当前位置: 仪器信息网 > 行业主题 > >

石墨电极

仪器信息网石墨电极专题为您提供2024年最新石墨电极价格报价、厂家品牌的相关信息, 包括石墨电极参数、型号等,不管是国产,还是进口品牌的石墨电极您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨电极相关的耗材配件、试剂标物,还有石墨电极相关的最新资讯、资料,以及石墨电极相关的解决方案。

石墨电极相关的资讯

  • 美国对华石墨电极作出反倾销裁决
    2009年2月5日,美国国际贸易委员会发布通知,对原产于中国的炉用小口径石墨电极作出肯定性反倾销产业损害裁决。美国国际贸易委员会的6位委员投票决定,原产于中国的炉用小口径石墨电极的倾销行为给美国国内产业造成了实质性损害或实质性损害威胁。根据美国国际贸易委员会的肯定性损害裁决,美国将按照商务部裁定的倾销幅度对原产于中国的涉案产品征收反倾销税。 2008年2月7日,美国商务部对原产于中国的炉用小口径石墨电极进行反倾销调查。涉案产品海关编码为85451100.00。 2009年1月14日,美国商务部对原产于中国的炉用小口径石墨电极作出反倾销终裁,裁定中国涉案产品的倾销幅度为132.90%~159.64%。
  • 四川赛恩思仪器与甘肃某石墨电极材料企业达成合作
    以国家供给侧改革和“一带一路”倡议为背景,以抢抓国家“兰州—西宁城市群”建设重大战略机遇为契机,以打造炭素强企为蓝图,又一家炭素行业的新星企业选择四川赛恩思仪器生产的HCS-801D型高频红外碳硫分析仪作为其检测设备。该新材料企业是我国大型钢铁企业中国宝武和辽宁方大集团共同出资筹建,其10万吨超高功率石墨电极项目总体设计代表了世界先进水平,完全符合我国智能制造、绿色制造、高质量发展的要求。感谢客户的选择,四川赛恩思仪器能够参与这一项目倍感荣幸。我公司根据客户的需求配置了碳硫全量程(0.00001%-99%)高频红外碳硫分析仪,满足其测试不同含量样品需求,特别是超高和超低碳硫含量测试数据深受用户好评。硫含量是评价石墨及其石墨制品品质的重要指标,硫含量高低直接影响石墨产品价格,甚至影响其产品性能。四川赛恩思仪器生产的HCS-801D型高频红外碳硫仪分析仪采用大功率高频炉提高了非金属样品的转化率,运用新算法在超低、超高含量的数据补偿计算上突破很大,关键测试器材均采用进口部件,为大型企业,多品种样品分析提供了数据保障。 我公司工程师对客户公司的检测人员进行了仪器操作和维护方面的培训,并在现场测试样品,数据结果获得客户的一致认可。样品名称编号标准含量测试结果C%S%C%S%冶金焦炭GBW11106C0.550.55580.550.54910.550.55930.550.5494硫精矿GSB04-2709-201147.647.577747.647.827847.647.652147.647.5532生铁YSBC28072-953.140.0873.13450.08613.140.0873.15590.08703.140.0873.15310.08713.140.0873.14650.0868普碳钢YSBC37110-080.0830.0310.08250.03150.0830.0310.08270.03160.0830.0310.08310.03080.0830.0310.08410.0311 四川赛恩思仪器已先后研发生产了高频红外碳硫仪、火花直读光谱仪、氧氮氢分析仪以满足客户的检测需求。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士、营销人才加入四川赛恩思仪器有限公司共谋发展!
  • 岛津原子力显微镜——模拟石墨负极的导电性分析
    锂离子电池是一种以嵌锂化合物为正负极材料的二次电池,在充放电过程中,锂离子在两个电极间往返脱嵌和嵌入。目前主流的锂离子电池负极材料是天然石墨与人造石墨。在锂离子电池研发与生产过程中,需要对石墨负极的导电性进行分析。 原子力显微镜可以在获得高分辨形貌图像的同时获得表面电流分布图,因此被广泛应用于分析石墨负极材料微观结构与导电性。对于原子力显微镜而言,传统的电流模式是基于接触模式进行的。当样品表面非常不规则,表面粘度高或者有较强的毛细力时,由于探针针尖此时受到与扫描方向相反的外力较大,探针无法保证垂直于样品表面,因此电流的测量会产生很大的误差。 岛津尝试用独特的ZXY扫描技术对电流分布进行测量,在每一个测试点,探针均处于垂直运动状态,因此它可避免那些影响其测试状态的外力的干扰。 因此,使用ZXY扫描技术对石墨负极进行表面电流分布测试,可以获得更真实更清晰的图像。制备模拟电池电极的石墨样品,该样品是将石墨和树脂用模具定型,然后加热烧结,最终用油浸制。这样制备的样品可以模拟真实的石墨负极。 用ZXY扫描技术同时获取石墨负极表面形貌图像和表面电流分布图像如下。左图为表面形貌图像,可清晰观察到石墨的鳞片状结构,右侧的表面电流分布图像可观察到同一区域的接触电流分布。在表面形貌图像中,可以观察到表面上分布着不规则的高约1.5 μm 的鳞片石墨。在以往的接触模式下,如果样品的表面起伏超过1μm,就很难测量电流,但使用ZXY扫描技术可以进行高分辨的观测。 而且在扫描技术下,除了可以同时获取表面形貌图像,还可以获得多种互不影响的表面属性分布。在对石墨电极进行测试时,可设定同时获得表面形貌图像,表面电流分布图像和表面力学属性分布。 扫描模拟石墨负极表面5 μm的区域,获得以下图像。4幅图像分别为表面形貌图(探针最初检测到力的形貌面)、表面形貌图(探针到达设定斥力的形貌面)、表面电流分布图像、表面吸附力分布图像。 在前2幅图中,虽然都是表面形貌图,但有明显不同。这是因为第1张图为探针接近样品表面刚刚获得力反馈信号时的位置,第2张图为探针达到设定的斥力时的位置。在两幅图相同位置的剖面线叠加分析。 从上图中可见,底部的黑色区域为样品的固体,白色虚线为表面形貌图(探针到达设定斥力的形貌面)的剖面线,也是石墨的真实表面。而蓝色虚线为表面形貌图(探针最初检测到力的形貌面)的剖面线。白色虚线和蓝色虚线中间区域内,探针检测到的力为吸引力,可判断产生的原因是样品表面的油。因此第1张图和第2张图的差别区域就是油吸附的区域。 更有趣的是,在电流分布图的剖面线中,发现电流也会因油层的存在随高度发生变化。如下图所示。电流的变化有些地方和油层的分布非常吻合,有些地方则不相同。 比较同一个点的力-距离曲线和电流-高度曲线,如下图。可见吸引力位置(油层区域)和电流高度变化区域间的相关性。 由以上数据可推断,电流的变化和油层的分布不吻合的区域,是因为表面覆盖有电阻很大的树脂,而电流的变化和油层的分布吻合的区域,则是因为油层的电阻小于树脂,提高了导电性。 综合本次测试的数据,可以发现,ZXY扫描技术不仅有效提高了对电流的检测分辨率,而且可对样品表面的各种属性进行统一分析,更有助于真实判断样品的性能及影响因素。 本文内容非商业广告,仅供专业人士参考。
  • 江苏省颗粒学会批准立项《氧化石墨烯粉体失重率测定 热重分析法》等11项团体标准
    各会员单位及相关企业、各有关单位:为认真贯彻落实《中华人民共和国标准化法》、《团体标准管理规定》等有关文件的精神,根据《江苏省颗粒学会标准制定程序》的相关规定,江苏省颗粒学会于2024年5月23日至6月7日组织专家分别对江苏省特种设备安全监督检验研究院、生态环境部南京环境科学研究所等单位牵头申报的团体标准进行了立项评审。经专家评审会评定,《氧化石墨烯粉体失重率测定 热重分析法》等11项团体标准(见附件)满足立项条件,现批准立项。请各申报单位严格按照江苏省颗粒学会团体标准工作要求,抓紧组织建标工作的实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。按时完成标准制定任务。为使立项标准的制定更加科学合理,欢迎有参与该团体标准编制工作意向的个人或单位与学会标准化工作委员会联系。联系人:王欢联系电话:025-85509178,13770321259邮箱:jskl_org@163.com附件:江苏省颗粒学会2024年度立项团体标准序号标准名称申请(牵头)单位计划完成时间1氧化石墨烯粉体失重率测定 热重分析法江苏省特种设备安全监督检验研究院2025年3月2石墨烯粉体中金属元素含量的测定 电感耦合等离子体原子发射光谱法江苏省特种设备安全监督检验研究院2025年3月3钢铁腐蚀产物 水溶性阴离子的测定 离子色谱法江苏省特种设备安全监督检验研究院2025年3月4冷喷烯锌涂料中石墨烯材料的定性检测无锡华东锌盾科技有限公司2024年10月5起重机械钢结构冷喷锌防护涂装技术指南无锡华东锌盾科技有限公司2024年10月6再生N-甲基哌啶生态环境部南京环境科学研究所2024年8月7再生二乙二醇甲醚生态环境部南京环境科学研究所2024年8月8大气颗粒物中铅含量测定 双硫腙比色法南京理工大学2025年3月9移动式γ射线探伤放射源远程监测监控技术规范南京理工大学2025年3月10水质 碘化物的测定 高效液相色谱法淮阴工学院2024年12月11再生石墨电极江苏嘉明碳素新材料有限公司2025年3月
  • 日本团队研发新型石墨烯电极——能在酸性条件下产生氢气
    p style=" text-indent: 2em " 日本筑波大学的研究人员研制出一种石墨烯电极,能在酸性条件下产生氢气。在绿色经济中,电解水产生氢气对于储能至关重要。然而,主要的障碍之一是贵金属电极的成本太高。廉价的金属电极在驱动析氢反应(HER)中起着很好的作用,但主要是在碱性条件下,反应是弱电性的。更有效的酸相反应需要贵金属例如铂。但问题是,酸性电解液具有腐蚀性,会侵蚀核心金属。 /p p style=" text-indent: 2em " 研究人员发现多孔石墨烯可以解决这个问题。他们使用氮掺杂石墨烯片来封装镍-钼(NiMo)电极合金,石墨烯含有大量纳米级的孔。研究人员表明,在酸性条件下的HER中多孔石墨烯明显优于无孔石墨烯。石墨烯在HER电极中的使用并不新鲜,这种柔性导电碳片是包裹核心金属的理想材料,不过石墨烯虽然能保护金属免受腐蚀,同时也抑制了它的化学活性。在筑波大学的研究中石墨烯的孔以两种方式促进反应,与此同时完整的石墨烯可以保护金属。 /p p style=" text-indent: 2em " “我们通过用纳米二氧化硅修饰NiMo表面的方法创造了孔,”研究者之一的筑波大学胡凯龙博士解释说。“当我们沉积石墨烯层时,在纳米颗粒的位置留下了空白,就像浮雕艺术品。事实上,这些孔不仅仅是缝隙,而是“条纹”(fringes)。从技术上讲,这些条纹是结构缺陷,但它们可以促进电极的化学反应。 /p p style=" text-indent: 2em " 研究小组解释说,与普通的石墨烯相比,条纹更亲水。可以吸引在酸溶液中的水合氢(H3O+),H3O+在两种HER机制之一中起着至关重要的作用。这些条纹在吸附单个氢原子方面也很好,也为其他重要的HER过程提供了表面积。结果表明与这种电极与常规电极产生H2的效果一样。同时石墨烯的非多孔部分延缓了金属催化剂在酸中的溶解。“这是氢析出电极的一个多用途的新概念,”筑波大学的副教授Yoshikazu Ito说,他是这项研究的主要作者。“我们的目标是最小化反应所需的过电位,因此不限于一种特定的催化剂。我们通过优化孔的大小和数量来调整我们的多孔石墨烯层,特别是对NiMo。令人惊讶的是,尽管有很多孔,催化剂在酸性条件下仍然能保持稳定。在未来,很多金属都可以定制多孔石墨烯,推动氢生产的全面应用。 /p
  • 研究称石墨烯电极有助修复截肢、瘫痪患者的感知功能
    p   英国剑桥大学29日发布的一项研究成果显示,研究人员成功将石墨烯电极植入小鼠脑部,并直接与神经元连接,这项技术未来可用于修复截肢、瘫痪甚至帕金森氏症患者的感知功能,协助他们更好地康复。石墨烯是从石墨材料中剥离出来、由碳原子组成的二维晶体,厚度与一层原子差不多。这种材料无论是弹性、强韧度以及 拉伸性能方面都远远优于钢材等材料,被誉为“新材料之王”。 /p p   剑桥大学研究人员与意大利和西班牙的同行利用小鼠脑部细胞培养物进行相关实验后发现,利用石墨烯材料制造的电极能安全地与脑部神经元连接,且连接后这些神经元可正常传递电波信号,不会产生不良反应。 /p p   这些与神经元直接连接的电极能把脑电波信号传递给外界,让外界更清晰地了解脑部活动并修复感知功能。例如,机械臂如果能接收脑电波信号,就会按照截肢患者的想法去抓取物体 通过对这些脑电波信号的干预也会有助于帕金森氏症患者更好控制病情。但此前使用其他材料制作的电极效果并不理想,信号传递很不稳定。 /p p   据介绍,石墨烯的导电性能非常优异,测试中这一材料制作的电极实现了稳定的脑电波信号传递,神经元的一些特性也没有因为与电极连接发生改变。 /p p   研究人员说,接下来他们会探讨利用从多层到单层的不同形态石墨烯材料来制作电极,并观察它们与神经元连接的效果,最终希望能开发出具备高灵敏度以及低副作用的可植入脑部电极。 /p
  • 科学家辐照缺陷影响热离子发电器件石墨烯电极功函数研究获进展
    近期,中科院合肥研究院核能安全所在辐照缺陷影响热离子发电器件石墨烯电极功函数研究方面取得新进展,研究成果发表在国际材料薄膜领域期刊 Applied Surface Science 上。   石墨烯作为微型堆热离子发电器件电极涂层材料具有巨大的应用潜力,能够显著提升电极表面的电子发射能力。热离子发电器件在服役过程中,电极材料将面临高能粒子的辐照作用,早期的理论计算和实验研究表明,在石墨烯内部辐照诱导的缺陷类型主要是Stone-Wales缺陷、掺杂缺陷和碳空位等。缺陷的产生将会影响电极间隙内碱金属和碱土金属在石墨烯表面的吸附性质,进而改变石墨烯涂层的电子发射性能(功函数)。   针对上述问题,科研人员通过第一性原理计算方法在原子尺度上研究了缺陷石墨烯表面碱金属和碱土金属的吸附和迁移行为。研究结果表明:(1)石墨烯表面缺陷位点作为陷阱对金属原子具有捕获作用,Stone-Wales缺陷和碳空位缺陷附近的金属原子扩散受到了严重的阻碍,在掺杂B或O的石墨烯表面,金属原子迁移势垒也有不同程度的升高;(2)Stone-Wales缺陷、碳空位缺陷及掺杂石墨烯的表面功函数均显著增加,电子发射能力明显降低,这主要归因于电偶极子形成概率的降低以及金属内聚能的增加。本研究工作为石墨烯涂层材料在反应堆热离子发电器件中的应用提供了理论指导。   上述研究工作理论计算部分在合肥先进计算中心完成。图1 热离子能量转换示意图图2 碱金属和碱土金属在原始和含氧缺陷石墨烯表面的迁移行为
  • 3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末
    3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末越来越多的金属零件是通过3D打印来生产的。这个新技术为具有复杂结构零件的生产提供了可能性,特别是一些无法使用常规方法生产的零件。此外,模型可以通过技术图纸实现,而无需使用定制的工具。三维打印零件的质量很大程度上受到原材料的质量影响。为了降低生产成本,金属粉末需要经常被回收。经过多次使用,氧、氮和氢的含量和相关的力学性能可能改变。因此,分析金属粉末中氧、氮和氢的含量,可以确保3D打印产品的质量。各种应用于3D打印行业的金属粉末都可以使用inductar® ONH cube进行分析。仪器:inductar® ONH cube 氧氮氢分析仪技术细节:载气:氦气样品质量:100-1000mg金属粉末原料的钛和不锈钢粉末以及再生的钛和不锈钢粉末的测试结果参照下表。再生粉末与原料的氧、氮和氢含量相比,变化很大,尤指是氧的含量,由于颗粒的粒度极小同时具有非常大的比表面积,颗粒很容易被氧化。甚至ppm级别的含量变化都可以改变3D打印粉末的性能。因此,分析需要使用精度高,检测限低的检测方法。采用inductar ONH cube进行元素分析是十分好的分析选择。inductar ONH cube 氧氮氢分析仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,氧氮氢分析。特点:无需配备石墨电极清扫刷进行清扫,提高做样效率可编程气体分流,通过睡眠模式进入省气模式无需配备动力气以及外置水冷机,可单坩埚完成测试,节省成本专利的球夹连接,实现免工具维护
  • 石墨炔与石墨烯,谁是超级材料?
    据报道,美国科罗拉多大学研究人员日前成功合成出石墨炔,此项成果或为电子、光学和半导体材料研究开辟全新的途径。事实上,石墨炔的合成研究一直是科学家们孜孜以求的目标,早在2010年,我国的李玉良院士团队就在世界上首次合成石墨炔。我们很多人都听说过大名鼎鼎的石墨烯,也知道2010年的诺贝尔物理学奖就是颁发给了石墨烯材料的研发者。石墨炔与石墨烯,仅一字之差,它们之间是否存在某种联系?石墨炔能否和石墨烯媲美?这里我们就来深入了解一下。21世纪是石墨烯的世纪  让我们先从更早出世的石墨烯说起。  听上去,石墨烯和石墨似乎有着某种联系,事实也确实如此。石墨烯和石墨、金刚石、碳60、碳纳米管等都是碳元素的单质。它们都是碳家族的一员,互为同素异形体,含有碳元素但具有不同的排列方式,从而表现出不同的物理性质。  比如金刚石(钻石的原身),它呈正四面体空间网状立体结构,碳原子之间形成共价键;当切割或熔化时,需要克服碳原子之间的共价键,由于金刚石中所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。  石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以3个共价键与其它碳原子结合,而层与层之间的距离则比较大,层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。铅笔之所以在纸上轻轻一划就会留下痕迹,正是这种松散堆砌的结果。  石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,可以说石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至几十层的石墨烯。  换句话说,把石墨一层一层地剥下来就是石墨烯了。从力学性质上说,石墨烯同石墨一样,其各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。  科学家已经证实了石墨烯是目前世界上已知的强度最高的材料,比钻石还坚硬,是世界上最硬的钢铁强度的100多倍。瑞典皇家科学院在颁发2010年诺贝尔物理学奖时曾这样比喻:“利用单层石墨烯制作的吊床可以承载一只4千克的兔子”。有人这样引申说,由于石墨烯厚度只有单层原子,透光率高达97.7%,因此如果真有那样的吊床,它不仅对于肉眼,甚至对于很多仪器来说都是不可见的,我们看到的将是一只悬停在半空中的兔子。还有估算显示,如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车。  从热电性质上来说,在石墨烯的“二维世界”里,电子运动具有很奇特的性质,即电子的质量仿佛是不存在的,其传导速度可达光速的1/300,远远超过了电子在一般导体中的运动速度。加上石墨烯结构在常温下的高度完美性,使得电子的传输及对外场的反应都超级迅速,这使得石墨烯具有超常的导电性和导热性。  而且更重要的是,石墨烯还可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的线度上依然能稳定地工作。若是用石墨烯来替代硅生产超级计算机,计算机的运行速度将会比现在快数百倍。因此很多人相信,石墨烯将会成为硅的接班人,引领技术领域一个新的微缩时代的来临。  除了具有超高的强度和韧性外,石墨烯几乎是完全透明的,即使是最小的单分子原子(氦原子)也无法穿过,只吸收2.3%左右的光,还有不透水、不透气以及抵御强酸、强碱的能力,这使它有可能成为制作保护膜的理想材料。石墨烯既能导电又高度透明的特点,使得它非常适合作为透明电子产品的原料,例如触摸显示屏、太阳能电池板的原料等。  研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备——微型石墨烯超级电容器。这种装置的充电或放电速度比常规电池快100倍到1000倍,能在一分钟内给手机甚至汽车充满电。  正因如此,所以有人说,如果20世纪是硅的世纪,那么21世纪就是石墨烯的世纪。  2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,在实验中成功地从石墨中分离出石墨烯。2010年,两人因此共同获得了诺贝尔物理学奖。“下一代奇迹材料”石墨炔  石墨烯已经如此神奇了,那么石墨炔呢?它有什么不一样的神奇之处吗?  石墨炔和石墨烯一样,也是只由碳原子构成,也是只有一层原子厚度的二维晶体。不同的地方在于,石墨烯的平面原子结构是六边形,也被称为蜂巢晶格结构;而石墨炔的平面原子结构则能具有数种不同的二维结构,其理论上能以无数种形态存在,目前已经至少有6种石墨炔异构体被报道。  正是因为拥有异构体结构,石墨炔具有某些独特的电子传导、力学和光学特性。此外,石墨炔还天生具有电荷载子,不像石墨烯需要额外掺杂,因此能作为制作电子元件所需的半导体材料。  早在1968年,理论化学家鲍曼就通过理论计算证实了石墨炔结构的存在。但要想在实际中合成制备出石墨炔,还面临着很多巨大的困难。我们可以这样理解,石墨烯的平面碳原子结构和石墨的单层平面碳原子结构毕竟是相同的,因此合成制备石墨烯还可以以石墨为抓手,而合成石墨炔的难度显然是更大了。  科学家们一直在为此不懈努力。在2010年,中科院化学所李玉良院士团队在石墨炔研究方面取得了重要突破,在世界上首次合成了石墨炔,开辟了碳材料的新领域。李玉良和他的团队从20世纪90年代中期开始探索平面碳的合成化学研究。在石墨炔的合成中,他们从源头的分子设计开始进行研究,渐渐地试着合成一些分子的片段。直到有一天在阅读文献的过程中,李玉良研究员突然联想到了一种化学的方法有可能使石墨炔大面积成膜。他们在铜片表面上通过化学方法原位合成石墨炔并首次成功地获得了大面积(3.61平方厘米)碳的新的同素异形体——石墨炔薄膜。  今年5月9日发表在《自然合成》上的研究论文,则在石墨炔合成制备上提供了一个新的途径。此文通讯作者、科罗拉多大学波尔德分校化学教授张伟和他的团队,通过使用被称为炔烃换位反应的有机反应过程中,在热力学和动力学的控制下重新分割或切割和重组烷基化学键,也成功地制作出石墨炔。  石墨炔被誉为是最稳定的一种人工合成的二炔碳的同素异形体。由于其特殊的电子结构及类似硅的优异半导体性能,石墨炔有望广泛应用于电子、半导体领域。  锂在石墨中的扩散方式是面内扩散,也就是层间扩散。与石墨不同的是,石墨炔同时有二维平面结构和三维孔道结构,锂在其中有面内和面外两种扩散方式,这使得石墨炔在锂离子电池方面具有很好的应用潜力。石墨炔是一种理想的储锂材料,可以作为锂离子电池的高能量密度存储的负极材料。科学家也预测它在新能源领域将产生非比寻常的影响。  石墨炔这种材料或许还有一些令人意想不到的神奇功能。据2020年发表在《科技日报》上的一则报道,山东理工大学低维光电材料与器件团队发现,石墨炔具有优异的紫外非线性特性,可以“恰到好处”地吸收紫外线。相关成果发表在国际知名期刊《纳米尺度》上。所谓紫外非线性材料,就是能够在紫外线强度比较低的情况下允许其通过,但若紫外线强度高于某一阈值,那么该材料就会神奇地将超额的紫外线阻挡住,形成对生物细胞的保护,从而使其成为理想的紫外防护材料。  英国《纳米技术》杂志曾这样评价:“石墨炔是未来最具潜力和商业价值的材料之一,它将在诸多领域得到广泛的应用。”  在合成石墨炔领域,我国科学家有着开创性的成果。而要获得大规模工业制备石墨炔的方法,还需要全球科学家们付出更多艰苦的努力,前景令人期待。
  • 石墨烯“织就”锂离子“梦幻华服”
    p style=" text-indent: 2em " 如果说那薄如蝉翼、六角网格纹路质地的材料是巧夺天工的织锦,那么这位八零后的女科学家就是一位新锐的时尚设计师,她以新潮的艺术思维、灵巧的双手把“织锦”幻化成“梦幻华服”。她就是中国科学院金属研究所博士、北京圣盟科技有限公司首席科学家赵金平。而她和团队制作“梦幻华服”的“织锦”就是被称作“新材料之王”的石墨烯。 /p p style=" text-indent: 2em " 7月16日上午,在北京科技会堂,赵金平向汇聚于此的业内专家展示、讲解自己和团队取得的一项重大突破:石墨烯包裹改性锂离子电池正、负极材料技术。该技术形象地说就是给锂离子电极材料“量体裁衣”,从而大幅提升电池性能。 /p p style=" text-indent: 2em " ①独创两套包覆法 /p p style=" text-indent: 2em " 规模化试产成功 /p p style=" text-indent: 2em " 通过现场展示的放大5万倍的扫描电镜图,赵博士娓娓讲述着石墨烯“梦幻华服”特有的科技之美:“如此图所示,石墨烯非常均匀地包覆在三元材料锂离子表面,不仅不会破坏被包覆的三元材料,而且形成了更加稳定的结构。” /p p style=" text-indent: 2em " 传统电极材料在充放电循环过程中,体积极容易增大膨出,严重时会导致粉化,极大影响电池性能。石墨烯具有超高导电性、柔性,将其包覆在电极材料表面,如同为其“穿上”了量身定制的“魔法衣”,既能增强电子转移速率,提高导电性,又能约束其体积变化,大幅提高放电容量、充放电次数等性能。 /p p style=" text-indent: 2em " 近年来,国际上研究石墨烯包覆技术的学者很多,不过大多停留在学术探讨层面,极少实现技术,更不要说实现产业化。赵金平团队正是迎着技术难题而上,通过数年持之以恒努力,在全球率先实现了石墨烯包覆电极材料尤其是三元正极材料和碳硅负极材料等的技术突破,申请数项国家专利。特别难能可贵的是,该技术投入规模化试产成功,为商业化量产奠定了基础。 /p p style=" text-indent: 2em " 对石墨烯包覆技术的秘诀,赵金平透露说,就如同给电极材料制作衣服,要“合身”“美观”,就必须量体裁衣、个性化定制,也就是说,要针对不同电极材料的结构和表面特性,制作适宜的石墨烯材料,采用相应的包覆方法。具体来说,她带领团队针对正极材料和负极材料,分别开发了“两相界面包覆法”和“液氮冷萃法”。 /p p style=" text-indent: 2em " ②性能指标大幅提升 /p p style=" text-indent: 2em " 推动提前实现能量密度2020 /p p style=" text-indent: 2em " “就放电容量而言,经过500次循环后,石墨烯包覆的三元材料和加入了添加剂的石墨烯包覆的三元材料的容量保持率分别为87.3%和98.08%,其循环稳定性比传统三元材料分别提升了40%和50.56%。经过1000次循环后,加入了添加剂的石墨烯包覆的三元材料容量保持率还能达83.87%。”赵金平对石墨烯包覆后的三原材料性能指标如数家珍。 /p p style=" text-indent: 2em " 负极材料经过石墨烯包裹后不仅循环稳定性有所提升,其容量也大幅度提高。赵金平以氧化铁材料为例介绍说,通过“液氮冷萃法”,加入添加剂后,石墨烯均匀地包裹在氧化铁表面,其容量提高67.1%,稳定性提高18.2%。最值得期待的是石墨烯包裹硅负极材料的性能表现,目前,她和团队正在做相关实验和测试,相信相关数据一定会让人特别振奋。 /p p style=" text-indent: 2em " 在认真评审后,由国家新材料产业发展专家咨询委员会委员、清华大学材料科学与工程系教授翁端,国家“千人计划”专家、中科院大连化学物理研究所研究员吴忠帅,中国国际石墨烯资源产业联盟常务副理事长阮汝祥等10人组成的专家委员会认为,“石墨烯包覆锂离子电池正、负极材料技术达到国际先进水平,同意通过科技成果评价。”该技术应用到车用动力电池上,就可望实现单体能量密度达到300瓦时/千克,而这正是《智能汽车关键技术产业化实施方案》提出的2020年车用动力电池能量密度指标。 /p p style=" text-indent: 2em " 赵金平特别指出,石墨烯包裹技术和石墨烯基电池材料优异的性能已经通过国家动力电池创新中心和风帆有限责任公司的检测,后者还出具了相关样品的检测报告。在技术专利方面,目前,赵金平团队基于石墨烯的包裹技术已申请2项国家专利,还有数项专利正在申报中。 /p p style=" text-indent: 2em " ③突破源于3个方面 /p p style=" text-indent: 2em " 领先气质诠释创新中国 /p p style=" text-indent: 2em " 石墨烯作为电子迁移率超高、热传导效应性能超好的神奇二维碳纳米材料,自2004年被发现以来,特别是其发现者因此获得2010 年度诺贝尔物理学奖以来,成为耀眼的“明星”材料,将其用于提升锂离子电池性能的研究更是不断掀起热潮。然而,教育部查新工作站发布的相关科技查新报告显示,除了赵金平团队研发成果申请的专利外,在国内外已公开发表的文献和专利中,尚未见有利用针对锂离子电池正极材料的“两相界面包覆”工艺和针对负级材料的“液氮冷萃”工艺,制备比容量大、循环稳定性好的石墨烯改性锂离子电池电极材料的报道。 /p p style=" text-indent: 2em " 赵金平团队为何能取得原创性技术突破呢?在业内专家看来,大体上在于3个方面。一是优质石墨烯供应充足。赵金平团队的研究占据了一个先天优势:所在公司北京圣盟科技是全球石墨烯制备的领先企业,可以为技术开发提供高品质石墨烯支持,而这正是取得突破至关重要的基础条件。否则,以品质不高的石墨烯或者石墨粉投入科研,取得突破是难以想象的。二是长期的技术积累和不怕困难的拼搏精神。赵金平和团队在石墨烯科研领域耕耘了近10年,相关包覆技术创新是长期摸索的必然。迎难而上、苦心钻研的拼搏是成功的必备条件。在实验中,由于三元材料颗粒较大,石墨烯包裹困难,她带领团队硬是攻关了近一年半,锲而不舍,不断尝试,终获成功。三是中国石墨烯科研实力居前,引领世界。据《经济日报》今年年初报道,中国是石墨烯研究和应用开发最为活跃的国家之一,在全球石墨烯专利中,近六成来自中国。正是国内良好的石墨烯科技创新环境和氛围,培养造就了赵金平团队勇于创新的精神和能力。  /p
  • 石墨烯前沿最新综述精选(内附石墨烯网络研讨会参会福利)
    石墨烯具备超强导热性与导电性、以及轻质高强、柔性、透明等无比伦比的特性,被誉为“新材料之王”,应用前景十分广阔。自2004 年问世以来,关于石墨烯的研究热度持续不减,新兴研究领域不断被开拓。本文对近期石墨烯领域的部分综述进行盘点汇总,以此总结该领域最新前沿科研成果,以飨读者。(鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。)宁波材料所在石墨烯复合硅碳负极材料及其高能量密度锂离子电池方面取得进展动力电池、消费类电池等终端产品对高能量密度锂离子电池需求越来越强。目前,产业界主要采取硅碳复合路线来提升硅基负极应用水平,但高比容量的硅碳负极材料嵌/脱锂过程体积膨胀巨大,循环过程中活性材料会发生结构失效导致电接触变差,表面固体电解质膜反复破裂/再生导致电解液快速消耗,锂离子电池可逆容量迅速衰减。针对硅碳负极材料的体积膨胀问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队从源头出发,创新性地构筑了高机械稳定的自机械抑制石墨烯复合硅碳负极材料。刘兆平团队将氧化亚硅和石墨烯浆料在液相体系混合均匀,其中沥青作为添加剂,通过喷雾干燥、高温热处理和化学气相沉积等一系列工艺,制备类球形的石墨烯/沥青裂解碳封装硅氧化物复合负极材料(SiOx/Graphene/C,简称SGC),SGC复合负极材料可维持石墨烯宏观结构的完整性和机械稳定性。自机械抑制石墨烯复合硅碳负极材料制备研究表明,SGC复合负极材料可抑制SiOx摄锂量,降低体积膨胀,提升循环稳定性。该高性能石墨烯复合硅碳负极材料已成功实现产业化,研制出能量密度达350-400Wh/kg的系列新型高能量密度锂离子电池。俄罗斯借石墨烯涂层开发出新材料:用“微电厂”取代电池技术俄罗斯国立研究型技术大学与俄罗斯科学院微电子技术问题研究所科研人员,通过沉积石墨烯涂层技术开发出一种独特的硅纳米复合材料,这一研发成果将加速直接放置在电子产品印刷电路板上的“微电厂”技术的发展。俄罗斯国立研究型技术大学半导体与电介质材料科学系副教授叶卡捷琳娜戈斯捷娃解释说:“我们提出了独一无二的方法,在硅结构整个深度的孔道内壁上沉积多层石墨烯涂层。目前没有其他方法可以生产用于高效微燃料电池的电极。这种电源不仅可以为设备提供长期备用电源,而且可能会随着时间的推移取代电池。”郑大《ACS Nano》:MXene/石墨烯气凝胶实现超强电磁波吸收!郑州大学申长雨院士和刘春太教授课题组通过定向冷冻法和肼蒸汽还原法制备得到一种新型的含有磁性Ni纳米链锚定的三维MXene/石墨烯复合气凝胶(命名为NiMR-H)。特殊的取向结构和介电/磁性组分的异质界面有利于获得优异的吸波性能,具有良好的阻抗匹配、多重极化和电/磁耦合效应。NiMR-H气凝胶制备示意图及结构形貌表征图中国科大实现二维石墨烯室温铁磁性中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂策略,实现二维石墨烯的室温铁磁性。该研究组利用两步浸渍—热解的方法,在氮原子辅助下,将钴原子掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu/g,居里温度达到400K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法,研究人员证实样品中的钴是以平面四边形四氮化钴结构单元原子级分散于石墨烯晶格中的,排除了磁性起源于钴相关第二相的可能,四氮化钴结构单元是室温铁磁性的主要来源。精确可控的钴原子掺杂激活石墨烯室温铁磁性曹原一周连发两篇《Nature》:魔角石墨烯再次突破021年4月1日,来自美国麻省理工学院的曹原(通讯兼第一作者)&Pablo Jarillo-Herrero等研究者,通过进行热力学和输运测量,研究了魔角扭曲双层石墨烯(MATBG)的对称性破缺多体基态和非平凡拓扑现象。同时,也使魔角石墨烯的理论和实验都更趋近于一个统一的框架,为我们开发新型的量子材料,带来了更多可能。4月7日,曹原再发《Nature》,本文是关于魔角石墨烯中的Pomeranchuk效应的熵证据。当前相关态的杂化特性和能量尺度的大分离对于双层扭曲石墨烯中相关态的热力学和输运性质具有重要意义。山西大学:利用OAT法实现超高垂直石墨烯薄膜生长山西大学激光光谱研究所陈旭远教授团队在三维竖直石墨烯制备及储能应用领域取得突破性进展,研究成果近日发表在《ACS Appl. Mater. Interfaces》上。该团队开发了一种氧辅助“修正”(OAT)工艺以消除过密的石墨烯片层,阻止片层随时间增长而聚集,克服了生长过程中竖直石墨烯厚度饱和的现象。未聚合的竖直石墨烯陈旭远团队利用这种方法合成了高达80微米的超高竖直石墨烯,并应用于超级电容器中,获得了241.35mF cm–2的面积比电容,展现出了优越的电化学性能及储能能力。值得注意的是,80微米的高度并非该合成技术所能达到的最大值,通过氧辅助“修正”工艺可以获得任意高度的竖直石墨烯。这项工作对于高负载竖直石墨烯的合成具有重要的指导意义。与IC兼容的制造工艺和出色的储能能力使得OAT竖直石墨烯在集成芯片、器件领域中具有非常大的应用潜力。 《ACS Macro Letter》3D打印明胶氧化石墨烯墨水实现自发成肌分化釜山国立大学Dong-Wook Han与韩国亚洲大学Ki Dong Park教授团队在高分子领域顶刊《ACS Macro Letters》上发表了其最新研究成果,由富含酚的明胶(GHPA)和氧化石墨烯(GO)组成的3D可打印生物墨水,是诱导肌发生的材料的组成部分,可通过双重酶介导的交联反应原位形成水凝胶网络。原位可固化的GO/GHPA水凝胶可以成功地用作3D可打印的生物墨水,以提供合适的细胞微环境,并促进C2C12骨骼肌成肌细胞的成肌分化。总体而言,研究团队建议功能性生物墨水可能在肌肉组织工程和再生医学中有用。GO/GHPA水凝胶基质的3D生物打印和理化特性“石墨烯检测技术及应用进展”主题网络研讨会随着业界对石墨烯的高度关注,我国石墨烯研发和产业化得到了快速发展,但其产业化仍然面临诸多挑战和问题。石墨烯的“杀手锏”级应用仍在探索中,石墨烯标准、检测体系不完善,产品鱼龙混杂,市场亟需标准化。基于此,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中……报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试
  • 石墨国检中心落户郴州
    近日,我国唯一专业从事天然石墨、人造石墨、碳素和电极糊等产品质量检验检测的国家级技术机构———国家石墨产品质量监督检验中心(以下简称石墨国检中心)顺利通过验收,正式落户郴州,由国家认证认可监督管理委员会正式授权对外开展监督检验、技术咨询等相关业务。   石墨国检中心于2006年12月由郴州市质监局部署筹建。目前,该中心已拥有一支由博士生导师和高级工程师为带头人的专业技术检测队伍,拥有原子吸收、ICP直读光谱、原子荧光、万能材料试验机等先进检测仪器设备56台(套),检测能力覆盖石墨、碳素等4大类的20种产品170项参数,其中可按照国外先进标准进行检测的参数达80多项。2009年11月上旬,该中心顺利通过了国家计量认证和资质认定、实验室认可“三合一”现场审评。   正式授权后,该中心将进一步发挥国家级检验检测中心的权威作用,为打造湖南石墨产业带提供技术支撑,为推进郴州向世界级石墨基地迈进做出积极贡献。
  • 石墨烯:新材料王者之路有多长?
    p   去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。 /p p   中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。 /p p   牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。” /p p    strong 超级材料 /strong /p p   石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。 /p p   2004年,英国曼彻斯特大学的两位科学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。 /p p   他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。 /p p   据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。 /p p   常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。 /p p   石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。 /p p   另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 /p p   石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。 /p p style=" text-align: center " img title=" untitled1.png" src=" http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg" / /p p style=" text-align: center " 诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带 /p p    strong 性能改良 /strong /p p   这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。 /p p   由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。 /p p   牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。” /p p   当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。 /p p   “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。 /p p   牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。 /p p style=" text-align: center " img style=" width: 499px height: 420px " title=" untitled2.png" src=" http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg" width=" 499" height=" 509" / /p p style=" text-align: center " 显微镜下的石墨烯“单晶” /p p    strong 目标驱动 /strong /p p   他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。 /p p   “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。 /p p   因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。 /p p   围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。 /p p   目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。 /p p   牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。” /p
  • 7英寸石墨烯触摸屏重庆问世
    一种可以随意卷曲也不会影响使用效果的触摸屏在重庆研制成功。1月22日,中科院重庆绿色智能技术研究院在重庆宣布:他们已经实现了15英寸单层石墨烯的制备,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出7英寸石墨烯触摸屏。   该研究院微纳制造与系统集成研究中心副主任史浩飞表示,目前该技术在国内居于领先地位。   据了解,触摸屏是目前最简单、自然的一种人机交互方式,赋予了多媒体崭新的面貌。透明电极作为触摸屏的核心组成部分,成为当前的重要研究领域之一。目前,市场上的主导产品采用的材料为氧化铟锡,不仅价格高,而且易碎。新兴的石墨烯触摸屏,具有原材料获取方便、制造成本低、制备工艺简单、低碳环保等优势,优异的柔韧性更使其具有强大的市场竞争力。   史浩飞透露说,广州、深圳等地的风投机构已对石墨烯产生了浓厚的兴趣,正在与中科院重庆研究院洽谈合作。研究人员也正积极进行产业化的设备改造,预计年内达到批量生产的能力。2015年后,市场上有望见到能够卷曲的触摸屏产品。
  • 新政出台 石墨烯行业迎利好
    p   近日,工信部、发改委、科技部联合印发了《关于加快石墨烯产业创新发展的若干意见》。该意见指出,要抓住机遇培育壮大石墨烯产业,把石墨烯产业打造成先导产业。同时提出了“四个推进”,即推进产业发展关键技术创新 推进首批次产业化应用示范 推进产业绿色、循环、低碳发展 推进拓展应用领域。 /p p   石墨烯是在光、电、热、力等方面具有优异性能,极具应用潜力、可广泛服务于经济社会发展的新材料,已经在能源装备、交通运输、航空航天、海工装备等产品上呈现良好的应用前景。 /p p   我国拥有巨大的石墨资源储备,发展石墨烯得天独厚的优势。据统计,全球天然石墨储量约为7100万吨,其中中国储量约为5500万吨,占全球储量的77%,居世界首位。近几年,我国在石墨烯的研发上投入很多,也先后取得了不小的成绩,使得我国也位列石墨烯技术强国。 /p p   有业内人士表示,批量化生产和大尺寸生产是阻碍石墨烯大规模商用的最主要因素。而我国最新的研究成果已成功突破这两大难题,制造成本已从5000元/克降至3元/克,解决了这种材料的量产难题。利用化学气相沉积法成功制造出了国内首片15英寸的单层石墨烯,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出了7英寸石墨烯触摸屏。 /p p   不过看似一切美好的石墨烯产业仍旧有许多问题亟待解决。石家庄科学产业技术研究院研究员胡伟告诉《中国产经新闻》记者,“虽然我国在石墨烯技术上取得了一定的成绩,但关键核心制造技术与发达国家相比仍旧有所差距。此外,我们在石墨烯的应用上也还需要扩大范围。” /p p   最近炒得火热的华为手机电池将使用石墨烯制成,最终被证明并未实现,华为和曼切斯特大学关于石墨烯技术的合作仅仅着眼于通信领域。胡伟告诉记者,虽然量产的技术已经得到实现,但石墨烯仍旧没有迎来大规模的商用。我国目前石墨烯技术仍旧处于产业化的初级阶段,未来在技术、工艺和产业链对接方面还需要投入大量资源与研究。 /p p   虽然目前我国石墨烯产业仍旧存在许多问题,前景仍旧可期。根据新政的指导意见,指明要将石墨烯产业发展成为先导产业。将在2020年完善石墨烯产业体系,实现石墨烯材料的标准化、系列化和低成本化,并在多领域实现规模化应用。强调了产学研用协同发展的重要性,并具体落实了石墨烯材料规模化制备技术创新、知识产权体系建设、产业发展服务平台搭建3个发展方向。 /p p   胡伟表示,三部委发布的新政指导相关部门在未来加大对石墨烯核心技术的研究,有效改善我国石墨烯行业技术薄弱的问题。此外,在产业链和应用上也指明了方向。我国的石墨烯应该走出实验室,真正地应用在各行各业中。而对于一个新兴产业来讲,标准化是健康发展的基础。我国石墨烯下游企业需求极大,如果发展顺利,将迎来一个千亿元的大市场。 /p
  • 我国石墨烯研究获重要进展
    石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建其它维数碳质材料(如零维的富勒烯、一维的纳米碳管和三维的石墨等)的基本单元,具有极好的结晶性及电学质量,可广泛应用于微电子、柔性显示、航空航天、能源、化学传感等领域。自第一片石墨烯材料于2004年英国曼彻斯特大学安德烈• 海姆教授和康斯坦丁• 诺沃肖洛夫研制出来并于2010年荣获诺贝尔物理学奖后,石墨烯迅速成为国际先进材料研发的新热点,引发了诸多发达国家的科学家跟踪研究。   石墨烯结构   该课题组一篇论文获2009年度“中国百篇最具影响国际学术论文”   中国科学院长春应化所现代分析技术工程实验室材料电化学课题组近3年来密切关注国际石墨烯材料研发发展的最新趋势,围绕这一前沿性的重要科学问题,在中科院知识创新工程重要方向项目的支持下,从基础和应用基础研究入手,围绕石墨烯的制备、化学修饰、性能研究等,开展了系列卓有成效的研究工作,并积极探索其在众多领域的应用,取得了系列创新性的研究进展,不但在石墨烯的制备、化学修饰、性能研究等方面取得了长足的进步,还研制、开发出多种高强度、高韧性树脂材料等 此外,还在石墨烯透明电极、生物传感等方面进行了初步的探索,取得了一系列相关研究结果,得到了国内外同行的广泛关注。近年来已在 Anal. Chem.、Chem. Commun.等国际著名核心期刊上发表相关文章15篇。其中发表于2009年Anal. Chem.上面的文章“Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”仅1年左右时间就被引用100余次,并被中国科学信息技术研究所评选为2009年度“中国百篇最具影响国际学术论文”。
  • 深度研究!2025年全球石墨烯市场发展展望
    石墨烯是由一个碳原子与周围3个近碳原子结合形成蜂窝状结构的碳原子单层。理想的单层石墨烯片是由一层密集的碳六元环构成的,没有任何结构缺陷,厚度约为0.35nm,是目前为止最薄的二维纳米碳材料。石墨烯是目前自然界最薄最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。目前石墨烯可量产的制备方法主要为氧化还原法和化学气相沉淀法(CVD)。其中氧化还原法的原材料为石墨,CVD法的原材料为甲烷、乙炔等含碳气体。目前的趋势是生产缺陷极小的高品质石墨烯。因此,CVD法在大多数应用中使用频率更高。石墨烯应用领域由于石墨烯具有优异的复合性能,虽然目前其下游应用还没有实现产业化,但是其潜在的应用领域非常广泛。在这些潜在应用领域中,应重点关注复合材料、过滤器、储能、晶体管、传感器、柔性透明电极等。表1 石墨烯潜在应用领域潜在应用领域具体应用医学组织工程、造影剂、生物医学传感器、药物输送、生物样品的过滤、DNA测序等电子晶体管、电极、量子点、自旋电子学、光电子学、光探测器、热管理、电子应用、填充的导电聚合物储能电池阳极、超级电容器、储氢电池过滤水蒸馏、分子过滤、乙醇蒸馏、生物燃料净化传感器压力传感器、纳米电子机械系统、气敏传感器、分子结合传感器、运动传感器、红外传感器、隐形眼镜、磁传感器其他领域建筑材料、润滑、电波吸收、声音传感器、冷却剂添加剂石墨烯的特性组合使其应用广泛。但需要注意,这些应用通常都需要石墨烯的导电性或机械性能。这就导致石墨烯在每个应用领域都存在竞争材料,且与之相比,石墨烯的性能表现各异。◆轻量化复合强化材料交通领域,特别是航空、航天和汽车行业,大部分应用都需要轻量化复合强化材料。以碳复合材料替代金属实现汽车的轻量化,可以有效提高能源效率。政府大力推动汽车能效提高也部分推动了产业的发展。而在轻量化材料的替代过程中,石墨烯将发挥重要作用。石墨烯的性能远超这些应用领域的需求。石墨烯是截至目前人类已知强度最高物质,与单壁碳纳米管相当;韧性是碳纤维的20倍;具有极高的拉伸强度。而且,自下而上的合成可使石墨长在铜或镍的泡沫上。利用催化金属进行蚀刻,可以产生多孔的轻质石墨烯泡沫。石墨烯在轻量化复合强化材料领域应用具有2方面优点:一是多层石墨烯氧化物,可作为3D打印材料;二是可以在催化金属泡沫上合成3D石墨烯或石墨烯气凝胶,其密度仅为0.16g/cm ,是现有最轻的材料。但与其他材料对比,石墨烯作为轻量化复合强化材料,也存在成本高的限制。纤维、纳米线和碳纳米管更容易制成性能高且成本更低的复合材料。石墨烯纳米带性能更为优异,但目前难以制备且价格昂贵。◆生物医学传感器生物医学传感器是对生物物质敏感并将其浓度转换为电信号进行检测的仪器,由固定化的生物敏感材料作识别元件,搭配适当的理化换能器及信号放大装置,构成的分析工具或系统。与碳纳米管相比,石墨烯同样是一种理想的生物传感材料,它拥有碳纳米管的廉价、环境友好、生物兼容性以及活性基团均匀分布等优点,同时,由于含有大量的羧基、羟基等官能团,石墨烯具有良好的溶解性能,这是碳纳米管所不具备的。另一种方法是使用石墨烯和金属薄膜传感器。由于石墨烯可使生物分子紧密结合,从而增强传感器的灵敏度。石墨烯结合得越紧密,传感器的电磁屏蔽效应越小。与其他材料相比,石墨烯可与现有材料相媲美或优于现有材料,但可能还不及其他无机二维材料。碳纳米管、纳米颗粒、纳米线官能化的微机电系统和半导体二维材料,如二硫化钼,也都具有直接功能性,敏感度在很大程度上取决于接受材料和介质。◆过滤器很多行业都需要过滤,包括化学品分离、生物样品提纯、海水净化等。由于石墨烯具有良好阻隔性、可调节纳米孔和可控层间距等性能,因此其在过滤器领域应用十分突出。石墨烯进行过滤有2种方法:一是利用石墨烯薄膜的孔隙过滤。由于水净化等过滤时会带来较高压力,过滤介质需具有较大的强度,而合成石墨烯通常缺陷较少,可视为绝佳过滤介质。石墨烯生产工艺的创新也进一步强化了这一优势。可调节孔隙利于过滤,这是因为只有小于孔隙的物质才可以过滤出去。通过控制氧化性介质添加时间,可进一步控制石墨烯孔隙的大小。二是将薄膜边缘朝上,这样物质就可以穿过石墨烯之间的层间距。这种方法主要用于海水淡化,因为石墨烯的层间距小于海水中的水合离子,可利用多层石墨烯氧化物来进行过滤。与其他材料相比,石墨烯存在不足:石墨烯与沸石的孔隙大小类似,而沸石已经应用于渗透蒸发脱盐,并且最新的研究证明沸石也可通过反渗透进行海水淡化。此外,沸石的孔隙率比石墨烯可控性更高。◆DNA测序石墨烯在DNA测序领域的应用看起来很有前景,但这一市场尚不成熟,现在与其他竞争材料对比还为时过早。石墨烯DNA测序的原理是将基于石墨烯的电子传感器与纳米孔结合使用。让单个DNA分子穿过石墨烯电子传感器,就像一串珠子穿过细小的铁丝网,从而实现实时、高通量的单分子测序。除此之外,还有许多其他类型的DNA测序方法,每种方法在成本、测序时间和准确性方面都各有利弊。相比其他几种方法,石墨烯纳米孔的缺点是吞吐量低,单层测序也不准确,而使用多层石墨烯可以显著提高精度。使用石墨烯进行DNA测序的优点在于可以长时间读取,而不需要将长链DNA分解成小片段。因此,这种方法具有成本低,且便携性高。目前DNA测序方法较多,很难确定哪一个将支配市场。初步调查结果表明,成本和准确性将是最大的驱动力。由于石墨烯传感器具有成本效益优势,因此随着DNA测序在医疗行业中的应用展开,石墨烯有望得到更广泛的应用。◆透明电极透明电极可广泛应用于显示器、触摸屏和太阳能电池等领域,其市场规模超十亿美元。但由于铟的稀缺性,其价格一直上涨,这一行业一直在寻求可替代铟锡氧化物的材料。此外,随着人们对柔性电子技术关注程度的不断提升,相对于刚性易碎的铟锡氧化物,新型透明电极更为追求柔性。而单层石墨烯的透明性和导电性,使其在这一领域的应用相对广泛。石墨烯的厚度和透明度相关。如果在90%透明度时柔性能够达到15Ω/m ,这就基本可适用于所有应用。单层石墨烯可实现这种薄层电阻,而大面积石墨烯,就没有额外的结电阻。由于竞争技术的出现和铟产量的增加,石墨烯在透明电极的应用有限。但石墨烯可用于柔性电子产品,它的表现优于其他纳米技术。随着人们对铟锡氧化物替代品的需求日益增长,一些替代品已经被开发和商业化。石墨烯和铟锡氧化物的主要竞争材料是金属纳米线、碳纳米管和金属网。目前已研究改进提高透明度和结电阻的技术。在过去的10年里,其他材料已实现产业化发展,石墨烯与其相比目前表现不佳。例如,C3 Nano Inc.公司能够实现30Ω/m ,90%的透明度,不足0.6%的模糊度;Rolith, Inc.公司的亚微米金属网能够达到5Ω/m ,96%的透明度,2%的模糊度;而我国无锡石墨烯企业能够实现150Ω/m ,84%的透明度,不足1%的模糊度。石墨烯薄膜可能会减少由于均匀性造成的模糊。石墨烯纳米带性能优于其他材料,其结电阻会降低。石墨烯和纳米技术结合发展比较有前景,这是因为石墨烯可进一步提高结电阻和提高导热系数。◆储能储能可广泛应用于包括便携式电子、汽车和可再生能源的储存等领域。由于环保的要求,可再生能源和新能源汽车的发展将推动这一产业的发展。用于长期放电、快速放电电池和超级电容器需要具有大表面积的材料来积聚和存储电荷。电池的电极也需要高导电性。人们已经开始研究石墨烯在电池和静电双层电容器中的应用。而这些应用中最好使用高品质石墨烯,如三维石墨烯,即石墨烯泡沫和气凝胶。高比表面积能够允许更大的能量容量;微米级孔隙允许电解液快速通过材料。石墨烯,特别是石墨烯泡沫,比现有标准电池优势更为明显。随着人们对储能应用兴趣的提升,石墨烯电极有望广泛应用于电池和超级电容器中。石墨烯在储能领域应用的竞争者是活性炭和石墨。活性炭是一种性价比高、具有高比表面积和纳米级孔隙的材料,这使它成为强有力的竞争者。由于活性炭目前已用于高端电池,石墨烯电极的性能必须非常优异,才能成为新的储能标准。与石墨烯相比,活性炭的主要缺点是孔隙之间的有限连通性,从而限制了电子输运。由于现有活性炭生产方法的限制,基本不可能实现孔隙互联互通的可控性。最近的研究表明,通过将碳源转化为相互关联的碳源,活性炭的性能可显著改善。而利用三维石墨烯改善了石墨烯电极的性能。表面积的增加大大提高了可以储存的能量总量。◆晶体管晶体管是电子学的基础,其研发趋势是更小巧、更有效的晶体管。以石墨烯为开关材料的晶体管在学术界得到了广泛关注。晶体管控制着电子的流动,电子拥有向上的或向下的自旋量子力学性能。石墨烯的高流动性使其具有潜在的场效应。此外,石墨烯能够保持电子在微米层面的自旋能力。石墨烯是不理想的自旋电子主动元件,它具有低自旋轨道耦合性。用石墨烯来操纵电子自旋是不可能的。掺杂石墨烯在自旋—轨道耦合方面有所改进,也就是说,以石墨烯作为自旋晶体管的开关材料仍需进一步创新。由于过渡金属硫化物等竞争材料具有较高性能,石墨烯作为高性能晶体管和自旋电子学活性元素的应用有限,但作为复合强化材料还是很有前途的。石墨烯本质上不是半导体。竞争对手包括各种半导体,从砷化镓等半导体,到二硫化钼等2D半导体。在这一应用石墨烯的主要缺点是,它是一种零带隙的金属。在没有带隙的情况下,石墨烯的关断电流相对较高。引入带隙可以解决这个问题,有2种方法可以实现:掺杂和量子尺寸效应。掺杂的稳定性和石墨烯纳米带的边缘效应都会产生影响。而过渡金属硫化物等半导体二维材料,在作为活性元素的性能方面是优于石墨烯的。而石墨烯在自旋电子学的距离内保持电子自旋的能力是非常罕见的。鉴于这种稀有性,石墨烯很可能实现在这一领域的应用。由于石墨烯不是自旋电子学理想的活性元素,因此需积极研究石墨烯与二硫化钼等复合材料,从而生产自旋电子器件,控制电子自旋。石墨烯产业化发展面临的挑战根据全球新材料研发的历史可以看出,新材料实现商业化成功的途径有2种,一是获得实时利益,二是经过多年研究寻找利基应用,最终发展成为广泛应用。但一种新材料最终会被另一种新材料所取代。石墨烯与这些新材料的不同在于,其应用领域发展快速,而这种快速的增长也会导致更多企业进入市场。石墨烯商业化过程将远快于其他新材料。石墨烯最初的商业产品是对现有产品的迭代改进,如加强头盔和增强现有产品的涂层。这种方法不需要在实验室中找到有利于市场的突破性特性。然而,石墨烯要实现在其他应用领域的广泛使用则需要其性能优于其他竞争材料。据预测,从长期来看,一旦实验室级性能石墨烯实现规模化商业化生产,这些领域的应用将会带来更大规模的石墨烯生产和应用。也就是说,可以实现潜在开创性应用的新型石墨烯目前正实现商业化生产。由于现有生产制备技术的创新,大规模商业化将在未来10年内发生。1. 高品质石墨烯成本过高高品质石墨烯,特别是应用定制石墨烯,供给量低,价格昂贵,将限制石墨烯在短期内的发展。此外,新型石墨烯的批量化生产还需进一步创新,如三维石墨烯、纳米纤维、石墨烯泡沫等。新型石墨烯可用于更多的应用领域,它们的生产对于行业发展至关重要。2. 应用市场过多缺乏聚焦石墨烯的应用领域过多,缺乏聚焦,导致石墨烯发展可能性多种多样,这将限制石墨烯产业的增长率。由于存在不同种类的石墨烯,而每种石墨烯的最理想应用并没有完全研究透,因此探索其所有的应用领域变得至关重要。用于不同应用的石墨烯研发方向多种多样,目前的研究并未聚焦到最有发展前途的方向上。另外,对于复合材料性能优异,发展前景良好。但由于石墨烯发展正处于初级阶段,研发十分困难,这就导致了更长的研发周期。3. 制备和处理工艺的限制为实现产业化,需要利用石墨烯的独特性质,但只有单层无瑕疵石墨烯才具有石墨烯的独特特性。因此,实现高品质石墨烯的生产非常具有挑战性,特别是实现商业化生产。石墨烯各层之间相互吸引,这使得制备石墨烯非常困难,剥离的石墨烯通常都有几层,而不是单层。与碳纳米管类似,要完全剥离出高纯度单层石墨烯,则需要超强酸。而利用CVD法制备石墨烯则更难避免多层。采用成核生长法合成石墨烯,将产生多个晶粒,从而存在晶界缺陷。限制沉积到单层膜也是非常困难的。此外,将石墨烯从催化表面转移到所需的衬底上会导致缺陷。因此,需要克服CVD合成石墨烯的这些挑战急需技术创新。4. 来自其他新材料的竞争石墨烯之所以独特是因为它的性能。但是,由于某些应用只是使用部分性能,因此,每种应用都有较强的竞争技术。对于每种应用来说,都有几种极具竞争力的替代技术。有些优于石墨烯,或是与石墨烯相媲美。这限制了石墨烯在特定领域的应用。全球石墨烯市场发展现状及预测1. 全球石墨烯市场发展现状●石墨烯市场处于萌芽状态由于石墨烯在十多年前才研发出来,目前石墨烯市场还处于萌芽状态,主要包括一些生产和供应企业。据最近关于石墨烯的市场报告显示,在过去几年中,石墨烯产业呈现快速稳定的增长态势,近期年均复合增长率超过30%,高达60.7%。目前企业的收入主要来自于研发类生产企业,而所有经营最终产品的下游应用初创企业几乎没有收入。虽然整个行业的销售有所增长,但个别石墨烯生产公司没有像先前预测的那样做得好。石墨烯生产技术的迅速发展导致了石墨烯生产商大量使用专有技术。一些石墨烯制造商却惨遭淘汰。达勒姆石墨烯科技公司拥有一个专有的自下而上合成方法,盈利400万美元,但4年后倒闭。此外,通用石墨烯公司也盈利870万美元。grafentek公司已经从生产石墨烯转型为生产透明导电氧化物/金属氢化物。●石墨烯生产企业股票表现欠佳尽管市场总体增长,但石墨烯和石墨生产商的股票一直在萎缩。这主要包括几个原因:一是许多关于石墨烯炒作和大型供应企业倒闭的新闻报道增加,人们对石墨烯发展的狂热预期幻灭;二是缺乏商业产品。与其他纳米技术公司一样,由于炒作被搁置,企业尚未实现大范围收购,股票价格从最高估值急剧下降。而一旦石墨烯开始产业化应用,预计石墨烯市场将增长。随着新加入者不断涌现,收购可能成为当前大企业保持市场地位的关键。2. 全球石墨烯细分应用领域市场增长预测预计在未来10年,随着石墨烯应用实现产业化,石墨烯行业将快速增长。石墨烯的应用推动力将从大学实验室转向大型企业。而复合材料、储能、水净化和音频等应用领域将获得最大程度增长。石墨烯产业最大的细分领域将是替代碳纤维在航空航天领域的应用。2020年以后,随着产业化应用领域的发展,特别是海水淡化技术的兴起,研发机构对石墨烯的需求将稳定增长,并成为石墨烯产业应用中规模较小的一部分。●轻量化复合强化材料领域预计在未来几年内,复合强化轻量化材料领域将以5%~10.6%的年均复合增长率增长,复合材料在航空航天领域应用将实现30亿美元产值,在汽车复合材料领域应用将实现产值140亿美元。这一领域产业发展的重点抢占高端轻量化应用市场份额,现有应用市场主要以碳纤维为主,其在航空航天复合材料领域市场份额达到73%,在汽车复合材料领域市场份额达到3%。未来石墨烯市场份额的抢占很可能取决于石墨烯气凝胶和交联氧化石墨烯膜的生产。在这2个领域,石墨烯的技术优势远超其他竞争技术。尽管复合材料产品已经开始应用,但航空航天领域应用的大幅增长预计需要3~7年;而汽车领域应用的大幅增长则需要5~10年。因此,未来需准确评估航空航天领域应用所能带来的收益;严格控制3D石墨烯生产加工,以确保材料的一致性和可靠性。随着3D石墨烯或纤维复合材料不断研发,石墨烯的市场份额将进一步增加。●音响设备领域音箱的小型化使得石墨烯在消费电子产品领域的应用增长,预计年均复合增长率达到17%。3D石墨烯可实现更薄、更小、更高效的音频驱动,因此3D石墨烯的可靠生产将进一步提高其市场份额。在未来3~5年,随着小型节能部件领域对石墨烯需求的增长,预计石墨烯在这一领域的应用将迅速增长。●储能领域未来几年,石墨烯在电池负极市场应用将实现3亿美元产值,年均复合增长达到24%;在超级电容器市场应用将实现1.4亿美元,年均复合增长率达到11%。石墨烯泡沫或其他微孔三维石墨烯将广泛应用,其性能将超越目前需要替代的能源存储电极材料。未来为扩大市场份额,需要改进现有3D石墨烯的生产,降低成本。随着电动汽车的广泛应用,对大容量电池的需求快速增长,以及包括再生制动和太阳能输出功率等应用需求的增长,对超级电容器需求的提升,预计石墨烯在这一领域的应用将在未来3~5年快速增长。●水净化领域未来几年,石墨烯在水净化领域应用的市场将达到120亿美元,年均复合增长率将达到13%。海水反渗透脱盐需要低成本、高通量渗透膜,而海水净化占这一领域市场的70%以上。只要全海水淡化系统的产量迅速上升,石墨烯就很有可能迅速占领市场份额。预计石墨烯将在未来3~5年内实现产业化应用,这期间需要一个较长的孵化期。随着石墨烯实现规模生产,在2020后将实现快速增长。3. 全球石墨烯市场空间预测到2025年,石墨烯在多个领域的应用有望实现快速增长,2017-2025年平均增长率达到72.8%(详见图)。这预示着特定领域应用的石墨烯生产将快速增长,在最有前景的应用领域使用的石墨烯、碳纤维或其他标准材料市场占有率将迅速增加。在后几年中,石墨烯的市场应用采纳率预计会增加,因为产业发展中期推出的初始产品将大大超过竞争对手。而在3D石墨烯实现规模化生产之前,任何意外的延误都会延缓这种快速增长。图 2017-2025年全球石墨烯市场空间预测石墨烯产业发展趋势展望1. 石墨烯生产趋势展望高质量石墨烯规模化生产的困难导致其生产成本较高。目前的生产趋势:一是努力克服高质量石墨烯批量生产加工的局限性。现有客户大部分都来自于学术或其他研究机构,由于其消费量较低,因此带来了潜在的石墨烯供给过剩。尤其是一些本已盈利数百万美元的石墨烯生产企业纷纷倒闭,这一事实更是印证了人们对此的判断。大部分石墨烯生产企业纷纷拓展业务,实现多元化生产,进行新应用产品生产,或投资应用企业。二是现有利基石墨烯的生产,如交联氧化石墨烯、3D石墨烯、纳米薄片、纳米带、量子点。所有这些石墨烯都只在研究初期,未来可用于某些应用,而基础石墨烯正逐步产业化。2. 石墨烯应用领域增长点展望由于现在已有大量企业涉足石墨烯生产领域,而且基于新的生产方法,未来还有更多的企业进入,石墨烯的生产制备还未达到预期的快速增长速度。未来还需要杀手锏级的应用来实现快速增长。●增长点一:更轻更小的储能设备石墨烯在更轻更小储能设备领域的应用将带动石墨烯生产、设备集成等应用领域的发展。电池的创新已落后于其他先进消费电子领域的创新。未来将进一步研发应用具有高导电性和多孔电极的大容量电池和超级电容器;研发新型石墨烯,如3D石墨烯,能够在保持高导电性的同时,实现表面积最大化,目前研发机构正在进行3D石墨烯的潜在规模化商业化研发,需要进一步转化成商业化应用;研发新型石墨烯在能源存储设施的应用;进一步提高高纯石墨烯的制备方法;在替代现有标准方面,这些能源存储设备的新性能将至关重要。●增长点二:复合强化轻量化材料石墨烯在超轻量化复合材料领域的应用将带动石墨烯生产、设备集成、商业化销售等应用领域的发展。石墨烯泡沫和石墨烯气凝胶是最轻最强的材料,这些材料可在现有应用领域替代其他诸如碳纤维等轻量化材料,其应用范围可覆盖从航空材料的轻量化到消费电子的高效播放器等领域。新型石墨烯将进一步实现规模化商业化发展。因此,需要石墨烯生产企业和应用企业进一步加强合作。随着创新的加快和知识产权保护的加强,在其他需要更强轻量化材料领域的应用将进一步展开。
  • 戏说纵向加热石墨炉(收官之作)
    前 言:   自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。   遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!   (一)纵向石墨炉的历史:   1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。   1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。   由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。   (二)纵向石墨管的结构:   首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:   图-1 纵向加热石墨炉示意图   纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:   图-2 纵向石墨炉外观图(Z-2000)   图-3 纵向石墨炉结构示意图   图-4 纵向石墨炉实体分解图(Z-2000)   从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。   由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。   (三)纵向石墨管的种类:   无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。   图-5 形形色色的纵向石墨管   不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!   (1)筒形石墨管:   纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:   图-6 几种进口仪器使用的筒形石墨管   最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:   图-7 传统筒形石墨管的剖面图   可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。   为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中  那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:   图-8 改良后的筒形石墨管示意图   图-9 改良后的筒形石墨管剖面实体图   (2)鼓形石墨管:   改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:   图-10 鼓形石墨管外观   看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?   下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:   图-11 鼓形石墨管的剖面实例图   从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:   图-12 鼓形石墨管在原子化阶段升温瞬间的状态   图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态   从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。   此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。   (3)异形石墨管:   这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。   (4)双进样孔鼓型石墨管:   这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:   图-14 双孔石墨管的外观图  图-15 双孔石墨管剖面图   (5)平台石墨管:   此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:   图-16 平台石墨管   (四)纵向石墨炉的特点:   (1)升温速率:   众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。   为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。   那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:   表-1   而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:   表-2   对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:   图-17 PE公司横向石墨管剖面图   图-18 Jena公司横向石墨管侧面图   图-19 GBC公司横向石墨管侧面图   所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。   (2)温度梯度:   自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。   前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。   但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:   图-20 筒形石墨管原子化阶段的升温模型   图-21 鼓形石墨管原子化阶段的升温模型   从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。   那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:   图-22 横向石墨炉工作原理   图-23 横向石墨管原子化阶段的升温模型   从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?   现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:   图-24 鼓形石墨管原子化瞬间的升温模型图   通过上面的模型图不难看出几点:   1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。   2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。   3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?   4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。   5)石墨环的质量越小,温度梯度的影响也就越小。   6)石墨炉电路采用温控方式可以减少温度梯度的影响。   (3)零点漂移:   纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:   图-25 纵向石墨管受热膨胀方向与光轴的关系   但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:   图-26 横向石墨管受热膨胀方向与光轴方向的正交关系   实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。   (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。   而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!   图-27PE800石墨管   备 注:   (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。   (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
  • 高性能石墨烯基锂离子电容器研究获进展
    近日,电工研究所马衍伟团队联合大连化学物理研究所研究员吴忠帅在高性能石墨烯复合材料制备、石墨烯基锂离子电容器研制方面取得进展。相关研究成果以2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors为题,发表在《先进功能材料》(Adv. Funct. Mater., 2022, 2202342)上。 锂离子电容器作为一种有效结合锂离子电池与超级电容器的新型电化学储能器件,具有高功率密度、高能量密度以及长循环寿命,有效弥补了锂离子电池和超级电容器之间的性能差异。电极材料作为锂离子电容器的重要组成部分,是影响锂离子电容器性能的关键因素。 精细的结构设计工程被认为是提高电极材料电化学性能的有效方式之一。马衍伟团队提出了一种通用静电自组装策略,在还原氧化石墨烯上原位生长了具有卷心菜结构的MnO复合纳米材料(rGO/MnO)。通过深入的原位实验表征以及理论计算,证实了rGO/MnO异质结构具有较强的界面作用和良好的储锂动力学。由于rGO/MnO复合纳米材料具有高电荷转移速率、丰富的反应位点以及稳定的异质结构,基于rGO/MnO复合纳米材料制备的电极具有高比容量(0.1 A/g电流密度下比容量为860 mAh/g)、优异的倍率性能(10 A/g下比容量为211 mAh/g)以及长循环稳定性。因此rGO/MnO复合纳米材料可作为高性能锂离子电容器理想的负极材料。 通过将这种高性能石墨烯基复合材料作为负极与活性炭正极进行组装,马衍伟团队成功制备出柔性固态锂离子电容器(AC//rGO/MnO)。经测试,这一电容器基于电极活性材料总质量的能量密度最高达到194 Wh/kg,功率密度最高可达40.7 kW/kg。这是迄今为止报道柔性固态锂离子电容器能量密度和功率密度的最高值。此外,在10000次充放电循环后,AC//rGO/MnO电容器的容量保持率可达77.8%,并且安全性能高。 科研团队表示,这一研究提出的金属氧化物/石墨烯复合材料设计策略在高能量密度和高功率密度的柔性锂离子电容器中具有很好的应用前景。 该研究工作得到国家自然科学基金、中科院大连洁净能源研究院合作基金、中科院青年促进会等的支持。 论文链接: https://doi.org/10.1002/adfm.202202342 石墨烯复合材料结构示意图和锂离子电容器原理性能图
  • 科学家发展“表面功夫”揭示铝离子电池失效机制
    理解电化学储能器件的工作原理及失效机制,对指导高性能器件的开发具有重要意义。近日,中国科学院大连化学物理研究所研究员傅强团队调变铝离子电池器件的工作环境和气氛,利用原位X射线光电子能谱(XPS)和拉曼光谱(Raman)等研究储能器件发现,无水气氛下,铝离子电池电极中的阴阳离子重新分布导致电极发生结构和电子态的弛豫效应,即电池自放电。而在含水气氛下,环境中的水分子会插层到石墨电极层间,并与层间离子发生水解反应,导致石墨电极电子态去耦、插层阶结构退化。相关研究成果发表在《美国化学会志》上。当前,研究界广泛使用X射线衍射、X射线吸收谱、透射电镜和核磁共振等表征技术检测电极和电解质,进而获得相关体相信息。傅强表示,这种方式获得的体相信息多聚焦电极或电解质内部,很难了解表界面的电化学行为,因此急需发展原位/工况电化学表界面表征方法。长期以来,基于XPS、扫描探针显微镜等表面科学研究方法成功用于表面化学和多相催化,而将表面化学方法学用于电池器件等电化学过程的研究面临模型电化学储能器件构建等挑战。为此,团队突破了表面表征所需的超高真空工作环境和规整开放表面的局限,构建出基于两维材料电极的模型电化学储能器件,设计并加工系列可以对模型储能器件施加电场、改变气氛、表面表征的样品台和样品池,利用XPS、原子力显微镜、Raman、光学显微镜等对铝离子电池的工作过程进行工况表征并准确阐述该电池的工作机制,同时还发现了储能器件电极的表面效应。此次,为了探究铝离子电池气氛下的失效机制,团队将含水、氧气、氮气等不同气氛分别引入铝离子电池的工作环境,通过XPS、Raman等表界面研究发现,含水气氛下,电极与水反应发生水解,使组分改变,导致电池失效。而无水气氛下,电极则表现出自发的弛豫、自放电现象。该研究准确阐明电池过程的工作机制,并揭示了不同气氛下储能器件的失效机制。与此同时,团队还将表界面电化学研究方法扩展到锂离子电池等其他储能体系。傅强表示,未来,基于气氛、温度、外场可控的原位电化学表界面表征技术和方法有望广泛应用到二次离子电池、超级电容器、金属—气体电池等体系中的表界面反应研究中,阐明这些储能器件的工作原理和失效机制。相关论文信息:https://doi.org/ 10.1021/jacs.1c09429
  • 全球首款手机用石墨烯电容触摸屏研制成功
    最新发现与创新   1月8日,江南石墨烯研究院对外发布,全球首款手机用石墨烯电容触摸屏在常州研制成功。该成果经上海科学技术情报研究所和厦门大学查新,显示为国内首创,国外尚处于研发和概念机阶段。   现有手机触摸屏的工作层中不可缺少的材料为陶瓷材料氧化铟锡。氧化铟锡的价格高、用量大、易碎、有毒性(与铅的毒性可比)。而石墨烯触摸屏合成对环境无害,需要资源少,并且随着生产工艺的不断改进,生产成本有望大大低于传统氧化铟锡触摸屏。   由江南石墨烯研究院、常州二维碳素科技有限公司联合无锡丽格光电科技有限公司和深圳力合光电传感器技术有限公司共同研发的手机用石墨烯电容触摸屏项目,完成了基于石墨烯薄膜的手机触摸屏模组的工艺流程调试,成功制成电容触摸屏手机样机,并完成了功能测试,推出了可以实现基本功能的石墨烯电容触摸屏手机。电容屏传感器整个触摸区域可以识别单指和双指触摸及进行画线动作,实现图片单指手势左右拖动及双指手势放大和旋转。   据常州二维碳素科技有限公司于庆凯博士介绍,该成果与传统氧化铟锡触摸屏相比,除能实现功能替代外,更为重要的是具有优异的柔韧性。从技术层面上讲,该成果的问世缩短了产业界对石墨烯材料8—10年产业化的时间预期。今年,该成果可为手机商提供10万片触摸屏,成本比现用材料降低30%。   中科院院士、清华大学教授、江南石墨烯研究院名誉院长薛其坤认为,该项目攻克了能满足手机用触摸屏工艺要求的石墨烯薄膜制备技术难题,实现了大尺寸、高均匀、高导电、高透光的石墨烯薄膜的连续制备 展示了石墨烯薄膜透明电极材料所独特的性能优势,良好的商业价值和广阔的市场前景 石墨烯薄膜的使用,拓宽了未来柔性电子显示器件和柔性太阳能电池等产品开发的商业化空间。
  • 合肥研究院高结晶石墨烯宏观体研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员王振洋团队在高结晶石墨烯宏观体的共价生长及其电学行为调制方面取得系列进展。石墨烯是具有优异力学、电学、热学和光学性能的二维碳材料。石墨烯的高效制备与宏观组装对其规模应用具有重要意义。目前,石墨烯宏观体的常规制备方法如液相自组装、3D打印和催化模板法等,仅能实现石墨烯片层间的非共价弱相互作用连接,导致石墨烯晶体结构的不连续,成为限制石墨烯宏观体电学性质的主要因素。 鉴于此,研究开发了激光辅助的layer-by-layer共价生长方法来制备高结晶石墨烯宏观体。分子动力学模拟从理论上揭示了它的共价生长机制。共价生长法使得材料具有连续的晶体结构,且与非共价组装相比,其跨层电导率实现了100倍的提升。该材料有助于解决石墨烯规模化应用面临的层状堆垛、晶体质量调控、离子输运通道、体积效应等问题,为石墨烯的储能电极应用奠定了基础。相关研究成果发表在《先进功能材料》(Advanced Functional Materials)上。 此外,为了解决石墨烯电极中低自由电子浓度导致的电导率不理想的问题,研究将富含自由电子的铜纳米粒子引入到材料体系,在Cu与石墨烯界面形成了稳定的Cu-C键,从而通过电子注入实现了复合材料超高的导电性能,电导率达到与纯金属接近的0.37×107 S m-1, 是纯石墨烯的3000倍。研究进一步利用X射线吸收精细结构(XAFS)光谱,结合密度函数理论(DFT)模拟揭示了界面结构对电导率的影响,这对石墨烯的电导率调制以满足不同应用具有重要意义。相关研究成果发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家重点研发计划、国家自然科学基金、安徽省科技重大专项和安徽省重点研发计划等的支持。 高结晶石墨烯宏观体的layer-by-layer共价生长及其表征。  (a)不同铜含量的石墨烯电导率;(b)不同铜含量的石墨烯载流子迁移率和载流子密度。
  • 奥豪斯水分仪在石墨烯水分控制的应用
    有专家预言,未来10至20年内会爆发一场技术革命,“这个时代将来最大的颠覆,是石墨烯时代颠覆硅时代”,“现在芯片有极限宽度,硅的极限是七纳米,已经临近边界了,石墨是技术革命前沿”。这里提到的石墨烯,究竟是何方神圣?它真的能带来颠覆吗? 扫描电镜下的石墨烯,显示出其碳原子组成的六边形结构。石墨烯——一种只有一个原子厚的二维碳膜——的确是种令人惊讶的材料。虽然名字里带有石墨二字,但它既不依赖石墨储量也完全不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来神奇材料的风范。如果再把它的潜在用途开个清单——保护涂层,透明可弯折电子元件,超大容量电容器,等等——那简直是改变世界的发明。连2010年诺贝尔物理学奖都授予了它呢!其实就在2012年,因石墨烯而获得诺贝尔奖的康斯坦丁诺沃肖洛夫和他的同事曾经在《自然》上发表文章讨论石墨烯的未来,两年来的发展也基本证明了他们的预测。他认为作为一种材料,石墨烯“前途是光明的、道路是曲折的”,虽然将来它也许能发挥重大作用,但是在克服几个重大困难之前,这一场景还不会到来。更重要的是,考虑到产业更新的巨大成本,石墨烯的好处可能不足以让它简单地取代现有的设备——它的真正前景,或许在于为它的独到特性量身定做的全新应用场合。客户背景山东某新能源科技公司是全国500强企业,主要生产高端动力电芯、电极材料和石墨烯。石墨烯是目前为止发现的最薄、强度最大、导电导热性最强的新型纳米材料。那么在实际应用环节,到底对于实验室称量产品有着什么样的需求呢?产品应用 在通过与该客户的前期调研和沟通,了解到该客户主要希望通过水分仪来应用于石墨烯研发课题组。客户要求石墨烯水分含量小于2%,因为水分含量过高,其材料实用性将会大大降低 。通过不断地选型与匹配,最终客户选购了三台奥豪斯MB45进口水分测定仪。 客户评价在使用了奥豪斯MB45水分仪后,客户反馈MB45水分仪精度达到0.01%,完全满足了客户对水分精度的控制要求。另外,客户通过水分仪机身上的显示屏监控水分测试曲线。同时,实验数据可传输到电脑上,便于客户进行数据的分析。
  • 谈烯论道 | “石墨烯检测技术及应用进展” 网络会议即将开播!
    2021年全国两会,政府工作报告将“扎实做好碳达峰、碳中和各项工作”列为重点工作之一。报告指出,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构,大力发展新能源。石墨烯作为新型碳材料中的“王者”,在实现碳中和的主要技术方向中均有应用潜力,在上海、浙江、山西等省“十四五”规划中均被重点提及、加快发展。业内认为,除石墨烯电池等趋于成熟的商业应用外,石墨烯在建筑节能、碳捕集、二氧化碳资源化利用等方面应用前景广阔。随着碳中和战略的实施,石墨烯产业有望迎来发展机遇。助力碳中和,石墨烯究竟该怎么用?本文特列举石墨烯在碳捕集、二氧化碳资源化利用等方面的研究成果,以飨读者,并附“石墨烯检测技术及应用进展”主题网络研讨会参会福利。 变废为宝, CO2也可以制备石墨烯! 2019年7月,据德国卡尔斯鲁厄理工学院(KIT)官网报道,该校研究人员开发了一种利用二氧化碳直接合成石墨烯的方法,目标是电池和电子产品的潜在应用。他们采用一种全新的工艺,在高达1000℃的温度下,将温室气体二氧化碳与氢气一起,借助经过特殊处理的活性催化金属表面,最终直接转化形成石墨烯。从事本项研究的负责人马里奥• 鲁本教授表示:“如果金属活性催化表面中形成了适当的铜和钯平衡,则二氧化碳转化为石墨烯的过程将直接在简单的单步过程中进行。” 在更进一步的实验中,研究人员生产了具有多层厚度的石墨烯,可在电池、电子元器件或过滤膜材料中取得应用。(DOI: 10.1002/cssc.201901404 )二氧化碳(红-黑)和氢气(灰)在铜-钯表面上经过催化反应转变成石墨烯(黑)(图片来源:E. Moreno-Pineda, KIT)石墨烯高效过滤器将碳捕获成本降低2-4倍洛桑联邦理工学院化学科学与工程学院的 Kumar Varoon Agrawal 教授团队采用石墨烯材料研制出新型的二氧化碳过滤器。该团队在石墨烯上制备了二氧化碳分子大小的小孔,这些小孔使得二氧化碳能够通过,同时阻挡了氮气等其他比二氧化碳分子大的气体,可以将二氧化碳从工业废气的混合气体中分离出来。这种石墨烯过滤器不但非常薄,而且在效率和速度方面也远超市面上的大多数过滤器。Agrawal 教授预计这项技术将使碳捕获成本降低近 30 美元/吨二氧化碳,而其他商业技术的成本要比这高出 2 到 4 倍。(DOI: 10.1126/sciadv.abf0116)石墨烯二氧化碳过滤器示意(来源:EPFL)瑞典研究者利用石墨烯+太阳能 将二氧化碳转化为燃料 2020年7月,据外媒报道,瑞典林雪平大学的研究人员正尝试利用太阳能,将温室气体二氧化碳转化为燃料。之后的研究结果也表明,利用其技术是有可能用二氧化碳和水选择性地生产出甲烷、一氧化碳或甲酸。研究人员将石墨烯和立方碳化硅结合,研发了一种石墨烯基光电极,可以保持立方碳化硅捕获阳光能量并制造出电荷载体的能力。石墨烯在保护碳化硅的同时,还起到了作为导电透明层的作用。石墨烯基光电极可以与铜、锌或铋等各种金属制成的阴极结合,通过选择合适的金属阴极,二氧化碳和水可以选择性地形成不同的化合物,如甲烷、一氧化碳和甲酸。甲烷可用作燃料,用于适用气体燃料的车辆,而一氧化碳和甲酸可以被进一步加工成为燃料,用于工业。(DOI:10.1021 / acsnano.0c00986,)石墨烯检测技术及应用进展为促进石墨烯研发和产业化快速发展,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程时间报告主题报告人09:30-10:00石墨烯的原子尺度表征与环保应用进展孙立涛(东南大学)10:00-10:30石墨膜导热测试技巧方法李金艳(德国耐驰仪器制造有限公司)10:30-11:00绝缘衬底表面石墨烯晶圆生长研究进展王浩敏(中国科学院上海微系统与信息技术研究所)11:00-11:30石墨烯材料检测方法介绍刘峥(国家石墨烯产品质量监督检验中心)11:30-14:00午休14:00-14:30石墨烯基材料的拉曼光谱研究谭平恒(中国科学院半导体研究所)14:30-15:00石墨烯导热增强复合材料与热界面材料林正得(中国科学院宁波材料技术与工程研究所)15:00-15:30二维半导体及异质结的生长与光电性能调控肖少庆(江南大学)15:30-16:00石墨烯结构表征及其在环保领域的应用胡学兵(景德镇陶瓷大学)16:00-16:30石墨烯等低维纳米材料的标准化动态和展望丁荣(全国纳标委低维纳米结构与性能工作组)报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/)报名参会加入会议交流群,随时掌握会议动态
  • 应用 | 石墨烯表面究竟是疏水还是亲水?
    摘要石墨类碳材料在电极,吸附,催化载体以及固体润滑剂方面有着极其广泛的应用。了解它们和水之间的相互作用对于基础材料的表征以及实际装置的制备都起着关键作用。曾经,普遍的观点都认为石墨碳材料表面是疏水的。然而,美国匹兹堡大学Kozbial等人发表在国际顶级杂志Accounts of Chemical Research上的最新研究发现:石墨表面本质上是亲水的,而由于表面吸附了空气环境中的烃类污染物,才造成石墨烯表面的疏水性。研究回顾在石墨烯的各类应用中,表面性能的精准控制(例如黏附、摩擦和表面能)是非常必要的。润湿性不仅是表征表面性能的重要参数,而且还直接影响了电子掺杂和载体可移动性。在1940年, Fowkes and Harkins首次报道了天然石墨的接触角为85°度左右。其他学者研究不同石墨类碳材料时得出的结果也与该值相接近。碳纳米管以及石墨烯的润湿性研究结果也表明他们都是疏水的。所有的这些研究都表明sp2杂化形式的石墨类碳材料都是疏水的。润湿性的不同观点:1. Tadros等人采用捕泡法测试出表面干净的各项同性的石墨,其前进角为63° (53 °C)。但他们的工作主要集中在研究等温吸附上,而不是润湿性,所得出结论不十分可靠。2. Schrader发现石墨在室温下和超真空条件下被剥离后的接触角值为35°。但是,超高真空会造成水的蒸发,造成较低的接触角。进一步提出石墨疏水是由于石墨被疏水的有机物污染。研究思路为了解决以上问题,美国匹兹堡大学Kozbial教授重新设计了实验,并用KRÜ SS DSA100接触角测试仪表征材料的接触角和表面能。室温下,研究了新鲜石墨烯和剥离的高度有序热解石墨表面的接触角与时间的变化。结果表明暴露在空气中时,接触角与时间具有相依性(图1)。之前研究者们也用同样的方法研究了金的润湿性,由于金的表面吸附了空气中的烃类污染物,造成金的疏水性。而二氧化硅和稀土氧化物等陶瓷材料的接触角也表现出同样的性质。因此Kozbial教授提出,石墨类碳材料是否也因为表面吸附了空气中的烃类污染物才变得疏水呢?图1.铜基石墨烯,镍基石墨烯和石墨的水接触角数据。(1)衰减全反射红外光谱分析利用衰减全反射红外光谱法,采集了新鲜和老化的石墨烯的表面数据。结果表明,石墨烯在空气中暴露10分钟后,出现了明显的亚甲基(&minus CH2&minus )的峰(图2a),这说明有烃类物质吸附在了石墨烯表面。此外,亚甲基峰强度随着暴露时间的增长而变强,同时接触角和ATR-FTIR的数据也表现出相似的趋势。如下:干净表面的石墨烯具有较低的接触角和较弱的亚甲基峰接触角和亚甲基峰强度随着在空气中暴露的时间增长而增加,60分钟之后都不再发生明显的变化。(2)XPS分析采集新鲜石墨烯和老化2天石墨烯的C1s XPS数据。285eV附近的强峰来自于石墨烯碳原子(图2b)。不同的是,在285.7 eV处有一个更正的峰以及在287.6 eV附近出现了一个肩峰,这都说明了烃类物质的存在。随后也采集了新鲜石墨和老化2天石墨的ATR-FTIR数据。因此,对于石墨烯和石墨而言,新合成或者新剥离得到的表面是没有烃类物质的,而在空气中暴露老化之后,是有烃类物质吸附的。图2. 铜基石墨烯的(a) ATR-FTIR和(b) XPS图谱,石墨的ATR-FTIR图谱(c),(d)烃类物质吸附膜厚度和接触角石墨在空气暴露时间的变化关系(3)椭圆偏振分析通过该技术研究发现,石墨表面开始暴露在空气中后,烃类物质吸附膜的厚度逐渐增加,在60分钟时达到峰值,随后曲线出现平台。引起了这一变化时,石墨表面生成了&sim 6&angst 厚的烃类物质层。综上,ATR-FTIR,XPS以及椭圆偏振法都表明石墨表面本质上是温和亲水的,吸附烃类物质后才变的疏水。(4)表面能分析表面能是固体物质重要的表面性质,它不仅决定材料表面的润湿性,更深深影响着粘附性、摩擦性以及其他的表面或界面性能。基于四种测试液体的接触角数据,通过三种常见的模型Neumann,Fowkes和Owens&minus Wendt计算了新鲜和老化石墨表面的表面能。图3表明石墨烯和石墨的表面能随着暴露时间增长而逐渐降低。新鲜表面的表面能最大,老化表面的表面能最小。造成这种结果的原因是空气中烃类物质的吸附过程带来的热力学驱动力降低了总表面能。图3 新鲜和老化石墨烯,石墨的表面能图及极性和非极性分量总结烃类污染物不仅影响石墨类材料表面的润湿性还影响了其粘附性和吸附性。因此,开发有效的去除和抑制烃类污染物对于操控石墨表面性能是非常关键的。此障碍在未来获得突破后,石墨烯基装置的成功制备也就为时不远了。参考文献Kozbial, A., Zhou, F., Li, Z., Liu, H., & Li, L. Are Graphitic Surfaces Hydrophobic. Accounts of Chemical Research 2016.
  • 电化学合成与科研创新
    科研的核心精神是什么?创新、创新、创新!!! 如何创新?这是一个重大课题。不如看看Phil. S Baran的现身说法。1 Phil.S Baran,他是谁? ? 美国斯克利普斯研究所(Scripps)教授? 美国科学院院院士,2017年? 麦克阿瑟天才奖得主,2013年(MacArthur Fellowship)? 主页:http://baranlab.org/? 研究方向:有机合成? 发表文章130多篇,其中11篇Nature,7篇Science2 Phil.S Baran为什么尝试电化学合成? 套用Phil. S Baran的原话,主流合成化学领域中尝试做电化学都是出于一种原因:绝望。譬如:单体之间的N-N键结成二聚合分子,只能用电化学方法合成烯丙位氧化,CH弱键可以被氧化,但是所用催化剂量大,昂贵,不环保产率低如何突破传统合成的瓶颈?传统合成的研究从1840年发展到现在,要创新谈何容易?!那是否可以在方法创新?!电化学合成方法进入他的视线了。3 Phil. S Baran用电化学合成法同时上Nature和Science 1. 《Nature》上发表的文章为:电化学方法氧化烯丙位碳氢键(C-H键)。(Scalable and sustainable electrochemical allylic C–H oxidation. Nature, DOI: 10.1038/nature17431)2. 《Science》上发表的文章为:烷基-烷基交叉偶联的电化学方法(A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, DOI: 10.1126/science.aaf61234 电化学方法氧化烯丙位碳氢键(C-H键)框架解读1. Nature文章电化学方法氧化烯丙位碳氢键的背景:烯丙基的氧化是有机合成中的经典反应,传统方法需要借助高毒性的氧化试剂,如铬和硒;还有很昂贵的催化剂,如钯和铑,难以放大工业级别的合成,如下图1-a、b所示。这篇文章改用电化学氧化的方法,结果到底如何呢? 电化学烯丙位的氧化早在1968年就有报道,电化学氧化α-蒎烯(1),如下图1-C(2)所示,直到1985年才有个重大的提升,可以直接实现氧化,如图1-C(3),只是产率比较低,都在13%-24%之间。图片来源:Nature, DOI: 10.1038/nature174312.Phil. S Baran实验室对电化学合成条件做的优化、扩展。第一步:选择合适的电极Phil. S Baran实验室未采用昂贵的金/铂电话,改而采用比较经济的,惰性也非常好的石墨电极和网状玻碳电极(RVC电极)。但是石墨电极有一定的吸附作用,回收率偏低。而RVC电极表现出更稳定的反应性能。第二步:筛选最佳的反应媒介和共氧化物,如Fig.2所示 图片来源:Nature, DOI: 10.1038/nature17431第三步:从朱栾倍半萜烯丙位的氧化扩展到烯丙位的氧化的通用电化学合成方法 图片来源:Nature, DOI: 10.1038/nature17431 第四步产量升级:100g规模的合成 图片来源:Nature, DOI: 10.1038/nature174315 从“电化学方法氧化烯丙位碳氢键(C-H键)”中看到的社会价值 1. 更经济、环保:从昂贵、有毒金属催化剂到经济、环保“电”催化的转变2. C-H氧化批量生产药物/化学品:从不可能变成可能3. 电化学合成方式或可创造一个全新的合成世界!这还不是尾声,Phil. S Baran还有更大壮举:虽然发表了Nature,也带来了巨大的社会价值,但是实验中还有小小遗憾。当时做C-H氧化电化学合成设备,全部都是自行搭建,恒电位仪、电极、反应管、电极固定夹、数据分析和记录器等等10多项产品,即便专业人员也需要耗费超40min的时间才可以完成搭建,且合成反应的重现性很差。他能否弥补这份遗憾? 2017年8月22日,美国秋季化学会上,Phil. S Baran带给大家更多的惊喜:一份对电化学合成不一样的解读 + 一个全球标准化的电化学合成仪“ElectraSyn 2.0”。点击视频,了解更多关于美国秋季发布会现场情况。Phil.S Baran 发布会现场
  • 关注近期国际行业形势 助力石墨烯产业发展
    p strong   一、行业动态(六月汇总) /strong /p p   (1)中国太阳能组件制造商Znshine Solar宣布,与阿联酋阿提哈德能源服务公司(Etihad Energy services)签署一份100兆瓦石墨烯增强型太阳能组件供应协议。 /p p   (2)黑龙江大学陈志敏教授团队在Energy & amp Environmental Science杂志上发表文章,介绍了一种利用氢键组装的超分子体系灵活调控氮磷共掺杂石墨烯中杂原子配置(如比例和含量等)的方法,实现了NHDG催化剂在酸性条件下HER活性的新突破。 /p p   (3)上海交通大学高分子系郑震副教授带领博士生雷昆在美国化学会旗下知名期刊ACS Omega上发表关于基于氧化石墨烯与苯乙烯类树脂的有机-无机层层组装杂化膜的界面作用研究的研究成果。 /p p   (4)由挪威科技大学(NTNU)的教授Helge Weman和Bj?rn-Ove Fimland领导的研究小组成功地在石墨烯表面产生紫外线,该紫外线可以消除紫外线装置中的有毒汞。 /p p   (5)来自韩国的明知大学(Myongji University)、成均馆大学(Sungkyunkwan University)、 嘉泉大学(Gachon University)、韩国技术研究院(KIST) 和美国维拉诺瓦大学(Villanova University)的研究人员开发出一种基于石墨烯的生物传感器来检测细菌的存在。 /p p   (6)山西煤化所在三维石墨烯基热界面材料研究方面取得进展。 /p p   (7)日本名古屋工业大学(NITech)的研究团队将单层石墨烯应用于氮化镓并通过在紫外线照射下表征器件来确定石墨烯和氮化镓异质结的界面特性,该研究为了解各种二维和三维异质结构的界面,以开发具有石墨烯的新型光电器件提供可能。 /p p   (8)杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证。 /p p   (9)位于葡萄牙米尼奥大学的国际伊比利亚纳米技术实验室(INL)和生命与健康科学研究所(ICVS)的研究人员将开发一种基于石墨烯的设备,该设备能够以快速、可靠的方式并以可获得的成本进行疟疾的早期诊断。 /p p   (10)Proactive investors发布新闻称GrapheneCA利用其专有技术,使用低温工艺将其高品质石墨烯与各种凝胶混合,该公司有望利用其颠覆性的石墨烯技术改变世界。 /p p   (11)美国麻省理工学院的Jing Kong教授等人提出利用石蜡转移石墨烯的技术,解决了石墨烯转移中支撑层污染和起皱问题。 /p p   (12)来自中国、美国和日本的一组研究人员开发一种方法,通过用纳米管增强用于海水淡化项目的石墨烯基膜。 /p p   (13)First Graphene(ASX: FGR)披露其PureGRAPH石墨烯产品,该产品通过改善聚氨酯材料的阻燃性,提高了聚氨酯材料的安全性 /p p   (14)武汉大学袁荃和湖南大学/UCLA段镶锋等团队合作,报道了一种新型的厘米级纳米多孔石墨烯的制备方法,有望更容易实现石墨烯纳滤膜的规模化生产。 /p p   (15)澳大利亚阿德莱德大学乔世璋教授课题组报道了层间距可调控的富氮薄层石墨烯(N-FLG),通过石墨烯扩层实现了钠离子的高效存储。 /p p   (16)中国科学院国家纳米科学中心张勇课题组前期成功实现了过渡金属二硫族化合物本征量子片的规模制备。 /p p   (17)Verditek和Paragraf宣布,他们已经成功地将石墨烯应用到光伏电池上,目前正在继续工作,目标是实现超过25%的效率。 /p p   (18)加拿大石墨烯领导集团(GLC)宣布获得35万加元的拨款, 这笔资金将支持GLC“氧化石墨烯的规模化”,用于开发GLC的产品环境平台。 /p p   (19)Haydale和国家物理实验室(NPL)共同参与一项为期12个月的关于改进石墨烯功能和应用的项目,该项目由英国创新署( Innovate UK )进行资助。 /p p   (20)北京大学刘忠范院士团队开发了一种垂直石墨烯纳米片作为散热器的蓝宝石衬底氮化铝紫外LED器件,有效提升了紫外LED的散热性能。 /p p   (21)中科院重庆研究院与新加坡国立大学合作,研制了三维微纳共形石墨烯柔性力敏电极,并应用于高灵敏柔性压容式触觉传感,主要指标已超越人类触觉感知水平。 /p p   (22)大阪大学的研究人员发明了一种基于石墨烯的生物传感器,用来检测那些攻击胃壁的细菌,这些细菌与胃癌有关。 /p p   (23)德克萨斯大学奥斯汀分校的研究人员开发了一种基于石墨烯的可穿戴设备,可以准确、舒适地监测心脏活动。 /p p   (24)在美国能源部埃姆斯实验室和美国东北大学的合作中,科学家们开发了一个模型,用于预测夹在石墨烯等二维或二维以下材料之间的金属纳米晶体或“岛屿”的形状。 /p p   (25)上海兆芯集成电路有限公司在中央处理器创新技术产业生态发展论坛上,发布了新一代16nm 3.0GHz x86 CPU产品——开先KX-6000和开胜KH-30000系列处理器。 /p p   (26)XG科学近期宣布与中化集团和余姚PGS合作开发石墨烯增强热塑性复合材料。 /p p   (27)石墨烯旗舰合作伙伴布鲁塞尔自由大学、比萨大学和剑桥大学与欧洲航天局(ESA)和瑞典太空公司(SSC)合作,最近向太空发射材料科学实验火箭(MASER),目的是测试在零重力条件下在硅衬底上打印石墨烯图案效果。 /p p   (28)中国科学技术大学朱彦武教授课题组以碳材料的基本结构单元——单层石墨烯作为研究对象,利用原位拉曼光谱和傅里叶变换红红外光谱探究了单层石墨烯电极/电解质界面在电化学循环中的演变过程。 /p p   (29)宁波材料所在推进石墨烯超级防腐涂层领域取得进展。 /p p strong   二、联盟动态(六月汇总) /strong /p p   (1)6月1日,国家石墨烯产品质量监督检验中心发布《产业质量发展分析报告》 /p p   (2)6月1日,2019中国福建(永安)石墨烯创新创业大赛在福建永安成功举办 /p p   (3)6月2日,2019中国福建(永安)6· 18项目成果对接会顺利召开。 /p p   (4)6月5日,中国邮政集团公司与华为签署战略合作协议 /p p   (5)6月5日,济南圣泉集团荣获“2019年度环保社会责任企业”称号 /p p   (6)6月5日,首届西安哈工大校友创新创业大赛暨“迎哈工大百年华诞”创新创业大赛在西安高新区成功举办 /p p   (7)6月6日,石墨烯领域传出重大喜讯!杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证 /p p   (8)石墨烯联盟(CGIA)联合国内外多家石墨烯领域产学研单位,共同倡议将每年6月6日设立为“国际石墨烯日International Graphene Day”。 /p p   (9)6月10日,宝泰隆石墨烯公司被七台河市科学技术局授予科技型中小企业称号 /p p   (10)6月10日,5G助力“泛在电力物联网” 中兴通讯与许继电气签署战略合作协议 /p p   (11)6月10日,华为与马来西亚运营商TIME签署MoU,共建领先的10G PON超宽接入网实验局 /p p   (12)6月12日,圣泉集团又一生物质石墨烯材料研发及产业化应用项目在京通过鉴定 /p p   (13)6月12日,广州特种承压设备检测研究院圆满完成普莱克斯华南区3市4厂654只安全阀现场校验服务工作。 /p p   (14)山西煤化所碳纤维表面工程课题组在表面改性方面取得新进展 /p p   (15)6月13日,菏泽市政协副主席、教科卫体委员会主任黄秀玲来山东玉皇新能源科技有限公司调研 /p p   (16)6月13日,济南圣泉集团荣获“济南市劳动关系和谐企业”称号 /p p   (17)6月13日,佛山市基金业协会、佛山力合创新中心和广东金睿和投资管理有限公司一行赴广东墨睿科技有限公司参观考察 /p p   (18)6月13日,双星集团获首批市级双创示范基地授牌 /p p   (19)6月14日,朗丰石墨烯润滑油获得中国环境标准Ⅱ型产品认证。 /p p   (20)6月20日,“新华社民族品牌工程?服务产业新锐行动”启动仪式暨首批入选企业签约仪式在京举行,东旭光电旗下子公司明朔科技作为首批入选的六家企业之一受邀参会 /p p   (21)6月20日,陕西省商业联合会组织会员代表一行20余人到访西安丝路石墨烯创新中心考察交流 /p p   (22)6月20日,中兴通讯视频算法荣获IEEE CVPR超级挑战赛冠军,关键技术助力5G大视频业务发展 /p p   (23)6月21日,由西安石墨烯产业联盟主办的“2019第二期西安石墨烯项目对接沙龙”在西安丝路石墨烯创新中心成功举办。 /p p   (24)6月21日,中核投资公司领导一行到宝泰隆新材料股份有限公司考察 /p p   (25)6月25日,超威集团连续7年上榜中国轻工百强 /p p   (26)6月25日,国家新材料产业发展专家咨询委员会在中国工程院召开重点领域专项调研总结汇报会,专家咨询委员会李义春委员等石墨烯调研组专家参会,并汇报了石墨烯领域专项调研情况 /p p   (27)6月25日,华为与网易成立5G云游戏联合创新实验室 /p p   (28)6月26日,中兴通讯助力中国移动演示全球首个面向5G的边缘开放硬件加速平台。 /p p   (29)6月26日,美国NANOGRAF公司嘉宾到访墨西科技 /p p   (30)6月26日,广州特种承压设备检测研究院研发的《拉伸测试设备》喜获国家实用新型专利授权 /p p   (31)6月28日,石墨烯在汽车领域应用发展论坛暨西安新三力石墨烯汽车应用研发中心揭牌仪式在西安高新区圆满举行 /p p   (32)6月28日,北京联通联合华为成功完成全球首个5G承载随流检测方案iFIT试点 /p p   (33)6月28日,中兴通讯“ATG空中宽带”获亚洲最佳互联生活移动应用大奖。 /p p   “2019中国国际石墨烯创新大会” 将于2019年10月19-21日在西安陕西宾馆召开,免费参会。详情可登录大会官网(官网:www.grapchina.cn详细了解)。 /p p   电话:400-110-3655 /p p   官网:www.grapchina.cn /p p   邮箱:meeting01@c-gia.org /p p   QQ群:296531551 397051421 /p p   微信:SMXLM2013、CGIA-2013(添加为好友,邀请入群) /p p   微信订阅号:CGIA2013(支持在线咨询) /p p br/ /p
  • 美国P.E石墨管在石油、化工、纺织、机电等行业的应用
    美国P.E石墨管是由高纯石墨粉通过特定工艺压制成的石墨制品。原子吸收光谱法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。此方法具有检出限低准确度高,选择性好,分析速度快等优点,其主要适用样品中微量及痕量组分析。它就是石墨炉分析的核心。   美国P.E石墨管的产品特点:  该元件质地硬而脆,膨胀系数小、能耐急冷急热,不易变形,有良好的化学稳定性,抗酸能力较强,与强酸不反应,抗碱能力较差,在高温下能腐蚀分解棒体。碳棒的抗折强度,随着元件温度的升高而变硬度越大。元件的电阻值,通过电阻率真反映,是按部颁标准规定在25微欧。米测定的。元件的表面负荷电流密度与黑碳棒的原料配方和压制密度有密切关系,可以根据需要任意调整。  1、碳化炉可实现自动推舟,自动调节推舟速度。   2、采用红外测温或光学高温计测温,可实现对炉温的自动控制。   3、炉温较高可到2800℃以上,工作温区大,适应范围广。   4、双管碳化炉可实现炉管使用时间长,更换炉管方便。   美国P.E石墨管的应用行业:  化工用石墨炉管,防腐板   氯碱工业,电镀电解行业用石墨阳极板   铸造行业用石墨冷铁块,模具   铝材生产用石墨环,滚筒.条.板,金刚石工具石墨模具、地质钻头烧结模具   生产新能源材料如锂电池材料用石墨盒,石墨匣钵等。   本公司产品广泛应用于冶金,机械、模具、石油、化工、纺织、机电、金刚石工具等各行业。 若想了解更多P.E石墨管产品信息,可点击链接获取:https://www.instrument.com.cn/netshow/SH100408/H1273506.htm
  • 新世纪“材料之王”——石墨烯在空天推进和动力领域的应用
    太空环境由极端温度、真空、微流星体、太空碎片和太阳黑子活动引起的大变化组成。航天器和航天系统的设计和建造很大程度上依赖于这些参数。暴露在这些恶劣环境下的系统表面由于原子氧的存在而产生破损。因此,高强度和刚度的先进工程材料使20世纪的月球探索时代成为可能,人类探索火星和更远的目的地将需要新一代的材料。20多年来,在纳米尺度(一维小于100nm)合成和加工材料的独特性能吸引了各行各业的关注,这些特性包括大表面积、高纵横比、高各向异性、可定制的电导率和导热系数以及独特的光学特性等。这些特性可用于制备高强度、轻量化和多功能结构、新颖的传感器以及具有高度可靠的环境控制能力、能够屏蔽辐射的储能系统。可持续技术改进的交织性质使纳米材料成为航空航天应用的理想材料。纳米材料可以集成到复杂的航空几何结构中,减少制造技术中的废物产生。这也可用于轻量化和无需耗时维护的机身和结构的设计。石墨烯结构由单层厚度的六方晶格碳原子组成,具有高强度、高刚度、低密度、高电导率和导热率。石墨烯具有高的载流子传输速率,表现出比铜导体好的导电性,比硅半导体更好的材料。石墨烯基复合材料应用于航空航天工业,能有效地减轻重量,提高材料强度,从而减少排放,减少燃料消耗,最终实现更绿色和更清洁的环境。以石墨烯为基础的先进纳米材料在航空工业中,得到了广泛的认可和应用。本文主要从以下三方面进行综述: (1)简述石墨烯结构及其性能特征;(2)主要介绍石墨烯在空天推进和动力领域的热门应用方向,例如复合推进剂,热管理,电极材料,光帆材料等方面;(3)石墨烯未来在空天领域的应用前景和挑战。一、石墨烯结构及其特性石墨烯由单原子厚度的sp₂杂化碳原子同素异形体组成,呈二维(2D)平面蜂窝状晶格。也是构成石墨、碳纳米管、富勒烯等多种碳的同素异形体的基本单元。如图1所示,具有二维碳原子结构的石墨烯,可以通过堆叠形成三维的石墨,也可通过卷曲形成一维的碳纳米管,或者通过包裹形成零维的富勒烯。图1 (a)石墨烯及碳的同素异形体;(b)石墨烯的晶格结构,属于相邻两个碳格A和B的碳原子以圆点表示;(c)石墨烯的能带结构;(d)石墨烯起伏表面模型图。早在1940年,就有理论认为,二维的石墨烯处于非稳定热力学状态,无法在有限温度下自由存在。因此,一直仅是一个学术概念。直至2004年,曼彻斯特大学利用简单的机械剥离方法成功获得单层石墨烯,从而证实它可以稳定存在。石墨烯的蜂巢晶格结构由密集分布在六边形点阵上的碳原子构成,原子排列十分紧密。碳原子以sp₂电子轨道杂化,在平面内形成3个σ键,键角120°,键长约为0.142nm(图 1(b)),2pz轨道电子在垂直于平面方向形成大π键。石墨烯具有特殊的能带结构,由简单的紧束缚模型可以计算得出,它的导带(π*带)和价带(π带)在布里渊区的两个锥顶点K和K´交于一点,称为Dirac点,进而形成圆锥状的低谷。同时,通过观测发现,石墨烯并不是一个完美的平整的二维结构,而是在微观状态下表现出一定的起伏(图 1(e)),这也被认为是石墨烯能够在室温下自由稳定存在的原因。由于其优异的化学稳定性、高载流子迁移率、低密度和光学透明度等特性,在传感器、光子和电子器件等领域被认为是一种很有前景的材料。这一新型碳材料也从此开辟了一个崭新的研究方向,以其令人兴奋的独特性质,涉及的领域覆盖化学、力学、医学、电子智能及众多交叉学科,并由此创造了潜在的巨大经济价值与广阔的应用前景。二、石墨烯在空天推进领域热门应用方向航空航天应用历来是先进材料的驱动力,从太空飞行器的强化碳-碳热保护系统到先进的推进动力系统。只有工程纳米材料的应用才能满足需求,使得航空航天发展更进一步。(一)复合推进剂石墨烯的应用目前也已经扩展到复合推进剂领域,主要用于提高推进剂的热分解、导热以及力学性能。研究最多的就是复合固体推进剂含能组分的热分解,分解速率的提升对于提高推进剂的燃烧性能至关重要,而热分解又主要依赖于催化剂体系。传统上广泛使用的催化剂主要是一些过渡金属及其氧化物。它们的催化能力依赖暴露出来的金属活性位点的数量,然而其往往容易发生团聚,降低催化活性。为了克服这一问题,纳米碳材料已经被广泛作为催化剂载体,以抑制催化剂颗粒的团聚,提高其催化能力。以石墨烯为基底负载无机纳米颗粒的方法主要有非原位复合和原位复合。非原位复合是将预先制备好的纳米颗粒直接附着在石墨烯上,但是由于兼容性问题以及改性剂可能影响到与含能材料之间的相互作用,所以以原位复合方法制备复合推进剂的方法研究的较多。原位复合是通过在石墨烯表面上由各种前驱体制备出纳米颗粒的方法。根据制备手段不同原位复合可以分为还原法、电化学沉积法、水热法、溶胶-凝胶法。石墨烯原位复合纳米材料的制备方法中,电化学沉积法、溶胶/凝胶法由于工艺复杂或原料昂贵,不适合大规模生产。水热法相对于化学还原法的优势在于避免了还原剂的使用,还可以负载金属氧化物纳米颗粒,纳米颗粒分散度高,粒径小且对负载纳米颗粒的性状调控性更强。在实际应用中,根据负载的燃烧催化剂选择不同的方法制备。DEY等采用微波法制备了直径约20~30nm的Fe₂O₃粒子均匀分散在石墨烯片上的Fe₂O₃/Graphene复合粒子,作为AP的催化剂,并对其催化性能进行研究。研究发现,随着Fe₂O₃/Graphene含量的增加,催化作用也明显增强,同时指出Fe₂O₃/Graphene能够有效加快AP系推进剂的燃烧速率。复合固体推进剂的导热问题是导弹、火箭系统安全性与可靠性研究中的重要问题。一方面,由于推进剂不可避免地需要承受极端恶劣和复杂的温度环境,温度的变化很容易导致内部应力的产生;另一方面,导热系数对推进剂的点火和燃烧性能具有关键性的作用。以高分子粘结剂为基体的复合固体推进剂导热系数通常较低,这使得其在承受大幅度温度冲击时,热量无法快速传递,导致装药内部温度分布不均匀或呈梯度分布,进而产生严重的内部热应力,直接引起内部裂纹甚至结构破坏。石墨烯由于具有极高的导热系数和较轻的质量,目前已经广泛作为导热填料用于复合材料。这种具有二维结构的新型轻质碳材料实际上已经在含能材料导热性能的提升方面发挥了作用,如对于高聚物粘结炸药导热系数的提升。张建侃等总结了石墨烯应用于固体推进剂的研究进展的基础上,提出非氧化石墨烯由于导热系数高,适合经非共价改性后分散于推进剂基体中,增强基体的导热性能。此外,复合固体推进剂力学性能的不足将导致药柱无法承受冲击、振动、过载等复杂载荷的作用,进而产生裂纹,增大燃烧面积,引起发动机内压升高,甚至导致爆炸。为了提高复合推进剂的力学性能,在基体中添加纳米材料已经成为提高推进剂力学性能的重要手段。文献指出,石墨烯应用于复合推进剂,可以有效增强推进剂的力学性质。(二)热管理石墨烯纳米材料目前正被纳入各种航天热防护材料和热管理,以提高在各种气或热流动条件下热稳定性和机械完整性的极限。为特殊航天任务材料系统提供多功能的研究也在进行中。由于航空工业的发展,复合材料基体的耐热性和烧蚀性能提出了更高的要求。由于树脂具有良好的加工工艺等性能,被广泛用作耐烧蚀材料的主要基体。为了进一步改善烧蚀材料的性能,石墨烯由于其独特的结构,表现出优异的热稳定性能、力学性能、导电性能等特点,是制备先进复合材料的理想增强体。这些复合材料用于高超声速飞行器前缘的热保护系统、火箭喷管和固体火箭发动机的内部绝缘以及导弹发射设施结构。研究发现,氧化石墨烯/酚醛树脂/碳纤维复合材料的热稳定性和烧蚀性能得到了显著提高,这是因为GO在聚合物基体中的分散良好,GO与酚醛基体之间的界面相互作用强,以及热解后的层状碳结构。与其他样品相比,GO含量为1.25%的样品在烧蚀率、热扩散率和热稳定性方面表现最佳。该复合材料在不同温度下具有恒定的热扩散率,炭产率和烧蚀率分别提高了10%和51%。MA等为了提高碳纤维/ 酚醛复合材料的烧蚀性能,采用纳米填料对纤维增强体界面进行改性。首先,通过将低浓度的GO(0.1%)加入到碳/酚醛(CF/PR)中,结合实验和计算分析氧化石墨烯(GO)对提高复合材料抗烧蚀性能。氧化石墨烯填充复合材料在热阻方面的优势与氧化石墨烯的加入提高了PR的炭收率和纤维的石墨化。分子动力学模拟表明,即使浓度很小,基体内的氧化石墨烯也可以作为炭化PR石墨化晶体生长的核剂。在极端烧蚀温度下,纤维-基体界面处的氧化石墨烯可以与纤维结合。促进了石墨烯-纤维界面stone-throwing-wales缺陷(xy平面)和sp₂杂化(z方向)的形成,进一步提高了纤维的石墨化程度。文中还研究了两种纳米材料填充 CF/PR复合材料的界面、热性能和烧蚀性能。特别是,氧化石墨烯(GO)和石墨氮化碳(g-C3N4)被用于生产低负载(0.1%)的复合材料。通过氧乙炔火焰试验研究了复合材料的烧蚀性能。石墨烯填充和g-C3N4填充复合材料的抗烧蚀性能比原始复合材料分别提高了62.02%和22.36%,线性烧蚀速率的降低是导热系数、烧焦层和纤维石墨化程度共同作用的结果。氧化石墨烯填充复合材料的机理是氧化石墨烯可以显著提高纤维表面的石墨化程度,并进一步提高其抗高温烧蚀的耐热性。而在g-C3N4填充的复合材料中,较厚的纤维直径和烧蚀区炭化层可以分散可燃气体,提高抗氧化性能。此外,将石墨烯均匀地分散在丁苯橡胶基体中,显著提高了聚合物基纳米复合材料的抗烧蚀性能。多孔结构在烧蚀试验过程中形成,它增强了蒸腾和蒸发过程,降低了背面的温度升高。橡胶复合材料的极限拉伸强度和橡胶的肖氏硬度A得到有效提高,而断裂伸长率随着填料与基体比的增加而降低。与有机硅、天然橡胶和乙丙橡胶纳米复合材料相比,丁苯橡胶复合材料在暴露于超高温和剪切流后显示出很好特性。ARABY等制备了苯乙烯-丁二烯橡胶和石墨烯聚合物纳米复合材料。当纳米颗粒含量达到10.5%阈值时,产生导热和界面通道,此时导热系数最高。此外,如图2所示,辐射冷却正在成为一种越来越有吸引力的被动热管理方法,它利用周围环境中的光谱辐射特性。通过机械可重构石墨烯的选择性中间膨胀发射率控制,其中机械拉伸和释放会引起石墨烯的受控形态变化。利用太阳光谱吸收太阳辐射加热(从200nm~2.5μm,可见到近红外波长)并利用大气透射窗口(从8μm~14μm,中红外波长),通过将热量重新发射到外层空间来冷却表面。用于航空航天应用的系统和表面需要动态温度控制以获得最佳系统性能,同时满足个人舒适度和维护设备功能的热需求,并避免过热。能够在不同光谱范围内加热和冷却否定了使用具有相当均匀的高或低发射率值的传统材料,并且由于缺乏对发射率的动态调制,可调节温度的需要是刚性冷却表面无法实现的。同时,由于石墨烯良好的导热性,基于废热反射导热的石墨烯散热器在空间光伏聚光器上得到了应用,不仅降低了成本,在降低质量密度,比功率的提升方面都起到至关重要的作用。图2 (a)基于皱褶石墨烯的选择性发射;(b,c)褶皱节距的变化可利用太阳辐射和大气窗口来辐射冷却(10 μm)和加热(290nm)。(三)电极材料目前,小型化、自动化、以功能为中心的设备的快速发展,使星际任务和近地空间探索的实现更近一步。先进的纳米结构材料的引入促进了全球智能多样化的平台在电力、仪器和通信方面取得进步。然而,仍然缺乏高效可靠的推力系统,能够在长期部署期间支持小型卫星和立方体卫星的精确机动。此外,航空和空间系统需要可靠的电力生产、存储和传输,无论是短期还是长期活动。现有的能源系统正在被纳米材料创新所取代或补充。以石墨烯为基础的更好的工程纳米材料正在不断改进。MARKANDAN等使用氧化铝增韧氧化锆(ATZ)作为结构材料制造了一个微型推进器,氧化钇稳定氧化锆-石墨烯(YSZ-Gr)作为电极材料。YSZ-石墨烯不仅可以作为电解分解硝酸羟铵溶液的电极,还可以起到阻尼作用。这种微型推进器作为主推进系统具有潜在的应用,可用于卫星星座编队飞行中的快速轨道转移。离子推进器阴极(如图3(a)所示)的关键挑战在于减少或完全消除阴极的推进剂消耗,显著提高阴极的使用寿命,以及减少白炽部分的热损失。通过使用纳米多孔材料、纳米管和石墨烯,可以确保减少气体消耗。这个问题的最佳解决方案是通过使用高发射材料和表面结构完全消除通过阴极的气体通量。垂直排列的石墨烯薄片显著提高推进器效率的,作为无推进剂体系下的良好候选者而备受关注,如图3(b)所示。图3 (a)常用的热发射阴极示意图;(b)纳米多孔材料,垂直排列的石墨烯薄片直接生长在纳米多孔氧化铝上(比例尺:200nm)。(四)光帆材料基于石墨烯的轻型帆的推进系统因其灵活性和无需携带燃料这一特性而成为行星际和星际任务的候选技术。轻型航行也是唯一现存的空间推进技术,可以让我们在人类的一生中访问其他星系。为此举办的蜻蜓计划竞赛,就旨在评估激光驱动的光帆星际探测器发送到另一个恒星系统的可行性。这种大规模光操纵石墨烯光帆对实现星际探索和直接空间运输是具有深远意义的。如图4(a)所示,ZHANG等使用大块石墨烯泡沫在宏观尺度上观察到其直接光推进。这种三维石墨烯材料的新形态,使其不仅能够吸收不同波长的光,而且可以使用瓦级的激光,甚至阳光,按照一种新颖的光致电子喷射机制,直接推进到亚米尺度。如图4(b)所示,GAUDENZI与其合作伙伴制作了由铜网格支撑的石墨烯微膜二维帆叶,并在微重力环境下测试了光诱导位移。提出的材料设计消除了帆所需的光学和机械性能,从而大大降低了帆的总质量,并为利用石墨烯机械强度的高反射2D帆打开了大门。此外,PERAKIS等设计了石墨烯作为夹层的低密度和高反射率的三明治轻帆,达到指定加速度比目前最先进的镀铝的聚酯薄膜太阳帆材料性能更好。图4(a)石墨烯海绵在激光照射下向上推进和光致旋转示意图;(b)帆在激光照射下的垂直位移,显示了帆在微重力和真空中的不同位置(侧视图):释放后(左)和在450nm、100mW的激光下加速350ms后(右) 。(五)其他领域由于太空环境由极端温度、真空、太空碎片和太阳黑子活动引起的大变化构成,那么先进的纳米复合材料被用于航空航天飞机结构和太空环境恶劣气候的涂层以及微电子系统的开发就变得非常的有意义。石墨烯霍尔效应传感器具有低热漂移,适用于航空航天应用的电力电子模块中的电流实时监测,可在高达500K的温度下工作。随着温度的升高,临界电子性质的变化,特别是载流子浓度和载流子迁移率的变化,这些参数是受实现传感器的石墨烯层狄拉克点Dirac点所独特影响的。利用门控优化石墨烯霍尔传感器可以实现低温度系数下的高灵敏度霍尔效应测量。此外,在其他星球上的生境开发受到多种标准的制约,其中之一就是空间碎片的撞击破坏。Kuzhir在纳米级厚度的铜催化剂膜和介质SiO₂基底之间通过催化化学气相沉积工艺合成Ka波段多层石墨烯薄膜,石墨烯薄膜的厚度由原子力显微镜直接表征,仅显示了样品上纳米级的小波动。所研究的薄膜厚度不超过5nm,且有一定的粗糙度。石墨烯只有千分之一的皮肤深度,吸收损耗造成的电磁屏蔽效率非常高,达到35%~43%的入射功率水平上。制造的石墨烯薄膜在室温下具有高度的导电性,在可见的范围内具有非常高的透明性,并具有非常好的热学和力学性能,可能成为制造纳米级厚度的电磁干扰防护涂层的有趣的技术材料。此外,特殊的三维导电链结构对轻质,柔性的导电纳米复合材料具有很强的吸引力,尤其是在降低材料的制造价格和良好的加工性能方面。聚二甲基硅氧烷(PDMS)复合材料通过将石墨烯排列成仿珍珠层状序列三维结构,在石墨烯含量不足的情况下表现出更高的力学性能、各向异性电导率和优越的电磁辐射屏蔽效率。掺杂0.4%质量分数的导电颗粒电磁辐射屏蔽效率达到42dB,沿排列方向的电导率为32S/m。在2500 ℃下热处理气凝胶后,聚合物纳米复合材料的电磁辐射屏蔽效率和电导率分别变化为65dB和0.5S/m。在0.15%的超低浓度,热处理温度800℃条件下,其电磁辐射屏蔽效率可达25dB。表明各向异性石墨烯/PDMS层板在超低石墨烯含量下通过结构调控获得了更高的电磁屏蔽效率。环境控制和生命支持系统技术是纳米材料的沃土,长期的人类太空探索带来了最大的挑战。无论是在相对安全的低地球轨道内的短期任务,还是艰难的长期任务,如前往遥远的星球。可靠的空气、水和食物供应;废物管理系统;功能性的可居住空间都是必不可少的。包括在国际空间站上的低轨道运行,已经为生命支撑技术提供了一个有用的试验场,随着航天国家为前往火星等目的地的长期任务做准备,在低轨道运行中测试技术被认为是一项重要的指标。目前的生命支撑技术的可靠性和性能相对较差,需要采用高比表面积和导电纳米材料作为提高系统整体性能的途径之一。碳纳米管仲胺功能化以实现二氧化碳去除,这是生命支持技术不可或缺的功能,并解决当前系统的局限性,包括可再生性和高功耗。在最好的条件下,水的净化和回收是具有挑战性的,但微重力环境的增加和多年耐用性的必要性推动了基于纳米材料的水过滤系统的几个例子。富勒烯在水净化方面已显示出非常好的前景,美国宇航局赞助的使用碳纳米管的纳米级过滤技术已发展成为一种商业产品。尽管可扩展性仍然存在问题,但多孔石墨烯是一种积极研究的水过滤材料,吸引了大量的关注,如图5所示。图5 (a)纳米多孔石墨烯水脱盐示意图;(b)具有亲水键的纳米孔示意图。三、结束语本文首先对石墨烯的结构和理化性质进行了介绍,并简要阐述各性能在具体应用中的重要作用;然后,综述了石墨烯纳米材料在航空航天领域的各方面(复合固体推进剂、热管理和智能光帆等)前沿领域的应用现状。石墨烯及其复合材料的制备已得到较快发展。其中,石墨烯在复合固体推进剂中的应用目前主要集中在提高推进剂含能组分的热分解和燃烧性能方面,而在导热和力学性能方面的研究则相对较少,且制备方法单一,以简单的共混为主,缺乏针对性的设计和性能的控制。而且对石墨烯的性能增强机理缺乏深入的分析。在热管理方面,导热系数、产炭性能和纳米颗粒分散对聚合物纳米复合材料的烧蚀性能和绝缘性能都有影响。酚醛树脂仍然是这一应用中被广泛研究的聚合物,纳米陶瓷颗粒与碳基的复合纳米填料的结合似乎是下一个热管理趋势。此外,在太空电力推进领域,新型石墨烯基纳米材料和微电子机械系统支持的离子液体推进器解决方案,这是为微加工和纳米结构推进器阵列的实现提出了方案。另外,一种可能的低成本,高时效的纳米制造工艺,用于飞机储能和生命支持设备。与传统解决方案相比,这些纳米复合材料应用了纳米材料的整合,并与太空任务和探索计划相结合,可以节省成本和时间。石墨烯在很多领域的研究仍处于探索阶段,石墨烯材料在极端环境中的行为将扩大我们的基本理解和潜在应用,将促进人类在太空的探索。石墨烯基纳米材料未来的研究重点需要着眼于以下几个方向:(1)一种降低开发成本的潜在解决方案是创新材料-建模和模拟与实验测试和表征方法相结合,可以降低开发和鉴定成本。将有助于跨越纳米工程材料的性能转化为宏观尺度上的现实。(2)大规模构造石墨烯材料的集成方法,以保持在石墨烯纳米尺度上注意到的性能和批量实现。它们占地面积小,功耗低,耐辐射,非常适合太空应用。(3)将纳米石墨烯材料集成到最先进类型的电力推进装置中,利用纳米材料的独特特性,提高其效率和使用寿命。另外,进一步创造出一个自适应(自清洁表面,自愈合修复机制,自我愈合)推进器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制