镜检查后所发出的初步诊断报告的阳性检出率提供了有利条件。近年来,我科室人员经过不断的摸索实验,总结出了不少经验,为临床医生提供了及时可靠的诊断报告,受到了他们的好评。浅部感染真菌的显微镜实验室诊断浅部感染真菌系指主要侵犯人和动物皮肤、毛发、及指(趾)甲,引起癣病的真菌

  • 扫描探针显微镜一套

    山东大学从美国维柯公司DI分部购进扫描探针显微镜一套,该设备是属于多功能配套设备。它包含如下功能:①原子力显微镜;②隧道力显微镜;③电力显微镜;④磁力显微镜;⑤摩擦力显微镜。工作模式可分为:接触式,非接触式,敲打式,力调制等。功能之全是国际上一流的。为此,山东大学于2001年9月9日派遣任可、刘宜华、孙大亮三人赴美国圣巴巴拉市维柯公司DI分部接受培训(扫描探针显微镜生产厂家为美国、、、、、、、

  • 多功能显微锻针磨针仪优势特点

    [url=http://www.f-lab.cn/microforges/mf-900.html][b]多功能显微锻针磨针仪MF-900[/b][/url]是一款多功能[b]锻针器,Microforge[/b],用于制作不同类型的微型工具。[b][url=http://www.f-lab.cn/microforges/mf-900.html]多功能显微锻针磨针仪MF-900[/url]特点[/b]根据NARISHIGE公司多年的实践经验制作而来,MF-900通过加工微针针尖,为生产不同种类的微型工具提供了许多功能。安装了一对易于使用的操纵器,用于定位加热器和吸管。使用接近操作者手的控制器,可以三维移动显微镜。用于垂直和水平运动的独立旋转机械可以接触在任意角度的移液管,而加热器部分的特殊装置可以安要求将移液管塑造成任何形状。除了常规的比例尺,显微镜目安装有测量角度的量角器。加热器通过脚踏开关接通和断开,并且加热器部分被安装在显微镜体内,使所有的控制动作容易进行,精确和符合人体工程学。[img=多功能显微锻针磨针仪]http://www.f-lab.cn/Upload/MF-900.jpg[/img]

  • 【原创】核磁共振原理

    核磁共振用NMR(Nuclear Magnetic Resonance)为代号。 1.原子核的自旋 核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。 I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。 2.核磁共振现象 原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。 式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值, 当自旋核处于磁场强度为H0的外磁场中时,除自旋外,还会绕H0运动,这种运动情况与陀螺的运动情况十分相象,称为进动,见图8-1。自旋核进动的角速度ω0与外磁场强度H0成正比,比例常数即为磁旋比γ。式中v0是进动频率。 微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是: m=I,I-1,I-2…-I 原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出: 向排列的核能量较低,逆向排列的核能量较高。它们之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。 目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。1H的核磁共振称为质磁共振(Proton Magnetic Resonance),简称PMR,也表示为1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)简称CMR,也表示为13C-NMR。 3.1H的核磁共振 饱和与弛豫 1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。见图8-2。1H的两种取向代表了两种不同的能级, 因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,即符合下式。 核吸收的辐射能大? 式(8-6)说明,要使v射=v0,可以采用两种方法。一种是固定磁场强度H0,逐渐改变电磁波的辐射频率v射,进行扫描,当v射与H0匹配时,发生核磁共振。另一种方法是固定辐射波的辐射频率v射,然后从低场到高场,逐渐改变磁场强度H0,当H0与v射匹配时,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。 在外磁场的作用下,1H倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,但由于两个能级之间能差很小,前者比后者只占微弱的优势。1H-NMR的讯号正是依靠这些微弱过剩的低能态核吸收射频电磁波的辐射能跃迁到高能级而产生的。如高能态核无法返回到低能态,那末随着跃迁的不断进行,这种微弱的优势将进一步减弱直至消失,此时处于低能态的1H核数目与处于高能态1H核数目相等,与此同步,PMR的讯号也会逐渐减弱直至最后消失。上述这种现象称为饱和。 1H核可以通过非辐射的方式从高能态转变为低能态,这种过程称为弛豫,因此,在正常测试情况下不会出现饱和现象。弛豫的方式有两种,处于高能态的核通过交替磁场将能量转移给周围的分子,即体系往环境释放能量,本身返回低能态,这个过程称为自旋晶格弛豫。其速率用1/T2表示,T2称为自旋晶格弛豫时间。自旋晶格弛豫降低了磁性核的总体能量,又称为纵向弛豫。两个处在一定距离内,进动频率相同、进动取向不同的核互相作用,交换能量,改变进动方向的过程称为自旋-自旋弛豫。其速率用1/T2表示,T2称为自旋-自旋弛豫时间。自旋-自旋弛豫未降低磁性核的总体能量,又称为横向弛豫。 4.13C的核磁共振 丰度和灵敏度 天然丰富的12C的I为零,没有核磁共振信号。13C的I为1/2,有核磁共振信号。通常说的碳谱就是13C核磁共振谱。由于13C与1H的自旋量子数相同,所以13C的核磁共振原理与1H相同。 将数目相等的碳原子和氢原子放在外磁场强度、温度都相同的同一核磁共振仪中测定,碳的核磁共振信号只有氢的1/6000,这说明不同原子核在同一磁场中被检出的灵敏度差别很大。13C的天然丰度只有12C的1.108%。由于被检灵敏度小,丰度又低,因此检测13C比检测1H在技术上有更多的困难。表8-2是几个自旋量子数为1/2的原子核的天然丰度。 5.核磁共振仪 目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz以上,最高可达500~600MHz。频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波。检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究得以迅速开展。 氢 谱 氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信息,可以推测质子在碳胳上的位置。

  • 燃烧性能考核要求除了下面这几种纤维外就不考核吗?

    燃烧性能考核要求除了下面这几种纤维外就不考核吗?

    燃烧性能考核要求混纺的纤维面料就不考核吗?[img=,677,59]http://ng1.17img.cn/bbsfiles/images/2018/08/201808010923598290_6320_2154459_3.png!w677x59.jpg[/img]还有一个问题,看下面划红线的部分,这个大家怎么理解?[img=,677,59]http://ng1.17img.cn/bbsfiles/images/2018/08/201808010925460136_7760_2154459_3.png!w677x59.jpg[/img]

  • [仪器介绍]AVANCE 900兆核磁共振波谱仪

    [仪器介绍]AVANCE 900兆核磁共振波谱仪

    [img]http://ng1.17img.cn/bbsfiles/images/2005/07/200507231535_6763_1604620_3.jpg[/img]值此欢庆库尔特维特里希(Prof. KurtWuethrich)教授荣获2002年诺贝尔化学奖的时刻,谈一谈核磁共振新技术显得特别有意义。瑞士科学家库尔特维特里希教授1938年生于瑞士阿尔贝格,1964年获瑞士巴塞尔大学无机化学博士学位,从1980年起担任瑞士苏黎世联邦高等工业大学(ETH)的分子生物物理学教授,还任美国加利福尼亚州拉霍亚市斯克里普斯研究所客座教授。因“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。瑞士科学家库尔特维特里希拥有布鲁克多台高场核磁共振谱仪,特别是拥有布鲁克世界最先进的900兆核磁共振谱仪。 所有生物都含有包括DNA和蛋白质在内的生物大分子,“看清”它们的真面目曾经是科学家的梦想。如今这一梦想已成为现实。2002年诺贝尔化学奖表彰的就是这一领域的两项成果。 这两项成果一项是美国科学家约翰芬恩与日本科学家田中耕一“发明了对生物大分子的质谱分析法”;另一项是瑞士科学家库尔特维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”。 质谱分析法是化学领域中非常重要的一种分析方法。它通过测定分子质量和相应的离子电荷实现对样品中分子的分析。 美国科学家约翰芬恩与日本科学家田中耕一发明了殊途同归的两种方法。约翰芬恩对成团的生物大分子施加强电场,田中耕一则用激光轰击成团的生物大分子。这两种方法都成功地使生物大分子相互完整地分离,同时也被电离。它们的发明奠定了科学家对生物大分子进行进一步分析的基础。 如果说第一项成果解决了“看清”生物大分子“是谁”的问题,那么第二项成果则解决了“看清”生物大分子“是什么样子”的问题。 第二项成果涉及核磁共振技术。科学家在1945年发现磁场中的原子核会吸收一定频率的电磁波,这就是核磁共振现象。由于不同的原子核吸收不同的电磁波,因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。这种技术已经广泛地应用到医学诊断领域。 不过,最初科学家只能将这种方法用于分析小分子的结构,因为生物大分子非常复杂,分析起来难度很大。瑞士科学家库尔特维特里希发明了一种新方法,这种方法的原理可以用测绘房屋的结构来比喻:我们首先选定一座房屋的所有拐角作为测量对象,然后测量所有相邻拐角间的距离和方位,据此就可以推知房屋的结构。维特里希选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的两个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。 这种方法的优点是可对溶液中的蛋白质进行分析,进而可对活细胞中的蛋白质进行分析,能获得“活”蛋白质的结构,其意义非常重大。1985年,科学家利用这种方法第一次绘制出蛋白质的结构。目前,科学家已经利用这一方法绘制出15-20%的已知蛋白质的结构。 最近两年来,人类基因组图谱、水稻基因组草图以及其他一些生物基因组图谱破译成功后,生命科学和生物技术进入后基因组时代。这一时代的重点课题是破译基因的功能,破译蛋白质的结构和功能,破译基因怎样控制合成蛋白质,蛋白质又是怎样发挥生理作用等。在这些课题中,判定生物大分子的身份,“看清”它们的结构非常重要。专家认为,在未来20年内,生物技术将蓬勃发展,很可能成为继信息技术之后推动经济发展和社会进步的主要动力,由这3位诺贝尔化学奖得主发明的“对生物大分子进行确认和结构分析的方法”将在今后继续发挥重要作用。 而核磁共振谱仪在生物大分子研究方面应用中的一大要求就是高场,其优点不仅提高了灵敏度,更重要的是增大化学位移的赫茨数,将低场时密集在一起的不同立体位置上的核对应的共振峰分开,以便进行分析和确定结构。随着核磁技术的发展,库尔特维特里希教授的实验室里全部使用了布鲁克公司的先进的核磁共振谱仪。从400兆、600兆到750兆,并在900兆核磁谱仪正式安装前,使用了一段时间的800兆核磁谱仪。库尔特维特里希教授实验室于2002年2月正式开始使用布鲁克900兆核磁谱仪。 高场核磁谱仪的关键首先是磁体,布鲁克公司是世界上能生产900兆超导磁体的为数不多的厂家之一,并在技术上居领先地位。布鲁克公司使用了最先进的超导材料,特有的超导焊接技术,磁体超稳定技术,即工作温度为2K的双冷却技术和高超的杜瓦制造技术确保了磁场的稳定度(包括最小的场漂移)、均匀度和最小的液氦消耗。布鲁克公司的900兆核磁共振谱仪在世界上已经安装并投入正常使用的已有4台:美国SCRIPPS研究所、瑞士联邦高等工业大学ETH、德国法兰克福大学和慕尼黑大学。 核磁共振在生物大分子上的应用,要求谱仪有高稳定度、高分辨率、高灵敏度、好线型和适合于各种特殊脉冲系列实验要求的性能(如:成形发射脉冲、梯度场、多通道)。 这样才能取得最佳的核磁参数。布鲁克的 Avance 核磁谱仪是全数字化的谱仪,数字锁、数字频率和相位发生器、过速采样、数字滤波、数字信号处理器、数字正交检波、数字化的前置放大器、数字化的路由连接、数字化的变温单元、数字梯度场等等大大提高了谱仪的性能。数字锁的优点:2H频率可调(± 1 MHz),引入锁场的化学位移偏移(± 200 ppm),保证了不同溶剂时,可以锁在同一磁场上,使最佳匀场值基本不变,而且谱仪可根据实验所用溶剂自动校正化学位移,不需TMS作标准, 如果超导磁场多年后漂移超出磁场可调范围, 就可以用改变氘频率和观察核的频率来解决,而不需调超导磁场, 如果出现特定的频率强干扰,也可改变频率来避开这种干扰;锁通道采用双通道正交检波,提高了信噪比;引入傅立叶变换,能做到快速锁定;用数字化的校正补偿电压,保证了最佳的效果,提高了抗外来磁干扰的能力,保证了磁场的长期稳定度,同时又保证了有脉冲梯度场时的锁场稳定。 过速采样和数字滤波,提高了ADC的动态范围;提高了灵敏度; 消除了折叠峰。数字正交检波(DQD)又消除了镜像峰和零频泄漏。数字频率和相位发生器(SGU),扩大了频率范围(3 – 1100 MHz),保证了频率分辨率为0.005Hz,相位分辨率为0.006度,开关时间小于 300 ns,脉冲幅度的数字化控制,幅度控制范围为90 db,分辨率为0.1 db,开关时间为 50 ns,保证了成形脉冲的精度。布鲁克公司的自动调谐匹配探头(ATM), 实现了全自动调谐匹配,简化了调谐匹配手续,保证了90度和180度脉冲的正确设定,从而保证了不同样品都得到最佳匹配,获得最佳质量的谱图(一维和多维)。其它一系列的数字化部件和最先进的软件,使布鲁克的Avance核磁谱仪具有独特的功能,以满足用户的不同需要。继1991年诺贝尔化学奖得主理查德恩斯特(Prof. RichardErnst)教授(使用的全部是布鲁克的核磁共振谱仪)之后,库尔特维特里希教授应用布鲁克公司的仪器所得到的结果,是布鲁克公司的核磁谱仪支持世界上最前沿的科研工作的又一个最好的证明。我们相信,随着核磁技术的发展,布鲁克公司的核磁谱仪也将为科技界作出更多更大的贡献! 由于一些生物样品提取十分困难,而核磁谱仪本质上是低灵敏度的仪器,所以如何提高核磁谱仪的灵敏度成为一个重大的课题。为此,人们作过许多努力,采取不少方法如:提高场强、去耦、进行累加、设计微量探头等等。利用低温减少热噪声,一向是提高信号噪声

  • 多维核磁共振波谱学

    多维核磁共振波谱学[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=10802]多维核磁共振波谱学[/url]

  • 核磁共振波谱仪

    《记录下第一次拆探头》有10年之久的核磁共振波谱仪,因碎了一根核磁管进探头,于是拆洗了探头。拆洗探头后重新装进后发现无法调谐,咨询工程师后得知可能是马达故障,需要寄回维修。由于经费等各种问题,大量查阅资料,在领导鼓励下本着试一下的心态拆探头马达底盖,上润滑脂,反复多次尝试,最终解决了不能调谐的问题![img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304031947396704_655_5597892_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304031947396762_3661_5597892_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304031947399661_8771_5597892_3.png[/img]

  • 【求助】有前辈用过建立在原子力显微镜基础上的超声原子力显微镜系统吗

    我的课题要在原子力显微镜基础上外加一个激励信号,使得被测试件在外加激励下振动,我的想法是把这个信号加在试件台上:即在试件台下加一个压电陶瓷管,再将要加的激励信号通过传感器贴在压电陶瓷管下方。但不知道是否可行,请问哪位前辈做过类似工作没?或者给点相关建议也好啊,急切求助!!![em0808]

  • 核磁共振的原理

    核磁共振的原理   核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。      根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:      质量数和质子数均为偶数的原子核,自旋量子数为0   质量数为奇数的原子核,自旋量子数为半整数   质量数为偶数,质子数为奇数的原子核,自旋量子数为整数   迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P      由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。      原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。      原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。      为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。

  • 【转帖】核磁共振

    [em61] 基本原理    核子的自旋和磁矩的存在,使其能够在强大的磁场中旋进。Radi测出不同核子的角动量和磁矩。不同核子在同一磁场中其磁矩和角动量各不相同。同一核子在不同场强的磁场中,其振荡频率也不相同。    磁共振是共振现象的一种,是指原子核在进动中吸收外界能量产生的一种能量跃迁现象。这种跃迁只能出现在相邻两个能量级之间。所谓外界能量是指一个激励电磁场(射频磁场),它的磁矢量在某一个平面上旋转,因此,除其旋转频率正好与原子核回转频率相同外,其自旋方向必须和核磁矩相同,原子核才会吸收到能量,这是磁共振现象的必要条件。    磁共振成像技术的发展产生了许多成像技术方法,但总的设计思想是如何用磁场值来标记受检体中共振核子的空间位置。发生共振的频率与它所在的位置的磁场强度成正比。如果能使空间各点的磁场值互不相同,各处的共振频率也就不同,把共振吸收强度的频率分布显示出来,实际就是共振核子的分布,即核磁共振自旋密度图象。但不可能使同一时刻的三维空间中各点具有不同的磁场值,所以需设计突出各特定点信息的方案。    要达到此目的,首先可对观测的对象进行空间编码,把研究对象简化为由nx,ny,nz个小体积(体素)的组成,然后采用依次测量每个体素或由体素排列的线或面的信息量,再根据个体素的编码与空间位置的一一对应关系实现图象重建。由于成像的灵敏度、分辨率、成像时间和信噪比(S/N)等要求不同,产生了多种成像方法,归纳起来可分为两大类:一是投影重建法;二是非投影重建法,包括线扫描成像法和直接傅立叶变换(fourier transform)成像法。    图片说明:    磁共振成像的空间定位    1)矢向梯度磁场:平行于Y轴、梯度磁场自后向前变化,从而明确前后关系;    2)横向梯度磁场:平行于X轴、梯度磁场自右向左变化,从而明确左右关系;    3)轴向梯度磁场:平行于Z轴、梯度磁场自上向下变化,从而明确上下关系。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制