当前位置: 仪器信息网 > 行业主题 > >

四氯化碳

仪器信息网四氯化碳专题为您提供2024年最新四氯化碳价格报价、厂家品牌的相关信息, 包括四氯化碳参数、型号等,不管是国产,还是进口品牌的四氯化碳您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四氯化碳相关的耗材配件、试剂标物,还有四氯化碳相关的最新资讯、资料,以及四氯化碳相关的解决方案。

四氯化碳相关的资讯

  • 赫施曼助力饮用水中四氯化碳的测定
    生活饮用水由于加氯消毒可产生新的有机卤代物,主要成分是氯仿和四氯化碳及少量的一氯甲烷、一溴二氯甲烷、二溴一氯甲烷以及溴仿等,统称为卤代烷。根据GB/T 5750.8-2023,生活饮用水中四氯化碳浓度的测定可用毛细管柱气相色谱法。其原理是水样置于密封的顶空瓶中,在一定温度下经一定时间的平衡,水中三氯甲烷、四氯化碳逸至上部空间,并在气液两相中达到动态平衡,此时,三氯甲烷、四氯化碳在气相中的浓度与其在液相中的浓度成正比。通过对气相中三氯甲烷、四氯化碳浓度的测定,可计算出水样中三氯甲烷、四氯化碳的浓度。实验步骤如下:试剂:1.载气:高纯氮。2.纯水:色谱检测无待测成分。3.抗坏血酸。4.甲醇:优级纯,色谱检测无待测成分。5.三氯甲烷和四氯化碳标准物质:纯度均≥99.9%,也可为色谱纯,或使用有证标准物质。6.三氯甲烷标准储备液:准确称取0.8008g三氯甲烷,放入装有少许甲醇的100mL容量瓶,以甲醇定容至刻度,此溶液浓度为8.00mg/mL。7.四氯化碳标准储备液:准确称取0.4004g四氯化碳,放入装有少许甲醇的100mL容量瓶,以甲醇定容至刻度,此溶液浓度为4.00mg/mL。8.混合标准溶液:于200mL容量瓶中加入约100mL甲醇,再用电动移液器分别加入1mL三氯甲烷、四氯化碳的各单标准溶液,然后加入甲醇定容。混合标准溶液中各组分质量浓度分别为三氯甲烷40μg/mL,四氯化碳20μg/mL。9.标准使用溶液:用电动移液器移取1.00mL混合液标准溶液于100mL容量瓶中,纯水定容。标准使用溶液中各组分的质量浓度分别为三氯甲烷0.40μg/mL,四氯化碳0.20μg/mL。现配现用。标准工作曲线的绘制:采用opus电子瓶口分配器(10mL款)的stepper模式,设置5个分液体积分别为0.10、0.50、1.00、2.00、5.00mL,排气泡后进行分液,将标准使用溶液分别加入5个200mL容量瓶中,另备一个不加标准使用溶液,并用纯水稀释至刻度(可用opus电子瓶口分配器50mL款分别设定并加入193-198mL纯水,然后定容),混匀。配置后三氯甲烷的质量浓度为0、0.20、1.0、2.0、4.0、10μg/L;四氯化碳质量浓度为0、0.10、0.50、1.0、2.0、5.0μg/L。再倒入6个顶空瓶至100mL刻度处。加盖密封于40℃恒温水浴中平衡1h,各取顶部空间气体30μL注入色谱仪。以峰高或峰面积为纵坐标,质量浓度为横坐标绘制标准工作曲线。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。德国赫施曼的opus分液系列产品,可在0.5%的精度下进行连续分液,且分液次数、间隔时间和流速均可调,既可进行基础的等体积分液,也可进行不等体积分液(每个体积均独立可调,如本试验中的5个体积分液),可用于大批量移液、稀释剂补液(代替烧杯和玻璃棒),还可代替量筒、移液器和部分移液管。
  • 靠‘谱’系列之VOCs走航案例未知因子判定---以四氯化碳为例
    四氯化碳(CCl4),也称四氯甲烷或氯烷,常态下是一种无色透明的挥发性液体,具有特殊的芳香气味,味甜。在四氯化碳分子中,4个氯原子是由共价键以正四面体的结构分布碳原子的四周。因为其结构对称,所以四氯化碳呈非极性,常温下化学性质稳定。四氯化碳是一种优良的有机溶剂,可以作为有机物的氯化剂、药物的萃取剂而应用于物理、化学和医学等领域 也用作香料的浸出剂、纤维的脱脂剂、粮食的蒸煮剂、织物的干洗剂。四氯化碳是一种可致癌的有机化学物,人体吸入高浓度的四氯化碳蒸气后,可迅速出现昏迷、抽搐等急性中毒症状。四氯化碳作为原料生产的氟氯化碳,光解能产生氯自由基,对臭氧层具有极强的破坏性。图1 四氯化碳结构式PTR-TOF对于四氯化碳的测量方法,我国标准(GB/T 16132-1995)中有利用气袋对现场气体进行采集,再带到实验室进行气相色谱离线检测的方法[1]。或者环境监测中,使用气相色谱/氢离子火焰检测器对四氯化碳直接测量的方法(采样频率10分钟),学术届也有使用拉曼光谱对四氯化碳进行光学测量的方式[2]。这些方法有的需要漫长的预处理过程增加了样品的不确定性,有的时间分辨率低达不到走航测量的要求,有的检测限不够低需要预先富集或其他前处理。近年来,利用快速分析飞行时间质谱仪进行车载走航VOCs检测成为了对污染排放源的环境空气影响进行跟踪溯源的重要技术手段(什么是VOCs走航监测技术(VOCs走航车)? )(中国东部大气气态芳烃的移动观测 靠‘谱’系列之VOCs走航案例未知因子判定---以氟苯为例)图2 Vocus小精灵仪器捕捉到的原始四氯化碳质谱图及信号强度变化图3 四氯化碳质谱图位置及信号强度在2022年秋季中国进口博览会空气保障—大气VOCs走航监测任务中。搭载 Vocus Elf PTR-TOF(Vocus 小精灵)的大气走航观测车对华东地区某工业园区的大气VOCs组分进行了走航监测。监测车在园区内某区位走航过程中,在m/Q 116.9659的位置检测到较强的响应(见图2),经确认,该精确质量离子分子式是CCl3+。结合前期标气测量结果,该离子信号定性为四氯化碳(CCl4)质谱信号,该峰相关同位素分布符合含3个氯的特征。同时,该信号的变化趋势与丙酮、苯、二甲苯等物质的信号趋势明显不同(见图3),半定量其峰值浓度为156 ppbV(时间分辨率1秒)。目前对四氯化碳的排放规定较少,在山东省地方标准《挥发性有机物排放标准》(DB37-2801)厂界监测点浓度限值中,四氯化碳的无组织排放浓度规定为0.3mg/m3,计算为48 ppbV。故按照该标准此次排放事件四氯化碳浓度已超标。参考文献1. GB/T 16132-1995 居住区大气中三氯甲烷、四氯化碳卫生检验标准方法 气相色谱法2. 四氯化碳级联受激拉曼散射研究[D].长春.吉林大学.2022
  • GC Smart+HS-10测定生活饮用水中氯仿、四氯化碳应用方案
    随着社会的发展,人们对生活饮用水的质量要求也在不断提高,不仅仅是需要清洁、卫生,更需要“安全”。国家从2007年7月1日全面实施《gb 5749-2006 生活饮用水卫生标准》,总共规定了106项水质指标,分为微生物指标、毒理指标、化学指标和放射性指标。其中毒理指标涉及氯仿和四氯化碳。通过监测生活饮用水中氯仿、四氯化碳的浓度可以指导生产中的加氯量,避免加氯量过大对人体健康造成危害或加氯量过小导致微生物指标不达标。现行国标《gb/t 5750.8-2006 生活饮用水标准检验方法 有机物指标》中规定了顶空法结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳。顶空法采用气体进样,不需要进行有机溶剂萃取等前处理,操作简单。ecd检测器是一种高灵敏度、高选择性检测器,对电负性物质具有极高的灵敏度。本解决方案参照国标《gb/t 5750.8-2006》,建立了顶空进样结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳含量的方法。岛津公司 hs-10 顶空自动进样器延续了 hs-20 系列的良好重复性,gc smart 气相色谱仪采用载气手动控制模式并结合了 apc 高精度控制技术,两者通过工作站 labsolutions le实现分析的全自动化。本方法操作简单、检出限低,样品中氯仿、四氯化碳加标回收率分别为 99.3%和 98.4%,方法准确可靠,对于生活饮用水中氯仿、四氯化碳含量控制具有现实意义。所谓顶空,是指"物质上部的空间",在液体或固体的上部存在着液体或固体中所含的挥发性成分,特别是低沸点的成分。顶空进样器将样品放置于密封恒温系统中进行一定时间恒温,当气液或气固两相达到热力学平衡后采样并导入气相色谱仪(gc)进行分析。通常应用于食品中的香气成分、化学制品的气味成分,环境水中的有害挥发性成分的定性或定量分析。hs-20系列顶空进样器为从研究部门到品质管理部门所有涉及挥发性成分的分析提供有力的支持。hs-20 系列顶空进样器包括定量环采集模式hs-20/hs-20lt型和冷阱模式hs-20trap型。 卓越的性能良好的重现性极低的交叉污染友好的界面设计样品盘设计人性化维护简便灵活的扩展性电子冷却捕集阱条形码阅读器选件hs-20系列顶空进样器加热炉温度上限可以达到300℃,全惰性化样品传输管线,可以分析以往顶空进样器难以分析的高沸点化合物。环硅氧烷是硅氧烷生产的一种原料,常痕量存在于硅油、液体橡胶和某些化合物中。环硅氧烷具有挥发性,可能造成电子部品接点不良,所以控制环硅氧烷的含量非常重要。hs-20系列顶空进样器可在相同条件下测定从环硅氧烷到邻苯二甲酸酯等成分。
  • 顶空-气相色谱法检测三卤甲烷和四氯化碳全流程讲解
    上海市供水调度中心夏鑫工程师紧扣有机物检测标准、方法及质量控制等要求,从样品采集、色谱柱选型、标准曲线配制、谱图解析等多方面,详细讲解了水中三卤甲烷和四氯化碳的检测全流程操作及检测流程中的关键环节。
  • 关于四氯化碳实验室及分析用途网上数据报送工作的通知
    pimg src="http://img1.17img.cn/17img/images/201607/noimg/d644abdb-1363-4138-8de3-a6b93e875578.jpg" title="44.jpg"/img src="http://img1.17img.cn/17img/images/201607/noimg/b790e27e-ccbb-400b-a7e4-48ee1f7e6595.jpg" title="55.jpg"//pp style="line-height: 16px "a href="http://img1.17img.cn/17img/files/201607/ueattachment/31032b01-6f16-4808-b861-1f6fa6cd23f0.doc"附件1.doc/a/p
  • 保护臭氧层 我们在行动
    p  随着人类活动的加剧,地球表面的臭氧层出现了严重的空洞。紫外线辐射增强,对人类及其生存环境会造成极为不利的影响。臭氧层被破坏将打乱生态系统中复杂的食物链,导致一些主要生物物种灭绝。臭氧层破坏还可能使地球上三分之二的农作物减产,导致粮食危机。而且臭氧层破坏带来的紫外线辐射增强将导致全球气候变暖。因此,保护臭氧层就是保护蓝天,保护地球生命。/pp  臭氧层,作为地球万物的保护伞,由于人类大量使用消耗臭氧层物质,其数量正在急剧减少,这样的结果会使更多的紫外线进入地球表面生物圈,危害人类的生存环境。因此,臭氧层破坏问题已引起全球的关注。/pp  作为臭氧层保护国际公约履约工作中的一份子,中国有关实验室ODS替代工作已开展多年。消耗臭氧层物质(以下简称“ODS”)作为化学品,其中有一小部分品种作为试剂用于实验室的化学反应、分析化验、研究试验、教学实验和各类分析监测机构的分析化验(简称“实验室分析用途”)等重要领域,主要涉及的ODS品种有试剂四氯化碳和甲基溴等。/pp  在全球范围内控制消耗臭氧层物质的生产和消费,从而有效保护臭氧层,国际社会已于1987年通过了《关于消耗臭氧层物质的蒙特利尔议定书》(以下简称《议定书》),该议定书规定了各种受控的消耗臭氧层物质(简称ODS)及其淘汰进程。四氯化碳(简称CTC)属《议定书》附件B规定的第二类受控的消耗臭氧层物质。其消耗臭氧潜能值为1.1,主要用作生产CFC-11、CFC-12的原料以及用作加工助剂、清洗剂及实验室分析用途等。为履行《议定书》规定的义务,中国政府与实施《议定书》多边基金执委会于2002年11月签订了《关于四氯化碳生产和化工助剂淘汰协议》,中国承诺在2009年12月31日停止生产和使用消耗臭氧层的物质——四氯化碳。2007年,蒙特利尔议定书缔约方会议对四氯化碳实验室和分析用途的使用做出了决定:认为四氯化碳在分析和实验室工艺中发挥了重要的作用,因此对全球实验室和分析用途ODS物质的使用进行了有针对性的豁免。在全球范围内,延长用于实验室和分析用途的部分受控物质的使用期限至2021年12月31日。/pp  我国于2005年起实施了四氯化碳使用配额管理,对实验室和分析用途四氯化碳的试剂生产实行总量控制和配额管理,控制住了四氯化碳试剂的产量。为了解国内外四氯化碳实验室和分析用途的使用情况及现有替代技术,分别于2008年和2010年开展了“中国四氯化碳实验室及分析用途调研”和“四氯化碳实验室和分析用途替代技术和监管机制国际调研”两个项目,为了解和推进我国四氯化碳实验室及分析用途的管理奠定了较好基础。然而,在ODS实验室和分析用途管理方面,仍存在大量技术问题和困难。据调研发现,我国多个国家标准、行业标准涉及使用四氯化碳 试剂四氯化碳使用涉及上万家的试剂经销商、大学、分析机构和企业实验室 在列入不豁免清单的8项用途中,由于我国水中油测试(即测试水中油、油脂和总石油烃)的国家标准修订还未完成,仍需要使用四氯化碳,因此作为特例需要申请缔约方大会豁免用途批准 在国际上不推荐使用的23个项目中,我国仍有14项采用四氯化碳。/pp  为更好地解决上述问题,积极应对国际谈判,全国化学试剂信息站受环保部对外合作中心委托,开展《中国四氯化碳实验室及分析用途调研项目》调查,以调查中国四氯化碳的试剂用量、用途及替代技术的发展情况,并对其进行分析研究,评估中国四氯化碳实验室及分析用途的现状,出具中国四氯化碳实验室及分析用途清单及用量、替代技术及不可替代的用途,为国家相关管理机构提供必要的技术和咨询建议,协助相关机构把我国ODS实验室用途管理落实到位。/pp  同时,全国化学试剂信息站开发并运行了“中国实验室用途ODS信息管理系统”,通过建立和运行信息管理网站,及时宣传国际ODS实验室和分析用途替代的最新进展、政策和替代技术 对国内ODS实验室和分析用途的使用情况进行更新和统计 开展实验室和分析用途ODS替代宣传:通过ODS实验室用途网络平台进行实验室ODS替代宣传活动,引导用户使用ODS替代物质。利用网站及时发布宣传标准和方法、缔约方大会相关决议及TEAP报告等,同时发挥网站的数据统计和交流作用,及时掌握全国信息。这将方便更有效、更专业、更便捷的汇集相关信息,了解实验室和分析用途的试剂四氯化碳的需求。/pp  《中国实验室用途ODS管理平台》已于2016年年初开通,目前网站1期主要针对试剂四氯化碳产品。涉及国内实验室及分析用途相关单位、试剂生产企业、试剂经销商、实验室、分析机构、大学及替代技术提供方。对实验室和分析用途的试剂四氯化碳产品生产、销售和使用均要在该网站进行登记、注册及备案,否则将影响企业下一年度的相关审批量。/p
  • 生态环境部生态环境监测司负责人就《水质 石油类的测定 紫外分光光度法》等两项国家环境保护标准答记者问
    p  生态环境部近日印发了《水质 石油类的测定 紫外分光光度法》(以下简称“紫外法”)《水质 石油类和动植物油类的测定 红外分光光度法》(以下简称“红外法”)等两项国家环境保护标准,生态环境部生态环境监测司负责人就标准的相关问题回答了记者提问。/pp  strong问:为什么要同时出台两项适用于水中油测定的监测方法标准?/strong/pp  答:原标准《水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637-2012)采用的萃取剂四氯化碳是《关于消耗臭氧层物质的蒙特利尔议定书》附件B第二类受控物质,为推进《关于消耗臭氧层物质的蒙特利尔议定书》国际履约进程,实现我国关于2019年1月1日起停止实验室用途使用四氯化碳(CTC)的承诺,满足现行环境质量标准和污染物排放标准中石油类和动植物油的监测要求,有必要对该标准进行修订。/pp  经过对技术路线和替代萃取试剂的认真研究,最终选用四氯乙烯替代即将禁用的四氯化碳作为萃取剂,并对四氯乙烯的稳定性和保存条件进行了反复研究。但由于更换萃取剂后,方法的测定下限较高,不能满足《地表水环境质量标准》(GB 3838-2012)标准中Ⅰ-Ⅲ类水质限值的监测要求,因此又开展了紫外法等的转化研究。/pp  strong问:两项标准分别有何特点?/strong/pp  答:紫外法灵敏度高,设备普及率高,操作简便,易于推广,适用于地表水、地下水和海水中石油类的测定,且标准提出了明确的质量保障和质量控制要求,能确保方法使用中监测数据的科学性和准确性。1996年以前我国环境监测中石油类测定采用石油醚萃取紫外分光光度法,一定程度可保证水质石油类测定的延续性。/pp  红外法灵敏度高、定性定量准确,以四氯乙烯作为萃取剂替代破坏臭氧层的四氯化碳,有利推进了《关于消耗臭氧层物质的蒙特利尔议定书》的国际履约进程,为保护臭氧层做出贡献。修订后的标准术语表达更加科学准确,试样的制备方式更加灵活。但方法检出限比原标准升高,适用于污水中的石油类和动植物油类的测定。/pp strong 问:两项标准同时发布,如何使用?/strong/pp  答:紫外法和红外法的适用范围不同。紫外法灵敏度高,检出限低,适用于地表水、地下水和海水中石油类的测定。红外法检出限高,适用于污水中油类(石油类和动植油类)的测定。/p
  • 水中油检测新标准或带来仪器市场巨变
    仪器信息网讯 仪器信息网(www.instrument.com.cn)获知,水中油检测标准将发生较大变化,将由目前的红外分光光度法向分子荧光方法转变。  目前,我国水中油的测定方法以四氯化碳萃取+红外分光光度法为主。四氯化碳的使用对臭氧层形成极大破坏,且对人体有一定毒害,世界各国已先后禁止使用四氯化碳。我国于1991年签署加入《关于消耗臭氧层物质的蒙特利尔议定书》,议定书要求除了原料和必要用途之外,我国应在2010年1月1日之前淘汰四氯化碳和三氯乙烷的生产和使用。我国已于2003年禁止以四氯化碳作为清洗剂和干洗剂,但在水中油分析检测中,由于现行标准方法仍为《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),因此四氯化碳仍被使用。  为完成四氯化碳的淘汰,我国一直在研究替代的萃取剂和水中油测定方法。2012-2013年,湖南环境监测中心站、天津环境监测中心站等多家单位和机构举办了水中油检测方法改进及替代技术研讨会、交流会。而环保部于2013年1月,就水中油测定的方法替代及标准修订项目进行了招标,计划修订现行水中油测定国家标准《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),据悉,新标准可能在今年发布,2015年开始实施。  就水中油的新检测方法,仪器信息网编辑咨询了多位环境监测、水务等行业的水质分析专家。相关专家认为,目前对水中油的测定存在气相色谱法、荧光分光光度法、紫外荧光法、紫外吸收光度法、浊度法等多种方法,各有其优缺点。如气相色谱法,有一定可行性,并能与国外一些标准方法接轨,但水中油类往往是混合物,并不都适合以气相色谱法进行检测,而且气相色谱法不易在基层普及,因此成为新标准方法的可能性较小。分子荧光检测方法(荧光分光光度法/紫外荧光分光光度法)被相关专家认为是新标准最可能采用的方法。  而在溶剂方面,专家认为四氯化碳的被取代已成定局,而由于S316和H997等溶剂价格非常高,普及的可能性极小,专家认为正己烷和环己烷将取代四氯化碳。  另据相关专家表示,水利部已在推广正己烷/环己烷萃取及分子荧光分析方法,环保部也将发布新标准方法并进行推广。目前,我国实验室型水中油测定仪年需求千余台/套,产值超亿元,而使用四氯化碳和红外分光光度法的仪器设备在其中有着相当大的比例,将要到来的新标准或将给这一市场带来剧变。撰稿:魏昕  声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654077-8032。
  • 中国实验室用途ODS管理平台企业培训会顺利召开
    p style="LINE-HEIGHT: normal"  2016年3月17日,环境保护对外合作中心与全国化学试剂信息站共同组织召开了“中国实验室用途ODS管理平台企业培训会”,指导培训企业相关技术人员正确使用网络管理平台。/pp style="LINE-HEIGHT: normal"  通过建立和运行“中国实验室用途ODS信息管理系统”,及时宣传国际ODS实验室和分析用途替代的最新进展、政策和替代技术 对国内ODS实验室和分析用途的使用情况进行更新和统计 开展实验室和分析用途ODS替代宣传:通过ODS实验室用途网络平台进行实验室ODS替代宣传活动,引导用户使用ODS替代物质。利用网站及时发布宣传相关标准和方法、缔约方大会相关决议及TEAP报告等,同时发挥网站的数据统计和交流作用,及时掌握全国信息。这将方便更有效、更专业、更便捷的汇集相关信息,了解实验室和分析用途的试剂四氯化碳的需求,推动和引导ODS实验室和分析用途的标准修订和淘汰,确保履约目标的完成。/pp style="LINE-HEIGHT: normal"  出席本届会议的有环保部外经办、四氯化碳生产企业、北京智识企业管理咨询有限公司相关项目开发人员以及全国化学试剂信息站相关项目人员。会议由全国化学试剂信息站、中国四氯化碳实验室及分析用途项目组长刘昉女士主持。/pp style="LINE-HEIGHT: normal"  首先,环保部对外合作中心—ODS生产办李云鹏高工就“国际履约最新进展情况”向与会人员做一详细地介绍,宣传国际ODS实验室和分析用途替代的最新进展、政策和替代技术,使大家了解实验室和分析用途的试剂四氯化碳的需求和替代进展,方便四氯化碳生产企业积极配合履约工作,确保履约目标能够顺利完成。中国ODS实验室及分析用途项目组人员孙芳介绍了“ODS实验室及分析用途管理技术支持项目概况及进展”,主要将项目的背景目的、目前所取得的进展以及项目预期效果一一介绍给与会人员,并将ODS平台运行功能做一详细地介绍,使得大家能够了解该项目的基本情况,积极配合项目组的工作,为履约谈判工作提供有力支持。刘昉女士介绍了水中油测试用CTC物质专项进展情况以及需要企业配合调查的项目。实验室用途ODS管理平台项目开发经理田美荣女士详细地介绍了实验室用途ODS管理平台及网站建设项目,田女士从系统登录、网页界面以及平台功能等各方面进行解读,使企业各相关人员了解系统功能以及数据填报使用细则,方便其数据及时准确的填报。/pp  随后,我们现场进行了数据填报演示以及一对一培训,就企业填报过程中遇到的各种问题进行了详细地解答。并针对企业相关人员填报过程中有关系统使用繁琐之处进行改进,进一步优化系统。/pp  《中国实验室用途ODS管理平台》已于2016年年初开通运行,目前网站I期主要针对试剂四氯化碳产品。涉及国内实验室及分析用途相关单位、试剂生产企业、试剂经销商、实验室、分析机构、大学及替代技术提供方。对实验室和分析用途的试剂四氯化碳产品生产、销售和使用均要在该网站进行登记、注册。本期培训主要针对试剂生产企业,随着履约和替代工作的进展,后续将进行更广泛的培训宣传活动,敬请关注。/p
  • 水中油的测定标准修订 或对仪器厂商产生影响
    p  近日,环保部制定了《水质 石油类和动植物油类的测定 红外分光光度法 》和《土壤 pH值的测定 电位法》两项国家环境保护标准。目前,标准编制单位已完成征求意见稿,并予以发布。《水质 石油类和动植物油类的测定 红外分光光度法 》是第二次修订,《土壤 pH值的测定 电位法》为首次发布。/pp  我国现行标准《 水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637-2012) 是 1996 年颁布的标准,2012年进行了第1次修订,该方法是目前我国环保行业测定水中油的唯一标准方法,采用四氯化碳作为萃取剂。/pp  红外分光光度法是我国环保行业测定水中油的现行唯一标准方法,其灵敏度高,检出限低,测定不受油品的影响,能较全面检测水中油含量,但所使用的萃取剂四氯化碳被蒙特利尔公约列为禁用试剂,我国承诺于2014年12月31日前停止使用。因此修订本标准的核心在于寻找四氯化碳的替代品。/pp  在对《水质 石油类和动植物油类的测定 红外分光光度法 》(HJ 637-2012)的修订中,修改萃取剂为四氯乙烯代替了原标准中的四氯化碳 增加了自动萃取方式 增加了线性校正方法等。/pp  四氯乙烯,又称全氯乙烯, 是乙烯中全部氢原子被氯取代而生成的化合物,具有不易燃易爆, 毒性较低,沸点高( 121.1℃) 而挥发性较低等优点,也不受蒙特利尔公约限制,但它也具有一些缺点,一是四氯乙烯稳定性差,易光解,与臭氧反应生成光气和三氯乙酰氯 二是四氯乙烯提纯困难。因此,萃取剂的选择也是标准修订过程中的难点。/pp  由于红外分光光度法是我国环保行业测定水中油的现行唯一标准方法,我国市场上测定水中油的红外分光光度计均采用四氯化碳为萃取剂,新标准的发布或将对相关仪器厂商带来影响。/pp  以下为标准具体内容:/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/7d3913c9-806f-4e99-b191-17a563228bdb.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 石油类和动植物油类的测定 红外分光光度法 (征求意见稿).pdf/span/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/065b1f6c-a2ed-46b8-80c3-1f63cda09c62.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 石油类和动植物油类的测定 红外分光光度法 (征求意见稿)》编制说明.pdf/span/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/1f0eea07-7ec5-430d-a297-2e6a3102f7c0.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "土壤 pH值的测定 电位法(征求意见稿).pdf/span/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/bda61600-0d0e-40ca-9c41-0c6ae81e626a.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《土壤 pH值的测定 电位法(征求意见稿)》编制说明.pdf/span/a/p
  • 绿动中国-哈希水质分析解决方案全国巡演贵阳站圆满结束
    2017年6月初,“绿动中国-哈希水质分析解决方案全国巡演-贵阳站”在贵阳世纪金源大酒店顺利举办!“绿动中国-哈希水质分析解决方案全国巡演”是哈希公司经典系列活动,旨在将哈希的绿色解决方案带到全国各地、带到用户身边。此次活动吸引了来自高校、自来水、环保、卫生疾控等行业的80余人参加。活动现场气氛热烈,观众与哈希积极互动,样机试用体验也取得了很好的效果。 活动现场哈希以“世界水质守护者” 为自己的使命,不仅关注水的生产、使用和排放过程,还关注不同水体的分析和检测。本次活动,哈希的应用工程师郝敦玲,赵延广分别为大家分享了哈希实验室仪表与哈希公司在线分析仪器的知识。其中,郝敦玲介绍了光度计系列,电化学分析仪系列,浊度仪系列,BOD trakⅡ分析仪,微生物实验室系列,流动注射、总氮、总磷、生物毒性等仪器的原理结构、使用方法、应用范围等。赵延广介绍了哈希在线仪器相关产品及自来水行业解决方案。在郝敦玲工程师的介绍中提到了水中一项重要的分析指标:水中油。水中油是近年来水质监测的新热点,水中的油分属于有机污染物的一种,其降解会导致水中溶解氧含量的下降,导致水质恶化,因此,在污水排放口以及地表水监测领域,水中油是重要的监测指标。郝敦玲介绍到,传统的实验室红外分光光度法,使用的是有毒萃取剂四氯化碳。然而环保部《关于严格限制四氯化碳生产、购买和使用 部公告 2009年第68号》中,对四氯化碳的采购和使用都有很大的限制,采购流程繁琐,因此实验室红外分光光度法存在很大的弊端。哈希工程师开发的新方法采用毒性小的正庚烷作为萃取溶剂,使用紫外法对水样进行测定。不仅仅避免了使用四氯化碳萃取剂的一系列麻烦,而且还提高了红外法的平行性。而且新方法应对较为干净的水体,分析毒性小,检出限低,方便可行、符合国标。 样机体验现场为了让用户更好的了解哈希的产品,此次活动现场还有多台试用样机,包括: 2100Q便携式浊度仪、DR3900台式可见分光光度计、DR1900便携分光光度计、HQd便携式多参数数字化分析仪、DRB200消解器、DR6000紫外可见分光光度计等。2100Q便携式浊度仪DR3900台式可见分光光度计DR1900便携分光光度计HQd便携式多参数数字化分析仪DRB200消解器DR6000紫外可见分光光度计“绿动中国-哈希水质分析解决方案全国巡演”是哈希公司的中国系列活动,随着环保问题日益受到重视,“绿色能源”、“绿色出行”、“绿色产业”、“绿色建筑”等一系列概念深入人心。对于致力于水质分析领域的哈希来说,也正以实际行动实践着自己的理念,“绿动中国”系列活动也将在更多地方继续下去!
  • BCEIA2015之绿色化学与试剂应用论坛
    pstrong  仪器信息网讯 /strong 2015年10月28日,第十六届北京分析测试学术报告会及展览会(BCEIA2015)同期活动“绿色化学与试剂应用论坛”在北京国家会议中心举行。此论坛由《化学试剂》编辑部和中国分析测试协会主办。/pp style="text-align: center "img title="IMG_0564.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/08a3d329-3173-459e-b464-3c69f50822b6.jpg"//pp style="text-align: center "strong论坛现场/strong/pp style="text-align: center " img title="汪正范.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/bc05a07b-e62a-4bcd-b0f5-2b8697787cb0.jpg"//pp style="text-align: center "strong中国分析测试协会汪正范研究员主持会议/strong /pp style="text-align: center " img title="李建华.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/72e8b54a-747e-4a26-ba88-4df5602f0368.jpg"//pp style="text-align: center "strong全国化学试剂信息站 李建华教授/strong/pp  李建华教授为我们介绍了我国ODS实验室及分析用途的基本情况。ODS指消耗臭氧物质,自《关于消耗臭氧层物质的蒙特利尔议定书》签订以来,各届《蒙特利尔议定书》缔约方大会就逐步开始对实验室用途的ODS的种类和用途进行限制。但是对于发展中国家,可以对特定试剂的特定用途申请豁免。目前,我国四氯化碳生产量约为200吨,使用行业14个,使用用途10多种,用量最多的是用于测定水中油,用量约占总销售量的34%,而四氯化碳用于监测是被禁止的,故我国每年均会对四氯化碳的使用申请豁免。而制定水中油测定的新标准成为我们改变这种局面的重要工作。自2012年开始,环保部选择了三条路线来进行标准的修订:一是委托广东环境监测中心开发中红外激光光度法,使用的萃取剂是环己烷;二是委托国家环境分析测试中心开发气相色谱法;三是分别委托大连环境监测中心和鞍山环境监测中心仍使用红外光度法,但选用四氯乙烯作为萃取剂来测定气体和土壤中的油。/pp style="text-align: center " img title="全灿.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/090b270c-83ce-4722-b339-c5bf49a10d03.jpg"//pp style="text-align: center "strong中国计量科学研究院 全灿研究员/strong /pp  全灿博士为我们介绍了项目组在高纯试剂制备纯化和标准制订方面的研究成果。项目组建立了系列专利技术,实现从工业级原料直接制备纯化到色谱级甲醇、农残级正己烷、质谱级乙腈等高纯溶剂的产业化制备,并经环保、地质等权威实验室比对验证。此外,针对痕量检测中对高纯试剂通用检测方法、仪器分析用高纯水等方面的行业需求,全灿博士带领团队建立了包括GB/T30301-2013《高纯试剂试验方法通则》、HG/T4747-2014《农药残留检测用试剂 正己烷》等系列国家标准和行业标准,系统覆盖了关键高纯试剂的检测方法和产品性能指标,为高纯试剂生产厂家和痕量分析检测实验室提供了技术标准。/pp style="text-align: center " img title="张玮航.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/3504440b-5206-44be-8c0d-5e8e37d6560f.jpg"//pp style="text-align: center "strong北京国化精试咨询有限公司 张玮航咨询专员/strong /pp  张玮航女士介绍了北京国化精试咨询有限公司对中国实验室试剂调研的结果。此次调研采取纸质问卷和网上问卷的形式,主要针对大中专院校、科研单位和企事业单位三类人群。调查结果显示,我国实验室试剂主要应用行业为分析、制药和化工,常用类别为有机试剂、标准物质和分析试剂,常用包装规格为500mL,年用量主要分布在100L(kg)-1吨和100L(kg)以下,采购来源主要为代理商/分销商或者是学校/单位集体采购,试剂挑选主要是同行推荐、文献推荐和产品目录。/pp  更多精彩报告:/pp style="text-align: center " img title="国药.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/644c52b6-8b4b-4054-9618-79034e8ca9c3.jpg"//pp style="text-align: center "strong国药集团化学试剂有限公司 刘征宙技术部主管/strong/pp style="text-align: center "strong报告题目:化学试剂危险化学品分类储存安全要求/strong/pp style="text-align: center "img title="艾吉尔.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/59c3878b-d661-45c5-a266-e9c80db1eb10.jpg"//pp style="text-align: center "strong艾吉析科技(北京)有限公司 申杰标准品部技术专员/strong/pp style="text-align: center "strong报告题目:如何正确选择并使用标准品提高农残测量水平/strong/pp style="text-align: center "img title="哈希.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/8a56a4ba-a294-4eb6-8b62-1ef5d6dc8321.jpg"//pp style="text-align: center " strong哈希水质分析仪器(上海)有限公司 宋博技术工程师/strong/pp style="text-align: center "strong报告题目:Chemkey绿色化学试剂-微流控芯片技术助力绿色化学/strong/pp style="text-align: right "strong撰稿:李学雷/strong/p
  • 油烟和油雾测定环保标准征求意见
    p  油烟是指食物烹饪、加工过程中挥发出来的油脂、有机质及其加热分解或裂解产物,其主要成分是动植物油及其分解产物。油雾是指来源于机械加工淬火等工艺产生的油脂及其裂解物,其主要成分是矿物油。br//pp  目前,油烟和油雾已经成为继噪声、尾气、沙尘之后的又一大污染问题,并且成为百姓环保投诉的热点问题之一。有关部门对北京大气气溶胶中PM2.5做的研究表明,其中有机物含量高达30 %~40 %,而来源于饮食业的油烟比例达到了 13 %~15 %,明显高于发达国家的比例。/pp  中国科学院大气物理研究所研究员王跃思等人的研究结果表明,餐饮油烟排放的有机气溶胶(气溶胶是液态或固态微粒在空气中的悬浮体系)是一次有机气溶胶中最重要的组分,餐饮油烟在北京市大气中PM2.5中的比例约为13%,最高时达到15%,在京津冀地区所占的比例约为6% 根据媒体报导,目前广州餐饮企业的排放比重约占大气污染物饮企业的排放比重14 %。以上数据显示,油烟已经成为影响城市空气质量的一个重要污染物来源,加强油烟和油雾治理是改善城市空气质量的一项重要措施。/pp  国外测试油类物质的标准主要有以下几种:重量法、气相色谱法、红外分光光度法、非分散红外光度法、中红外激光光谱法和无溶剂膜萃取红外扫描法,各方法特点见下表。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/3898e0da-87cf-4468-86ca-358bc4cec16e.jpg" title="微信图片_20190308115810.png" alt="微信图片_20190308115810.png" width="600" height="428" border="0" vspace="0" style="width: 600px height: 428px "//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/aebf6eb0-63a6-4d80-9ba0-e1f889b61da1.jpg" title="微信图片_20190308115844.png" alt="微信图片_20190308115844.png" width="600" height="574" border="0" vspace="0" style="width: 600px height: 574px "//pp  油类检测方法可分为以下几种: 1)重量法。已颁布的相关标准有国际标准化组织(ISO)、欧洲标准化委员会(CEN)、美国环保署(USEPA)、日本工业标准委员会(JISC)、中国;2)气相色谱法。如国际标准化组织(ISO)、欧洲标准化委员会(CEN),其检出限一般为0.1 mg/L;3)中红外激光光谱法。代表组织及国家为:美国材料与试验协会(ASTM);4)无溶剂膜萃取红外扫描法。代表组织及国家为:美国材料与试验协会(ASTM);5)红外分光光度计法。红外测定无溶剂膜萃取动植物油(ASTMD7575)由于其无排放的优势将是监测领域新趋势,但是目前由于其检出限比较高,无法满足过渡期要求,英国IP 426/98 标准利用四氯乙烯替代四氯化碳对油类进行分析监测,是目前为止最为经济实惠又最可取的途径。/pp  我国目前使用的监测方法标准是GB 18483-2001中的附录方法,方法主要内容为:利用采气泵将油烟吸附在油烟采样滤筒内,回到实验室后用四氯化碳萃取滤筒内油烟物质,利用红外测油仪对样品进行检测。该方法能够准确检测油烟含量,且灵敏度高,测定结果不受油烟样品品种的影响,一直在我国环境监测工作中起着重要作用。但是,红外分光光度法使用的四氯化碳是《关于消耗臭氧层物质的蒙特利尔议定书》附件B第二类受控物质,2010年已经完成其受控用途的淘汰,因此必须寻找四氯化碳的替代试剂。此外,多年实践表明,现有监测方法在实际工作中存在一定的局限性,如没有检出限、精密度和准确度等技术指标,没有油雾的测定方法等。鉴于上述问题,对现行标准分析方法进行修订势在必行。/pp  日前,生态环境部办公厅发布关于征求国家环境保护标准《固定污染源废气 油烟和油雾的测定 红外分光光度法(征求意见稿)》意见的函。该征求意见稿规定了测定固定污染源废气中油烟和油雾的红外分光光度法,适用于固定污染源废气中油烟和油雾的测定。/pp  其原理为:固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法测定。油烟和油雾含量均由波数分别为2930 cm-1 (CH2基团中C—H键的伸缩振动)、2960 cm-1(CH3基团中C—H键的伸缩振动)和3030 cm-1基团中C—H键的伸缩振动)、2960 cm-1(CH3基团中C—H键的伸缩振动)和3030 cm-1(芳香环中C—H键的伸缩振动)谱带处的吸光度A2930、A2960和A3030进行计算。/pp  当采样体积为 125 L(标干体积),萃取液体积为 25 ml 时,本方法油烟和油雾的检出限为 0.2 mg/m3,测定下限为 0.8 mg/m3。/pp  国家环境保护标准《固定污染源废气 油烟和油雾的测定 红外分光光度法(征求意见稿)》为首次发布,由生态环境部生态环境监测司、法规与标准司组织制订,起草单位包括:大连市环境监测中心。本标准验证单位:辽宁省环境监测实验中心、长春市环境监测中心站、吉林市环境监测站、鞍山市环境监测中心站、黑龙江省环境监测中心站和营口市环境监测中心站等。/p
  • 环保部征求四项标准意见 含石油类测定新方法
    p  近日,环保部发布四项标准征求意见稿以及编制说明,此次发布的意见稿分别为《水质 挥发性石油烃的测定 吹扫捕集/气相色谱法(C6-C9)、《水质 可萃取性石油烃的测定 液液萃取/气相色谱法(C11-C40)、《环境空气质量手工监测技术规范》、《便携式溶解氧测定仪技术要求》。/pp  自斯德哥尔摩公约将四氯化碳列入禁用物质以来,水中石油类物质的检测方法修订就成为了行业内的关注焦点。据了解,为了替代四氯化碳,国家拟定寻找新的萃取剂或者开发其它原理的检测方法,其中利用气相色谱法进行石油类检测就被列入可选方案之一。近日,此方案有了实质性进展,由上海市环境监测中心起草的《水质 挥发性石油烃的测定 吹扫捕集/气相色谱法(C6-C9)以及由国家环境分析测试中心起草的《水质 可萃取性石油烃的测定 液液萃取/气相色谱法(C11-C40),同时发布了征求意见稿。/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201704/ueattachment/175bb771-37d0-40ed-95f6-b4facfdbce9d.pdf"水质 挥发性石油烃的测定 吹扫捕集气相色谱法(C6-C9)(征求意见稿).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201704/ueattachment/9b3141c5-a17a-47e3-b73c-bb97de9bbc6f.pdf"水质 可萃取性石油烃的测定 液液萃取气相色谱法(C11-C40)(征求意见稿).pdf/a/pp  我国目前现行有效的《环境空气质量手工监测技术规范》是2005年版,十余年未经修订,而这十余年也正是环境空气质量监测技术和能力建设飞速发展时期,30多项大气污染物的手工监测方法进行了集中新增、修订和代替,但相应的手工监测技术规范并未及时进行更新和完善,存在部分技术内容与其他标准技术要求相冲突、引用标准未更新、无法在引用标准中查找到引用内容、语言表达和书写格式欠规范等问题,故环保部环境监测司、科技标准司组织对此标准进行了修订,修订征求意见稿也于近期发布。/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201704/ueattachment/669074ad-5274-4eec-9d5a-f7cb19424b19.pdf"环境空气质量手工监测技术规范(征求意见稿).pdf/a/pp  溶氧仪是目前应用非常广泛的一类仪器,但是关于便携式溶氧仪的技术和应用标准都处于空白状态。目前主流的便携式溶解氧测定仪分析方法包括电化学法(隔膜型迦伐尼电池法、隔膜型极谱法)和荧光法,为推动仪器行业的科技创新,本标准未对仪器原理做统一要求,但是性能指标要求依据电化学法和荧光法原理确定。/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201704/ueattachment/1f7042ce-5e98-48bf-af2c-b3d66dce5142.pdf"便携式溶解氧测定仪技术要求(征求意见稿).pdf/a/p
  • 安全管理是永恒的话题——ACCSI2016之“试剂发展与实验室危险化学品管理”论坛
    安全管理是永恒的话题  ACCSI2016之“试剂发展与实验室危险化学品管理” 论坛  当我们在废寝忘食、聚精会神地专注于实验操作时,危险已经悄然来到身边,近年来不断频发的实验室安全事故,为科研第一线的人员敲醒了警钟。提高安全意识、加强实验室管理规范已经刻不容缓。 “2016第十届中国科学仪器发展年会(ACCSI 2016)”组委会联合全国化学试剂信息站及《化学试剂》编辑部共同组织召开“试剂发展与实验室危险化学品管理”论坛,将于2016年4月22日下午13:30—17:00在北京京仪大酒店召开。  本届论坛将围绕“试剂发展与实验室危险化学品管理”这一主题,分别从实验室的危险化学品分类、安全存储管理以及实验室废弃物分类、处理原则和相应的应急预案等方面和企业危化品存储、运输等方面来分析目前我国危险化学品事故存在的问题,并结合三维技术,从理论层次进一步验证解决危化品存储安全问题,提出危险化学品事故危机的解决方案,构建新型危险化学品事故危机体系应急处理措施,力求推进试剂行业的健康发展。  会议时间:2016年4月22日(周五)13:30-17:30  活动地点:北京京仪大酒店  会议日程:  会议主持人:顾小焱 国药集团化学试剂有限公司副总经理/党委书记  报告1:科研用试剂产业链创新体系的构建  报告人:牛刚 科研用试剂产业技术创新战略联盟 秘书长  报告2:试剂企业与实验室危险品存储安全管理  报告人:刘征宙 国药集团化学试剂有限公司高级工程师  报告3:实验室废弃物分类、处理原则及应急预案简述  报告人:马兰凤 上海化学试剂产业技术创新战略联盟 秘书长  报告4:实验室危险化学品管理  报告人:侯士果 默克(中国)高级市场专员  报告5:基于物联网和三维可视化技术的实验室危险品管理方式探索  报告人:杜康 德信致安(天津)科技有限公司总经理  报告6:中国化学试剂市场分析及发展展望  报告人:刘昉 全国化学试剂信息 外聘专家  报告7:ODS实验室分析用途管理技术支持和宣传  报告人:孙芳 中国四氯化碳实验室及分析用途项目调查组项目专员  专题讨论  点击链接,年会信息随时掌握:http://www.instrument.com.cn/accsi/2016/Programme.html
  • 加强ODS履约能力 总站采购新标准所用设备
    p  生态环境部监测司蒋火华副司长在2019年6月份的“2019第三届环境监测与服务高端论坛”上表示,十四五期间,我国将加强国际履约能力建设,重点污染物为温室气体、大气汞和ODS(消耗臭氧层物质)。/pp  《关于消耗臭氧层物质的蒙特利尔议定书》中规定了需要淘汰的ODS物质,在我国生产和消费的ODS包括六类94种,这六类物质是全氯氟烃、哈龙、四氯化碳、甲基氯仿、甲基溴、含氢氯氟烃,主要涉及的行业包括泡沫塑料、室内空调、工商业制冷和溶剂行业等,就工业产品而言,聚氨酯泡沫塑料制品是当前氢氯氟烃消耗量最多的行业。/pp  对于ODS,国家基本采用全部淘汰和配额管理的方式,全氯氟烃、哈龙、四氯化碳、甲基氯仿均已于2010年完全淘汰,已不允许生产和使用(原料用途和必要用途除外),因此原料用途和必要用途需申请生产配额。甲基溴仍实行生产配额管理。对于分析测试人员来说,印象比较深刻的是应该是,淘汰四氯化碳在水中油检测中的应用,2019年1月1日,全国水中油检测均淘汰了四氯化碳萃取剂,改用了新的分析方法。/pp  生态环境部于日前发布了新的ODS监测标准征求意见稿。对硬质聚氨酯泡沫和组合聚醚中HCFC-22、CFC-11、HCFC-141b、CFC-12等ODS的检测方法征求意见,采用的方法分别为气质联用法和便携式气质联用法。此两项征求意见稿由中国环境监测总站起草。/pp  征求意见稿/pp style="line-height: 16px "  img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline " href="https://img1.17img.cn/17img/files/201908/attachment/13ad86c9-4fa1-4ecd-a34f-5fb4482d5f44.pdf" title="组合聚醚中HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质的测定 顶空气相色谱-质谱法(征求意见稿).pdf"span style="font-size: 18px "组合聚醚中HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质的测定 顶空气相色谱-质谱法(征求意见稿).pdf/span/a/pp style="line-height: 16px "span style="font-size: 18px "  /spanimg style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/span style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "a style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline " href="https://img1.17img.cn/17img/files/201908/attachment/614bc7ab-d9bd-49f4-a3a7-389708190e5a.pdf" title="硬质聚氨酯泡沫和组合聚醚中CFC-12、HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质的定性检测 便携式顶空气相色谱-质谱法(征求意见稿).pdf"硬质聚氨酯泡沫和组合聚醚中CFC-12、HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质的定性检测 便携式顶空气相色谱-质谱法(征求意见稿).pdf/a/spanspan style="font-size: 18px " /span/pp  中国环境监测总站日前也发布了招标公告,采购履约监测能力建设的相关仪器,分别为顶空多功能进样器-气相色谱仪1套、便携式专用检测设备1套,用于工业品中一氟三氯甲烷、一氟二氯乙烷、二氟二氯甲烷等ODS的实验室定性、定量分析以及现场定性分析。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 390px " src="https://img1.17img.cn/17img/images/201908/uepic/0501bd95-2a73-4049-980e-4c9c50494372.jpg" title="QQ截图20190814141837.jpg" alt="QQ截图20190814141837.jpg" width="600" height="390" border="0" vspace="0"//pp  由此可见,相关部门已经在ODS监测方面开展工作,未来ODS检测的仪器可能集中在实验室仪器和便携式仪器两方面。/p
  • 绿动中国——哈希水质分析解决方案全国巡演贵阳站圆满结束
    p  strong仪器信息网讯/strong 2017年6月13日,“绿动中国-哈希水质分析解决方案全国巡演-贵阳站”在贵阳世纪金源大酒店顺利举办!“绿动中国-哈希水质分析解决方案全国巡演”是哈希公司经典系列活动,旨在将哈希的绿色解决方案带到全国各地、带到用户身边。此次活动吸引了来自高校、自来水、环保、卫生疾控等行业的80余人参加。活动现场气氛热烈,观众与哈希积极互动,样机试用体验也取得了很好的效果。/pp style="TEXT-ALIGN: center"img title="活动现场.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/445b50fa-421d-4c2f-961f-60dd5edd1ad4.jpg"//pp style="TEXT-ALIGN: center" span style="COLOR: #0070c0" 活动现场/span/pp  哈希以“世界水质守护者” 为自己的使命,不仅关注水的生产、使用和排放过程,还关注不同水体的分析和检测。/pp  本次活动,哈希的应用工程师郝敦玲,赵延广分别为大家分享了哈希实验室仪表与哈希公司在线分析仪器的知识介绍。其中,郝敦玲介绍了光度计系列,电化学分析仪系列,浊度仪系列,BOD trakⅡ分析仪,微生物实验室系列,流动注射、总氮、总磷、生物毒性等仪器的原理结构、使用方法、应用范围等。赵延广介绍了哈希在线仪器相关产品及自来水行业解决方案。/pp  在郝敦玲工程师的介绍中提到了水中一项重要的分析指标:水中油。在线水中油是近年来水质监测的新热点,水中的油分属于有机污染物的一种,其降解会导致水中溶解氧含量的下降,导致水质恶化,因此,在污水排放口以及地表水监测领域,水中油也是重要的监测指标。/pp  郝敦玲介绍到,传统的实验室红外分光光度法,使用的是有毒萃取剂四氯化碳。然而环保部《关于严格限制四氯化碳生产、购买和使用 部公告 2009年第68号》中,对四氯化碳的采购和使用都有很大的限制,采购流程繁琐,因此实验室红外分光光度法存在很大的弊端。哈希工程师开发的新方法采用毒性小的正庚烷作为萃取溶剂,使用紫外法对水样进行测定。不仅仅避免了使用四氯化碳萃取剂的一系列麻烦,而且还提高了红外法的平行性。而且新方法应对较为干净的水体,分析毒性小,检出限低,方便可行、符合国标。/pp style="TEXT-ALIGN: center"img title="样机体验现场.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/11788eb7-15c9-4aec-b349-af740f2db009.jpg"//pp style="TEXT-ALIGN: center"  span style="COLOR: #0070c0"样机体验现场/span/pp  为了让用户更好的了解哈希的产品,此次活动现场还有多台试用样机,包括: 2100Q便携式浊度仪、DR3900台式可见分光光度计、DR1900便携分光光度计、HQd便携式多参数数字化分析仪、DRB200消解器、DR6000紫外可见分光光度计等。/pp style="TEXT-ALIGN: center"img title="DR6000.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/5f00606b-5124-43c4-9a91-5c5044706ef5.jpg"//pp style="TEXT-ALIGN: center"  span style="COLOR: #0070c0"哈希DR6000紫外可见光分光光度计/span/pp  哈希DR6000紫外可见光分光光度计内置了250多种预先编程设置好的方法,包括TOC、重金属和营养盐等参数。直观的菜单导航系统以及7英寸的彩色触摸屏使用户通过几个简单的步骤输入和校准自己的方法,另有可选配应用包,包括对饮用水,啤酒等的分析。DR6000将速扫描与简单的LIMS(实验室信息管理系统)相结合,可以提高实验室的分析效率。/pp style="TEXT-ALIGN: center"img title="2100Q.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/b3aa48e9-d0a5-4776-ab24-968b94a5d779.jpg"//pp style="TEXT-ALIGN: center"  span style="COLOR: #0070c0"哈希2100Q便携式浊度仪/span/pp  哈希公司新研发的2100Q便携式浊度仪在使用的简便性和测量的精度方面,具有全新突破。例如校准和验证中文提示、数据传输简便易操作、创新的RST测量功能应对特殊水样等等,这款仪器可广泛应用于自来水,污水,工业,卫生疾控等领域。/pp  在现场体验环节,观众亲自上手操作,加深了对仪器的了解,现场反应热烈。/pp  “绿动中国-哈希水质分析解决方案全国巡演”是哈希公司的中国系列活动,随着环保问题日益受到重视,“绿色能源”、“绿色出行”、“绿色产业”、“绿色建筑”等一系列概念深入人心。对于致力于水质分析领域的哈希来说,也正以实际行动实践着自己的理念,“绿动中国”系列活动也将在更多地方继续下去!/p
  • 涨知识丨石油类水质指标检测专题
    水中油主要是包含石油类和动植物类及其他有机物。水环境中石油类污染物超过水体的自净能力会在表面形成油污,阻挡氧气进入水体,从而使水体中溶解氧含量下降,致使水体变黑发臭,同时误食污染水体中的食物会对人体健康造成极大隐患。因此,水中油含量也是国家严格控制排放的一项重要标准。水中油类物质构成油类是一种有机化合物,难溶于水,易溶于有机溶剂,由石油类和动植物油组成。石油类物质主要是由烃类物质组成的一种复杂混合物,包含少量的氧、氮、硫等元素的烃类衍生物,烃类物质一般按结构可分为烷烃、环烷烃、芳香烃和烯烃等,我们通常所接触的石油类物质主要是由碳氢化合物组成。石油类物质在水中主要以漂浮油、分散油、乳化油、溶解油、油-固体物五种状态存在。动植物油类主要成分为饱和脂肪酸和不饱和脂肪酸的甘油酯,一般情况下,植物油为液体,动物油为固体。水中油类物质危害油中的多环芳烃类物质会污染水源并有致癌作用,多环芳烃类气体排放到大气中会影响周围温度而且会传播很远的距离,这类芳烃物质也会污染土壤和水源,排放到水体中的石油类物质会黏附在水生生物上,通过食物链的作用进入到人体,使肠、胃、肝等组织发生病变,危害人体健康。水中油类物质限值水中油类污染物目前已成为世界关注的问题,国家环保局颁发的《环境监测规范》中已将油类物质列为地表水、地下水、海水和有关行业排放废水必测项目之一,并对其标准做出了严格的限定。水中油类物质检测方法测定标准:一、《水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637 - 2018 )二、《水质 石油类的测定 紫外分光光度法(试行)》(HJ 970 - 2018 )测定方法:目前,国内外水中油的分析方法包括重量法、气相色谱法、红外分光光度法、非分散红外光度法、中红外激光光度法和无溶剂膜萃取红外扫描法、紫外吸收法、紫外荧光法、荧光光度法。在2019年1月1日国家新标准实施之后,污水/废水采用红外分光光度法,地表水/地下水/海水采用紫外分光光度法。水中油类检测仪器紫外分光光度法仪器示例:连华科技LH-OIL330紫外测油仪该仪器是依据环境监测技术规范要求,结合我国环境污染状况及各级环境监测部门的需要而自主研发出的一款高效、环保、智能、快捷的测油仪器,它用正己烷萃取剂替代红外法中已被禁用的四氯化碳萃取剂,符合新国标《HJ 970-2018 水质 石油类的测定 紫外分光光度法》的要求,该仪器操作简单、精密度好、灵敏度高、性能稳定,能满足用户的各种应用需求。功能特点1、检测标准:符合新标准《HJ 970-2018 水质石油类的测定 紫外分光光度法》满足国标石油类检测的各项技术指标;2、安全环保:采用正已烷萃取法,用正已烷替代红外法的四氯化碳、四氯乙烯萃取剂,环保安全;3、测量精度高:开机自动校准波长,保证测量精度。试剂用量小,抗干扰能力强;4、人性化设计:7吋大电容触控屏,纯中文操作界面,人性化程序设计;5、应用广泛:可广泛应用于地表水、地下水和海水中石油类的测定;6、自带打印机:仪器自带打印机,可现场打印测量的实时数据及历史数据;7、自动萃取仪:仪器配备自动萃取仪,大大改善了工作工况环境,提高了工作效率。技术参数红外分光光度法仪器示例:连华科技LH-OIL336红外测油仪仪器符合环境标准《HJ637-2018 水质 石油类和动植物油类的测定 红外分光光度法》,适用于《GB 3838-2002 地表水环境质量标准》、《GB 18483-2001 饮食业油烟排放标准》、《GB 18918-2002 城镇污水处理厂污染物排放标准》中油类的检测。该仪器既能进行红外分光光度法、非分散红外光度法对油份浓度的测定,也可扫描样品光谱图,作为近红外光谱仪使用。该仪器能满足环保部门对生活污水、工业废水、烟气和固体中总油、石油类和动植物油含量的测定要求,是目前比较理想的测油仪器。功能特点1、检测标准:符合《HJ637-2018 水质 石油类和动植物油类的测定 红外分光光度法》;2、标配平板:标配平板电脑,无需另外配置上位机;3、稳定性强:机械切光减小漂移,电调光源提高可靠性;4、可选萃取剂:可使用四氯乙烯(推荐)、S-316、四氯化碳、三氯三氟乙烷等其他非碳氯有机溶剂作萃取剂;5、辅助功能:零点、满度值自动调整,可测量仪器校正系数,直读非色散测量结果,不必换算;6、统计处理:有数理统计、谱图显示、储存、打印等功能,可以调取测量的历史数据及对应谱图。技术参数检测助手连华科技LH-JE-103射流萃取仪功能特点:1》操作简单:免安装,一键完成萃取操作;2》工作效率高:自动萃取,即开即用,提高实验人员的工作效率;3》安全环保:免于手工操作,避免直接接触溶剂,优化了工况环境;4》萃取效果好:高效射流萃取,萃取效率≥95%;5》能耗低:30W超低功率,大幅度节省能耗;6》应用范围广:应用范围广,可用于所有液-液萃取工作。技术参数:
  • 又出新标准!水中油的测定方法或将迎来大变化
    p  近日,生态环境部发布了关于征求《水质 石油类的测定 紫外分光光度法(征求意见稿)》、《水质 石油类的测定 荧光分光光度法(征求意见稿)》、《水质 石油类的测定 重量法(征求意见稿)》三项国家环境保护标准意见的函。/pp  据了解,我国现行标准《水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637-2012) 是在 1996 年颁布的《水质 石油类和动物油类的测定 红外光度法》(GB16488-1996)基础上修订的标准。该方法是目前我国环保行业测定水中油的唯一标准方法,采用四氯化碳作为萃取剂。/pp 2017年12月,《 水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637-2012)进行第二次修订。作为我国环保行业测定水中油的现行唯一标准方法,红外分光光度法灵敏度高,检出限低,测定不受油品的影响,能较全面检测水中油含量,但所使用的萃取剂四氯化碳被蒙特利尔公约列为淘汰物质,我国承诺将尽快停止该项用途的使用。因此修订本标准的核心在于寻找四氯化碳的替代品。目前正在修订的《 水质 石油类和动植物油的测定 红外分光光度法》,使用四氯乙烯替代四氯化碳作为萃取剂。据生态环境部发布的相关标准编制说明中指出,由于四氯乙烯纯度要求高且新修订的方法检出限高,不能满足Ⅰ-Ⅲ类地表水和第一、 二类海水石油类测定的需要,因此急需开展其他切实可行的分析方法的研究。/pp  在对国内外石油类相关测定方法进行比较后,生态环境部发布了关于征求《水质 石油类的测定 紫外分光光度法(征求意见稿)》、《水质 石油类的测定 荧光分光光度法(征求意见稿)》、《水质 石油类的测定 重量法(征求意见稿)》三项国家环境保护标准意见的函。通知中指出,相关单位若有意见可于2018年6月15日之前将书面意见反馈至生态环境部。/pp  以下为标准具体内容:/pp style="LINE-HEIGHT: 16px"img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="TEXT-DECORATION: underline COLOR: rgb(0,112,192)" href="http://img1.17img.cn/17img/files/201806/ueattachment/22c95f41-62e7-4821-9989-b9aa649b39ea.pdf"span style="COLOR: rgb(0,112,192)"水质 石油类的测定 紫外分光光度法(征求意见稿).pdf/span/a/pp style="LINE-HEIGHT: 16px"img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="TEXT-DECORATION: underline COLOR: rgb(0,112,192)" href="http://img1.17img.cn/17img/files/201806/ueattachment/edad9192-030a-40d5-a92f-6c2988a26f23.pdf"span style="COLOR: rgb(0,112,192)"《水质 石油类的测定 紫外分光光度法(征求意见稿)》编制说明.pdf/span/a/pp style="LINE-HEIGHT: 16px"img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="" style="TEXT-DECORATION: underline COLOR: rgb(0,112,192)" href="http://img1.17img.cn/17img/files/201806/ueattachment/2c907445-4c5c-4e73-a845-84ef65d1a231.pdf" target="_self" textvalue="水质 石油类的测定 荧光分光光度法(征求意见稿).pdf"span style="COLOR: rgb(0,112,192)"水质 石油类的测定 荧光分光光度法(征求意见稿).pdf/span/a/pp style="LINE-HEIGHT: 16px"img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="" style="TEXT-DECORATION: underline COLOR: rgb(0,112,192)" href="http://img1.17img.cn/17img/files/201806/ueattachment/87cd62b5-0cdd-4748-9d2c-6a41cc0497d0.pdf" target="_self" textvalue="《水质 石油类的测定 荧光分光光度法(征求意见稿)》编制说明.pdf"span style="COLOR: rgb(0,112,192)"《水质 石油类的测定 荧光分光光度法(征求意见稿)》编制说明.pdf/span/a/pp style="LINE-HEIGHT: 16px"img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="" style="TEXT-DECORATION: underline COLOR: rgb(0,112,192)" href="http://img1.17img.cn/17img/files/201806/ueattachment/3ebc6f5c-bb28-445d-a97d-0356a0cf6520.pdf" target="_self" textvalue="水质 油类的测定 重量法(征求意见稿).pdf"span style="COLOR: rgb(0,112,192)"水质 油类的测定 重量法(征求意见稿).pdf/span/a/pp style="LINE-HEIGHT: 16px"img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="" style="TEXT-DECORATION: underline COLOR: rgb(0,112,192)" href="http://img1.17img.cn/17img/files/201806/ueattachment/9271da77-71bd-4007-a751-4f9d06afb1bf.pdf" target="_self" textvalue="《水质 油类的测定 重量法(征求意见稿)》编制说明.pdf"span style="COLOR: rgb(0,112,192)"《水质 油类的测定 重量法(征求意见稿)》编制说明.pdf/span/a/p
  • 实验室安全常识及注意事项汇总
    一、使用化学药品的安全防护  1、防毒  1)实验前,应了解所用药品的毒性及防护措施。  2)操作有毒气体(如H2S、Cl2、Br2、NO2、浓HCl和HF等)应在通风橱内进行。  3)苯、四氯化碳、乙醚、硝基苯等的蒸气会引起中毒。它们虽有特殊气味,但久嗅会使人嗅觉减弱,所以应在通风良好的情况下使用。  4)有些药品(如苯、有机溶剂、汞等)能透过皮肤进入人体,应避免与皮肤接触。  5)氰化物、高汞盐(HgCl2、Hg(NO3)2等)、可溶性钡盐(BaCl2)、重金属盐(如镉、铅盐)、三氧化二砷等剧毒药品,应妥善保管,使用时要特别小心。  6)禁止在实验室内喝水、吃东西。饮食用具不要带进实验室,以防毒物污染,离开实验室及饭前要冼净双手  7)必要时佩戴防毒面具  2、防爆  可燃气体与空气混合,当两者比例达到爆炸极限时,受到热源(如电火花)的诱发,就会引起爆炸。  1)使用可燃性气体时,要防止气体逸出,室内通风要良好。  2)操作大量可燃性气体时,严禁同时使用明火,还要防止发生电火花及其它撞击火花。  3)有些药品如叠氮铝、乙炔银、乙炔铜、高氯酸盐、过氧化物等受震和受热都易引起爆炸,使用要特别小心。  4)严禁将强氧化剂和强还原剂放在一起。  5)久藏的乙醚使用前应除去其中可能产生的过氧化物。  6)进行容易引起爆炸的实验,应有防爆措施。  3、防火  1)许多有机溶剂如乙醚、丙酮、乙醇、苯等非常容易燃烧,大量使用时室内不能有明火、电火花或静电放电。实验室内不可存放过多这类药品,用后还要及时回收处理,不可倒入下水道,以免聚集引起火灾。 2)有些物质如磷、金属钠、钾、电石及金属氢化物等,在空气中易氧化自燃。还有一些金属如铁、锌、铝等粉末,比表面大也易在空气中氧化自燃。这些物质要隔绝空气保存,使用时要特别小心。 实验室如果着火不要惊慌,应根据情况进行灭火,常用的灭火剂有:水、沙、二氧化碳灭火器、四氯化碳灭火器、泡沫灭火器和干粉灭火器等。  可根据起火的原因选择使用,以下几种情况不能用水灭火:  (a)金属钠、钾、镁、铝粉、电石、过氧化钠着火,应用干沙灭火。  (b)比水轻的易燃液体,如汽油、笨、丙酮等着火,可用泡沫灭火器。  (c)有灼烧的金属或熔融物的地方着火时,应用干沙或干粉灭火器。 (d)电器设备或带电系统着火,可用二氧化碳灭火器或四氯化碳灭火器。 (4)防灼伤  强酸、强碱、强氧化剂、溴、磷、钠、钾、苯酚、冰醋酸等都会腐蚀皮肤,特别要防止溅入眼内。液氧、液氮等低温也会严重灼伤皮肤,使用时要小心。万一灼伤应及时治疗。  二、高压钢瓶的使用及注意事项  1、气体钢瓶的使用  1)在钢瓶上装上配套的减压阀。检查减压阀是否关紧,方法是逆时针旋转调压手柄至螺杆松动为止。  2)打开钢瓶总阀门,此时高压表显示出瓶内贮气总压力。  3)慢慢地顺时针转动调压手柄,至低压表显示出实验所需压力为止。 4)停止使用时,先关闭总阀门,待减压阀中余气逸尽后,再关闭减压阀。  2、注意事项  1)钢瓶应存放在阴凉、干燥、远离热源的地方。可燃性气瓶应与氧气瓶分开存放。  2)搬运钢瓶要小心轻放,钢瓶帽要旋上。  3)使用时应装减压阀和压力表。可燃性气瓶(如H2、C2H2)气门螺丝为反丝 不燃性或助燃性气瓶(如N2、O2)为正丝。各种压力表一般不可混用。  4)不要让油或易燃有机物沾染气瓶上(特别是气瓶出口和压力表上)。 5)开启总阀门时,不要将头或身体正对总阀门,防止万一阀门或压力表冲出伤人。  6)不可把气瓶内气体用光,以防重新充气时发生危险。  7)使用中的气瓶每三年应检查一次,装腐蚀性气体的钢瓶每两年检查一次,不合格的气瓶不可继续使用。  8)氢气瓶应放在远离实验室的专用小屋内,用紫铜管引入实验室,并安装防止回火的装置。  三、安全用电常识  违章用电常常可能造成人身伤亡,火灾,损坏仪器设备等严重事故。物理化学实验室使用电器较多,特别要注意安全用电。  1、防止触电  1)不用潮湿的手接触电器。  2)电源裸露部分应有绝缘装置(例如电线接头处应裹上绝缘胶布)。  3)所有电器的金属外壳都应保护接地。  4)实验时,应先连接好电路后才接通电源。实验结束时,先切断电源再拆线路。  5)修理或安装电器时,应先切断电源。  6)不能用试电笔去试高压电。使用高压电源应有专门的防护措施。  7)如有人触电,应迅速切断电源,然后进行抢救。  2、防止引起火灾  1)使用的保险丝要与实验室允许的用电量相符。  2)电线的安全通电量应大于用电功率。  3)室内若有氢气、煤气等易燃易爆气体,应避免产生电火花。继电器工作和开关电闸时,易产生电火花,要特别小心。电器接触点(如电插头)接触不良时,应及时修理或更换。  4)如遇电线起火,立即切断电源,用沙或二氧化碳、四氯化碳灭火器灭火,禁止用水或泡沫灭火器等导电液体灭火。  3、防止短路  1)线路中各接点应牢固,电路元件两端接头不要互相结触,以防短路。 2)电线、电器不要被水淋湿或浸在导电液体中,例如实验室加热用的灯泡接口不要浸在水中。  四、电器仪表的安全使用  1、在使用前,先了解电器仪表要求使用的电源是交流电还是直流电 是三相电还是单相电以及电压的大小(380V、220V、110V或6V)。须弄清电器功率是否符合要求及直流电器仪表的正、负极。  2、仪表量程应大于待测量。若待测量大小不明时,应从最大量程开始测量。  3、实验之前要检查线路连接是否正确。经教师检查同意后方可接通电源。  4、在电器仪表使用过程中,如发现有不正常声响,局部温升或嗅到绝缘漆过热产生的焦味,应立即切断电源,并上报、检查。
  • 标准解读|一点一点看新版GB 5749—2022《生活饮用水标准》,保障国人饮水安全
    导读:近期,新版《生活饮用水标准》GB 5749-2022发布并于2023年4月1日起开始正式实施。那么,新版与2006版相比,内容上有哪些变化?我们如何应对等一系列问题,今天小编带您一起拨云见日!标准的使用范围本标准适用于各类生活饮用水水质要求。规范性引用文件规范性引用文件删除“CJ/206城市供水水质标准、SL308村镇供水单位资质要求及生活饮用水集中式供水单位卫生规范(卫生部)”3项。术语和定义增加了“出厂水”和“末梢水”的定义,同时删除“二次供水”定义,调整了“集中式供水”和“小型集中式供水”定义;将“非常规指标”修正为“扩展指标”:扩展指标定义为能反应地区生活饮用水水质特征及在一定时间内或特殊情况下水质状况的指标。指标数量调整水质指标由 GB 5749-2006 的 106 项调整到 97 项(常规指标 43 项和扩展指标 54 项)。增加了 4 项指标:高氯酸盐、乙草胺、2- 甲基异莰醇和土臭素;删除了 13 项指标:耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以 CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1- 三氯乙烷、1,2-二氯苯和乙苯。 指标限值调整调整了 8 项指标的限值,包括硝酸盐(以 N 计)、浑浊度、高锰酸 盐指数(以 O2计)、游离氯、硼、氯乙烯、三氯乙烯和乐果。 指标项目名称调整调整了2项指标名称:耗氧量(CODMn法,以 O2计)和氨氮(以 N计)。指标分类调整调整了11 项指标的分类:一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷(三氯甲烷、一氯二溴甲烷、二氯一溴甲烷、三溴甲烷的总和)、二氯乙酸、三氯乙酸、氨(以N 计)、硒、四氯化碳、挥发酚类(以苯酚计)和阴离子合成洗涤剂。修正总β放射性指标评价及微囊藻毒素-LR 指标 总β放射性测定包括了40钾。本次修订明确了总β放射性扣除40钾 后仍 然大于 1 Bq/L,应进行核素分析和评价,判定能否饮用;本次修订将微囊藻毒素-LR 表达的形式调整为微囊藻毒素-LR(藻类暴发情况发生时), 使表述更有针对性。 附录 A 中水质参考指标的调整附录 A(资料性)水质参考指标由原来的28项调整到55项。其中新增29项指标:钒、六六 六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、敌百 虫、甲基硫菌灵、稻瘟灵、氟乐灵、甲霜灵、西草净、乙 酰甲胺磷、甲醛、三氯乙醛、氯化氰(以 CN-计)、亚硝 基二甲胺、碘乙酸、1,1,1-三氯乙烷、乙苯、1,2-二氯苯、 全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、 碘化物、硫化物、铀和镭-226;删除了2项指标:2- 甲基异莰醇和土臭素;修改了 2 项指标的名称:二溴乙烯和亚硝酸盐;调整1项指标的限值:石油类(总量)。其它删除小型集中式供水和分散式供水部分水质指标及限值的暂行规定;删除涉及饮用水管理方面的内容。应对方案在生活饮用水卫生标准中,金属、类金属、无机非金属、挥发性有机物、半挥发性有机物、农药残留、卤代烃等指标是主要的检测项目,仪器涉及原子吸收、原子荧光、液相-原子荧光形态分析仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、气质联用仪、气相色谱仪、液相色谱仪、离子色谱、紫外-可见分光光度计等。金属、类金属、无机非金属检测AA-7090型原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA原子吸收分光光度计AF-7550型双道氢化物-原子荧光光度计LC-AF 7590液相色谱-原子荧光联用仪ICP-7760HP型全谱电感耦合等离子体发射光谱仪ICP-7700型电感耦合等离子发射光谱仪GBC Quantima电感耦合等离子发射光谱仪GBC Integra电感耦合等离子发射光谱仪GBC OptiMass 9600电感耦合等离子体直角加速式飞行时间质谱仪Cintra 4040 紫外-可见分光光度计IC-2800离子色谱仪有机物检测GC-4100型气相色谱仪GC-MS 3200型气相(四极)色谱质谱联用仪LC-5520型高效液相色谱仪相关解决方案解决方案|GC-MS在水质中挥发性有机污染物、挥发性卤代烃、农药等检测中的应用吹扫捕集/GC-MS联用法分析饮用水中挥发性卤代烃吹扫捕集/GC-MS联用法测定水中57种挥发性有机物饮用水中有机氯农药的GC-MS分析饮用水中有机磷农药的GC-MS分析水中溴氰菊酯的GC-MS分析饮用水中苯并(α)芘的测定GC-MS测定饮用水中塑化剂解决方案|水盲样中铅含量测定解决方案|废水砷元素测定解决方案|原子荧光法测定废水中的硒解决方案|水中钙镁离子的测定解决方案|水样中可溶性钡元素测定解决方案|自来水中三氯甲烷、四氯化碳的检测“家乡的水”-东西分析水检测公益活动圆满结束解决方案|地表水中元素的ICP-TOF-MS法测定解决方案|利用东西分析LC-5510型液相色谱仪检测自来水中的草甘膦含量利用东西分析解决方案,测定水中碳酸盐东西分析农饮水视频教程之“原子荧光检测水中的As、Hg、Se”东西分析农饮水视频教程之“原子吸收检测水中的金属元素”东西分析农饮水视频教程之“顶空-气相色谱法检测水中的三氯甲烷和四氯化碳”第一讲东西分析农饮水视频教程之“顶空-气相色谱法检测水中的三氯甲烷和四氯化碳”第二讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第一讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第二讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第三讲东西分析“农村饮用水安全工程分析方法视频教程”上线后记东西分析在水质安全领域深耕多年,拥有丰富的行业经验及完整的生活饮用水解决方案和应用文集,欢迎您与我们联系,一起守护民众健康安全。添加“东西分析”微信公众号了解相关方案详细内容
  • PerkinElmer 在上海举办药物中残留溶剂检测技术交流会
    顶空进样作为气相色谱中重要的进样技术,广泛的应用于挥发性物质检测,尤其是被国内外药典作为针对药物中残留溶剂检测的必备工具。然而大家会经常面临各种问题:不同顶空进样方式的优劣选择,如何对顶空平衡条件进行优化,如何使用顶空技术进行定量分析,如何提高顶空进样使用效率,针对不同性质的残留溶剂又该选择怎样的顶空和色谱条件?面对诸如此类问题,作为世界上第一台气相色谱与第一台顶空自动进样器的缔造者 - PerkinElmer 于5月20日在上海地区举行了一场药物中残留溶剂检测技术交流会,吸引了众多上海地区制药企业的技术人员参加。PerkinElmer 高级工程师胡子豪先生讲座 技术交流会现场交流会现场,高级工程师胡子豪先生为与会人员详细地介绍了PerkinElmer 气相色谱仪与顶空进样技术在药物溶剂残留检测方面的诸多优势:在气相色谱方面,PerkinElmer的独特气相色谱仪柱温箱设计,可提供业内色谱仪柱温箱最快的加热和冷却速度。并通过实例展示柱温箱起始温度在 30oC 和 40oC 时,一类残留溶剂四氯化碳与苯分离效果的对比。超强的柱温箱冷却速度不仅节省了分析时间,更加使得我们可以从更低的柱温起始温度加热,这点对于溶剂残留有效分析至关重要。同时 PerkinElmer 气相色谱仪的 PSS(程序升温分流/不分流)进样口搭配Swafer微流控制切换技术可以成功实现大体积进样要求。当柱温起始温度为30oC时苯和四氯化碳达到基线完全分离在顶空进样技术方面,PerkinElmer的技术不同于定量环进样和气密针进样技术,专利的压力平衡、时间开关进样技术,可以通过在方法上改变进样时间优化进样量。惰性石英毛细管的传输线,对极性化合物也可以得到尖锐的峰型;进样过程没有载气稀释和更小的进样系统死体积,使顶空气相色谱系统的检测灵敏度更高、定量更准确、进样重复性更好。顶空系统内置的多次顶空萃取模式(MHE)可以对顶空平衡条件进行验证并可以对难以得到标准品的化合物实现挥发性总量的定量分析。而独特设计的零稀释衬管,在顶空进样器通过色谱仪进样口连接时,可有效地避免载气对样品的的稀释作用,进一步提高检测的灵敏度。 PerkinElmer Clarus 680 HS-GC交流过程中 PerkinElmer 工程师与参会人员针对顶空气相分析技术在药物溶剂残留方面的实际应用展开了热烈讨论,并为大家现场展示了PerkinElmer 的顶空气相分析技术在国内主要制药企业中的具体应用实例。与会人员对 PerkinElmer 本次交流活动以及在药物溶剂残留检测方面所做出的贡献给予了充分的肯定,并于会后参观了PerkinElmer 位于张江高科技园区的应用技术中心。作为一家致力于改善人类健康和环境安全的业界著名的全球性技术领先公司,我们针对制药企业的实际需求,未来将开展一系列交流活动,请留意我们的网站信息并留下您的联系方式。PerkinElmer Clarus 680 HS-GCPerkinElmer Clarus 680 HS-GC
  • 盛奥华发布【盛奥华】SH-21Z型(V10)紫外测油仪新品
    SH-21Z型紫外测油仪依据国家环境监测技术规范要求,结合我国环境污染状况及各及环境监测部门有需要而研发出的一种高效环保、准确快捷的测油仪器。本仪器用正己烷萃取剂替代红外法中已被禁用的四氯化碳萃取剂,完全符合新国标《HJ970-2018水质石油类的测定 紫外分光光度法》的要求。该产品操作简单,精密度好,灵敏度高,性能稳定,能满足客户的各种应用要求。SH-21Z型(V10)紫外测油仪可广泛应用于大专院校、科研院所、污水处理厂、环保监测站、石化、造纸、制药、印染、纺织、皮革、酿酒、乳业、电子、市政工程等行业 检测原理:在pH≤2的条件下,样品中的油类物质被正己烷萃取,萃取液经无水硫酸钠脱水,再经硅酸镁吸附除去动植物油类等极性物质,于紫外区测定吸光度,石油类含量与吸光度值符合朗伯-比尔定律,从而定量分析水中石油类含量。※完全符合新环保标准,采用紫外光进行检测,仪器自动测量吸光度,然后自动计算最终浓度,操作简单,结果准确※萃取剂采用正己烷,对人和环境的影响远低于红外测油仪所用的四氯化碳萃※采用10.1英寸高分辨率真彩触摸屏,人性化的简洁菜单设计使得操作更省时,单个界面即包含检测时间、检测项目、吸光度、透过率、浓度值、波长值、曲线等详尽信息※测量项目可选自动、半自动测量 ※仪器具有扫描功能,可评判空白纯度※内置多条预设标准曲线,并支持自定义曲线※大容量可存储500万组数据※内置热敏打印机,实现检测及数据打印一体化,可打印当前及历史数据※仪器具有自检功能,可对仪器系统校正※带USB接口,可实现数据传输功能 ●测定指标:石油类、动植物油类和总油●显示方式:10.1英寸触摸屏中文配合个性化图标操作界面●波长范围:200-400nm●检出下限:0.001mg/L●测定范围:0.001~1000mg/L●量程:多量程选择●萃取剂:正己烷●测定时间:20-30分钟●光度稳定性:≤0.001A/10min●重复性:±3%●测量误差:≤±5%●温度示值误差:±5%●温场均匀性:±0.5●环境温度:5~40℃●环境湿度:相对湿度85%(无冷凝)●萃取方式:手动萃取●曲线参数:内置标准曲线●打印方式:内置热敏打印●净重:10.3Kg●产品尺寸:220*120*90mm分液漏斗、层析柱、专用萃取架、专用比色皿、比色皿架、固体试剂 凡是我方提供的仪器,运输、包装等费用均由我方承担;一年之内免费保修,一年后进行有偿服务。凡是我方提供的仪器一年以后均按照供货范围表的报价进行有偿服务。创新点:采用10.1英寸高分辨率真彩触摸屏,人性化的简洁菜单设计使得操作更省时,单个界面即包含检测时间、检测项目、吸光度、透过率、浓度值、波长值、曲线等详尽信息;测量项目可选自动、半自动测量;符合新环保标准,采用紫外光进行检测,仪器自动测量吸光度,然后自动计算最终浓度,操作简单,结果准确【盛奥华】SH-21Z型(V10)紫外测油仪
  • 岛津促闽琼两省疾控系统检验技术水平提升
    在配备先进的仪器设备后,加强检测人员设备使用能力,提高仪器使用率,充分利用优势资源实施高水平的检验检测,是对疾控系统食品与水质检测工作提出的更高层次要求,为在环境、食品等领域把好安全关起到至关重要的作用。如何提升中国检验检测水平也是岛津公司长期以来在拓展中国市场中最为重要的关切点。 近日,为推动福建和海南两省疾控系统检验技术工作的发展,提高疾控系统检验技术监管水平,岛津公司携手两省疾控系统内专家、技术骨干及各检测中心工作人员共计70余人,分别在两省同时举办了岛津气相色谱、原子吸收操作、维护培训班。并将培训的内容与各个县市生活饮用水监测42项常规指标的能力建设结合起来,开设饮用水中重金属检测与三氯甲烷、四氯化碳检测专题。培训班现场传真 此次培训的内容与疾控系统的实际工作紧密结合,解决了培训班学员实实在在的问题。培训围绕着软件的使用、色谱技术与原子吸收在水质检测中的应用、仪器硬件维护等主题充分展开。同时,还专门设置了实验指导环节。如有的学员反映以原子吸收火焰法测Mn时,吸光度值读数很小,很难做好线性,岛津技术人员针对此问题现场做了测Mn的实验,结果吸光度与COOKBOOK参考值接近;又如学员反映石墨炉法测试Pb,Cd时,背景吸收很大,测试重现性差,岛津技术人员又针对此问题设计了实验,让学员动手操作,比较基体改进剂对实验数据的影响等等。在气相色谱测定饮用水中三氯甲烷和四氯化碳的项目上,在没有配备顶空自动进样器的条件下,采用手动顶空进样的办法,演示气相色谱检测此项目。与此同时,向学员介绍了岛津公司最新的HS-20顶空自动进样器,如能增加此附件,将大大提高工作效率和结果准确性,学员反响热烈。 在讲解仪器维护过程中,向学员重点强调了规范的仪器维护步骤,打消了学员不敢动手维护仪器的顾虑,让学员亲自动手操作,拉近与仪器的距离,熟悉仪器,并且愿意使用仪器。在问题答疑环节,师生间热烈互动,解决了学员在实际工作中面临的诸多难题。 此次培训班非常注重理论、应用和实验相结合,引导学员思考设计实验的步骤,辅以需要开展的应用实例,牢牢抓住学员学习与参与的热情。经过此次培训班,学员对仪器原理,操作维护水平,解决分析问题的能力都有了明显提升。此次培训,解决了学员实实在在的问题,对学员后期工作的开展大有帮助,特别是针对马上将要开展的饮用水中42项常规指标的检测任务,有着非常直接的帮助。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
  • 实验室潜在危险有哪些?
    溶剂处理方面A、溶剂无水处理前,一定要预处理对于低沸点的溶剂,如乙醚,正戊烷等一定要先用干燥剂预先干燥,然后再加入钠丝进行回流,并且加热不能过快过高。因为,一旦溶剂里面的含水量过大,那么生成氢气很剧烈的话,溶剂极易冲出体系,然后遇见明火或正在加热的电阻丝,发生爆炸。这一点在有机所是有先例的,当时的惨状是,爆炸的冲击波从三楼冲到顶楼,把通风装置炸的粉碎。包括对面实验室的整扇窗都被推倒。对于醚类溶剂,如果生产时间较长,或者久置不用的话,一定不要震动,同时要加入还原剂,除掉生成的过氧化合物。也是一个博士生,在处理久置不用的处理THF的装置的时候,刚一拔磨口活塞,就发生爆炸,满脸血肉模糊。用钠处理的溶剂和卤代烷溶剂处理装置不能公用一个与大气相连的装置。有些同学卫省事或节约空间,把所有溶剂处理装置中保证与大气相通的的装置相连,这样做的危险是很可能如果卤代烷,特别是二氯甲烷,加热的时候温度较高,无法冷凝下来,这样,有可能密度较大的卤代烷就会顺着相同的管道,进入用钠丝干燥的溶剂的体系。一旦出现这样的事情,肯定是爆炸。大家知道,卤代烷在金属钠的作用下的偶联反应非常剧烈。B、废溶剂的处理,绝对不要发生酸性液体和碱性液体,氧化性液体和还原性液体的混装,这样非常危险。在有机所,废液桶爆炸不是一次两次。对于SOCl2, PCl5, PCl3绝对不能未经处理就放入废液桶,后果也很危险。实验操作方面的潜在危险1、 对于加热、生成气体的反应,一定要小心不要成了封闭体系。2、 应该小心滴加、冷却的反应,一定要严格遵守,不要图省事。3、 反应前,一定要检查仪器有无裂痕。对于反应体系气压变化大的反应,大家一般都会注意。但是,有些问题就是在你想不到的时候出现。我在一次萃取的时候,量在2升左右,发现分液漏斗有一个裂痕,以为没有问题。结果,在手中刚一摇晃时,就炸开了。20%的KOH溶液喷了我一脸,更可怕的是,溶液顺着桌面进入插座,引起电源短路,然后引发火灾。4、 对于容易爆炸的反应物,如过氧化合物,叠氮化合物,重氮化合物,无水高 人 盐,在使用的时候一定要小心,加热小心,量取小心,处理小心。不要因为震动引起爆炸。5. 除掉反应后剩余的钠需要将钠用无水乙醇处理,以免发生爆炸.6. DMF不要用Na进行去水干燥。有一次我们实验室有同事将5升的烧瓶进行这个操作,结果得到一锅“粥”,估计两者发生了反应!7. 用硫酸镁干燥聚乙二醇,结果会是一锅粥!!!8. 催化加氢用的催化剂一定要防止着火!!!9. 不知道大家的搅拌套管安装胶皮的时候有没有出现过失误,我亲眼看见一个同事由于用力过猛被玻璃套管把手扎破,最狠的是一个同事在给冷凝管接皮管时居然把手腕的筋都扎断了,决不是危言耸听,这都时血淋淋的现实!11. 不知道各位是否经常用高压釜反应,个人觉得这家伙的危险系数比较大,应该时刻注意压力的变化,有一个我做了很久的氨解实验,一直都是好好的,就放松了警惕,结果有一次压力突变到120kg,还好没爆炸,不然我就完了12. 烘滴液漏斗、分液漏斗的时候,最好取下活塞之后烘,否则,由于膨胀系数不一样,活塞会把漏斗胀破。13. 做应用的人,一定要牢记温度的概念,每一步反应的温度都要准确记录,不要记录笼统性的室温,甚至后处理的温度都要记录。许多技术交到工厂之后,重复不出来,就有可能是温度的原因。 我有一个项目,夏天做的好好的,到了冬天,突然就不行了。后来我改了反应条件和重结晶条件,才搞出来了。吓人啊,100万的项目,如果出问题,偶就只有下课了。14. 高压反应釜一定要安装防爆片; 易燃爆气体,试漏一定要严格(用?电子鼻?); 用电设备不要自己检修(我们单位就有人差点送命); 有毒的实验环境一定要通风良好,戴防毒用具; 实验室要有良好的实验习惯,严格的操作规程,问责制度15.实验进行时一定要有人。去年我们这一个实验室的学生中午吃饭去了,那边实验还在继续,本打算吃完饭立马过去的,不成想已个同学找他,耽误了,结果造成实验室失火,整个烧没了,幸亏没有爆炸,sigh,心有余悸16.用CaCl2干燥管之前,务必检查一下干燥管是否是通的。我就是因为没有检查,好几次回流,温度上去后,干燥管被上升的热空气顶飞,炸裂。17. 我一个师弟出力高氯酸银的时候,瓶口残留的一点,塞子一磨就爆炸了,还好瓶子里面几克的东西没炸,不然他就飞了 。18. 大家使用三氯化铝的时候一定要小心,遇水会强烈反应,甚至爆炸!19. 做NaH的时候,搅拌不小心,瓶子破了,台面上又有水,一下子就爆炸了,真的是很危险。20. 用双氧水、间氯过氧苯甲酸等氧化剂的时候,后处理一定要加还原剂处理彻底,然后是非常容易爆炸的。21. 做高压反应实验的时候,一定不能够带压操作!在动阀门和螺钉时一定检查放空管是否开启,不然,可能会飞起来的,十分危险!22. 在处理干燥剂时一定要小心,不要忙目的通过外观下结论,一定要弄清楚具体是什么,有一次我处理时看见是失效的氧化钙,结果里面有钠,怪怪,差点把小命给赔了。小心,小心,尤其是别人留下的。23. 丙烯酸也挺危险,上次一个师妹用磨口瓶装了半瓶,放在了阳光比较强的地方,爆了,差点毁容。24. 在做有机合成时,有时候最后季铵化阶段,总是做不成,因为酸碱中和迅速放热,产生泡沫,后来中和初期加入消泡剂,效果良好。25. 以无水三氯化铝作催化剂进行付-克反应,使用回流水吸收放出的氯化氢.一次,反应完成后进行冷却,温度从80度降到40度,由于没有及时排空,水倒流到物料中,结果物料都冲到天花板上了,好吓人!想起来就害怕.各位要注意产生负压的情况.使用化学药品的安全防护防毒 1)实验前,应了解所用药品的毒性及防护措施。2)操作有毒气体(如H2S、Cl2、Br2、NO2、浓HCl和HF等)应在通风橱内进行。3)苯、四氯化碳、乙醚、硝基苯等的蒸气会引起中毒。它们虽有特殊气味,但久嗅会使人嗅觉减弱,所以应在通风良好的情况下使用。4)有些药品(如苯、有机溶剂、汞等)能透过皮肤进入人体,应避免与皮肤接触。5)氰化物、高汞盐(HgCl2、Hg(NO3)2等)、可溶性钡盐(BaCl2)、重金属盐(如镉、铅盐)、三氧化二砷等剧毒药品,应妥善保管,使用时要特别小心。6)禁止在实验室内喝水、吃东西。饮食用具不要带进实验室,以防毒物污染,离开实验室及饭前要冼净双手。防爆 可燃气体与空气混合,当两者比例达到爆炸极限时,受到热源(如电火花)的诱发,就会引起爆炸。1)使用可燃性气体时,要防止气体逸出,室内通风要良好。2)操作大量可燃性气体时,严禁同时使用明火,还要防止发生电火花及其它撞击火花。3)有些药品如叠氮铝、乙炔银、乙炔铜、高氯酸盐、过氧化物等受震和受热都易引起爆炸,使用要特别小心。4)严禁将强氧化剂和强还原剂放在一起。5)久藏的乙醚使用前应除去其中可能产生的过氧化物。6)进行容易引起爆炸的实验,应有防爆措施。防火 1)许多有机溶剂如乙醚、丙酮、乙醇、苯等非常容易燃烧,大量使用时室内不能有明火、电火花或静电放电。实验室内不可存放过多这类药品,用后还要及时回收处理,不可倒入下水道,以免聚集引起火灾。2)有些物质如磷、金属钠、钾、电石及金属氢化物等,在空气中易氧化自燃。还有一些金属如铁、锌、铝等粉末,比表面大也易在空气中氧化自燃。这些物质要隔绝空气保存,使用时要特别小心。3)实验室如果着火不要惊慌,应根据情况进行灭火,常用的灭火剂有:水、沙、二氧化碳灭火器、四氯化碳灭火器、泡沫灭火器和干粉灭火器等,可根据起火的原因选择使用。以下几种情况不能用水灭火:(a)金属钠、钾、镁、铝粉、电石、过氧化钠着火,应用干沙灭火。(b)比水轻的易燃液体,如汽油、笨、丙酮等着火,可用泡沫灭火器。(c)有灼烧的金属或熔融物的地方着火时,应用干沙或干粉灭火器。(d)电器设备或带电系统着火,可用二氧化碳灭火器或四氯化碳灭火器。4)防灼伤强酸、强碱、强氧化剂、溴、磷、钠、钾、苯酚、冰醋酸等都会腐蚀皮肤,特别要防止溅入眼内。液氧、液氮等低温也会严重灼伤皮肤,使用时要小心。万一灼伤应及时治疗。
  • 科研诚可贵 生命价更高——放假了,实验室火灾不得不防的事
    2013年10月18日,武汉大学的研究生和博士生们因忙于出成果,不慎将实验室给烧着了。2013年12月6日,浙江金华出入境检验检疫局(国检大楼)十二层左侧一实验室发生火灾。2014年6月2日,在端午小长假期间,成都某高校实验室起火,部分实验仪器被毁。2014年10月21日,四川大学药学院实验室起火,有一学生受伤,现场一片狼藉。  打开百度,输入&ldquo 实验室&rdquo 、&ldquo 火灾&rdquo 这样的字眼,你就会发现来自国内外的实验室火灾事件层出不穷,曾经实验室中的那些伤痛依然历历在目,&ldquo 死亡&rdquo 、&ldquo 重伤&rdquo 等字眼震撼人心。  实验室为何容易发生火灾事故?  在各类实验室中,化学实验室因使用易燃易爆化学危险物品数量大、种类多、实验条件复杂等因素,火灾危险性也最大。  据100起实验室火灾事故的调查结果表明:电气设备引起火灾占21%;易燃溶剂使用不当占20%;各种爆炸事件引起火灾占13%;易燃气体或自燃所致的各占7%与6%。  71%的事故是由实验室工作人员工作不慎、操作失误所致:  (1)实验室易燃易爆物品保存不当或打碎洒落;  (2)实验过程中违反操作规程;  (3)实验过程缺少专人指导;  (4)实验项目缺少防火措施;  (5)试剂混存。  56%的起火发生在下午6时至清晨6时;89%的事故是由于没有必要的灭火器具,无法及时扑灭火源,从而酿成重大灾情的。  Tips:  1)许多有机溶剂如乙醚、丙酮、乙醇、苯等非常容易燃烧,大量使用时室内不能有明火、电火花或静电放电。实验室内不可存放过多这类药品,用后还要及时回收处理,不可倒入下水道,以免聚集引起火灾。  2)有些物质如磷、金属钠、钾、电石及金属氢化物等,在空气中易氧化自燃。还有一些金属如铁、锌、铝等粉末,比表面大也易在空气中氧化自燃。这些物质要隔绝空气保存,使用时要特别小心。  当实验室火灾发生时,如何自救和灭火?  实验室如果着火不要惊慌,应根据情况进行灭火:  (1)对于初期火灾,应首先熄灭附近的所有火源,切断电源,移走可燃物质。  (2)小容器内物质着火可用石棉或湿抹布覆盖灭火。  (3)较大的火灾应根据着火物质性质选用灭火器扑救。  常用的灭火剂有:水、沙、二氧化碳灭火器、四氯化碳灭火器、泡沫灭火器和干粉灭火器等,可根据起火的原因选择使用。  使用水灭火时应采用喷雾水流,少用直流水流,以免冲碎化学品瓶子,增加灭火的难度。  二氧化碳灭火器,适用于灭油类及高级仪器仪表着火   干粉灭火器适用于灭油类可燃气体、电气设备及精密仪器着火   "1211&rdquo 灭火器用于扑救电气设备以及贵重精密仪器着火的效果更好   干燥沙土、石棉毯应隔绝空气灭火,用于不能用水灭火的着火物的扑救   以下几种情况不能用水灭火:  (a)金属钠、钾、镁、铝粉、电石、过氧化钠着火,应用干沙灭火。  (b)比水轻的易燃液体,如汽油、笨、丙酮等着火,可用泡沫灭火器。  (c)有灼烧的金属或熔融物的地方着火时,应用干沙或干粉灭火器。  (d)电器设备或带电系统着火,可用二氧化碳灭火器或四氯化碳灭火器。下表中列举的不同火灾类型灭火器的选择,可以参考  最后,当火势猛烈,确已无法抢救时,赶紧撤离现场!实验室数据还可以重来!养成良好习惯,事先实验室数据备份,就不用担心了!  科研诚可贵,生命价更高,实验室防火,且实验且注意......
  • ECHA公布91个评估物质清单
    ECHA已向欧盟各个成员国提交首个关于REACH物质的评估(CoRAP)社区滚动行动计划,该计划也已经在ECHA的官方网站上公布。该列表包含91个物质 - 比原先预计的要少得多 – 这些物质需要在2012-2014年三年期提出评估。  其中2012年提出的评估物质三氯生,由于其内分泌干扰性,欧盟禁止在食品接触塑料中使用。2012年需要评估的物质还包括氯化溶剂四氯化碳,环氧乙烷,甲苯和甲醇 - 意大利统一的其分类为第2类生殖毒性。  2013年提出的评估的物质,包括其他含氯溶剂,四氯乙烯和甲醛,去年由法国提交建议,统一分类为第1类致癌物质。  在2014年提出的评估的物质,包括三种邻苯二甲酸酯:邻苯二甲酸二乙酯,支链邻苯二甲酸双异十一酯和邻苯二甲酸双十一酯和二氧化钛。  根据REACH法规,截至到2011年12月1日ECHA的必须向会员国提交初稿,现在已到最后期限,且每年2月28日之前必须将更新的CoRAP草案发给成员国。根据计划草案,ECHA的成员国委员会将准备2012年2月的草案,至2012年2月底,ECHA旨在采取最终的CoRAP的意见。  备注:只有注册的物质才需要进行评估。
  • 泰通售后的三月似陀螺,一一细数那些受实验室青睐的仪器
    四川省四川省的用户购买泰通AutoTP-93全自动吹扫捕集仪,连接赛默飞气质联用色谱仪,用于检测3氯甲烷、四氯甲烷、二氯一溴甲烷、一氯二溴甲烷、三溴甲烷。四川省的用户购买泰通HS-54P全自动顶空进样器,连接安捷伦气相色谱仪,用于检测3氯甲烷、四氯化碳。四川省的用户购买泰通TDS-24RD全自动热解析仪、配套的ATHH-30活化仪和ZB-1自动制标仪,连接安捷伦气质联用色谱仪。北京市北京市的用户购买泰通DDK-3S动态稀释仪,连接赛默飞气质联用色谱仪。重庆市重庆市的用户购买泰通TDS-24RD全自动热解析仪,连接PE气相色谱仪。重庆市的用户购买泰通TDS-24RD全自动热解析仪,连接安捷伦气相色谱仪,满足22种TVOC。重庆市的用户购买泰通TDS-24RD全自动热解析仪和配套的ATHH-12活化仪,连接岛津气相色谱仪。重庆市的用户购买泰通TDS-24RD全自动热解析仪和配套的ATHH-12活化仪,连接岛津气质连用色谱仪。广东省广东省的用户购买泰通TDS-48RD全自动热解析仪,连接安捷伦气相色谱仪。广东省的用户购买泰通TDS-48RD全自动热解析仪,连接岛津气相色谱仪。广东省的用户购买泰通AutoTP-93全自动吹扫捕集仪,连接岛津气质联用色谱仪。广东省的用户购买泰通AutoTP-93全自动吹扫捕集仪,连接岛津气相色谱仪。广东省的用户购买泰通AutoTP-93全自动吹扫捕集仪,连接安捷伦气质联用色谱仪。贵州省贵州省的用户购买泰通AutoTP-93全自动吹扫捕集仪,连接安捷伦气质联用色谱仪。河南省河南省的用户购买泰通TDS-24RD全自动热解析仪和配套的ATHH-12活化仪,连接岛津气相色谱仪。湖北省湖北省的用户购买泰通TDS-24RD全自动热解析仪,连接安捷伦气相色谱仪,用于检测苯系物和TVOC。
  • 《生活饮用水检验方法》(GB/T 5750-2006)拟立项修订,已经发布公示
    目的意义饮用水安全是公众健康的最基本保障,关系到国计民生,是需要关注的重要公共卫生问题之一。GB/T 5750《生活饮用水标准检验方法》是我国GB 5749《生活饮用水卫生标准》配套检验方法的系列标准,是开展生活饮用水卫生安全保障工作的重要技术基础。GB/T 5750—2006《生活饮用水标准检验方法》是由卫生部和中国国家标准化管理委员会联合发布的,于2007年7月1日开始实施,距今已有十余年时间,近年来,国内外水质检验技术得到快速发展,卫生、建设、水务等相关部门的各级检测机构水质检验仪器设备配置亦得到一定提升,为满足《生活饮用水卫生标准》中水质指标的检验需求,高效、准确开展饮用水水质检验工作,急需对《生活饮用水标准检验方法》进行滚动修订,对检验方法进行补充和完善,为贯彻实施《生活饮用水卫生标准》、开展生活饮用水卫生安全性评价提供检验方法。范围和主要技术内容第1部分:总则范围:本文件规定了生活饮用水水质检验的基本原则和要求。本文件适用于生活饮用水水质检验,也适用于水源水和经过处理、储存和输送的饮用水的水质检验。主要技术内容:检验方法的选择,检测结果的报告,试剂及浓度表示,实验用水,玻璃器皿与洗涤,检测仪器、设备的运行要求,实验室安全。第2部分:水样的采集和保存范围:本文件规定了生活饮用水及水源水的样品采集、保存、管理、运输和质量控制的基本原则、措施和要求。本文件适用于生活饮用水及水源水的样品采集与保存。主要技术内容:水样采集、水样保存、样品管理和运输、水样采集的质量控制。第3部分:水质分析质量控制范围:本文件规定了生活饮用水和水源水水质检验检测实验室质量控制要求与方法。本文件适用于生活饮用水和水源水水质的测定过程。主要技术内容:质量控制要求、分析误差、方法验证、质量控制方法、数据处理、测定结果的报告、数据的正确性判断第4部分:感官性状和物理指标范围:本文件规定了生活饮用水中色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类、阴离子合成洗涤剂的测定方法。本文件规定了水源水中色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类(4-氨基安替比林三氯甲烷萃取分光光度法、4-氨基安替比林直接分光光度法)、阴离子合成洗涤剂的测定方法。本文件适用于生活饮用水和(或)水源水中感官性状和物理指标的测定。 主要技术内容:色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类、阴离子合成洗涤剂的测定方法。第5部分:无机非金属指标范围:本文件规定了生活饮用水中硫酸盐、氯化物、氟化物、氰化物、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物、高氯酸盐的测定方法。本文件规定了水源水中硫酸盐、氯化物、氟化物、氰化物(异烟酸-吡唑啉酮分光光度法、异烟酸-巴比妥酸分光光度法)、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物的测定方法。本文件适用于生活饮用水和(或)水源水中无机非金属指标的测定。主要技术内容:硫酸盐、氯化物、氟化物、氰化物、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物、高氯酸盐的测定方法。第6部分:金属和类金属指标范围:本文件规定了生活饮用水中铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞、硼、石棉的测定方法。本文件规定了水源水中铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞(吹扫捕集气相色谱-冷原子荧光法)、硼、石棉的测定方法。本文件适用于生活饮用水和水源水指标的测定。主要技术内容:铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞、硼、石棉的测定方法。第7部分:有机物综合指标范围:本文件规定了生活饮用水中高锰酸盐指数、石油和总有机碳的测定方法。本文件规定了饮用水源水中高锰酸盐指数、生化需氧量(BOD5)、石油和总有机碳的测定方法。本文件适用于生活饮用水和水源水指标的测定。主要技术内容:高锰酸盐指数、生化需氧量(BOD5)、石油和总有机碳的测定方法。第8部分:有机物指标范围:本文件规定了生活饮用水中四氯化碳、1,2-二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、苯并(a)芘、丙烯酰胺、己内酰胺、邻苯二甲酸二(2-乙基己基)酯、微囊藻毒素、乙腈、丙烯腈、丙烯醛、环氧氯丙烷、苯、甲苯、二甲苯、乙苯、异丙苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯、四氯苯、硝基苯、三硝基甲苯、二硝基苯、硝基氯苯、二硝基氯苯、氯丁二烯、苯乙烯、三乙胺、苯胺、二硫化碳、水合肼、松节油、吡啶、苦味酸、丁基黄原酸、六氯丁二烯、二苯胺、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、溴苯、仲丁基苯、萘、叔丁基苯、双酚A、土臭素、2-甲基异莰醇、五氯丙烷、丙烯酸、戊二醛、环烷酸、苯甲醚、萘酚、全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、多环芳烃、多氯联苯、药品及个人护理品的测定方法和水源水中四氯化碳(毛细管柱气相色谱法)、1,2-二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、苯并(a)芘、己内酰胺、微囊藻毒素(高效液相色谱法)、乙腈、丙烯腈、丙烯醛、苯(液液萃取毛细管柱气相色谱法、吹扫捕集气相色谱质谱法)、甲苯、二甲苯、乙苯、异丙苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯、四氯苯、硝基苯、三硝基甲苯、二硝基苯、硝基氯苯、二硝基氯苯、氯丁二烯、苯乙烯、三乙胺、苯胺、二硫化碳、水合肼、松节油、吡啶、苦味酸、丁基黄原酸、六氯丁二烯、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、溴苯、仲丁基苯、萘、叔丁基苯、土臭素、2-甲基异莰醇、五氯丙烷、丙烯酸(离子色谱法)、戊二醛、环烷酸、二甲基二硫醚、二甲基三硫醚、多环芳烃、多氯联苯的测定方法。本文件适用于生活饮用水中和(或)水源水中有机物指标的测定。 主要技术内容:四氯化碳、1,2-二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、苯并(a)芘、丙烯酰胺、己内酰胺、邻苯二甲酸二(2-乙基己基)酯、微囊藻毒素、乙腈、丙烯腈、丙烯醛、环氧氯丙烷、苯、甲苯、二甲苯、乙苯、异丙苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯、四氯苯、硝基苯、三硝基甲苯、二硝基苯、硝基氯苯、二硝基氯苯、氯丁二烯、苯乙烯、三乙胺、苯胺、二硫化碳、水合肼、松节油、吡啶、苦味酸、丁基黄原酸、六氯丁二烯、二苯胺、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、溴苯、仲丁基苯、萘、叔丁基苯、双酚A、土臭素、2-甲基异莰醇、五氯丙烷、丙烯酸、戊二醛、环烷酸、苯甲醚、萘酚、全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、多环芳烃、多氯联苯、药品及个人护理品的测定方法。第9部分:农药指标范围:本文件规定了生活饮用水中滴滴涕、六六六、林丹、对硫磷、甲基对硫磷、内吸磷、马拉硫磷、乐果、百菌清、甲萘威、溴氰菊酯、灭草松、2,4-滴、敌敌畏、呋喃丹、毒死蜱、莠去津、草甘膦、七氯、六氯苯、五氯酚、氟苯脲、氟虫脲、除虫脲、氟啶脲、氟铃脲、杀铃脲、氟丙氧脲、敌草隆、氯虫苯甲酰胺、利谷隆、甲氧隆、氯硝柳胺、甲氰菊酯、氯氟氰菊酯、氰戊菊酯、氯菊酯、乙草胺的测定方法和水源水中滴滴涕(毛细管柱气相色谱法)、六六六、林丹(毛细管柱气相色谱法)、对硫磷(毛细管柱气相色谱法)、甲基对硫磷(毛细管柱气相色谱法)、内吸磷、马拉硫磷(毛细管柱气相色谱法)、乐果(毛细管柱气相色谱法)、甲萘威(高压液相色谱法-紫外检测器、分光光度法、高压液相色谱法-荧光检测器)、灭草松(液液萃取气相色谱法)、2,4-滴(液液萃取气相色谱法)、敌敌畏(毛细管柱气相色谱法)、呋喃丹(高效液相色谱法)、毒死蜱(液液萃取气相色谱法)、莠去津(高效液相色谱法)、草甘膦(高效液相色谱法)、七氯(液液萃取气相色谱法)、五氯酚(衍生化气相色谱法、顶空固相微萃取气相色谱法)的测定方法。本文件适用于生活饮用水和(或)水源水中农药指标的测定。主要技术内容:滴滴涕、六六六、林丹、对硫磷、甲基对硫磷、内吸磷、马拉硫磷、乐果、百菌清、甲萘威、溴氰菊酯、灭草松、2,4-滴、敌敌畏、呋喃丹、毒死蜱、莠去津、草甘膦、七氯、六氯苯、五氯酚、氟苯脲、氟虫脲、除虫脲、氟啶脲、氟铃脲、杀铃脲、氟丙氧脲、敌草隆、氯虫苯甲酰胺、利谷隆、甲氧隆、氯硝柳胺、甲氰菊酯、氯氟氰菊酯、氰戊菊酯、氯菊酯、乙草胺的测定方法。第10部分:消毒副产物指标范围:本文件规定了生活饮用水中三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷、甲醛、乙醛、三氯乙醛、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸、氯化氰、2,4,6-三氯酚、亚氯酸盐、溴酸盐、亚硝基二甲胺的测定方法。本文件规定了水源水中三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷、甲醛、乙醛、三氯乙醛(顶空气相色谱法)、一氯乙酸(液液萃取衍生气相色谱法)、二氯乙酸(液液萃取衍生气相色谱法)、三氯乙酸(液液萃取衍生气相色谱法)、2,4,6-三氯酚(衍生化气相色谱法、固相萃取气相色谱质谱法)、亚氯酸盐(离子色谱法)、溴酸盐(离子色谱法-氢氧根系统淋洗液、离子色谱法-碳酸盐系统淋洗液)、亚硝基二甲胺(固相萃取气相色谱质谱法)的测定方法。本文件适用于生活饮用水和(或)水源水中消毒副产物指标的测定。主要技术内容:三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷、甲醛、乙醛、三氯乙醛、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸、氯化氰、2,4,6-三氯酚、亚氯酸盐、溴酸盐、亚硝基二甲胺的测定方法。第11部分:消毒剂指标范围:本文件规定了生活饮用水中游离氯、总氯、氯胺、二氧化氯、臭氧、氯酸盐的测定方法和水源水中游离氯[N,N-二乙基对苯二胺(DPD)分光光度法、3,3' ,5,5' -四甲基联苯胺比色法]、总氯[N,N-二乙基对苯二胺(DPD)分光光度法]、氯胺以及含氯消毒剂中有效氯的测定方法。本文件适用于生活饮用水和(或)水源水中消毒剂指标的测定。 主要技术内容:游离氯、总氯、氯胺、含氯消毒剂中有效氯、二氧化氯、臭氧、氯酸盐的测定方法。第12部分:微生物指标范围:本文件规定了生活饮用水和水源水中菌落总数、总大肠菌群、耐热大肠菌群、大肠埃希氏菌、贾第鞭毛虫、隐孢子虫、肠球菌和产气荚膜梭状芽孢杆菌的测定方法。本文件适用于生活饮用水和水源水中微生物指标的测定。主要技术内容:菌落总数、总大肠菌群、耐热大肠菌群、大肠埃希氏菌、贾第鞭毛虫、隐孢子虫、肠球菌和产气荚膜梭状芽孢杆菌的测定方法。第13部分:放射性指标范围:本文件规定了生活饮用水和(或)水源水中总α放射性的活度浓度、总β放射性的活度浓度、铀的质量浓度、镭-226的活度浓度测定方法。本文件适用于测定生活饮用水和(或)水源水中α放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总α放射性活度浓度、β放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总β放射性活度浓度、铀的质量浓度和镭-226的活度浓度。测定含盐水和矿化水的总α放射性、总β放射性、铀和镭-226参照使用。主要技术内容:总α放射性的活度浓度、总β放射性的活度浓度、铀的质量浓度、镭-226的活度浓度测定方法。
  • 安全,是一项持久战——ACCSI 2016之试剂发展与实验室危险化学品管理论坛
    p style="text-indent: 2em "化学试剂作为科技进步的重要条件,被广泛应用于合成、分离及分析等领域。随着科技的进步,化学试剂也迎来了前所未有的发展,同时也面临着些许制约发展弊端。/pp style="text-align: center text-indent: 0em "img style="width: 300px height: 201px " title="240425-12102300260413.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/69bba9c7-7f5a-4c79-9daa-0d3673e75770.jpg" width="300" height="201" data-pinit="registered"//pp style="text-indent: 2em "危险化学品的重大安全事故随着近年来我国工业化的快速发展频频发生,严重威胁着生态环境和居民健康安全。面对频发的危险化学品事故,本届会议引入危险化学品管理的概念,分析我国危险化学品事故存在的问题及相关管理规定,以便全力促进我国化学试剂行业的快速发展。“2016第十届中国科学仪器发展年会(ACCSI 2016)”的主办单位联合全国化学试剂信息站及《化学试剂》编辑部共同组织召开“试剂发展与实验室危险化学品管理”论坛。/pp style="text-align: center text-indent: 2em "img style="width: 300px height: 144px " title="234.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/86e0cb37-8b5e-49e6-a8a5-b9a01afadb5d.jpg" width="300" height="144" data-pinit="registered"//pp style="text-indent: 2em "本届论坛将围绕“试剂发展与实验室危险化学品管理”这一主题,分别从实验室的安全操作、试剂分类、危化品管理等方面以及企业危化品存储、运输等方面分析目前我国危险化学品事故存在的问题,提出危险化学品事故危机的解决方案,构建新型危险化学品事故危机体系应急处理措施,力求推进试剂行业的健康发展。/ppstrong会议日程:/strongbr//pp时间:2016年4月22日13:30-17:30/pp地点:北京京仪大酒店/ppstrong会议内容:/strong/ppstrong报告1:科研用试剂产业链创新体系的构建/strong/pp报告人:牛刚 科研用试剂产业技术创新战略联盟秘书长/ppstrong报告2:中国化学试剂市场分析及发展展望/strong/pp报告人:刘昉 全国化学试剂信息站站长/ppstrong报告3:实验室危险化学品管理/strong/pp报告人:侯士果 默克(中国)高级市场专员/ppstrong报告4:试剂企业危险品存储管理(拟)/strong/ppstrong报告5:ODS实验室分析用途管理技术支持和宣传/strong/pp报告人:孙芳 中国四氯化碳实验室及分析用途项目调查组项目专员/ppstrong专题讨论/strong/pp style="text-align: center "strongAccsi2016参会报名/strongbr//pp /pp style="text-align: center "http://www.instrument.com.cn/accsi/2016/Register.html/pp style="text-align: center "报名电话:4000074077 /ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制