当前位置: 仪器信息网 > 行业主题 > >

变速电机

仪器信息网变速电机专题为您提供2024年最新变速电机价格报价、厂家品牌的相关信息, 包括变速电机参数、型号等,不管是国产,还是进口品牌的变速电机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合变速电机相关的耗材配件、试剂标物,还有变速电机相关的最新资讯、资料,以及变速电机相关的解决方案。

变速电机相关的论坛

  • GB/T 228.1-2010方法A应变速率

    试样规格:原始标距30mm,平行部分长度60mm,示例1:GB/T228A224表示试验为应变速率控制,不同阶段的试验速率范围分别是2,2和4。在万能试验机控制系统中使用引申计反馈如何设置应变速度,使用横梁位移试验如何设置加载速度[img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012181624436859_414_3540587_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012181624438012_3978_3540587_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012181624438304_9459_3540587_3.png[/img]

  • 【讨论】讨论 一个物理概念 应变速率与取向

    讨论 一个物理概念 应变速率与取向请大家帮忙讨论一下在牵伸的过程中,应变速率,分子取向和分子松弛速率之间的关系应变速率增加是不是肯定导致非晶取向增大?应变速率的增加与分子松弛速率有什么关系外文文献中有个orientation relaxation 表达的是什么意思,是表达解取向过程还是取向过程?哪个朋友这个方面的资料,可否提供

  • 【讨论】同事在问我高应变速率的试验机国内哪有

    我同事找我了解高应变速率的拉伸试验国内哪些地方可以做据我了解,应变速率从0.003到100甚至1000的试验机国内是不是就宝钢有?中国科学院有没有这样的设备?他们的设备都同意对外做实验吗?收费情况如何?

  • 【求助】拉伸试验的应力应变速率转换

    AC7101标准中规定:If the specification does not reference a specific strain rate, the strain rate for both room and elevated temperature tensile testing is to be 0.003 to 0.007 inch/inch/minute through yield, and 0.05 inch/inch/minute after yield, with the yield point being determined at 0.2% offset, unless specified otherwise.拉伸试验中应力应变速率屈服前为0.003到0.007 in/in/min,屈服后的速率为0.05in/in/min.而新三思给我们设定的移动速率为2mm/min,这是如何转换的?是否符合以上规范要求?国产设备可以实现应力应变速率控制吗?

  • 高低温系列试验箱对温变速率的解释

    高低温系统试验箱对温变速率的解释如下: 1、温度变化试验:为设置一定的温度变化速率进行高温与低温之间的转变。也称之为慢速的温度变化试验,此设备为高低温试验箱,其温变速率是升温1~3℃/min,降温0.7~1℃/min。 2、快速温变试验:目前发现部分企业标准中有此类项目,此类试验属于加速寿命试验方法,故一般不推荐应用于认证试验中。设备名称为温度快速变化试验箱,其温变速率可达15℃/min。 3、冷热冲击试验;在特定时间内进行快速温度变化,低温区、高温区转换时间小于等于15秒。温度恢复时间小于等于5分钟。常用术语中的冷热冲击试验也属于温度冲击试验或高低温冲击试验。

  • 【讨论】如何实施GB/T228中规定的应变速率控制??

    [color=#DC143C][size=4]在GB/T228中规定的下屈服强度的测定中要求使用应变速率进行测量控制,大家在平时的工作中有没有什么好的方法,提供出来和大家分享!问题1、现在我们那些厂家生产的试验机可以实现该种控制方式? 2、如何实现应变速率控制? 3、是否可以根据标准要求通过粗略计算而使用其它的控制方式来实现?[/size][/color]

  • 变速箱齿轮油分析

    变速箱油乳化粘状,静止后沉淀。有没有大佬知道什么情况?[img]https://ng1.17img.cn/bbsfiles/images/2019/11/201911110929516523_5065_3241252_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/11/201911110929516064_7132_3241252_3.png[/img]

  • 【讨论】FEI Tecnai G2 12电镜Y轴变速箱故障

    2007年3月2日,一个灰色的日子。观察人员在看片移动标本时突然发卡,伴随着几声咔咔后再也无法移动标本了。 电话打进FEI维修工程师手机,对方电告可能的故障,按指示拆下可能故障部分,发现Y轴变速箱内输出轴上一个薄薄的(经测量厚度0.1mm)钢片(压住三颗滚珠的钢片)缺了一个小口,滚珠滚动到此时卡住。询问FEI,答复此乃易损件,但无单独的钢片更换,要换就得换整个变速箱,要价6000美刀!主任一听当即抓狂了,6000美刀啊,实验室所有人员辛苦一年也落不下6000美刀啊,全给FEI打工了。 各位使用FEI电镜的兄弟单位,这个变速箱有无更换的历史?我们这台机器才运转2年,2年啊,变速箱已经更换2次了,第一次在刚刚过保的时候坏了,是X轴的,经交涉免费更换了,可这次看来是得自己掏腰包了!

  • 车用PP高应变速率下的应力-应变曲线获得方法研究

    [back=#00b0f0][/back][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/dbcfe59c0b32483a9206d9b5264fd3c1?from=pc[/img][back=#f6f9fd]摘要:[/back][back=#f6f9fd]在通常的汽车碰撞CAE仿真分析中,需要用到应变速率从0.01~100 s-1全应变速率下甚至更高应变速率下的应力-应变曲线。当测试速率达到1 s-1甚至更高时,数据的获得就变得困难起来。通常有两种方法:采用方程拟合法 采用液压原理的高速拉伸试验机测试。结果表明,采用方程拟合的方法可以得到比测试得出的最高应变速率高出两个数量级的曲线及特征值;对于达到峰值应力后应力变化较小的曲线,方程拟合法准确性较好,对于达到峰值应力后应力降低或增加的材料,方程拟合法的准确度稍弱。[/back][align=center][/align]关键词:高速拉伸 方程拟合法 直接测试法 非接触式引伸计 CAE分析汽车在进行碰撞过程中,整个过程只有0.1~0.2 s,会产生大量的能量吸收与转移,而这个能量吸收与转移的能力与材料有关。然而困扰汽车设计的一大难题就是选材。现阶段,车用材料制备结构件需要前期进行更多的模拟试验,CAE动态分析是不可或缺的。而车用材料CAE分析面临着动态拉伸数据获得难的问题,也就是说高应变速率下(如应变速率大于1 s-1)的应力-应变曲线获得相当困难。需要材料在高应变速率下的拉伸数据。目前国际上针对非金属材料的高速拉伸测试方法主要有两个:采用ISO 18872:2007《塑料高应变速率下的拉伸性能测试》(由金发科技股份有限公司联合其他单位已经将其等效转化为国家标准发布,以下简称方程拟合法)和采用高速拉伸试验机直接进行测试——直接测试法。方程拟合法是针对塑料高速拉伸测试的标准,计算出塑料在高速下的力学性能。而直接测试法主要是指使用高速拉伸设备直接测试。[align=center][/align][color=#346eb7]01测试原理[/color]方程拟合法:依据ISO 527-2:2012,拉伸应力-应变曲线在0.1~100 mm/s选定速度下测试获得。同时,测量泊松比随应变的变化。由测试结果,可计算出各应变速率下的真实应力和真实塑性应变值。通过数学函数方程可对各应力-塑性应变曲线进行准确模拟。同时,也可以建模分析此函数中的参数随应变速率的变化,从而外推得出较高应变速率下的参数值。通过计算就可获得较高应变速率下的应力-应变曲线。直接测试法:通过设置应变速率或测试速度、接触力、数据采集频率等参数,使用高速拉伸试验机,沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量在这一过程中试样承受的负荷及其伸长。[color=#346eb7]02方程拟合法[/color][b][color=#ff8124]2.1 低速下特征数据的测试[/color][/b]1) 测试速度选择:试样在0.1,1,10 mm/s速度下进行测试。2) 测试样品:对于在屈服应变以下的性能测试(见ISO 527-2:2012),可使用ISO标准中的1A,1B或1BA试样。3) 测试设备选择:对设备的一般要求见ISO 527-1:2012。当测试速度达到10 mm/s以上时,通常要使用液压伺服式测试设备。为顺应大多数厂家的条件,测试时采用的设备为普通拉力机。[b][color=#ff8124]2.2 结果计算[/color][/b]在选定的测试速度0.1,1,10 mm/s下进行拉伸测试,得出达到屈服应变前的工程应力σ,工程应变ε、拉伸模量E和泊松比μ。根据式(1)计算各应变下的真实应力σT:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/66546996b6f5446cbe10899be29cb0b9?from=pc[/img][align=right](1)[/align]式中:σ为工程应力 μ是由工程应变计算的泊松比。根据式(2)计算真实应变εT:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/4b53cfd50166404c8b22f0fbf14e55b2?from=pc[/img][align=right](2)[/align]根据式(3)计算各应变下的真实塑性应变A:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/2a452345dabb46348dddd8b3f4ccb12c?from=pc[/img][align=right](3)[/align]式中:εe为弹性部分的应变,考虑到εe?1时不用再计算真实弹性应变,因此式(3)做了这样的近似处理。[b][color=#ff8124]2.3 应力塑性应变曲线建模分析[/color][/b][color=#ff8124]2.3.1 低速下参数拟合[/color]根据式(4)进行拟合。拟合模型派生出的参数σ0,σf,B,β的数值,从而使每一测试速度下的真实应力σT与计算得出塑性应变A能够很好地契合。[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/011433bece884a1db7393cae475e59dc?from=pc[/img][align=right](4)[/align]式中:σ0表示无塑性应变时的应力,其值取决于代表应力-应变曲线的线性段的斜率E,σf是高塑性应变时的极限应力。参数B和β决定平均塑性应变及应变范围,在这个范围内,真实应力随着真实塑性应变的增加而增加。[color=#ff8124]2.3.2 高速下方程参数拟合[/color]将参数σf(每一测试速度下)与塑性应变速率的对数作图。将数据进行最佳的线性拟合,并将直线外推至最大测试速率以上两个数量级的应变速率。在此范围内可通过图形或以下公式得出任一应变速率下的σf 的值:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/a84ed35824264686a35416f6ed88ff75?from=pc[/img][align=right](5)[/align]式中:C为应力轴上的截距 a为曲线斜率。计算有效塑性应变速率A′ 时,可以通过计算峰值应力下的塑性应变随时间的变化速率,如没有峰值应力则采用屈服应力。通过在不同应变速率下的试验数据拟合式(4)的参数值,获得每一个参数的平均值,从而得出参数σ0,σf,B,β的单一数值。[b][color=#ff8124]2.4 高应变速率下材料的应力-应变曲线[/color][/b]根据方程拟合法的原理可知,采用方程拟合法得到高应变速率下的应力-应变曲线,需要用到式(4),而式(4)适合于带有屈服的样品的拟合。因此对于脆性材料便不适合应用此公式得到高应变速率下的应力-应变曲线。对于聚丙烯(PP)、聚碳酸酯(PC)韧性材料,可以采用方程拟合法得到高应变速率下的应力-应变曲线。根据测试所得数据,将某PP材料以及某PC材料使用式(4)以及式(5)进行拟合的各参数如表1所示。[align=center]表1 拟合得出的参数[/align][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/6117d354716a41d0b81e4ffbc7fa0588?from=pc[/img]根据上述拟合的参数,得出高应变速率下的PP,PC应力-应变曲线,如图1,2所示。图1,2中曲线1,3,5分别为0.1,1,10 mm/s速度下测试所得的结果,曲线2,4,6分别为0.1,1,10 mm/s速度下根据式(4)拟合的结果,曲线8,10为采用式(4)与式(5)拟合的结果。[color=#346eb7]03[/color][color=#346eb7]直接测试法[/color]通过设置应变速率或测试速度、接触力、数据采集频率等参数,使用高速拉伸试验机直接进行测试。测试设备应至少可以进行12 m/s速度下的拉伸测试。为实施此速度下的拉伸测试,设备应采用液压伺服式,实际测试速度允许偏差在±15%以内。可见测试装置的设计是非常重要的,使用高硬度的测力传感器(如压电式的)和轻质高刚度的部件是必要的。对于引伸计的选择,通常选择非接触式的引伸计。且引伸计的数据采集频率需要足够高。采用直接测试法得出PP,PC在100,1 000 mm/s测试速度下的结果(图1,2中曲线7,9)。测试设备:Zwick/Roell HTM 2512型高速拉伸试验机 设备测试速度范围:0.0001~12 m/s 引伸计:非接触式光学引伸计。[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/4789d25a65d94e5d87b5df466682d0b5?from=pc[/img][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/5899018541ef4d27915483314e45059a?from=pc[/img][align=center]图1 PP材料的真实应力-真实应变曲线[/align][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/13a12a741fe1467d8a9bb253abf2cafc?from=pc[/img][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/52d4386c1dca4fa5baef3cbe192b18f8?from=pc[/img][align=center]图2 PC材料的真实应力-真实应变曲线[/align][align=center][/align][color=#346eb7]04 分析与讨论[/color]两种方法均可以得出高应变速率下的应力-应变曲线,其在操作过程中差异明显,但在结果上,对于进行测试的两种材料而言,差异不大。由图1,2可见,采用方法拟合的曲线与采用直接测试得出的曲线在100,1 000 mm/s(高于最高测试速度两个数量级)时吻合情况尚可,对于CAE模拟所需的关键数据可以得出较准确的值。但是仔细观察两个曲线,发现对于PP材料而言,随着应变的增加,应力增加到最大值后变化幅度较小,而采用方程拟合法拟合时,由于方程本身的特性,达到屈服应力后,应力变化小,不会出现增加或降低很大的情况,与材料实际测试曲线吻合较好。而观察PC的测试曲线时发现,PC材料本身的应力达到最大值后,由于材料本身的原因塑性段会出现一个急速的力值降低再升高的过程,而式(4)本身描述的曲线确是塑性应变很小的,可见,对于曲线类似PC类(塑性段应力值降低)的材料采用式(4)很难达到很好的拟合效果,但是对于弹性段和应力的拟合是可以接受的。然而,在应力峰值出现后,受材料分子排布的刚性影响,真实应力随着应变增加或降低的材料也是较多的,如果真的要达到一致性较高的模拟,可以建议在式(4)的基础上加一个类似抛物线的参数项得到,即[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/5dbb3c6963c04605b96702b456bce8d1?from=pc[/img][align=right](6)[/align]其中,δ用来描述在应力出现峰值之后的应力下降,F为应力最小时的塑性应变值,H是高塑性应变时的极限应力。式(6)中的参数H仍然比式(4)中的σf稍大一些,因为要弥补由加入类抛物线参数项而引起地峰值之后的应力值降低。然而经过试验证明,即使是添加了类抛物线的参数项,仍然很难达到类似前文中PP材料拟合的一致性,对于达到应力峰值后应力增加或降低的材料,无论是哪种CAE软件中的本构关系,都很难达到一致性较高的拟合。因此,采用方程拟合法只能近似的模拟而不能完全替代高速拉伸测试仪给出的实际测试结果。[b][color=#346eb7]05 结论[/color][/b][color=#ff8124]经过理论分析与试验证实:[/color]1) 采用所述的方程拟合的方法可以得到比测试得出的最高测试速度(应变速率)高出两个数量级的测试速度下(应变速率下)的曲线及特征值。2) 对于选用的PP材料而言,采用方程拟合的方法得出的数据与实际采用高速拉伸测试仪得出的数据吻合情况较好,对于CAE模拟所需的关键数据可以得出较准确的值 但是对于选用的某PC材料而言,两种方法得出的数据有差异,且此差异可能会影响后续应用于CAE仿真分析的结果。经过多次验证,无论是采用哪种CAE软件中的本构关系,对于达到峰值应力后应力降低或增加的材料, 都很难得到实际测试曲线与拟合曲线结果一致性很高的曲线,乃至根据方程的缺陷做了一些改变,按照现有的技术,仍然很难得到一致性很好的拟合,可见采用方程拟合法最终只能近似的模拟而不能完全替代高速拉伸测试仪给出的实际的测试结果。3) 采用方程拟合法测量的材料性能数据精度还不能评估。欲使用方程拟合法获得高应变速率下的应力-应变数据时,建议低速下的拟合的精度尽量高。

  • 在选用混合搅拌器之前,需要具备的专业知识

    在我们需要使用搅拌器的时候,掌握一些基础的必备知识是必不可少的,希望我的这些小知识能够帮助到你。1:[b]容器容量[/b]:容器直径及处理量高度。2:[b]流体粘度[/b]:不同类型的流体受压时会显现出不同特性。四种常见的流体活动如下: [b]胀性流体[/b]—粘度随切变速率增加。混合器在初次搅拌此类流体后可自行停止。胀性流体包括泥浆、黏土和糖化合物。 [b] 牛顿流体[/b]—无论切变速率如何变化或如何搅拌,粘度始终保持不变。随着搅拌速度加快,流量会成比例的增加。牛顿流体包括水、矿物油和碳氢化合物。 [b]假塑性流体[/b]—粘度随着切变速率增加而降低,但初始粘度较大,足够阻止搅拌。典型的假塑性流体有凝胶、乳胶涂料和乳液。 [b] 触变性流体[/b]—与假塑性流体一样,粘度随着切变速率或搅拌增快而降低。当搅拌停止或变慢,将发生迟滞现象且粘度逐渐增加。通常情况下,粘度不会变为初始值。触变性流体包括肥皂水、焦油、起酥油、胶水、墨水和花生油。3:[b]转矩要求[/b]:混合器电机所需的旋转力—单位为 oz 或 lb。4:[b]旋转速度 (rpm) 与搅拌桨直径[/b]:转速或直径的小幅增加会显著增大混合器所需的功率。5:[b]工作周期[/b]:间歇性使用设备时,时间间隔专用于启动、运行、停止及空转。6:[b]马力 (hp) 要求[/b]:混合器电机所需的效率与转矩 (oz) 和旋转速度 (每分钟的转数,rpm) 有关。

  • PE紫外-可见工分光光度计的滤光轮驱动马达的维修?

    PE紫外-可见工分光光度计的滤光轮驱动马达的维修?

    有两台PE的紫外-可见分光光度计,用的时间有点长了,滤光轮上的马达的驱动电机是两部分组合起来的,电机部分与变速部分,这两部分边接是通过两个塑料挂耳与一个U形的直角不锈钢片快速连接的,因为塑料挂耳的老化,导致电机部分与变速部分胶开,无法正常滤光,也无法正常分析样品,这个可能是设计上的一个小的缺陷吧,一台仪器上有两个驱动马达(另一个是紫外与可见光路切换的),结构是一样,都换过了,厂家也来维修换过了,通常这个厂家上门时间较长,能不能自己想办法直接维修这个连接部位呢?实践证明是可以的,没有任何问题的,到公司的设备部门找到特薄的不锈钢片,用好一点的剪刀剪出两跟窄条的不锈钢片,正好穿过原来驱动电机自带的直角不锈钢片快速连接件,然后将自己剪的不锈片固定在变速件上,这个如何固定好了,最后在设备部找到了较宽的管箍,通过几次调整,用磨光机切去两个固定螺丝安装有阻碍,的部分,便于安装,回装后仪器通过自检。 [img=,540,670]https://ng1.17img.cn/bbsfiles/images/2021/05/202105051608480688_1548_1829089_3.jpg!w540x720.jpg[/img][img=,540,720]https://ng1.17img.cn/bbsfiles/images/2021/05/202105051609110513_7303_1829089_3.jpg!w540x720.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2021/05/202105051609302273_1989_1829089_3.jpg!w690x517.jpg[/img][img=,540,720]https://ng1.17img.cn/bbsfiles/images/2021/05/202105051609428648_6602_1829089_3.jpg!w540x720.jpg[/img][img=,540,720]https://ng1.17img.cn/bbsfiles/images/2021/05/202105051609504420_8460_1829089_3.jpg!w540x720.jpg[/img]

  • 橡胶预成型机

    橡胶预成型机

    http://ng1.17img.cn/bbsfiles/images/2013/05/201305152142_440231_2506810_3.jpg 上海章正橡胶预成型机 一:液压系统;选用原装进口西门子电机【200型-7.5kW】采用意大利马祖奇3齿高压齿轮泵。采用美国SUN太阳牌平衡阀和补偿阀。以及美国SUN压差阀选用日本YUKEN 油,【选用派克电液比例挽向阀保修六年】研流量阀选用台湾油冷器所有油管选用派克5600PSI 油接头采用派克PARKER,高锰钢油路抉二:全不锈钢加热管并有温控器控制水温,以及数字同步显示最高温度98度,德国威乐循环水泵确保料筒和机头水温、液压油油温有丹佛斯阀控制。一般控制油温正常在50—55度,如超过此油度温度制冷系统会自动开启。自动回复正常恒温。三:真空系统选用机械密封原装德国真空泵能够快速抽取橡胶内的空气确保橡胶无气泡四:切刀系统选用变频无级变速 PLC自动变速,电脑搡作输入重量数据。切刀采用特殊平衡设计,并安装了切刀在工作时候,无法开门。有光电自动锁门装置。采用3、7台湾东原变频电机。下面装有特殊亚光夹钢纤维传送皮带。并且切刀切下来的胶坯全部自动传输。五:电控系统选用三菱模抉带232接头PLC和3,7三菱变变频器以及欧姆龙接触器和继电器,欧姆龙融摸屏,施耐德电热保护施耐德光电开关和所有按钮,PLC控制和触摸屏操作界面彩色显示屏引导你方便进入数据输入密码保护可以储存300种产品的工艺数据随时调用变频电机控制切刀无级变速。电子秤自动反馈控制胶坯的重量可靠的安全生产机头关闭切刀旋转柱塞前进后退都有互锁装置。电脑显示提示工人生产过程中方便操作.

  • 【转帖】自行车、电动自行车产品小常识

    一、 如何选购自行车和电动自行车: 1、首选当地较大或有声望的自行车、电动自行车卖场购买,产品能进入大型卖场,说明企业各方面手续齐全,比较注重信誉,具有较好的售后服务。2、要选择质量稳定、安全可靠的产品,如一些名牌产品。按照自己所能接受的价格选择款式、颜色。尺寸要与自己的身体相适应,最好坐在鞍座上时一侧脚即能触地。 二、挑选自行车时应注意以下几点:1、自行车各紧固的螺钉螺母应是旋紧的,不得松动和脱落。2、各转动部件应运转灵活,不得有卡住、僵呆现象。如:前后轮应旋转灵活,且不应左右摆动和上下跳动,将要停转时车轮应能做前后轻快的摆动,不能突然停止转动。车把左右转动应灵活自如,脚蹬轴和曲柄应紧固,相互之间不得松动,且转动灵活。3、变速车在变速范围内应变档正确,变速位置应清晰,中间不得有空档。4、链条应松紧适宜,运转灵活。用手正向逆向反复摇动曲柄链轮,链条运转灵活,不得有跳链和脱落现象。5、用双手握住鞍座上面的前后部分,一只手用力下压鞍座的前端,鞍座前端不得下塌。再用双手水平转动鞍座,鞍座亦不应转动。6、车闸及刹车系统的挑选:双手握住车把,分别进行左右刹车同时前后推拉自行车,此时车轮不应转动;松开手柄,刹车系统应能迅速复位。7、各零部件表面应清洁,无污渍、锈蚀,商标贴花应完整、清晰,无锐边毛刺等,如泥板及链罩边缘不应有扎手的感觉,刹车等钢绳末端应装有保护套等。8、观察零部件的牌号或标签。一般来讲好的零部件都标明明显的商标标记且图案清晰精美,而劣质品则很少标注或较粗糙。 三、挑选电动自行车时除上述条件以外还应注意以下几点:1、各部位开关动作灵敏可靠。2、调速平稳,可靠。慢慢转动调速手柄,电机应平稳启动、加速,松开手柄后,手柄能迅速复位,电机均匀减速。3、刹车断电迅速、可靠。转动调速手柄,电机运行后,捏刹刹车后,电机能即刻断电,如有电量显示,可以看到显示回零。4、电池拆装方便。铅酸蓄电池的重量一般约13.5kg,由于要每天拆装,所以电池的位置一定要适合自己的身材。 四、如何使用和保养:要注意仔细阅读说明书,了解自行车的功能、特别是注意事项。首先注意清洁,遇水后特别是冬季的盐水要及时清洁,否则极易造成金属件锈蚀、漆膜老化脱落。车把和车座都是可以调节的,调节时一是要骑行舒适,二是要注意最大调节高度。车把立管和鞍座管均应刻有安全线,距鞍管下端一般为管径的2.5倍,这就是最大调整高度,调整时安全线不得外露。 新车骑一段时间后,应对全车进行检查调整。这时紧固和润滑是必不可少的。检查一下各紧固件不应松动,传动件应灵活,注意链条上油润滑后要将浮油擦净,飞轮点一点油即可。车胎充气要适当,否则会影响骑行的舒适和使用寿命。 车闸是安全的基本保证,更应随时检查,只要发现有问题要立即进行调整或修理

  • 【资料】变频器控制技术在平衡机中的应用

    1 前言: 近十多年来,随着电力技术,微电子技术及现代控制技术发展,变频器已经广泛地应用于交流电动机的速度控制。其中最主要的特点是,具有高效率的驱动性能和良好的控制特性。变频器以调速精度高,响应速度快、保护功能完善、过载能力强、维护方便及节能显著等优点,赢得广大用户的信赖。在机械行业,变频器应用改造传统产业,实现机电一体化的重要手段。在工厂自动化技术中,交流伺服系统正在取代直流伺服系统。在电器行业中变频器应用技术,有效地提高了经济效益和产品质量,同时也减少机械振动和噪声。 平衡机在国内从70年代开始研究开发,多年来,人们一直以一些大型平衡机机械系统的变速机构复杂而麻脑,旋转时启动停车时间比较长,工作效率少,操作繁琐,而且机器庞大。所以为了减少平衡机变速机构,进一步提高平衡机工作效率及使用性能,采用变频器,调速、制动刹车等功能,使机械系统变得更加简单,操作方便。 2系统构成及工作原理: 系统主要由电动机,机械振动系统、控制系统(变频器)、电测箱等组成。系统通过变频器调节电机转速达到工件所需平衡转速,根据交流电机转速特性, 在电机选定之后P 、S为定值,电机转速n与电源频率f成正比,通过变频器改变电机驱动电源频率,来实现对电机的变频进行无级调速。由于变频功能齐全,停车时可通过变频器设定停车时间,使电机立即停车。 电机旋转时通过传动带带动平衡机主轴,主轴与工件相连一起旋转,由于工件本身不平衡,旋转产生振动通过传感器将机械信号转换成电讯号,输入电测箱,经电测箱运算处理后,再由显示器显示工件不平衡量的大小和相位。 3 变频器主要参数设置 3.1频率上限下限设定:本文以Panasonc 变频器为例,最高频率为120Hz,最低0Hz。为了适用不同工件平衡转速,只有通过调整电机转速,达到工件要求。通常设定50-100Hz,即电机最高转速限制在4450rpm以内,以防工件平衡时转速太高,造成平衡机系统某些部件损坏等问题,甚至造成破坏事故。系统设定最低频率为28Hz,即平衡机启动时频率可迅速上升到28Hz,电机转速线性增加到对应的转速。同时避免因频率过低,启动时间过长,启动转矩不足,启动电流过大,损坏电机。 3.2加减速时间设定:启动变频器后,观察加速过程中输出电流,若输出电流过大,则延长加速时间,反之缩小加速时间。在停止变频器运行后,观察减速过程是否出现直流过压,若出现则延长减速时间,否则可缩短减速时间,根据现场试验结果,设定加速时间不超过为30秒。 3.3制动(刹车)设定:由变频器对电机施加直流电来起制动作用。制动有两种方式,一滑行制动,主要适用大、中型工件平衡时刹车,停车时,变频器开始制动并将频率降到3Hz(可调)时滑行停车。二紧急停车,一般用于小、微型工件平衡时刹车,全程制动时间是滑行制动两倍。 4 运行与操作 变频器投入运行后,能自动稳定工件平衡所需的转速,操作简便但必须遵守如下规定:(1)、启动前,检查工件与夹具之间的配合。安全架(安全罩)是否罩上,避免出现故障。 (2)、接通电源,调节变频器控制面板“▲▼”按钮,设定系统所需要的平衡转速频率。 (3)、启动:将变频器控制面板“RUN”按下,或在操作箱上按“启动”按钮,电机即可运转。 (4)、停车:将变频器控制面板“STOP”按下,或在操作箱上按“停止”按钮,电机即可停止。 (5)、各种保护功能齐全,发生故障时,变频器自动跳阐,且具故障自诊功能,减少操作者的重复劳动力。 5 结束语: 变频器在平衡机中应用,完全取代长期以接触器为主半导体元件组成的控制电路,且控制电路结构简单,稳定可靠,调试方便,故障少优点等。同时大大减少机械系统的变速机构和控制机构,使系统更加方便操作,设备工作效率更高。

  • 发电机的分类,发电机原理

    发电机分为直流发电机和交流发电机两大类。后者又可分为同步发电机和异步发电机两种。现代发电站中最常用的是同步发电机。这种发电机的特点是由直流电流励磁,既能提供有功功率,也能提供无功功率,可满足各种负载的需要。异步发电机由于没有独立的励磁绕组,其结构简单,操作方便,但是不能向负载提供无功功率,而且还需要从所接电网中汲取滞后的磁化电流。因此异步发电机运行时必须与其他同步电机并联,或者并接相当数量的电容器。这限制了异步发电机的应用范围,只能较多地应用于小型自动化水电站。城市电车、电解、电化学等行业所用的直流电源,在20世纪50年代以前多采用直流发电机。但是直流发电机有换向器,结构复杂,制造费时,价格较贵,且易出故障,维护困难,效率也不如交流发电机。故大功率可控整流器问世以来,有利用交流电源经半导体整流获得直流电以取代直流发电机的趋势。 同步发电机按所用原动机的不同分为汽轮发电机、水轮发电机、柴油发电机、风力发电机4种。它们结构上的共同点是除了小型电机有用永久磁铁产生磁场以外,一般的磁场都是由通直流电的励磁线圈产生,而且励磁线圈放在转子上,电枢绕组放在定子上。因为励磁线圈的电压较低,功率较小,又只有两个出线头,容易通过滑环引出;而电枢绕组电压较高,功率又大,多用三相绕组,有3个或4个引出头,放在定子上比较方便。发电机的电枢(定子)铁心用硅钢片叠成,以减少铁耗。转子铁心由于通过的磁通不变,可以用整体的钢块制成。在大型电机中,由于转子承受着强大的离心力,制造转子的材料必须选用优质钢材。

  • 高端混凝试验搅拌器的主要特征表现

    高端混凝试验搅拌器的主要特征表现

    作为水处理行业中最基础的一种试验设备——混凝试验搅拌器,是每个实验室内不可缺少的一种设备,可由于快速经济的发展导致整个水处理行业的需求回暖的趋势持续升温,水处理相关设备的市场规模也跟着呈爆发式增长,导致当前市场也非常混乱,例如在众多被命名为的混凝试验搅拌器的仪器面前,很多用户不知如何辨别与选择,其实,不管是什么产品,即然敢列入高端产品系列,它肯定就有非同寻常的特点,今天小编就给大家分析一下在这个鱼龙混杂的市场状态下,如何辨别高端的混凝试验搅拌器?1、运行方式(不同搅拌轴是否可实现同步运行亦可独立运行)2、计算方式(是否可以做到自动计算G值/GT值)3、加药方式(是否含自动加药功能)4、无级变速(在设置每段不同的搅拌转速后,是否可自动无级变速)5、数据存储空间(数据存储空间能否达到10-20种)6、界面显示(主界面是否属中/英文双显界面)7、屏显/尺寸(屏显是否采用7寸的彩色液晶屏)8、机身构造(整体机身否采用抗锈、抗磨、抗腐的SUS不锈钢所构成)9、搅拌驱动(是否采用高精度步进电机)10、系统主机(是否采用微型电脑控制面板)以上就是辨别高端混凝试验搅拌器的最基本特征的表现,希望给大家在后续的选购中带来清晰的辨别能力。

  • 【资料】风电变流器国家标准【绝密】(马上就要出台了!!)

    中国风电变流器市场现状深度分析一、2008年国内风电装机情况2005年开始我国风电行业开始进入快速发展阶段,连续3 年累计装机增速超过100%。08 年我国新增风电机组5130 多台,单机平均装机功率已经超过1MW,累计风电机组已经达到了11600 多台,累计装机容量已经达到12210MW,超过印度成为亚洲累计风电装机容量最大的国家。目前我国风场主要分布在24 个省(市、区),比2007 增加了重庆、江西和云南等三个省市,内蒙古、辽宁、河北和吉林等四个风能资源较为丰富的省区目前累计装机均已超过100 万kW。从目前全球各国的风电装机发展趋势来看,中国和美国已经成为未来推动全球风电发展的主要推动力。我国08 年累计装机容量排名全球第四,而新增装机容量则位于全球第二,仅次于美国。二、风力发电变流器市场发展现状风力发电机组的技术发展很大程度上得益于变速恒频的应用,变速恒频已经成为目前兆瓦级以上风力发电机组的主流技术。所谓变速恒频,就是通过调速控制,使风力发电机组风轮转速能够跟随风速的变化,最大限度地提高风能的利用效率并有效降低载荷,同时风轮及其所驱动的电机转速变化时,保证输出的电能频率始终与电网一致。机组的调速控制可以通过机械或电气控制等不同的途径来实现,但是目前最为成熟,也是应用范围最为广泛和最具发展前景的技术是利用变流器的技术方案。变流技术的应用不仅有利于机组提高效率,同时对机组的并网和对电网的安全稳定运行起到了良好作用。变流器在变速恒频型风电装置中应用的主流的技术方案目前主要有双馈型和直驱型两种,属于风力发电机组大型核心部件之一,其发展道路体现了国内自动化技术在风电领域的发展轨迹。1、风电变流器市场需求情况风电变流器是风电整机的核心零部件,从目前的实际安装情况看,国内的兆瓦级风电变流器多数为进口,其单个售价在90万元左右。我国风场每千瓦投资成本大概在9000-10000 元之间,其中70%-75%投资于风机设备(含塔架),变流器在风电整机成本中占10%的比例。按照变流器在风电投资中的比例进行测算,2008年国内风力发电变流器的市场需求额约为30亿元。2、国内生产情况由于同众多工业自动化涉及的领域一样,风电领域的自动化关键技术甚至产品始终为国外企业所掌控,而国内工业自动化厂家也不愿将巨大利润拱手相让,技术追赶的脚步也越来越快。由于风力发电整体技术起步比较晚,所以现今我国风电场应用的风电变流器市场主要被维斯塔斯、西门子、ABB等知名国外品牌占领。国家近几年出台了很多策和举措支持族品牌的发展,为国有工业自动化企业提供了大力的治和经济支持。发改委在文件中明确提出,风力发电机组设备国产化率必须达到70%以上。“十一五”期间,国家又发布了关于风力发电方面的一大批科技支撑计划项目,在风电机组控制系统及变流器的研发及产业化方面投入了大量资金。这些策和举措带动了近两三年国内的变流器企业发展。2007年10月20日,国内首台1.5兆瓦风力发电全功率变流器在九洲电气试制完成,拉开了我国在兆瓦级永磁直驱风力发电并网技术国产化的序幕,打破了由国外企业在该领域内垄断格局。[table][tr][td=1,1,189][align=center]1[/align][/td][td=1,1,189][align=center]哈尔滨九州电气股份有限公司[/align][/td][/tr][tr][td=1,1,189][align=center]2[/align][/td][td=1,1,189][align=center]合肥阳光电源有限公司[/align][/td][/tr][tr][td=1,1,189][align=center]3[/align][/td][td=1,1,189][align=center]北清能华福风电技术有限公司[/align][/td][/tr][tr][td=1,1,189][align=center]4[/align][/td][td=1,1,189][align=center]南车株洲[/align][/td][/tr][/table]3、变流器行业发展的技术门槛产品试验是变流器研发的重中之重,也是产品完善的关键环节,风电产品必须要进行风场试验才能不断地发现问题并加以改进,以确保产品的性能。由于目前没有固定的试验风场,所以不具备整机生产能力的变流器生产企业都需要自己去联系风场进行产品试验。变流器是整个风力发电系统的中间环节,要想实现变流器的规模化生产,必须搭建一个完整试验平台,才满足变流器出厂测试的需要,另外变流器的研发还需要引进矢量控制等新技术。在行业快速增长的同时,企业也面临着诸多困难。因为风电设备的每个环节都是关键,前后衔接十分紧密,一旦某个环节出现故障,整个风机的运转必然都受到极大的影响,造成停产甚至毁坏设备。这就要求风电设备零部件具有较高的质量和稳定性,在一定程度上加大了的设计维护难度。而由于大部分企业没有很强的试验能力,一定程度上导致了目前国产变流器产品性能上与国外产品差距仍然比较明显。国内变流器市场上有不少厂家在变流器的保护(即持续稳定运行性能)方面的确有待加强。三、风力发电变流器市场预测我国目前风电的快速发展主要得益于策上的推动,从2007年8 月的《可再生能源中长期规划》到2008 年3 月的可再生能源“十一五”规划,风电一直都占有重要的地位。在中长期规划中提出力争到2010年使可再生能源消费量达到能源消费总量的10%,2020年达到15%;权益发电装机容量超过500万千瓦的投资者所拥有的非水电可再生能源发电权益装机总容量应分别达到其权益装机总容量的3%和8%以上。从目前情况来看,规划中至2010 年1000万千瓦累计装机容量已在08年被提前完成,而目前正在起草的新能源行业振兴规划有望再次提高未来风电装机容量,目前预计至2011年将可能实现3000万千瓦装机容量,而到2020 年将有望达到1 亿-1.5亿千瓦左右。按照对国内风电装机情况的发展规划,预计风电变流器市场将保持高速增长态势,预计20011年将达到90亿元市场规模。

  • 新能源汽车电机测试系统以及电机发展说明

    随着新能源汽车推出,新能源电机的发展速度也加快不小,同时冠亚新能源汽车电机测试系统也不断推出,专业测试新能源汽车电机驱动部分,与新能源汽车共同发展。  目前,国内驱动电机产业发展较快,整体水平达到国际水平,国内整车匹配电机基本为本土生产,国内外的差距主要表现在零部件和整车的同步开发。在国内的商用车,还有乘用车、专用车应用方面,当前国内已经完全具备了满足这些新能源汽车要求的驱动电机和电机控制器的研发和制造能力,而且从产能来讲的话,也是完全可以满足需求。在驱动电机方功率密度、效率等指标,和国外水平基本相当,从电机本身角度来看,我国同国外企业在正向设计水平基本处于同一水平,同时也在向高密度和小型轻量化这方向不断拓展。但从生产装备和工艺来说,国内由于单一产品的规模仍然较小,在工艺水平和规模上同国外存在一定差距。  驱动电机的特性和电安全性能等也是测试评价的重要环节,所以还是需要冠亚新能源汽车电机测试系统进行测试的。从电驱动总成测试评价方面来讲,主要分为电驱动系统层面和关键材料与器件层面。在电驱动系统层面,包括系统总成评价、功率标定评价、带载EMC评价、NVH评价和电安全性评价。其中,对于功率标定评价来说,功率密度的评价维度很多,需要对各种边界条件进行界定,保证测试方法的客观性。在电磁兼容方面,目前带载测试的应用仍然较少,空载状态与驱动电机的实际运行工况差异较大,将会导致测试结果的巨大差距。  国内的电力电子技术起步相对较晚,差距主要体现在功率器件技术,功率器件技术也不单单指模块,也包含芯片的研发技术、封装材料和封装工艺技术,还涉及到电机控制器的集成技术。因为这些技术的时间差,使得国内电机控制器的功率密度水平和国外量产的产品比较存在有些差距。2014年这种差距是一半,国内控制器是国外同类控制器的两倍体积。经过这两年的快速发展,国内电机控制器功率密度比2014年提高了不少,在这一领域和国外这个差距缩小了很多。  由于新能源汽车产业的门槛较高,所以,电机作为其中主要的配件之一,其性能还是需要经过无锡冠亚新能源汽车电机测试系统进行准确的测试为好。

  • 新能源汽车电机综合测试系统分析电机大全

    目前在新能源汽车中,驱动电机部分是比较多,很多乘用车、商用车领域对于电机系统都有着一定的要求,所以,新能源汽车电机综合测试系统中是非常符合大家的需求。  新能源汽车的驱动电机主要包括直流电机、交流电机和开关磁阻电机三类,其中在乘用车、商用车领域应用较为广泛的电机包括直流(无刷)电机、交流感应(异步)电机、永磁同步电机、开关磁阻电机等。其他特殊类型的驱动电机包括混合励磁电机、多相电机、双机械端口能量变换器,目前市场化应用较少,是否能够大规模推广需要更长时间的车型验证。  新能源汽车所使用的电机以交流感应电机和永磁同步电机为主。其中,日韩车系目前多采用永磁电机;欧美车系则多采用交流感应电机,主要原因是对于稀土资源匮乏,以及降低电机成本考虑。  新能源汽车电机综合测试系统告诉大家,从我国不同种类新能源汽车驱动电机的应用来看,目前交流异步感应电机和开关磁阻电机主要应用于新能源商用车,特别是新能源客车,但是开关磁阻电机的实际装配应用较少;永磁同步电机主要应用于新能源乘用车。  新能源汽车产业链由四大环节组成,即上游原材料、关键零部件、整车制造和售后增值服务,驱动电机是关键零部件环节中的一个细分行业,行业产业链上游是电解铜(电磁线)、硅钢、钢材、铝材、绝缘材料、永磁材料等原材料供应商以及轴承、换向器、冷却器等配件供应商,下游是整车厂。驱动电机属于定制产品,电机供应商的产品通过下游汽车制造厂商、电控生产企业的检测、试验等考核后,进入客户的供应商体系。所以,在进行检测以及试验中,新能源汽车电机综合测试系统是比较重要的存在。

  • 电机测试系统

    ATF油冷电机高低温交变冲击试验系统EVTP-30本测试系统通过模拟新能源汽车ATF油冷电机在运行过程中自身极限发热以及超冷运行多循环后的电机绝缘性能评估,为新能源汽车电机寿命提供最直接的依据工作原理及操作步骤●通过自动吊装系统将三相电机定子置于高压密封罐中并固定●将定子三相接线端与高频电源相连接●在密封罐中注入ATF 油●设置试验要求的温度曲线●启动系统工作按钮,加热系统将按温度曲线要求将工件加热至设定的高温●当系统温度达到设定的高温时,加热系统关闭 ,系统切入冷却模式。●然后通过高效的制冷系统将工件按降至设定的低温●根据温度曲线要求系统反复自动循环高低温冲击测试●循环测试周期结束后对工件进行绝缘耐压和绝缘电阻测试评估系统基本结构●耐高压密封油罐●高频涡流加热系统●油泵循环单元●制冷系统●智能自动化控制系统●自动吊装系统●系统集成保护箱体●可选件:电机定子电性能测试系统 EVT-531系统参数:●Tmin = -20°C[img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104161155314000_4274_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104161155313106_3792_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104161155314185_761_1602049_3.png[/img]

  • 化学反应的“变速器”

    一、因催化剂而爆发的世界大战?第一次世界大战因催化剂而打响?这话听起来,似乎就和春晚小品里说的 “美国攻打伊拉克,是因为萨达姆偷了布什家的高压锅”一样荒诞。历史课本不是早就告诉我们:历时4年多、波及全世界的第一次世界大战,是帝国主义国家之间为瓜分世界、争夺殖民地和霸权而进行的战争。世界大战与催化剂,听起来风马牛不相及嘛!但这并非空穴来风,第一次世界大战的爆发和进程,与催化剂的确有着紧密的联系。这还得从一个人说起,他就是德国物理化学家、合成氨的发明者——弗里茨·哈伯(Fritz Haber)。翻开诺贝尔奖获得者的长卷,你一定会马上就找到弗里茨·哈伯。哈伯因在合成氨研究中做出的杰出贡献而获得1918年诺贝尔化学奖。众所周知,诺贝尔科学奖是奖励那些在自然科学研究中对人类做出重大贡献的人。那么,究竟什么是合成氨呢?合成氨对人类又有什么重要的意义呢?19世纪末,随着世界人口数量的快速增长,对粮食的需求量也日趋增大,怎样在有限的耕地上生产出更多的粮食,成为横亘在人们面前的一个现实的难题。科学家们通过研究发现,给土地施含有氮的肥料(也就是我们通常所说的氮肥),能有效地增加粮食产量。而同时,随着各国军事的发展,对炸药的需求越来越大。在当时,生产炸药需要消耗大量的硝酸(一种含氮的酸)。说到氮,你一定不会陌生。时刻充斥在你周围的空气中就有它的身影。空气中有78%是氮气,看来,人们不必为生产化肥和炸药的“粮食”而发愁了。但事情并没有这么简单。空气中的氮气非常稳定,是个“老顽固”,很难和其他物质发生反应,自然也就很难变成人们需要的化肥和炸药了。通常只有在打雷闪电的时候,少量氮气才会“羞答答”地和空气中的另一成分——氧气发生反应,生成一氧化氮,再经过一系列的变化变成氮肥,随着雨水落到土壤中(这也就是农谚“雷雨发庄稼”所蕴涵的科学道理)。一年当中,打雷的日子不会很多,“靠天吃饭”不是回事。幸好,自然界中还有大量含氮的矿物,如硝石,这些含氮矿物都能用于工业生产氮肥和火药。因此,在19世纪,出于生产化肥和炸药的大量需求,硝石成为了一种非常紧俏而重要的战略物资。但老天爷似乎不太公平,因为硝石在世界上的分布并不均衡。南美洲的智利是当时硝石的主要产地,史称智利硝石。而对硝石有巨大需求的欧洲,本身并不出产,只能靠大量的进口。一方面,硝石矿的蕴藏量有限,而需求却在以很快的速度增长;另一方面,对于空气中近乎于取之不尽的氮资源,人们却不能加以利用,这实在是很可惜的事。于是,各国科学家纷纷致力于研究利用空气中的氮气生产氮肥和炸药的方法。而其中最关键的一步,就是使极其不活泼的氮气通过一定的化学方法,变成氮的某种简单化合物。这在工业上称为“人工固氮”,即将空气中“飘忽不定”的氮“固定”下来。合成氨就是最重要的一种人工固氮方法。作为一名优秀的化学家,哈伯也一直将人工固氮作为自己的一个研究课题。1905年,哈伯在赴美国考察后,回国采用了在高压下放电进行固氮的研究(即模拟闪电时氮气与氧气的反应),实验进行了约一年,但效果不很理想。不过,这点小失败并未使哈伯灰心和放弃。当然,固氮并非只有氮气与氧气反应这“华山一条路”。在参考了其他科学家的经验后,哈伯转而研究氢气和氮气的反应。氢气与氮气反应能生成氨,氨是一种有刺激性气味的气体,是氮的一种重要的化合物。但由于氮气极不活泼的“脾气”,氢气与氮气的反应也很难进行。为了使氢气与氮气能反应,科学家们尝试了大量的方法。但大量的实验研究证实,即使在很高的温度和很大的压强下,氢气与氮气的反应也是极其缓慢的,根本达不到工业生产的要求。打个比方,就好像严重堵塞的水龙头,滴了一天的水还不够一个人喝的。哈伯意识到,必须寻找到一种物质,能够使氢气与氮气的反应加快速度,使“滴水”的水龙头变成“哗哗流水”的水龙头。终于,在历经无数次失败后,1909年,哈伯在实验室采用600℃、200个大气压和用金属锇作催化剂的条件下,大大提高了合成氨反应的速度。当然,有了催化剂,距离实现工业化生产还有很长的一段路要走。于是,哈伯又同化工专家波施以及其他科研人员一起,对数千种不同配方的催化剂进行实验,终于制得了比锇价格低而催化效率更高的高效铁催化剂;同时解决了如高温氢气对生产设备的腐蚀等一些合成氨实际生产中的技术难题。1911年,德国建成世界上第一座日产30 吨合成氨的工厂,这是人工固氮技术的重大成就,是催化剂在化学研究和化工生产中的胜利。1914年,第一次世界大战爆发前,德国已经设计建造完成多家合成氨工厂,并投入生产。工厂源源不断地提供着制造化肥和炸药的原料,而且,当时只有德国掌握了合成氨技术!德皇威廉二世认为,只要能源源不断地生产出氨和硝酸,德国的粮食和炸药供应就有保证,即使断了硝石供应也没有问题,这也更加坚定了威廉二世开战的决心。与此同时,已经觉察到德国有发动战争倾向的外国首脑和军事专家,由于不知道德国已经成功地实现了氨的合成,从而轻易地认为只要切断硝石的供应,德国就无法生产炸药!甚至在战争爆发后,他们还简单地认为由于硝石的短缺,大战将很快结束!事实完全相反,而这其中留给后人的教训也是惨痛的。当然,如果因此而将第一次世界大战爆发的罪恶根源归咎于合成氨和催化剂,归咎于哈伯,则是毫无道理的。这就好像刀可以用来杀人,但造刀的人并非是持刀杀人犯的帮凶。而另一方面,合成氨推动了化肥工业及其他工业的迅猛发展,带给人类的好处也是不可估量的。正因此,1918年,因战争中断2年后恢复评选的诺贝尔化学奖授予了哈伯。哈伯的合作者波施也因在合成氨的工业化中作出的贡献而在1931年获得诺贝尔化学奖。

  • 【分享】PH复合电极,离子复合电极等复合电极介绍

    把pH玻璃电极和参比电极组合在一起的电极就是pH复合电极。根据外壳材料的不同分塑壳和玻璃两种。相对于两个电极而言,复合电极最大的好处就是使用方便。1 什么是pH复合电极?把pH玻璃电极和参比电极组合在一起的电极就是pH复合电极。根据外壳材料的不同分塑壳和玻璃两种。相对于两个电极而言,复合电极最大的好处就是使用方便。pH复合电极主要由电极球泡、玻璃支持杆、内参比电极、内参比溶液、外壳、外参比电极、外参比溶液、液接界、电极帽、电极导线、插口等组成。  (1)电极球泡:它是由具有氢功能的锂玻璃熔融吹制而成,呈球形,膜厚在O.1~0.2mm左右,电阻值<250兆欧(25℃)。  (2)玻璃支持管是支持电极球泡的玻璃管体,由电绝缘性优良的铅玻璃制成,其膨胀系数应与电极球泡玻璃一致。  (3)内参比电极:为银/氯化银电极,主要作用是引出电极电位,要求其电位稳定,温度系数小。  (4)内参比溶液:零电位为7pH的内参比溶液,是中性磷酸盐和氯化钾的混合溶液,玻璃电极与参比电极构成电池建立零电位的pH值,主要取决于内参比溶液的pH值及氯离子浓度。  (5)电极壳:电极壳是支持玻璃电极和液接界,盛放外参比溶液的壳体,通常由聚碳酸酯(PC)塑压成型或者玻璃制成。PC塑料在有些溶剂中会溶解,如四氯化碳、三氯乙烯、四氢呋喃等,如果测试中含有以上溶剂,就会损坏电极外壳,此时应改用玻璃外壳的pH复合电极。  (6)外参比电极:为银/氯化银电极,作用是提供与保持一个固定的参比电势,要求电位稳定,重现性好,温度系数小。  (7)外参比溶液:氯化钾溶液或KCl凝胶电解质。  (8)液接界:液接界是外参比溶液和被测溶液的连接部件,要求渗透量稳定,通常用砂芯的。   (9)电极导线:为低噪音金属屏蔽线,内芯与内参比电极连接,屏蔽层与外参比电极连接。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制