当前位置: 仪器信息网 > 行业主题 > >

得气泡系定仪

仪器信息网得气泡系定仪专题为您提供2024年最新得气泡系定仪价格报价、厂家品牌的相关信息, 包括得气泡系定仪参数、型号等,不管是国产,还是进口品牌的得气泡系定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合得气泡系定仪相关的耗材配件、试剂标物,还有得气泡系定仪相关的最新资讯、资料,以及得气泡系定仪相关的解决方案。

得气泡系定仪相关的资讯

  • 应用 | 有机硅表面活性剂在乙醇-水体系中的起泡机制研究
    研究背景泡沫是一种气体分散于液体中的分散体系。通常,纯的液体是不会起泡的。泡沫产生的条件有两个:需要气体和液体充分接触,并使气体分散于液体中;还需要气泡产生的速度明显大于消泡的速度,使得气泡可以聚集成泡沫,行之有效的办法是在液体中加入表面活性剂。对于表面活性剂水基泡沫人们已经做了大量的研究,然而近年来水-低碳醇体系也有着较为广泛的应用, 例如化学清洗、制备多孔材料、杀菌洗手液等。因此,本文着重对FC-7160在乙醇-水溶液和水溶液中的泡沫行为,尤其是泡沫形成后的排液行为、结构变化、表面弹性等,为其以后的实际应用提供理论指导。实验仪器DFA100动态泡沫分析仪、DSA100液滴形状分析仪,德国KRÜSS公司。DFA100动态泡沫分析仪DSA100液滴形状分析仪实验结果与讨论2.1 泡沫高度衰减曲线起泡性和稳定性是表面活性剂溶液泡沫行为中最重要的特征。为了与碳氢表面活性剂对比,本实验选择了阴离子表面活性剂AES-3、非离子表面活性剂AEO-9、两性离子表面活性剂CAB。由图1a可以看出,在水溶液体系中, 实验中所用的碳氢表面活性剂的起泡性和泡沫的稳定性都优于FC-7160,FC-7160的泡沫甚至没有经历tend这个时间段,起泡后立即伴随着泡沫的崩塌。而在50%乙醇-水溶液体系中,如图1b所示,只有FC-7160可以形成泡沫,碳氢表面活性剂的“泡沫”在停止通气后很短的时间内完全消失,不能形成有效的泡沫。 图1 1 g/L不同表面活性剂的泡沫高度随时间的变化:水溶液(a);50%乙醇-水溶液(b)2.2 泡沫的结构与尺寸分布通过动态泡沫仪的结构分析模块,对泡沫中气泡的大小分布和其随时间的变化进行了精细的测量。在图2a中,在50%乙醇-水溶液中,泡沫中的气泡大小均一且近乎圆形,而在水溶液中气泡大小不一,呈现出多边形的结构。在图2b中,在前10 min内,50%乙醇- 水溶液中的气泡面积主要集中在0~0.5 mm2,没有超过1 mm2的气泡,气泡从产生到消失面积都较小;而在水溶液中气泡面积分布较宽,在1 min时,水溶液中的气泡面积就可以达到1~2 mm2。在乙醇的存在下,FC-7160泡沫中的气体扩散过程受到了限制,聚并过程和熟化过程都较慢,气泡较小且均一。图 2 1,5和10 min时(从上到下)1 g/L的FC-7160在50%乙醇-水溶液(左)和水溶液(右)中的泡沫结构图(a);与a相对应的气泡尺寸分布直方图(b)2.3 泡沫的排液过程泡沫的稳定性主要取决于排液快慢和液膜的强度, 排液速度越慢,液壁可以保持一定厚度,泡沫也越稳定。在50%乙醇-水混合体系中,泡沫携带有乙醇和水两种组分,所以排液行为显得更为重要。在水溶液中, FC-7160的泡沫排液过程较短且非常混乱(图3a),所以在水溶液中的泡沫稳定性也较差。在50%乙醇-水溶液中(图3b),FC-7160的排液时间有所延长,泡沫中的液体含量明显高于水溶液中。在乙醇的存在下,由于FC-7160与乙醇分子之间的作用使得液体更容易携带,不易流失,所以泡沫液体含量较大且排液时间延长。图 3 1 g/L的FC-7160在水溶液中(a)和在50%乙醇-水溶液中(b)泡沫液体含量随时间变化2.4 液膜的界面黏弹性表面活性剂在气-液界面的吸附不仅可以降低体系的表面张力,而且也可以使得界面具有黏弹性。当泡沫受到扰动表面积增加时,液膜局面会变薄,变薄处的表面活性剂分子浓度降低,表面活性剂浓度差异导致液膜中产生了表面张力梯度。没有变薄处的表面活性剂分子会迁移到局部变薄处。在这个迁移过程中,液体也会随着表面活性剂分子迁移,液膜厚度和膜的强度也得以恢复,这就是膜的弹性。液膜弹性越大,抵抗外界干扰的能力越强,泡沫也越稳定。界面扩张流变可以反映液膜弹性,界面扩张模量的大小在数学上分为弹性和黏性分量,如E*=E'+iE''所示,其中E*为复合模量,E'为弹性模量,E''为黏性模量。根据文献[19,20]中报道,E*和泡沫稳定性有密切的关系,E*值越大,泡沫越稳定;而弹性模量E'和泡沫的排液行为相关,其大小依赖于tdev的值。从图4中可以看出,这些表面活性剂的E*大小关系为:FC-7160AES-3AEO-9,这和它们在50%乙醇-水溶液中的泡沫稳定性是一致的。对于AES-3和AEO-9, 它们的界面扩张模量几乎为0 mN/m,说明它们在50% 乙醇-水溶液中形成的液膜几乎没有弹性,所以气泡在产生之后立即消失不能形成泡沫。图 4 1 g/L不同表面活性剂在50%乙醇-水溶液中的界面扩张模量E*、弹性模量E'、黏性模量E''结论对有机硅表面活性剂FC-7160和几种典型的碳氢表面活性剂在50%乙醇-水溶液中的泡沫结构、含液量和液膜的表面弹性进行了研究。泡沫稳定性和泡沫液膜之间的界面粘弹性有很大的关系,界面粘弹性可以帮助分析泡沫稳定性的机理。参考文献:牛奇奇,白艳云,台秀梅,王万绪,王国永.有机硅表面活性剂在乙醇-水体系中的起泡机制研究【J】。日用化学工业,2021.
  • 液相色谱分析中,气泡问题如何解决?
    相信很多小伙伴和我一样,在用液相色谱时会遇到仪器、管路等存在气泡问题,这些小气泡会影响实验过程的顺利程度及结果的可靠性,以下整理了几种出现气泡的情况以及对应的解决方法,大家如果遇到了,可参考对应着解决。1. 溶剂混合产生气泡这种情况比较多见,特别是配置流动相时,两种或多种溶剂混合,会导致液体热力学体积的变化,易产生气泡,这种气泡通常比较明显,有些还会挂在瓶壁或管壁上,晃一下可以看到有许多小气泡存在液体中。解决方案:对溶剂过滤,超声脱气,或者仪器上加装在线脱气机,或者充氮脱气,同时保持室内恒温。2. 泵排气或吸液时产生不间断小气泡这种情况有可能是过滤头被污染或部分堵塞,导致泵的吸力不均出现气泡。解决方案:根据过滤头的材质选择合适的处理方式,不可超声的可用10%的稀硝酸溶液浸泡后,用纯水清洗掉酸的残留;可超声的直接超声处理就可以了,必要时需更换新的滤头。3. 泵压力波动泵压力非正常波动时要注意,如果非管路气泡所致,就要考虑是否是单向阀或泵内部原因造成。解决方案:拆下泵头,用甲醇或异丙醇超声清洗单向阀、密封圈和泵头整体,用酒精棉花擦拭柱塞杆,必要时更换密封圈、单向阀、柱塞杆等。4. 进样时进气泡进样时带入气泡,或者进样针中带入气泡。解决方案:多次冲洗进样针,在进样前,注意排除进样针里的气泡。5. 色谱柱进气泡解决方案:这种情况气泡比较难排,可尝试用纯甲醇小流速长时间冲洗反相色谱柱,随后逐步加大流速直至1mL/min,直至色谱柱压力平稳。或者更换色谱柱。6. 流通池积存气泡如果流通池积存气泡,会对基线噪音造成较大影响,基线会很乱。解决方案:在不接色谱柱的前提下,可采用突然增大流量的方法来除气泡;或者启动输液泵的同时,用手紧压住废液管出液端,使池内增压,然后放开,反复操作数次,可去除流通池内的气泡。操作过程中需要观察吸光度值的变化,如果变化剧烈,说明流通池内有气泡未排出,待数值基本不变时,说明排气泡成功,再观察基线是否趋于平稳。需要注意的是,增压的时候不要增加太多,以免造成流通池破裂。
  • 新品发布:PBS气泡尺寸监测系统
    新品发布:PBS气泡尺寸监测系统近年来,随着计算机技术的发展,国内外选矿厂的自动化程度越来越高,选矿厂的检测与控制系统也要求实现稳定控制、监督控制、最优控制。浮选过程控制的主要目标是保持合格的最终精矿品位、尽量提升有用成分的回收率、减少药剂消耗和提高浮选效率。浮选过程控制的主要因素包括:药剂的加药量、基于泡沫信息的综合检测分析技术、浮选矿浆pH值、浮选槽液位、充气量等。浮选过程中要添加的药剂主要有:捕收剂、起泡剂和调整剂。目前,浮选系统的加药还是以人工为主,人工加药难免会造成较大误差和药剂浪费,达不到精准加药,国内外的选矿厂都在研究自动加药系统,以期实现高精度的药剂自动添加。浮选泡沫体是由大量的大小不一、形状各异、灰度值不同的矿化气泡组成的,包含大量与浮选过程变量及浮选结果有关的信息,浮选泡沫图像采集和处理技术在浮选过程控制上的应用,显著地提高了工艺指标和自动化程度。PBS气泡尺寸监测系统是基于以上两个技术难点和检测要求应运而生的,在PBM气泡监测系统的基础上增加了自动进样系统和自控系统,测试结果可用于表征浮选机的刮泡量、判断所给药剂量是否合适、评定精矿的品味和回收率,该系统已在矿物浮选领域有成熟应用。PBS气泡尺寸监测系统的测试结果包括:气泡/泡沫图像和亮度气泡/泡沫数量气泡/泡沫浓度气泡/泡沫流动速度气泡/泡沫粒度分布(平均粒径、累计分布(D10、D50、D90等))气泡/泡沫粒度变化趋势气泡/泡沫稳定性
  • 预制菜包装密封性测试仪首选真空负压气泡法原理介绍
    一、引言随着预制菜市场的不断发展,包装密封性测试已成为保障食品品质和安全的重要环节。真空负压气泡法作为一种先进的测试方法,因其准确、高效的特点,逐渐成为预制菜包装密封性测试的首选方案。本文将详细介绍真空负压气泡法的原理及其在预制菜包装密封性测试中的应用。二、真空负压气泡法原理真空负压气泡法是一种基于压力差或真空度变化的测试方法,用于检测包装的密封性。该方法的原理在于,通过模拟包装在不同环境下的压力变化,观察包装内部是否出现气泡,从而判断包装的密封性是否良好。在测试过程中,首先将预制菜包装放入一个密封的测试腔体内,然后通过抽真空的方式使腔内形成负压。随着负压的增加,如果包装存在微小的泄漏点,空气将通过这些泄漏点进入包装内部,形成可见的气泡。通过观察气泡的产生和位置,可以准确地找到包装的泄漏点,进而判断其密封性能是否合格。三、真空负压气泡法在预制菜包装密封性测试中的应用真空负压气泡法在预制菜包装密封性测试中具有广泛的应用。首先,该方法能够准确、快速地检测出包装中可能存在的泄漏点,帮助生产厂家及时发现并改进包装问题。其次,通过调节负压的压力,可以适应不同类型的包装材料和密封要求,使得测试更加具有针对性和实用性。此外,真空负压气泡法还具有操作简单、测试成本低廉等优点,使得其在预制菜包装行业中得到了广泛的应用。四、预制菜包装密封性测试仪的选择与使用在选择预制菜包装密封性测试仪时,需要考虑多种因素。首先,要确保测试仪具有准确的测试精度和可靠的稳定性,以保证测试结果的准确性和可靠性。其次,测试仪应具备简单易懂的操作界面和友好的用户体验,方便用户进行快速、高效的测试操作。此外,测试仪的价格、售后服务等因素也应纳入考虑范围。在使用预制菜包装密封性测试仪时,需要遵循一定的操作规范。首先,要确保测试环境的清洁和干燥,避免外界因素对测试结果的影响。其次,要正确放置预制菜包装,使其与测试仪的测试腔体紧密贴合,避免漏气现象的发生。同时,要根据实际测试需求,合理设置负压的压力和测试时间等参数。五、结论真空负压气泡法作为一种先进的预制菜包装密封性测试方法,具有准确、高效、操作简单等优点,在预制菜包装行业中得到了广泛的应用。通过选择适合的预制菜包装密封性测试仪,并遵循正确的操作规范,生产厂家可以及时发现并解决包装问题,保障食品的品质和安全。未来,随着预制菜市场的不断扩大和消费者对食品品质要求的不断提高,真空负压气泡法将在预制菜包装密封性测试中发挥更加重要的作用。
  • 利用气泡作为微型机器人实现零件的操纵和装配
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518 图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动 图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。官网:https://www.bmftec.cn/links/10
  • 岛津司小令大讲堂丨第二期 流动相中产生气泡所引起的问题
    《流动相脱气》特辑第一期《岛津配合防疫,开启线上学习司小令大讲堂!》为大家介绍了流动相中溶解空气引起的问题和形成气泡的机理,今天我们将讨论流动相中产生气泡所引起的问题。 第二期流动相中产生气泡所引起的问题。 1.流动相容器产生气泡的影响流动相容器中产生气泡主要是由于空气在流动相中超饱和,其原因如下: (1) 温度升高:贮存室与实验室之间的温差或早晨与中午之间的温差都可能使流动相温度升高。 (2) 吸热反应搅拌不足:某些溶剂混合时吸收热量,使温度降低,此时如不充分搅拌,随着混合溶剂温度上升至室温,同样会造成气体的过饱和而产生气泡。 当这些气泡通过吸液过滤器和管道进入泵头以后,导致泵的工作异常。首先,在进液口,随着吸液冲程泵头的压力降低,导致气泡膨胀(见图1)。此时泵吸进的溶剂由于气泡占取一定的空间而降低;其次,在排液冲程时压力增加,气泡又变小,从而使流动相的流量降低。更有甚者,由于气泡的产生和经过的途径、方式都是不规则的,因此不仅影响了流动相流量的准确度,而且影响流量的精度。是否有此种现象产生,可通过泵排液压力的监测加以确认(图2)。 当此种现象发生后,无论是保留时间或峰面积都不可能重现(图3),分析的可靠性也就无从谈起。图1 泵头进气泡的示意图 图2 排液压力波形的变化 图3 由于流量不规则形成的各种色谱 2.泵中形成气泡使液流波动即使溶剂在容器中,空气并未达到饱和的程度,但溶液进泵以前还有可能产生气泡。 (1) 低压混合梯度:如图4所示,图中虚线圈的部位其压力略低于大气压,因此溶剂在此混合更易产生气泡。低压梯度时,混合室多装在泵后(高压侧)但实际混合过程在低压侧便开始了,故低压梯度较之混合发生在泵后的高压梯度,更易产生气泡。 (2) 吸液过滤器的堵塞:当吸液过滤器有部分堵塞时,吸液的阻力增大,过滤器内的压力降低,容易形成气泡。吸液过滤器经常清洗,保养,否则易被尘土颗粒等堵塞,有时操作不当也易形成堵塞,例如,在使用缓冲溶液后未进行彻底的清洗,接着就使用盐类溶解度不大的有机溶剂,此时极易造成过滤器孔堵塞。堵塞不严重时,溶剂通过脱气即可。但最好要定时清洗。图4 低压梯度洗脱图5 吸液过滤器的清洗图6 吸液过滤器的清洗 3.柱中气泡形成和累积引起流动相绕流色谱柱中的压力一般较高,气体溶解度增大,一般在柱中不易产生气泡。然而,在接近柱的出口处,压力相对较低,此外由于柱箱升温,柱处于较高的温度,气泡也有可能在此形成,另一种可能性是从泵中排出的气泡经过色谱柱时滞留柱中。 一但气泡在柱中形成或滞留,如图7所示使流动相液流不稳并产生绕流。 口径较大的色谱柱,一但形成或滞留有气泡后就很难排除。因此,在HPLC实际应用中,HPLC柱的出口端向上,入口端向下,利用浮力尽可能使气泡不停留在柱中。图7 由于柱中的气泡导致绕流 4.泵中形成气泡使液流波动当柱箱或检测器池处于较高温度时,检测器池中易产生气泡。因为液流通过检测器时,温度升高而此处的压力反而较小。即使检测器池并未加温,但某些场合下也可能有气泡产生。例如高压梯度时,溶剂混合使气体过饱和,但在前一段流路中,由于压力较大气泡并未析出,一但到了压力接近大压的池中,气泡便会乘隙而出。 如果气泡形成于检测器池中,则将引起如图8所示的尖峰状、锯齿状的基线噪声,甚至于完全无法测定。这种情况下,分析者很难区别究竟哪些是色谱峰,哪些是尖峰状噪声,也无法正确地定义基线的位置,故无法正确地计算出峰面积。 图8 由于气泡形成和累积于柱中引起的噪声 在第三点和第四点的场合,如果使用的UV或电导检测器,由于这些检测器能经受较大的压力(约30Kg/cm2)故可在检测器的出口处加一个反压管,使检测器池和柱内的压力适当提高,防止气泡产生。一般反压管使用长2m左右,内径为0.3mm的不锈钢阻尼管。此时对1ml/min的水或甲醇将分别产生2或1Kg/cm2的反压。当然反压的大小与许多因素有关。如果阻尼管内的内径一定,液流是层流的话:(反压)μ(溶剂粘度)(流量)(阻尼管长) 制备色谱的流量较大,因此阻尼管应较短,内径较大(0.8mm)。另一方面,如果是半微量色谱,流量一般在0.1ml/min左右,上述反压阻尼管将不足以产生所需的压力,此时管径应较细(例如0.2mm),长度可增加至6m左右。 然而,对一些不能承受压力的检测器而言(见表1),则必须事先脱气而不能采用阻尼反压管的方法。 表1.检测器能承受的压力*电磁阀能承受的压力,池能经受7Kg/cm2**采用Ag/Agcl参比电极 至此,我们讨论了在流路中形成气泡所产生的问题。温度升高,压力降低和溶剂混合是形成气泡的主要原因,图9绘出了系统中温度和压力变化的概况,据此可以估计,在您所使用的系统中,哪些部位容易产生问题。 图9 HPLC系统中压力和温度的相对关系 下期预告溶解于溶剂中的空气会对不同检测器造成哪些严重的影响敬请期待!
  • 【步琦维修小课堂】Pure制备色谱管路中产生气泡的原因及排查手段
    步琦 Pure 制备色谱从 19 年发布至今,已经成为瑞士步琦色谱产品线的当家花旦,并且活跃于各种一线的研发实验室中。在这几年里,我们广泛收集客户的意见和反馈,发现仪器管路中的气泡是大家最为关心的问题之一。在本次的维修小课堂中,我们会给大家分享如何排除气泡问题,以及日常使用时的注意事项。如何判断气泡来源得益于 Pure 泵头外置的设计,我们可以很轻松地通过泵头上的管线判断气泡的来源。如果气泡在泵头内生成,则代表气泡由泵头及上游部件(流动相入口,阀门等)产生。如果气泡只生成于色谱柱的出口,则有可能是色谱柱未平衡完毕或者样品与流动相反应所生成。▲ Pure C-810 泵头内的气泡如何排查气泡问题 1拧紧仪器流动相管线的接头流动相管线接头的松紧会直接影响流速准确性和管路气密性,如果产生气泡,我们只需要用手尝试顺时针拧紧接头即可。流动相管线在仪器的后部,是两根管线中较粗的一根,可以参考下图的红圈。▲ Pure 仪器后部流动相管线入口2将溶剂瓶放置于顶部托盘内夏天时,南方地区的实验室内温度经常会接近 30 度,导致二氯甲烷等低沸点溶剂在桶内产生气泡,溶剂抽取会非常困难。Pure 制备色谱标配了一个顶部的溶剂瓶托盘,可以放置四瓶 4L 的溶剂。放置于顶部的溶剂由于虹吸效应会自行流至阀门口并形成正压,这样即使在高室温环境下抽取低沸点溶剂时,也可以有效改善气泡过多的现象。▲ 放置于 Pure 仪器顶部托盘内的流动相3尝试清洗泵腔泵腔内的异物也会导致泵头管线内生成气泡。Pure 的泵腔可以通过一些步骤彻底清洗,请参考以下视频:日常使用时的注意事项通过上述的排查方法我们可以发现,泵腔的彻底清洗是其中最为繁琐的。Pure 有一个简易的全机自动清洗程序,如果能保持清洗习惯,完全可以避免上述复杂的步骤。选择工具中的 NPRP,即正相反相。这个功能一般是在正反相切换时,用异丙醇作为过渡溶剂清洗全机管路而使用的。▲ 工具菜单中的 NPRP进入此功能后我们只需要准备 300mL 异丙醇和一个1号位有空试管的收集架即可。按照图示的步骤,将所有流动相管线至于异丙醇中,安装旁通管线,把收集架放置在左侧,然后按下清洗管线,系统会自动运行清洗程序。▲ 正相 反相功能菜单这个功能可以用异丙醇冲刷全机的管路、阀门、泵腔和流通池,并且可以确保泵腔内充满异丙醇。我们十分建议在需要长期停机前,如节假日前的最后一个工作日运行一次此程序,避免泵腔的密封圈和单向阀长期浸泡在侵蚀性的溶剂中。如需要购买各类配件套件(Customer Kit, PM Kit和Extended Kit),或 PM 预维护保养服务,请拨打 400-880-8720 咨询。Customer Kit,建议每年更换一次,客户可自行更换。PM Kit,建议每年更换一次,由工程师收费上门更换。Extended Kit,建议仪器使用第五年或超过五年,需更换一次,由工程师收费上门更换。仪器型号产品名称货号C-810PM 服务11CSN11179C-810Customer Kit11062655C-810PM Kit11062660C-810Extended Kit11062665C-815PM 服务11CSN11175C-815Customer Kit11062656C-815PM Kit11062661C-815Extended Kit11062666C-830PM 服务11CSN11176C-830Customer Kit11062657C-830PM Kit11062662C-830Extended Kit11062667C-835PM 服务11CSN11180C-835Customer Kit11062658C-835PM Kit11062663C-835Extended Kit11062668C-850PM 服务11CSN11177C-850Customer Kit11062659C-850PM Kit11062664C-850Extended Kit11062669
  • 中科院沈阳自动化所刘连庆研究员:利用气泡作为微型机器人实现
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动 图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。—— E N D ——
  • 预包装螺蛳粉密封性测试仪首选真空负压气泡法原理介绍
    在食品包装领域,预包装螺蛳粉作为一种深受消费者喜爱的方便食品,其密封性的优劣直接关系到产品的保质期和食品安全。真空负压气泡法作为一种有效的密封性测试方法,被广泛应用于检测预包装产品的密封完整性。以下是关于真空负压气泡法原理及其在预包装螺蛳粉密封性测试中的应用介绍。真空负压气泡法原理真空负压气泡法是一种通过在包装内部形成负压环境来检测密封性的方法。该方法的基本步骤如下:负压形成:将预包装螺蛳粉的包装袋放入一个密封的测试腔体内,然后通过抽真空的方式使腔内形成负压。观察气泡:随着腔内负压的增加,如果包装袋存在微小的泄漏点,空气会通过泄漏点进入包装内部,形成可见的气泡。泄漏点定位:通过观察气泡的产生和位置,可以准确地找到包装袋的泄漏点。压力控制:测试过程中,负压的压力可以根据需要进行调节,以适应不同类型的包装材料和密封要求。真空负压气泡法的优势直观性:通过直接观察气泡的产生,可以直观地判断包装的密封性。高灵敏度:该方法能够检测到微小的泄漏点,确保包装的密封质量。操作简便:设备操作简单,易于学习和使用。适用性广:适用于各种材质和形状的包装袋,包括塑料、铝箔、纸塑复合等材料。在预包装螺蛳粉密封性测试中的应用质量控制:真空负压气泡法可以帮助生产企业在生产过程中及时发现包装的密封问题,提高产品质量。产品检验:在出厂前对预包装螺蛳粉进行密封性测试,确保消费者获得的产品质量可靠。研究与开发:在新产品的研发过程中,利用该方法可以评估不同包装材料和设计对密封性的影响。结论真空负压气泡法作为一种高效、直观的密封性测试方法,非常适合用于预包装螺蛳粉等食品的密封性检测。它能够帮助生产企业确保产品的密封质量,延长保质期,保障消费者的食品安全。随着食品工业的不断发展,真空负压气泡法及其相关设备将继续在食品包装质量控制中发挥重要作用。
  • 乌式毛细管粘度计为什么有气泡
    乌式毛细管粘度计为什么有气泡有些朋友在初次使用乌氏毛细管粘度计时,会发现加样后,溶液出现气泡,接下来讲一下如何避免这种现象;首先,要确保毛细管乌氏粘度计的清洁程度:乌氏粘度计初次使用前以及每次试验之后都有必要彻底清洗并烘干,保证粘度试验过程中乌氏粘度计清洁。   其次,样品的溶解:用于乌氏粘度仪试验的溶液样品有必要彻底溶解,无细微颗粒。   最后,粘度试验人员的操作方法:加样时,使用注射器,让毛细管粘度计处于倾斜状态,再进行注样;试验过程中乌氏粘度计有必要坚持直立,且恒温槽内的恒温介质(一般是水)有必要高于乌氏粘度计的测量球等。更多专业内容,可联系专业厂家-上海颀高仪器有限公司,帮您提供最佳解决方案哦!
  • Picarro | 青藏高原中部冰芯气泡δ18O指示晚全新世冰川变化
    在青藏高原的腹地,巍峨的唐古拉山脉伫立于世界之巅,其冰川如同大自然的年轮,默默记录着地球气候的每一次微妙变化。冰川之中,那些被冰封的气泡,就像是时间的容器,保存着过去气候的密码。冰芯气泡,是冰川积累过程中空气被困于冰层之中形成的。它们不仅仅是简单的空气囊泡,而是携带着过去气候信息的宝贵资源。当雪花飘落并逐渐积累成冰时,其中的空气被封存,形成了气泡。这些气泡中的空气成分,包括温室气体如二氧化碳和甲烷,以及它们的浓度,都是反映当时大气成分的重要指标。科学家们通过分析这些冰芯中的气泡,揭示了气候变化的历史,而冰芯中的δ18O值更是成为了解这一历史的关键线索。青藏高原中部冰芯气泡δ18O指示晚全新世冰川变化冰芯中的气泡是冰初形成时的地球大气,蕴含了关于过去的无穷讯息,是研究古大气环境最直接的方法,且已广泛用于区域或全球气候重建。极地和高山冰川冰芯中空气含量的变化除了与积雪速率和气温变化有关,主要与太阳辐射强度有关,已用于建立冰芯年代学。冰芯气泡的氧同位素比率(δ18Obub)可以指示气温高低的变化。然而,由于缺乏长期连续的数据记录,人们对其在山地冰川中的气候影响知之甚少。基于此,在本文中,来自中国科学院青藏高原研究所的研究团队在青藏高原中部的唐古拉冰山(33°06'36.6" N,92°04'24.4" E)钻取了190.3 cm长的冰芯。通过描述和分析其物理特性(例如密度、积雪厚度、空气含量和污染层)、检测放射性核素-β活度、检测β粒子数并计算冰芯放射性强度、测量不溶性微粒浓度和可溶性无机离子浓度、测量冰芯δ18O值(利用Picarro L2130-i水同位素分析仪)以及δ18Obub值来调查δ18Obub的气候影响及其所包含的气候信息。唐古拉冰川地理图【结果】唐古拉冰川10m冰芯层数定年结果全新世晚期以来唐古拉冰芯δ18Obub的变化结果【结论】基于年层数法,对比冰芯中空气含量的变化与太阳总强度,重建了冰芯年代学。结果表明,该冰芯的年龄跨度约为3600年(公元前1610年至公元2004年)。因为冰芯和冰芯气泡之间没有明显的年龄差异,冰芯年代学也可作为冰芯气泡年代学来讨论其千年变化。通过对唐古拉冰川表面成冰过程的分析和冰芯δ18Obub影响因素的探讨,作者发现唐古拉冰芯δ18Obub的变化与冰川的积累或融化密切相关。暖期冰川有冰雪融水时,由于气体与融水之间通过物理和化学过程进行氧同位素交换,δ18Obub值比自然大气δ18Oatm值更偏负。在寒冷期,粒雪在冰川上积累,由于重力分馏作用,δ18Obub值偏正。唐古拉冰芯δ18Obub的变化表明,在过去大约3600年,青藏高原中部冰川经历了4次积累期和3次融化期。最强烈的积累期为公元前1610-450年,也可分为两个独立的阶段。另外两个积累期分别为公元200-300年和1230-1900年,青藏高原中部冰川融化最显著的时期为近100年。另外两个融化期分别为公元前300年-公元200年和公元300-1230年。通过对晚全新世以来青藏高原中部与青藏高原各地区或北极圈冰川和气候变化的比较,发现青藏高原各地区气候变化并不完全一致。与青藏高原其他地区相比,气候事件(如小冰期)在青藏高原中部不显著。晚全新世以来唐古拉冰川的变化与北半球高纬度地区的气候变化(如北大西洋涛动)密切相关。
  • 北航冯林课题组:基于多模态声驱微气泡的多功能微对象操控研究
    现代生物技术常常利用可调节的三维操控手段来实现在生物学领域和医学领域中对微纳米尺度的生物样品的控制与应用,例如细胞分析、细胞微手术和药物递送等。其中,为了提高潜在生物医学应用效率或满足一些涉及到复杂技术的应用需求,迫切需要在微流控装置中对微对象实现可控的多功能操控,如运输、捕获、旋转等模式。然而,固定的设计和驱动模式使其难以在一个单一的设备有效地实现多功能切换。近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种基于声驱微气泡的模态可切换的多功能微操控系统,该系统能够在微流控芯片内实现可控且高效的微对象运输、三维旋转和公转等操控模式(图一)。图一基于声驱振荡微气泡阵列的多模态操控系统示意图通过采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密),研究团队设计制造了一种带有底面微孔阵列(直径100μm、深度100μm)的微流控芯片。由于液体存在表面张力,当液体通入微流道并流过底面微孔时,可以形成具有近似尺寸的微型气泡。当超声发生装置所形成的超声信号传递到微流道中,可以激励微型气泡膜振荡形成声微流。图二声驱微气泡的理论模态与有限元仿真结果基于所设计结构内气泡界面的相对灵活性,该装置可以在仅调节驱动频率而不改变压电换能器数量与气泡阵列设计的情况下切换微型气泡的振荡模式,进而实现对单独或群体生物样本的多功能操控(图三)。由于声场的驱动特性,该装置可以有效操控几微米到几百微米的不同生物样本,包括微颗粒、细胞、绿眼虫、螺旋藻等。此外,利用平面外旋转模式的运动特点,研究团队实现了对细胞样本的三维重建,从而实现多视角的形态学复现与基本参数的测量估计。该系统所提出的声学操控方式具有多功能性、可控性、高效性以及良好的生物兼容性,在进一步促进细胞研究和治疗等应用层面具有很大潜力。图三不同控制模态下微对象的运动及定量分析该项研究成果获得国家重点研发计划(No. 2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution”为题发表于国际期刊《Lab on a chip》。原文链接:https://doi.org/10.1039/D1LC00628B官网:https://www.bmftec.cn/links/4
  • 2023中国颗粒学会微纳气泡专业委员会第五届年会在成都大邑圆满落下帷幕
    期待已久的2023中国颗粒学会微纳气泡专业委员会第五届年会,汇聚了一批来自全国各地对微纳米气泡兴趣浓厚、勇于专研、乐于分享的科学家、工程师和企业家们,经过三天的如火如荼的交流探讨,在成都大邑圆满落下帷幕。会议现场各位专家领导做了关于微纳米气泡研究和应用等方面的相关口头报告,并与参会人员现场进行交流互动,茶歇期间参会代表还认真观看了现场的墙报展示,学术氛围浓厚,为共同推进微纳米气泡事业的向前发展而努力!北京海菲尔格科技有限公司携带芬兰Pixact多台样机现场进行了演示,吸引了大批对微纳气泡监测感兴趣的专家学者前来驻足观看,与工程师进行沟通交流。北京海菲尔格科技有限公司Pixact 气泡监测 (PBM) 系统专为在线分析工业过程中的气泡悬浮液和泡沫而设计。测量基于悬浮液的直接光学成像和先进的图像分析。PBM气泡监测系统是为在线测试气泡变化过程和颗粒分布情况而设计,其结合了在线原位显微镜技术和高级图像分析技术。PBM气泡监测系统实时提供过程的显微镜图像数据,可以对气泡生成变化过程进行表征,例如尺寸分布、形态和数量等。同时测试系统专利的图像分析算法在图像数据中检测晶体和其它颗粒,产生实时的特征数字化信息。PBM气泡监测系统获得的实验结果可以有效地帮助优化气泡工艺、控制过程参数以及排查过程故障。PBM气泡监测系统可以被安装到各种应用场合,包括实验室小型浮选柱、工厂级别大型浮选机、各类浮选柱等。每秒钟获得的图片包含成百上千个气泡,提供的是有代表性的测试结果。用实时相机可视化观察晶体及颗粒悬浮液(可放大、暂停等)。图像实时分析,帮助下一步过程提供决策信息。在线监测(直接在样品溶液体系中测试),并实时提供气泡及颗粒的粒度、粒径、形状等。节约时间,降低劳动力成本,提高生产效率。PIXCELL测试流通管多安装在生产过程管线或专门的采样管线上。当悬浮体系流过流通池,流通池上的成像装置实时获取悬浮体系的颗粒图像。用户可以根据实际需求选择不同尺寸、不同长度、不同安装法兰的PIXCELL流通池,我们也可以根据客户的需求提供定制服务。PIXSCOPE测试探头PIXSCOPE探头大多安装在反应釜和反应罐中。探头的所有光学组件,包括:相机、光学镜片和照明系统都经过选择和优化,以确保最优的图像质量,甚至是在暗黑和超浓悬浮体系中也可以得到理想的测试结果。PIXSCOPE探头采用模块化设计,具有灵活的安装机制,我们提供不同的探头直径、长度、安装法兰等供用户选择,适用于烧杯、小型反应釜、中试反应釜、车间反应釜等多种不同场合。探头顶端浸入溶液体系中,液体流过探头顶端的测试狭缝时,通过透射照明的方式拍摄体系图像。PBS气泡尺寸监测系统近年来,随着计算机技术的发展,国内外选矿厂的自动化程度越来越高,选矿厂的检测与控制系统也要求实现稳定控制、监督控制、最优控制。浮选过程控制的主要目标是保持合格的最终精矿品位、尽量提升有用成分的回收率、减少药剂消耗和提高浮选效率。浮选过程控制的主要因素包括:药剂的加药量、基于泡沫信息的综合检测分析技术、浮选矿浆pH值、浮选槽液位、充气量等。浮选过程中要添加的药剂主要有:捕收剂、起泡剂和调整剂。目前,浮选系统的加药还是以人工为主,人工加药难免会造成较大误差和药剂浪费,达不到精准加药,国内外的选矿厂都在研究自动加药系统,以期实现高精度的药剂自动添加。浮选泡沫体是由大量的大小不一、形状各异、灰度值不同的矿化气泡组成的,包含大量与浮选过程变量及浮选结果有关的信息,浮选泡沫图像采集和处理技术在浮选过程控制上的应用,显著地提高了工艺指标和自动化程度。PBS气泡尺寸监测系统是基于以上两个技术难点和检测要求应运而生的,在PBM气泡监测系统的基础上增加了自动进样系统和自控系统,测试结果可用于表征浮选机的刮泡量、判断所给药剂量是否合适、评定精矿的品味和回收率,该系统已在矿物浮选领域有成熟应用。PBS气泡尺寸监测系统的测试结果包括:气泡/泡沫图像和亮度气泡/泡沫数量气泡/泡沫浓度气泡/泡沫流动速度气泡/泡沫粒度分布(平均粒径、累计分布(D10、D50、D90等))气泡/泡沫粒度变化趋势气泡/泡沫稳定性
  • 高压灭菌器做九管法时如何避免气泡残留在培养基
    大肠菌群细菌多存在于温血动物粪便、人类经常活动的场所以及有粪便污染的地方,人、畜粪便对外界环境的污染是大肠菌群在自然界存在的主要原因。大肠菌群是评价食品卫生质量的重要指标之一。而检测食品中大肠菌群的方法中,国内采用的进出口食品大肠菌群检测方法主要有国家标准,国家标准的三步九管法,即乳糖发酵试验、分离培养、证实试验。 由于大肠菌群指的是具有某些特性的一组与粪便污染有关的细菌,即:需氧及兼性厌氧、在37℃能分解乳糖产酸产气的革兰氏阴性无芽胞杆菌。因此大肠菌群的检测一般都是按照它的定义进行。1.乳糖发酵试验:样品稀释后,选择三个稀释度,每个稀释度接种三管乳糖胆盐发酵管。36±1℃培养48±2h,观察是否产气。2.分离培养:将产气发酵管培养物转种于伊红美蓝琼脂平板上,36±1℃培养18-24h,观察菌落形态。3.证实试验:挑取平板上的可疑菌落,进行革兰氏染色观察。同时接种乳糖发酵管36±1℃培养24±2h,观察产气情况。 在乳糖发酵试验工作中,经常可以看到在发酵倒管内极微少的气泡(有时比小米粒还小),有时可以遇到在初发酵时产酸或沿管壁有缓缓上浮的小气泡。实验表明大肠菌群的产气量,多者可以使发酵倒管全部充满气体,少者可以产生比小米粒还小的气泡。 在试验过程中,会用到高压灭菌器来进行灭菌,九管法灭菌时,大肠菌在高温下会产生气泡,如果用的是ALP高压力灭菌锅,可以通过进入工程师菜单,调整在升温过程中的排气时间,可以有效的排走残留在培养基中的气泡。初始界面灭菌中灭菌结束 培养基中有气泡 目前市面上,高压灭菌器品种繁多,有进口的有国产的高压灭菌器,高压灭菌器产品质量参差不齐。在业内质量口碑最好的当属东南科仪总代理的日本ALP高压灭菌器,日本ALP高压灭菌器具备《进口压力容器生产许可证》、《进出口锅炉压力容器安全性能检验证书》以及高压灭菌器上的压力表和减压阀,送当地计量部门计量后取得计量证书。 ALP高压灭菌器开关轻松简便,电子锁仅在通电时才可开启,避免因断电或关机时意外泄漏未灭菌物质。高压灭菌器可清晰显示所处的状态,如温度、压力、程序及操作过程中的其它相关信息。高压灭菌器脉冲空气净化反复进行,直至压力高于对应温度而产生过饱和蒸汽压保证灭菌效果。ALP高压灭菌器可根据被灭菌物质的情况调整蒸汽排放情况,ALP高压灭菌器具备快速冷却功能可使灭菌后快速降温到80℃以下的安全温度。ALP高压灭菌器通过真空泵及经0.2um的滤膜过滤后的热空气快速干燥样品,使其快速可用。高压灭菌器标配物温探头安装孔,选配物温探头,方便进行内部灭菌效果的验证。ALP高压灭菌器三重脉冲,预真空设备配置强大的真空泵强行排空腔内留存的空气,使饱和蒸汽良好的渗透入灭菌物品中,从而确保充分有效的灭菌效果。 更多详细参数可关注ALP高压灭菌器中国总代理:东南科仪!
  • 中科院沈阳自动化所:利用气泡作为微型机器人实现零件的操纵和装配
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动 图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。
  • 邀请函 | 2021年年会暨第三届微纳气泡专委会年会
    中国颗粒学会微纳气泡专业委员会(以下简称“专委会”)定于2021年10月22日-25日在江苏省常州市召开2021年年会暨第三届微纳气泡专委会年会。会议地点:常州西太湖明都国际会议中心会议时间:10月22日-25日报告主题:微纳米气泡的直观表征方法李亚威大昌华嘉科学仪器部门应用专家,2013年毕业于吉林大学,曾工作于清华大学生命科学学院、欧洲某知名仪器系统有限公司,长期从事生物颗粒表征、生物大分子相互作用及稳定性研究的相关工作,具有丰富的生物颗粒表征工作经验。
  • Nature子刊:灵敏度堪比PCR,且更加迅速的纳米气泡检测
    当前的 COVID-19 大流行,证明了高精度快速检测病原体的能力对于疾病的治疗和疫情的控制至关重要。但对传染病病原体的快速且高灵敏的检测诊断的需求实际上并未得到满足。数字免疫分析具有单分子检测和绝对定量的优点,在近二十年里得到了显著进步,与传统免疫分析相比,其灵敏度提高了上千倍。然而,数字免疫分析的检测过程非常复杂,这限制了其广泛应用。近年来,以纳米颗粒(Nanoparticles)为标签的新型数字免疫分析方法,存在着步骤繁多、芯片制备难度高、需要先进的成像技术辅助等问题,因此,多数还停留在实验室开发阶段。近日,德州大学达拉斯分校秦真鹏团队在 Nature Communications 期刊发表了题为:Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics 的研究论文。该研究开发了一种名为数字等离子体纳米气泡检测(简称DIAMOND)的简化数字免疫分析新技术,通过激光和金纳米颗粒,实现快速、精准的病毒检测。在对呼吸道合胞病毒(RSV)的测试中,仅需30分钟即可获得检测结果,检测灵敏度可达1个病毒RNA拷贝/微升。秦真鹏表示,DIAMOND 技术同样可以用于新冠病毒和流感病毒等病毒的快速精准检测。例如,通过 PCR 检测新冠病毒样本,通常需要2-4个小时才能获取检测结果,而使用 DIAMOND 技术,检测时间缩短到了30分钟,而且检测灵敏度与 PCR 相当,是抗原检测灵敏度的上百倍。研究团队将该技术应用于呼吸道合胞病毒(RSV)的检测,将鼻拭子样本与附着了 RSV 病毒抗体的金纳米探针混合,如果样本中有 RSV 病毒,那么金纳米颗粒上的抗体就会与病毒表面的蛋白结合,并在病毒表面大量累积。然后将检测样本注入微毛细管中,在两束激光照射下,脉冲激光激活金纳米颗粒,并让其产生等离子体纳米气泡,结合了病毒的金纳米颗粒会产生更大的等离子纳米气泡,没有病毒的金纳米颗粒则产生微小的等离子体纳米气泡。通过探测激光的光吸收信号即可判断样本中是否有病毒存在。在检测呼吸道合胞病毒(RSV)的实验中,仅需30分钟,即可完成检测,且具有良好的检测特异性,检测灵敏度可达1个病毒RNA拷贝/微升。
  • Nature Communications:低温AFM助力六方氮化硼气泡中的氢分离研究进展
    在原子尺寸容积内存储微量气体是科研中一项十分有意义的研究。其中,阻隔材料的选择是影响气体存储的重要因素:该材料必须形成气泡来包覆存储的气体,且必须在端环境下保持稳定,更重要的是材料本身不能与存储气体有任何的化学或者物理的相互作用。近期,中国科学院上海微系统与信息技术研究所的王浩敏研究员课题组就这项研究在《自然-通讯》杂志上发表了通过等离子体处理实现六方氮化硼气泡中的氢分离的工作。单层六方氮化硼(h-BN)是一种由硼氮原子相互交错组成的sp2轨道杂化六边形网格二维晶体材料。在所有现已发现的范德瓦尔斯(van der Waals )单原子层二维材料(2D Materials)中,h-BN是的缘体,因此其被认为是纳米电子器件中理想的超薄衬底或缘层材料。此外,h-BN还拥有高的热稳定性及化学稳定性,使得它被广泛研究并应用于超薄抗氧化涂层。研究表明,h-BN在1100 ℃以下都能很好地发挥其稳定的抗氧化功效。图1. 通过等离子体技术从烷中提取氢气到h-BN夹层中形成气泡同石墨烯类似,h-BN的六边形网格在结构不被破坏的情况下可以阻止任何一种气体分子或原子穿透其平面,却对直径远小于原子的质子无能为力。这一有趣的特性使之能够被很好地应用于“选择性薄膜”、“质子交换膜”等能源领域。而在本文报道的研究中, 王浩敏研究员团队则巧妙地利用h-BN这一特性,结合等离子体技术,对碳氢化合物气体(烷、乙炔)、氩氢混合气进行了“氢提取”,并将其稳定地存储在h-BN表面的微纳气泡中(图1)。图2. a: 六方氮化硼光学显微镜照片;b: 六方氮化硼34K与33K温度下的低温原子力显微镜形貌图,当温度34K时存在气泡(图中亮色部分);c: 六方氮化硼气泡不同温度下的高度,当温度33K时气泡消失低温原子力显微镜的测量结果(图2)证实了被六方氮化硼气泡包覆的气体确实是氢气。文章中,作者使用了一套attoAFM I低温原子力显微镜,显微镜可以在闭循环低温恒温器attoDRY1100(attoDRY2100系列)内被冷却到低的液氦温度。在特定的测量温度下,原子力显微成像结果可以帮助研究者证实在33.2 K ± 3.9 K温度的时候气泡消失,证实了被包覆气体的消失。由于该转变温度与氢气的冷凝温度(33.18K)接近,该实验结果可以证明氢气气体存在与六方氮化硼气泡内。该工作成功地在六方氮化硼内存储了氢气,为未来氢气的存储提供了全新的方法。图3. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器 低温强磁场原子力磁力显微镜attoAFM/MFM I主要技术特点:-温度范围:1.8K ..300 K-磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)-工作模式:AFM(接触式与非接触式), MFM-样品定位范围:5×5×5 mm3-扫描范围: 50×50 mm2@300 K, 30×30 mm2@4 K -商业化探针-可升PFM, ct-AFM, SHPM, CFM,atto3DR等功能 参考文献:Haomin Wang et al, Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment, Nat. Commun., 2019, 10, 2815.
  • 中国颗粒学会微纳气泡专业委员会2021年年会在美丽的常州盛大召开
    中国颗粒学会微纳气泡专业委员会于2018年10月18日在苏州成立,微纳米气泡研究和应用是近二十年来新兴的研究领域。专委会的成立旨在加强微纳气泡基础研究和应用之间的深入交流和合作,推动微纳气泡领域在环境、农业、生物、健康、浮选、分离等领域的发展。目前专委会已批准成立了7个示范性基地。2021年10月22~25日,我们在美丽的常州西太湖再度相约、遇见泡泡,大会聚集了国内一批勇于钻研、乐于分享、兴趣浓厚的科学家、工程师和企业家们,共同探讨“如何利用微纳米气泡更好地造福人类而不懈努力”! 会议期间,中国颗粒学会微纳气泡专委会秘书长李兆军研究员发表致辞;中国科学院上海高等研究院胡钧研究员分析了2020-2021微纳气泡领域的研究进展;哈尔滨工业大学马军院士带来了微气泡在水质强化处理中的若干应用研究进展;常州大学冯胜教授、中国科学院上海高等研究院张立娟研究员、同济大学李攀副教授等微纳气泡领域的专家们做了精彩报告,并现场回答了参会者们提出的研究过程中遇到的问题,学术氛围浓厚。 北京海菲尔格科技有限公司作为此次会议的赞助商,在会议现场展示了PIXSCOPE浸入式探头和PIXCELL流通管两个规格的PBM微气泡监测系统,并做了现场演示。参会的各位专家学者聚集到海菲尔格展台,询问PBM微气泡监测系统的原理,详细了解我们展示的微气泡监测系统,对PBM的高分辨率的成像效果以及强大的数据分析处理能力赞叹不已。北京海菲尔格科技有限公司技术经理唐远旺做了“PIXACT气泡图像及颗粒度原位在线实时检测最新进展”的报告,惊艳全场!专家学者们纷纷提问,感谢海菲尔格科技将如此高端的PBM微气泡监测系统引入中国,PBM是我们微气泡研究过程中的眼睛,可以为微纳气泡的研究带来更多有价值的信息! PBM微气泡监测系统是为工业过程中在线分析气泡悬浮液和泡沫体系而专门设计,可以实时监测到:气泡计数、气泡浓度、气泡流动速度、气泡尺寸分部、平均气泡尺寸(长度平均直径、面积平均直径、体积平均直径)、标准偏差、索特平均直径、累积分布(D10、D50、D90等),是引领微纳气泡研究的新航标。微纳米气泡在基础研究和工业应用中展现出诸多新颖的特性,从而在污水处理、农业生产、水产养殖、工业清洗、医学成像、矿物浮选、泡沫分离以及医疗健康等方面迅猛发展。北京海菲尔格科技有限公司专注于PBM微气泡监测系统等在线实时测试技术的应用和推广,会为中国的微气泡行业发展贡献自己的力量!
  • 科学家研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术
    病毒引起的传染病给人类的生命安全和身体健康带来了巨大威胁,目前来说对疾病的快速和灵敏诊断仍然是一个迫切且未满足的需求。数字免疫分析技术由于其单分子检测和绝对定量的能力,在近些年来取得了显著进步,但复杂的操作步骤限制了其应用。  近日,美国研究团队在《Nature Communications》杂志上发表题为“Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics”的文章,研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术。  等离子体纳米气泡是指短脉冲激光激发纳米颗粒产生的蒸汽气泡,放大其固有吸收,可通过二次探测激光进行检测。等离子体纳米气泡的寿命为纳秒,对纳米颗粒的物理性质(如大小、形状、浓度和聚集状态)十分敏感。该研究利用等离子体纳米气泡这些特性设计了一个光射流装置,使纳米颗粒的悬浮液在微毛细管中流动,使用两束激光同步激活纳米颗粒并检测等离子体纳米气泡。由于等离子体纳米气泡是瞬态事件,且激光脉冲之间没有串扰,创建了约16pL的微尺度“虚拟检测区”,并以无间隔的方式对“开”和“关”信号进行计数,以此对检测目标进行定量分析。研究表明将此方法应用于检测呼吸道合胞病毒(RSV)时,具有较好的特异性和灵敏度(1拷贝/µL)。  该研究提出的数字等离子体纳米气泡检测方法具有一步操作、单纳米颗粒检测、在室温下能够直接检测完整病毒、无需复杂液体处理等优点,是一种快速、超灵敏的诊断技术。  论文链接:  https://www.nature.com/articles/s41467-022-29025-w
  • 嫦娥五号月壤新发现:高分辨透射电镜结合电子能量损失谱观测到大量氦气泡
    据中科院宁波材料技术与工程研究所网站6月10日消息,为什么月球具有丰富的战略资源氦-3?氦-3在月球上是以什么形式储藏的?如何原位开采氦-3?最近研究发现月壤玻璃在捕获和保存氦-3气体中发挥了关键作用。氦-3作为氦(元素周期表中第二个元素)的一种同位素,在能源、科学研究等领域具有重要应用价值。比如,作为一种可控核聚变的燃料,氦-3核聚变产生的能量是开采所需能量的250倍,是铀-235核裂变反应(约为20)的12.5倍。100吨氦-3核聚变产生的能量即可供应全球使用1年,且氦-3核聚变过程无中子二次辐射危险,更加清洁和可控。另外,氦-3是获得极低温环境的关键制冷剂,是超导、量子计算、拓扑绝缘体等前沿研究领域的必需物质。然而,地球上氦元素主要是氦-4,氦-3储量只有0.5吨左右,远远无法满足现有需求。氦-3是太阳风的重要成分,月球由于常年受太阳风的辐照,储存了大量氦-3。但是为什么月球具有丰富的战略资源氦-3?氦-3在月球上是以什么形式储藏的?这些问题还没有明确的答案。探索月球资源,特别是氦-3的含量、分布和开采,已经成为当前国际深空探测的必然趋势和主要任务。因此,从20世纪末开始,全球掀起了新一轮的月球“淘金热”,使探月工程和科学研究达到新的高潮。但是如何原位、高效开采氦-3还是科学和技术难题。以往研究认为氦-3溶解在月壤颗粒中,提取氦-3受扩散速率限制,需要700℃以上的高温,不但耗能较高,而且速度慢,不利于在月球上原位开采。因此,探明月壤中氦-3的储藏形式,对未来认识月球是如何捕获氦-3,如何开发利用氦-3资源至关重要。由嫦娥五號採集的月球樣品(月壤)近日,中国科学院宁波材料技术与工程研究所、航天五院钱学森实验室、中国科学院物理研究所和南京大学等联合团队,对嫦娥五号月壤颗粒中的氦原子进行了探测和研究。发现月壤中钛铁矿颗粒表面都存在一层非晶玻璃。研究人员通过高分辨透射电镜结合电子能量损失谱法,在玻璃层中观测到了大量的氦气泡,直径大约为5~25nm,且大部分气泡都位于玻璃层与晶体的界面附近。而在颗粒内部晶体中,基本没有氦气泡。鉴于氦在钛铁矿中的高溶解度,研究人员认为氦原子首先由太阳风注入钛铁矿晶格中,之后在晶格的沟道扩散效应下,氦会逐渐释放出来。而表层玻璃具有原子无序堆积结构,限制了氦原子的释放,被捕获并逐渐储存起来,形成了气泡。玻璃态材料特殊的无序原子堆积结构具有极高的稳定性,比如玻璃态琥珀可以将生物标本保存上亿年、氧化物玻璃可以将核废料储存上千年。这项工作表明钛铁矿玻璃也具有极高的稳定性,在月球上捕获并保存了丰富的氦-3资源。工作表明,通过机械破碎方法有望在常温下提取气泡形式储存的氦-3,不需要加热至高温。而且,钛铁矿具有弱磁性,可以通过磁筛选与其他月壤颗粒分开,便于在月球上原位开采。通过进一步计算,研究人员发现气泡中的氦气原子的数密度达到50-192 He/nm3,具有极高的压力。根据月球上钛铁矿总量估算,以气泡形式储藏的氦-3总量或高达26万吨,如果全部用于核聚变,可以满足全球2600年的能源需求。这些结果不但为月球上氦-3的富集机理提供了新的见解,也为未来月球氦-3的原位开采利用奠定了理论基础,对探寻月球资源的有效利用路径具有重要意义。该工作以“Taking advantage of glass: Capturing and retaining of the helium gas on the moon”为题发表在《材料未来》期刊(Materials Futures,DOI:10.1088/2752-5724/ac74af)。本工作由中科院物理所汪卫华院士、航天五院杨孟飞院士、南京大学邹志刚院士领衔的月壤物性研究及综合利用项目团队完成,月壤样品编号CE5C0400。中科院宁波材料所王军强研究员、霍军涛研究员、许巍副研究员和中科院物理所白海洋研究员为共同通讯作者。中科院宁波材料所李傲、陈霄、宋丽建博士和陈国新博士为共同第一作者。图1、(a)EDS显微图,一颗形似康乃馨花的月壤钛铁矿颗粒(花托部分)和粘接的胶结物质(花冠);(b)透射电镜下观测到的一个氦气泡的放大图,红色为Fe元素分布情况;(c)月壤钛铁矿表面形成了玻璃层,氦气泡主要在玻璃层中;(d)图(c)中不同位置的电子能量损失谱曲线。 图源:中科院宁波材料技术与工程研究所(中科院磁性材料与器件重点实验室 王军强)
  • 玩肥皂泡也能发顶刊?机理揭示全靠这台仪器
    p  strong仪器信息网讯/strong 吹泡泡是大多数人儿童时的回忆,玩肥皂泡听起来似乎只是儿童的游戏。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/34e56cb0-4de4-426d-a6b9-7ec5db9d9ae3.jpg" title="儿童吹泡泡.jpg" alt="儿童吹泡泡.jpg"//pp  在科学家眼中,同一件事却有不同的视角。美国弗吉尼亚理工学院的Jonathan Boreyko及同事研究了肥皂泡冻结的热传递过程,并在Nature Communications上发表的研究成果,揭示了肥皂泡的冻结机理。/pp  在零下十多度的环境中,把肥皂泡放在在冰表面,肥皂泡中的水就会逐渐冻结。在这个过程当中,会出现像雪花一样的冰晶。特定条件下冻结时,可以观察到内部有大量不断生长的冰晶在盘旋这些冰晶会散布在气泡表面并逐渐生长变大,直到整个气泡都被冻结。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/noimg/ee365d0c-7932-40ae-a0d7-01876473a833.gif" title="肥皂泡结冰GIF图.gif" alt="肥皂泡结冰GIF图.gif"/  /pp  Boreyko等在不同环境温度下,将肥皂泡置于冰冷的表面,并记录下了冻结过程。他们观察到了两种不同的冻结机制。第一种是将过冷的气泡放置在冰面上,由于气泡的初始状态是低于熔点的过冷状态,当气泡接触冰面时就会迅速产生小冰晶,并且在底部生成的小冰晶会自发的飘到气泡上部,随着冰晶不断生长和并合,肥皂泡完全冻结。第二种是将室温下的气泡放在冰面上,气泡从底部向上逐渐冻结,不形成“雪花”。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 317px " src="https://img1.17img.cn/17img/images/201908/uepic/485f7565-2f10-4dc5-8ace-2c63a3498909.jpg" title="两种情况下气泡的冻结行为.png" alt="两种情况下气泡的冻结行为.png" width="500" height="317" border="0" vspace="0"//pp  揭示这种神奇现象用到的主要仪器就是a href="https://www.instrument.com.cn/zc/1763.html" target="_self"strongspan style="color: rgb(255, 0, 0) "热成像仪/span/strong/a。自然界中的一切物体,无论是北极冰川,还是火焰、人体,甚至极寒冷的宇宙深空,只要它们的温度高于绝对零度-273℃,都会有红外辐射,这是由于物体内部分子热运动的结果。红外成像技术就是根据探测到的物体的辐射能量的高低,经系统处理转变为目标物体的热图像,以灰度级或伪彩色显示出来,即得到被测目标的温度分布从而判断物体所处的状态。热成像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生成热图像和温度值,并可以对温度值进行计算的一种检测仪器。/pp  Boreyko等通过热成像设备测量发现,第一种情况下,由于水结冰会发出热量,小冰晶附近的温度要高于气泡上部的温度。这种温度差异会引起表面张力的差异,产生温度梯度引起的马兰戈尼流动。马兰戈尼流动的方向是从高温流向低温,即从气泡下部到气泡上部。从热成像图像可以清楚地看到气泡上的温度梯度;在第二种情况下,气泡的初期温度是高于熔点的。在放到冰面上以后,再逐渐冷却结冰。这样会形成上部温度高,下部温度低的温度梯度,与第一种情况相反,自然也就不会有小冰晶飘到上部。此时气泡的结冰过程是由下往上逐渐冻结。冻结界面会缓慢向上扩展,最终在肥皂泡中间位置由于传导不良而停止。半冻结的肥皂泡先会保持均衡状态,直到最后液体圆顶坍塌。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/201908/uepic/a7268429-516b-42ea-8f8d-48e6e7e20ca9.jpg" title="第一种情况.png" alt="第一种情况.png" width="500" height="333" border="0" vspace="0"//pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 360px " src="https://img1.17img.cn/17img/images/201908/uepic/b294f5e6-bf71-4fb6-a561-3e59f2dfcdbe.jpg" title="第二种情况.png" alt="第二种情况.png" width="500" height="360" border="0" vspace="0"//pp style="text-align: center "strong两种结冰过程的热成像图像 /strong/pp  红外热成像仪得到的的温度梯度图谱对文章的结论提供了有力的支撑,你学到了吗?/ppbr//p
  • 赫西仪器推出2019新品胶水试管脱泡离心机
    导言:经常听到客户抱怨,胶水里面有气泡,那为什么会有气泡呢?因为罐装后胶水中会混入空气,形成气泡,怎么才能解决这个问题呢?赫西仪器的工程师团队想了一个办法就是,利用离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。在此背景下,离心脱泡机被发明了出来。经过多次反复试验,2019年6月开始赫西仪器正式对外推出胶水试管脱泡离心机该系列最新产品; 具体而言,脱泡离心机主要是将不同颗粒大小以及密度不同的物质进行分离和提纯,让物质能够在巨大离心力的作用下,出现不同程度的沉降,从而分离出需要的物质成分。在物质分离的过程中,有一项重要的因素不能忽视,那就是密度,尤其是在生物胶水的应用方面,密度是关键要素。 如果胶水中有密度相差很小的物质,且气泡很多,将会影响胶水的质量。脱泡离心机可以使物质在离心力的影响下,对胶水做同样速度的沉降运转,让物质更为融合,甩出气泡。 脱泡离心机应用: 在光电器件类高科技产品生产中,很多场合都需要使用胶粘剂,对胶粘剂的脱泡方法往往会影响到最终产品质量。有一些片材生产需要脱泡,例如以氧化锆作为基材在上面涂覆陶瓷浆料生产的片材,以其良好的热稳定性,化学稳定性,耐热冲击性在工业中具有广泛的应用。生产片材的浆料在配制过程会有大量的气泡产生,粘度越大,气泡将引起片材表面质量变差,结皮,开裂等,因此需要脱泡 。赫西脱泡离心机通常脱除胶水内气泡的方法有三种:离心法、加热、抽真空,离心方式相对较为理想。加热的方式可能有一定局限性,因为加热可能会使胶水性质变化。采用抽真空方式可能会将硬化剂中的易挥发成分抽走而使得最后的混合比例不对,抽真空还可能导致胶水表面形成一层膜而导致内部气泡无法跑出。利用离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。。下面给大家介绍一下胶水试管脱泡离心机dd5特性和参数:1.胶水试管脱泡离心机dd5,采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩交流无刷电机,运行稳定噪音低,提供舒适的实验室环境。 2.航空锻造铝转子(仅限角转子)及多种聚酰胺纤维适配器可选。 3.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。 4.tft-lcd真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用; 5.操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。6.胶水试管脱泡离心机dd5,后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。 7.采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。 8.dd5台式低速大容量离心机,10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。 9.具备cfda备案及cfda生产资质,通过了iso 9001(2015)认证及iso 13485(2016)认证。 10.脱泡离心机有大中小都能做水平式的,可订制不同规格大小及长度的胶水管脱泡.脱泡离心机适用于各厂家的点胶管进行各种注入筒胶管脱泡处理, 11.离心式脱泡功能,不用外界物质接触产品,不会改变产品的化学性质。主机技术参数产品型号dd5最高转速(r/ min)5000最大离心力(×g)4800最大容量4×500 ml定时范围1-99 min/连续/短时离心噪 音≤60 db电 源ac220v 50hz转速精度±50r/min功率1.8kw重 量65 kg外形尺寸(长×宽×高)630×500×420 mm适用材料:各种胶水、银浆、油墨、油脂、膏状物、药品、化妆品基材、工业制造使用的UV胶水(树脂),红胶,锡膏,硅油和散热膏等材料等;针筒容量:10/30ML/50ML/70ML/100ML; 针筒数量:客户指定,离心转子(角转子或水平转子);公司产品广泛用于大专院校、科学院所、生命科学、临床医学、军工、生物工程、农林科学、食品、化工、石油、中心血站、检验检疫、疾控制药和环保等教学生产科研领域。我们将竭诚为新老客户提供更专业的技术和更优质的服务。
  • 匠心铸精品 泡沫分析仪 Turbiscan TMIX新品上市
    宏观评价起泡剂的起泡能力和泡沫稳定性泡沫应用广泛,Turbiscan TMIX科学地通过软件对泡沫气泡过程精确控制,从起泡到衰变,全过程实时全分析,测量速度间隔仅20秒,高度分辨率40um,充分高度保证测量条件完全可重复。可以给出的主要参数: 1、评价泡沫液起泡能力-测定泡沫的总高度泡沫高度和液体高度2、测量泡沫颗粒粒径及随时间变化速度3、测定泡沫半衰期4、泡沫膨胀系数5、泡沫密度6、泡沫稳定性系数应用领域:1、食品(饮料、啤酒、奶制品、咖啡)2、石油工业:泡沫驱油、泡沫压裂、泡沫钻井3、矿物浮选4、造纸业、油漆、陶瓷、造纸工业:消泡其他功能1、实时监控悬浮液再分散2、监控高分子自组装过程3、快速研究PH值、离子强度、剪切对乳化液稳定性影响4、筛选的搅拌、均质等条件 泡沫分析仪 Turbiscan TMIX 泡沫分析仪 Turbiscan TMIX 应用静态多重光散射的原理,在样品无稀释、无扰动、无接触的条件下全面表征所有物理不稳定现象。检测器所得到透射光和背散射光强度是直接由分散相的浓度(体积百分数)和平均直径( 或是粒子/微滴/气泡的平均直径)决定的,通过测量透射光和背散射强度的变化,就可以知道样品在某一截面浓度或颗粒粒径的变化。该仪器对所分析的样品可以有一个宽的范围,粒子尺寸范围从0.05微米-1毫米,其样品的浓度可以达到体积百分比95%。
  • 密度检测的新纪元—ERADENS X密度计
    我们非常高兴的通知您,奥地利eralytics公司推出又一分析仪杰作:高精度密度计ERADENS X。ERADENS X是世界上体积最小、重量最轻的高精度密度计,完全符合 ASTM D4052 和 SH/T 0604。拥有坚固的耐腐蚀铝外壳,紧凑密集小尺寸,配备彩色触摸大屏幕,内置先进的工业级PC。由于其创新性的垂直对齐X震荡U形金属管设计,使得ERADENS X非常可靠、坚固,不受冲击和振动的影响。所以,它非常适合在极端条件下进行测试,比如移动实验室。ERADENS X可提供精确到小数点后5位的精度密度结果。eralytics独特的全量程粘度校正确保在0 - 100℃的宽温度范围内实现最|高的精度。 垂直对齐的U形管可以使得气泡残留在密度池内的可能性降至最|低。为了验证无气泡填充,eralytics开发了FillingProofTM技术。与容易出错的光学方法相比,我们利用密度的变化作为施加压力的函数来检测即使是最小的气泡,这也为不透明的样品(例如原油)提供了可靠的检测结果。超大的彩色触摸显示屏以及从顶部注入样品的独特方式,使得日常测量程序非常高效,且对于习惯使用右手或是左手的实验人员来说同样容易操作。
  • 克吕士测评专栏丨如何科学的量化和分析日化产品中的泡沫
    日化产品,洗面奶,洗发水,洗衣液等都会产生合适的泡沫,为什么沐浴露洗面奶一切可以起泡的东西都是越丰富越讨人喜欢?因为在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻腻都被洗掉了。然鹅,在购买产品的时候,我们习惯提前在网上看各种洗护产品起泡性的测评结果,其中有些是请消费者试用后测评,并且录制了整个测评过程,看起来很有说服力。但是这些测评结果是否可信?心机若在,忽悠就在,大不了套路再来殊不知, 产品检测应是严谨的,小克作为一个有节操的,有良心的厂家,有必要拿出自己的看家仪器,来对日化产品(此次主要是洗面奶)的起泡能力和泡沫的细腻程度做一个科学的测评,帮助大家选购合适的产品。测试之前,我们先来看看泡沫和清洁能力之间的“一毛钱关系”这当然得从洗面奶的去污机理说起咯~日化产品中,起清洁能力的主要是表面活性剂,一般具有亲水端和疏水端,这使得它能够分布于气液相界面上。清洗的时候,用手揉搓洗面奶,气体和液体互相接触,表面活性剂迅速的分布在气液界面上,便能够打出丰富且稳定的泡沫。当洗面奶和皮肤接触的时候,水中的表面活性剂亲水端分布在水中,疏水端跟污垢结合在一起,多个表面活性剂分子将脏东西从皮肤表面清洗下来,再包裹起来,和水一起冲掉。这个时候,请注意上图,将污垢洗掉的表面活性剂分子,是在水中的,而不参与清洁过程的多余表面活性剂,才会分布在气液界面上,形成泡沫。所以,泡沫的多少跟清洁能力强弱没有明显的关系,泡沫只是清洁过程的副产物,但泡沫有时候也可以给我们重要的指示作用。01泡沫的产生证明了表面活性剂过量。当表面活性剂分子跟污垢结合的时候,也就是大部分表面活性剂都去干活了,没有多余的表面活性剂再产生泡沫。尤其是在洗头发的时候,头皮上有太多的油脂存在,全部用来消耗表面活性剂了,第一遍的洗发水揉搓后并不会产生太多的泡沫。如果我们再清洗一遍头发,此时油脂已经被清洗掉了,富余的表面活性剂才会产生大量的泡沫。所以,起泡泡=干净这个逻辑推理本质上是没错的,但是并不是起的泡泡越多清洁效果越强,而是起泡泡越多证明清洁剂过量,已经洗干净了。02另外,泡沫也能带来愉悦的肤感。使用泡沫细密丰富的洗面奶,就像是一头扎进了云朵里,说不出的舒适和快乐。浓密细腻的泡沫,可以增大与皮肤的接触面积,并且将表面活性剂均匀的分散在气泡中,尤其是皮肤屏障受损或者比较脆弱的情况下,不会因为局部的表面活性剂太多造成皮肤敏感。所以这就是为什么洗面奶需要打出丰富的泡沫才能上脸,甚至很多人会借助于起泡网,起泡瓶等来产生泡沫。解释完这个机理后,我们再来看看应该如何科学的测评洗面奶的起泡性和泡沫的细腻程度。仪器:krüss dfa100泡沫分析仪dfa100型泡沫测试仪可为泡沫起泡性能和泡沫的衰变速度提供准确的测量结果,其主要原理为利用搅拌或鼓气的方式产生泡沫,根据样品的透光率,通过光学传感器来监测泡沫产生的高度和泡沫结构。此次选择了市场上几个最受欢迎的洗面奶进行了测试,具体成分信息见表1。根据实际使用中对洗面奶的稀释情况,将洗面奶与水按照1:10的比例调配成溶液,实验时移取100ml溶液于测试玻璃量柱中,采用专用的foam flash间歇搅拌的起泡方式,即搅拌2s静止3秒,多次重复的方法,在洗面奶溶液与空气充分接触的过程中产生泡沫,来模拟实际使用情况。不同品牌由于添加的表面活性剂性质不同,起泡性和泡沫结构也会呈现出不一样的结果。表1 洗面奶中的主要表面活性剂种类1.总高度结果(泡沫+液体高度)- 起泡性样品的起泡能力与泡沫高度是密切相关的。一般来讲,在相同浓度下,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。并且起泡能力是与时间相关的,随着搅拌时间的增大,产生的泡沫也越多。为了比较6种品牌洗面奶的起泡能力,通过foam flash模式搅拌100s,测试样品的总高度,结果见图1。图1 不同样品的总高度对比图由图1可以看出,senka和森田这2个品牌的总高度较高,达到了180mm以上。它们都是皂基型的配方,起泡性较强,泡沫丰富细腻,清洁力也较强,但使用后可能会有紧绷感或皮肤发干的感觉。丝塔芙的总高度最低,它的配方使用的是月桂醇硫酸酯钠表面活性剂,起泡性就比较差。雅漾凝胶配方中的月桂醇聚醚磺基琥珀酸酯二钠作为一种非离子表面活性剂,泡沫丰富度一般,清洁效果适中,外观为透明凝胶状,在6个总高度中也相对较低。旁氏作为氨基酸型的代表,起泡能力强,整体总高度也比较高。自然哲理的总高度在所有样品内处于居中位置,这与其配方中的两性表面活性剂的性质也相对符合。2.泡沫结构和泡沫稳定性泡沫结构可以直观的分析洗面奶泡沫的细腻程度,并解释泡沫的稳定性。图2展示了6个不同样品分别在100s、500s和1000s下的泡沫结构图。可以看出雅漾凝胶的泡沫结构随时间变化最大,sanka、森田、丝塔芙的泡沫则相对比较细腻。图2 泡沫结构图3.总结每一个清洁产品配方都需要根据使用场景来选择合适的泡沫性能。某些产品,如手洗餐具洗涤剂和洗发香波,需要较高而持久的泡沫。其他产品,如自动洗碗机用洗涤剂和游泳池消毒剂,则需要较低且能快速消失的泡沫。在没有观察体验过产品实物的情况下单凭配方表做出的任何产品评测,都只能仅供参考,需要结合实际的产品测评才能确定好坏。而泡沫分析仪,则可以帮助我们科学的分析和量化泡沫产品,优化产品性能。关注我们以获得更多信息活动主题内容提要下载白皮书提供免费泡沫测试名额有关泡沫主题的线上研讨会洗面奶测评报告您可以通过点击阅读原文进入下载页面。邮箱地址:customercare@krusschina.cn
  • 赫西发布胶水脱泡离心机DD5新品
    脱泡离心机的功能主要是脱泡,因为罐装后胶水中会混入空气,形成气泡,而离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。胶水试管脱泡离心机TDD5特性:1.胶水试管脱泡离心机,采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩交流无刷电机,运行稳定噪音低,提供舒适的实验室环境。2.航空锻造铝转子(仅限角转子)及多种聚酰胺纤维适配器可选。3.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。4.TFT-LCD真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用;5.操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。6.胶水试管脱泡离心机,后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。7.采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。8.10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。9.具备CFDA备案及CFDA生产资质,通过了ISO 9001(2015)认证及ISO 13485(2016)认证。 10.脱泡离心机有大中小都能做水平式的,可订制不同规格大小及长度的胶水管脱泡.脱泡离心机适用于各厂家的点胶管进行各种注入筒胶管脱泡处理,11.离心式脱泡功能,不用外界物质接触产品,不会改变产品的化学性质。主机技术参数产品型号脱泡离心机TDD5最高转速(r/ min)5000最大离心力(×g)4800最大容量4×500 ml定时范围1-99 min/连续/短时离心噪 音≤60 dB电 源AC220V 50Hz转速精度±50r/min功率1.8KW重 量65 Kg外形尺寸(长×宽×高)630×500×420 mm 转子参数: 适用材料:各种胶水、银浆、油墨、油脂、膏状物、药品、化妆品基材、工业制造使用的UV胶水(树脂),红胶,锡膏,硅油和散热膏等材料等;针筒容量:10/30ML/50ML/70ML/100ML; 针筒数量:客户指定,离心转子(可定制); 创新点:脱泡离心机的功能主要是脱泡,因为罐装后胶水中会混入空气,形成气泡,而离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。
  • 法国泰克利斯FOAMSCAN™泡沫分析仪入围2023年度“3i奖-科学仪器行业优秀新品”
    3i奖-科学仪器行业优秀新品”评选活动2023年度上半年入围奖评审已经结束,经专业编辑团初审、网络评审团初评,现已确定2023年度上半年入围奖名单。我公司独家代理的法国泰克利斯FOAMSCAN&trade 泡沫分析仪经仪器信息网“专业编辑团”初审、“网络评审团”评审后成功入围“3i奖-2023年度科学仪器行业优秀新品”。详情请见:https://www.instrument.com.cn/news/20230830/681872.shtml 法国泰克利斯/Teclis品牌的FOAMSCAN泡沫扫描仪由法国泰克利斯(TECLIS Scientific)仪器公司研发生产,用于分析液体的起泡性能、半衰期、泡沫含液量等。FOAMSCAN采用鼓气法或机械搅拌法起泡方式,或者同时配备两种起泡方式同时配备。FOAMSCAN能够测量泡沫体积,液体体积,液体电导率等,以及测量泡沫大小和分布,分析泡沫稳定性与温度的关系。主要功能:1、软件控制起泡过程,可以通过鼓气法或机械搅拌法起泡2、测定泡沫的总高度、泡沫高度和液体高度3、测定起泡参数:最大高度、起泡能力和泡沫密度4、衰变参数:衰变的起始点和半衰期5、通过视频的方法在不同分辨率下测量气泡尺寸大小分布及其变化6、计算气泡的平均尺寸和标准偏差7、在一系列测量后可输出每幅图像的直方图8、可通过电导率同时在四个高度上测量泡沫中夹带液体的含量和每个高度上的半衰期
  • 胶水脱泡离心机的作用和产品特点
    工业制造使用的UV胶水(树脂),红胶,锡膏,硅油和散热膏等材料在使用的时候经常会发现有气泡的存在,从而影响其使用效果,如 UV胶在点胶前有气泡,点胶后经过UV光固化,气泡仍然存在,会对产品质量有极大的影响,这就要求点胶前的UV胶是均匀而无气泡的。那怎样才可以去掉UV胶的气泡呢? 答案是:使用胶水试管脱泡离心机。胶水试管脱泡离心机DD5使用脱泡离心机对UV胶的作用:使用脱泡离心机可有效去除UV胶等材料的气泡,其可以调节转速及脱泡时间,一般脱泡机,绝大多数胶水在2000转速3分钟内便可轻易完成脱泡工作。一般点胶前胶水都会灌装在工业用针筒里,目前市面上的工业针筒为分日式和美式两种,常规使用的容量有:3cc,5cc,10cc,30cc,50cc或55cc,赫西仪器脱泡离心机无论是日式或者美式针筒都适合使用,一次可以放多支进行脱泡。有专门针对不同容量的针筒而设计的管架。 胶水试管脱泡离心机原理:将装有胶水之针管放置在转头得孔内,电动机带动转头高速旋转,产生的相对离心力有效地将装有胶水针管内的空气(属称气泡)分离出管内,以避免针管内有气泡造成点胶时出现空点(漏点)或其他不良,相对离心力的大小取决于转速。胶水脱泡离心机的主要作用是将不同颗粒大小以及密度不同的物质,进行分离和提纯。让物质在巨大的离心力下,出现不同程度的沉降而分离出需要的物质成分。其实脱泡离心机还有个功用,就是将不同的物质均匀的混合在一起。 赫西胶水试管脱泡离心机产品性能概述:1.采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩交流无刷电机,运行稳定噪音低,提供舒适的实验室环境。2. 操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。3.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。4.TFT-LCD真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用;5. 采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。。6.后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。7. 10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。脱泡离心机产品用途:胶水脱泡离心机是针对10—30CC针筒脱泡所设计。经过高速离心作用,能够将针筒内的胶水充分脱泡,避免点胶时产生气泡。针筒包装的红胶/环氧树脂/ 紫外线UV固化胶以及生物学、化学、医学、药物学、工业生产等厂家和实验室。赫西脱泡离心机,工作稳定、容量大、噪音低、温升小、操作方便、安全等优点,可广泛应用于针筒包装的各类胶水。 脱泡离心机适用材料:高粘度胶材的脱泡。AB胶及UV胶的脱泡。银膏及锡膏的脱泡。环氧树脂及合成树脂的脱泡。药品及齿模基材的脱泡。各式胶材、膏类、油墨、漆泡。
  • KRÜ SS带你解读卡布奇诺泡沫的秘密
    KRüSS带你解读卡布奇诺泡沫的秘密 卡布奇诺咖啡是一种在褐色的 咖啡液上淋上以蒸汽起泡的牛奶,奶白色的牛奶泡沫漂浮在褐色的咖啡上形成不同的图案的泡沫咖啡。该咖啡要求所用的牛奶具有良好的起泡效果,奶泡细腻,稳定性好,奶香浓郁,口感柔和。 牛奶含有蛋白质,作为天然表面活性剂,它可以促进脂肪-水乳液的稳定性以及泡沫的形成。可将各种类型的牛奶用在饮料上产生泡沫,其中泡沫的含量及其稳定性取决于牛奶的性质。一、测试方法 我们使用KRüSS DFA100动态泡沫分析仪研究了5℃~60℃条件下四种不同类型牛奶(巴氏杀菌牛奶和UHT牛奶,分别含1.5%和3.5%脂肪)的起泡性和泡沫稳定性,两者都取决于牛奶的类型和温度。另外,根据气泡尺寸和分布分析了泡沫结构。图1. DFA-泡沫结构模块二、测试结果1. 起泡性分析图2. 泡沫最大高度随温度变化的曲线 在低温下,UHT牛奶比巴氏杀菌牛奶更容易起泡,而半脱脂牛奶比全脂牛奶起泡性好。在较高温度下,所有类型牛奶都易于起泡,样品之间的差异也逐渐消除。 从图中可以明显看出一种异常现象,即在25°C时,四种牛奶的发泡性最差,可认为在25℃时,半结晶的结构化脂肪球对泡沫形成具有负面影响。2. 泡沫稳定性分析 泡沫稳定性表现出了类似的温度依赖性,在低温下,UHT牛奶比巴氏杀菌牛奶稳定性好。虽然四种牛奶在40℃下形成的泡沫高度几乎相同(图2),但在该温度下的稳定性主要受脂肪含量的影响。随着温度继续升高,脂肪不再影响起泡性和泡沫稳定性。图3.用半衰期评价泡沫稳定性随时间的变化3. 泡沫结构图4.泡沫结构 奥斯特瓦尔德熟化是泡沫衰变中的加速机制,取决于大泡沫和小泡沫之间的压力差异。当小气泡的数量随时间减少时,大气泡逐渐变大。泡沫越均匀,气泡之间的压力差越小,奥斯特瓦尔德熟化过程越慢。 对于泡沫结构的评估,通常从两方面考虑:消费者通常喜欢小尺寸,均质的牛奶泡沫;其次,稳定性还取决于气泡尺寸和尺寸分布。 根据泡沫高度测量,UHT牛奶(3.5%脂肪)在40℃产生的泡沫最稳定,对泡沫结构的研究发现,最小的气泡与平均气泡尺寸的标准偏差越小,均匀性越好。UHT牛奶(1.5%脂肪)的泡沫在衰变测量中比较不稳定,发泡后产生的气泡较大,均匀性比较差。1800s之后的结构衰变中显示了两个样品之间的稳定性差异。三、总结 我们研究了温度对牛奶泡沫起泡性和泡沫稳定性的影响。25℃时,牛奶泡沫的稳定性和起泡性最差。从泡沫产生中可以得到如下的经验:1,理想情况下,牛奶应该直接从冰箱中冷冻或者加热状态下起泡,室温下的牛奶不适用于直接起泡;2,低脂产品比全脂牛奶更有利,UHT牛奶比巴氏杀菌牛奶更适合低温起泡;3,UHT全脂牛奶在温度稍高时,可以产生大量均匀稳定的泡沫。来源:1. KRüSS Application reports 274;2. S. Kamath, T. Huppertz, A.V. Houlihan, H. Deeth, The influence of temperature on the foaming of milk, International Dairy Journal 18 (2008) 994–1002.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制