当前位置: 仪器信息网 > 行业主题 > >

玻璃度测试仪

仪器信息网玻璃度测试仪专题为您提供2024年最新玻璃度测试仪价格报价、厂家品牌的相关信息, 包括玻璃度测试仪参数、型号等,不管是国产,还是进口品牌的玻璃度测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合玻璃度测试仪相关的耗材配件、试剂标物,还有玻璃度测试仪相关的最新资讯、资料,以及玻璃度测试仪相关的解决方案。

玻璃度测试仪相关的论坛

  • 剥离力测试仪

    剥离力测试仪

    AR-1000剥离力测试是设计用来执行PSTC,ASTM,TLMI,FINAT和AFERA嬠/font][/back]粘附和释放测试程序 美国cheminstruments微川仪器 AR-1000剥离力测试仪可以测量90-180°之间的任何角度的测量,包含从1 LB 至 50 LB的传感器可以选,如果选配EZ-LAB软件可以在电脑上生成曲线等,更加方便数据的采集与分析。[img]http://ng1.17img.cn/bbsfiles/images/2013/12/201312101629_481499_2408923_3.jpg[/img] 美国cheminstruments AR-1000剥离力测试仪主机[img]http://ng1.17img.cn/bbsfiles/images/2013/12/201312101632_481500_2408923_3.jpg[/img] 美国cheminstruments AR-1000 剥离力测试仪 5 lb传感器

  • FSM-6000LE 钢化玻璃表面应力测试仪技术规格书

    FSM-6000LE 钢化玻璃表面应力测试仪技术规格书

    [align=center][b][font='Microsoft YaHei UI']FSM-6000LE 钢化玻璃表面应力测试仪 [/font][/b][/align][align=center][b][font='Microsoft YaHei UI'][color=#0070bf][font=Microsoft YaHei UI]无损、快速、高精度[/font] [/color][/font][/b][/align][align=center][img=,414,355]https://ng1.17img.cn/bbsfiles/images/2023/05/202305101125297207_8453_1918511_3.jpg!w400x400.jpg[/img][font=Calibri] [/font][/align][font=Calibri] [/font][font='Times New Roman']FSM-6000LE [/font][font=宋体]应力测试仪为一款化学钢化玻璃表面应力检测仪器,用于测量化学强化和物理强化玻璃的表面应力。通过让光沿着玻璃表面传播,根据光弹性技术测出其表面的应力以及应力层深度。该仪器采用无损检测方式,使用操作方便,既缩短了测量所需时间,又对玻璃生产过程进行及时监控,能很好的分析化学钢化玻璃的表面应力情况,进而判断产品的钢化程度。[/font][font='Times New Roman'] [/font][font=宋体]符合[/font][font=宋体]符合国标[/font][font=Calibri] GB 15763.2-2005 GB/T18144[/font][font=宋体]建材行业标准[/font][font=Calibri]JC-T 977-2005[/font][font=宋体]美国材料试验协会标准[/font][font=Calibri]ASTM C1279-05 ASTM C1048-04[/font][font=宋体]日本工业技术标准:[/font][font=Calibri]JIS R3222-2003[/font][b][b][font='Microsoft YaHei UI'][color=#0070bf]一、仪器特点[/color][/font][/b][font='Times New Roman'] [/font][/b][font='Times New Roman'] [/font][font=Calibri]1.[/font][font=宋体]具有其他型号没有的W一的测量方法[/font][font=Calibri]([/font][font=宋体]折射计光弹性分析原理[/font][font=Calibri])[/font][font=宋体]。[/font][font=Calibri]2.[/font][font=宋体]自动测量,因测试者造成的个人误差小。[/font][font=Calibri]3.[/font][font=宋体]能够用电脑保存数据,便于品质管理。[/font][font=Calibri]4.[/font][font=宋体]测试条件不佳的试料可以进行手动测量。[/font][font=Calibri]5.[/font][font=宋体]使用[/font][font=Calibri]LED[/font][font=宋体]光源,使用寿命长,达到[/font][font=Calibri]10,000[/font][font=宋体]小时[/font][font=Calibri] ([/font][font=宋体]以前[/font][font=Calibri]500[/font][font=宋体]小时[/font][font=Calibri])[/font][font=宋体]。[/font][font=Calibri]6.[/font][font=宋体]使用了玻璃校准片因此可将机器误差控制到z小。[/font][font=Calibri]7. .[/font][font=宋体]能够用电脑自动保存数据,便于品质管理[/font][b][b][font='Microsoft YaHei UI'][color=#0070bf][font=Microsoft YaHei UI]二、技术参数[/font] [/color][/font][/b][/b][font='Times New Roman']1. [/font][font=宋体]应力值测量范围:[/font][font='Times New Roman']0-1[/font][font=宋体][font=Times New Roman]0[/font][/font][font='Times New Roman']00Mpa [/font][font='Times New Roman']2. [/font][font=宋体]应力值测量精度:[/font][font='Times New Roman']±[/font][font=宋体][font=Times New Roman]5[/font][/font][font='Times New Roman']Mpa [/font][font='Times New Roman']3. [/font][font=宋体]应力层深度测量范围:[/font][font=宋体]10[/font][font='Times New Roman']-[/font][font=宋体][font=Times New Roman]1[/font][/font][font='Times New Roman']00μm [/font][font='Times New Roman']4. [/font][font=宋体]应力层深度测量精度:[/font][font='Times New Roman']±[/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman']μm [/font][font='Times New Roman']5. [/font][font=宋体][font=宋体]光源:专用[/font] [/font][font='Times New Roman']LED[/font][font=宋体][font=宋体],波长[/font] [/font][font='Times New Roman']595±2nm [/font][font='Times New Roman']6. [/font][font=宋体]测量对象:化学强化玻璃、物理强化玻璃[/font][font='Times New Roman'] [/font][font='Times New Roman']7. [/font][font=宋体][font=宋体]测量形状:平板玻璃[/font] [/font][font='Times New Roman']10mm×10mm [/font][font=宋体]或以上[/font][font='Times New Roman'] [/font][font='Times New Roman']8. [/font][font=宋体]棱镜:[/font][font='Times New Roman']S-LAL-10 ND=1.72 [/font][font='Times New Roman']9. [/font][font='Times New Roman']PC[/font][font=宋体]:用([/font][font='Times New Roman']Windows 10[/font][font=宋体]、测量软件已安装)[/font][font='Times New Roman'] [/font][font='Times New Roman']10. [/font][font=宋体]电源:[/font][font='Times New Roman']AC220V±5V 5A [/font][font='Times New Roman']11. [/font][font=宋体]尺寸:[/font][font='Times New Roman']300×600×200mm [/font][font='Times New Roman']12. [/font][font=宋体][font=宋体]重量:约[/font] [/font][font='Times New Roman']16kg [/font][b][b][font='Microsoft YaHei UI'][color=#0070bf][font=Microsoft YaHei UI]三、配置清单[/font] [/color][/font][/b][/b][font='Times New Roman']1. [/font][font=宋体][font=宋体]应力测试仪主机[/font] [/font][font='Times New Roman']1 [/font][font=宋体]台[/font][font='Times New Roman'] [/font][font='Times New Roman']2. [/font][font=宋体][font=宋体]电脑[/font] [/font][font='Times New Roman']1 [/font][font=宋体]台(包含主机、显示器、鼠标、键盘)[/font][font='Times New Roman'] [/font][font='Times New Roman']3. [/font][font=宋体] [/font][font=宋体]应力仪[/font][font=宋体][font=宋体]测试软件[/font] 1 套[/font][font='Times New Roman']4. [/font][font=宋体][font=宋体]校准片[/font] 1 块 [/font][font='Times New Roman']5. [/font][font=宋体][font=宋体]三棱镜[/font] 1 个 [/font][font='Times New Roman']6. [/font][font=宋体]显影液[/font][font=宋体] [/font][font=宋体]2支[/font][b][b][font='Microsoft YaHei UI'][color=#0070bf][font=Microsoft YaHei UI]四、使用注意事项[/font] [/color][/font][/b][/b][font='Times New Roman']1. [/font][font=宋体]请操作机器时要轻拿轻放被测样品,以免对棱镜部分造成损伤。[/font][font='Times New Roman'] [/font][font='Times New Roman']2. [/font][font=宋体]当检测图像显示不清晰时,请自行用棉签棒沾工业酒精轻轻擦拭棱镜表面和斜面。[/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman'] [/font][font='Times New Roman']3. [/font][font=宋体][font=宋体]杜绝连通互联网和局域网以及含有毒的[/font] [/font][font='Times New Roman']USB [/font][font=宋体]接口的软盘或硬盘。[/font][font='Times New Roman'] [/font][font='Times New Roman']4. [/font][font=宋体]请在室内使用该机器,避免强光照射,室内空气不可太潮湿,且酸碱度要适中。[/font][font='Times New Roman'] [/font][font='Times New Roman']5. [/font][font=宋体]请远离其他化学品。[/font][font='Times New Roman'] [/font][font='Times New Roman']6. [/font][font=宋体]请务必保存好配套的密码狗,如有丢失责任自负。[/font][font='Times New Roman'] [/font][font='Times New Roman']7. [/font][font=宋体]请正确操作本机器配套的电脑配置,切勿随意强制关机,以免造成电脑毁坏。[/font][font='Times New Roman']8. [/font][font=宋体]使用环境[/font][font='Times New Roman'] [/font][font=宋体][font=宋体]:[/font][font=Times New Roman]1[/font][/font][font=宋体][font=Times New Roman]8[/font][/font][font=宋体]℃ -[/font][font=宋体][font=Times New Roman]28[/font][/font][font=宋体]℃,[/font][font=宋体][font=Times New Roman]45[/font][/font][font=宋体][font=Times New Roman]~[/font][/font][font=宋体][font=Times New Roman]8[/font][/font][font=宋体][font=Times New Roman]5%[/font][font=宋体]的环境[/font][font=Times New Roman],[/font][font=宋体]不结露(建议暂放在无尘车间)[/font][/font][font=Calibri] [/font]

  • 纺织剥离实验测试原理

    剥离强度试验机的测试原理、性能特点及在服装、衬布行业中的具体应用。  一、前言  近二十年来,服装、衬布行业发生了巨大的变化,特别是衬布行业从无到有,高速地发展起来。但目前,国内市场的竞争相当地激烈。随着中国加入WTO后,面临的国内国际市场竞争压力加大,这就要求各单位必须建立完善的质量检验体系。国家也结合实际情况颁布了新的行业标准。因此,选择合适的测试仪器是致关重要的。  在服装、衬布行业,剥离强度是一项重要的物理指标。因国内各种强力测试仪器种类繁多,给各单位选用仪器造成了很大的困难。这里给大家介绍目前国内唯一的粘合衬剥离强度专用标准测试仪器——由东莞高鑫检测设备有限公司研发剥离强度仪。该仪器采用科学的测试原理,应用先进的检测技术,测试方便、高效、准确;已通过中国纺织总会组织的专家监定,确认其测试原理达到国际先进水平;获得国家发明专利,目前已在全国众多质检部门、服装和粘合衬生产企业及大专院校推广应用,取得了良好效益。  纺织品的剥离实验测试原理  海达仪器剥离强度试验机通过记录粘合衬与面料剥离过程中受力曲线上全部峰值,并计算这些峰值的平均值与离散系数,用平均值反映粘合的牢固程度,离散系数反映粘合的均匀程度,从而可全面反映两者粘合牢固程度,这与现行行业标准FZ/T01085-2000中规定的测试原理完全符合。此测试原理比过去以剥离过程中受力最大值或有限几个峰值的平均值作为剥离强度测试结果更为科学合理。  该仪器按等速伸长(GRE)原理,采用传感器进行测力,利用单片计算机进行测试程序控制和数据处理,实现了机电一体化和测试自动化。  该仪器完全适用以下标准:  FZ/T01085-2000——热熔粘合衬布剥离强力测试方法;  FZ/T80007.1-1999——使用粘合衬服装剥离强度测试方法。  同比于国内外原有的各种强力试验机,该仪器在测试方法及原理上有以下更科学、合理之处:  1、用针板代替夹钳,大大提高了装取试样的工作效率,并可以防止拉伸过程中试样滑脱,保证测试简便、有效。  2、机电一体化,除装取试样外,测试过程全部自动化,工作效率高,并提高了检测精确度、工作稳定性和可靠性,适合在各种环境下使用。  3、可提供多种测试数据(全部峰值、最大值、最小值、平均值、离散系数),测试结果可直观显示,又可打印记录。  4、测试结果即有剥离强度平均值,又有离散系数。离散系数的提出使测试结果更加科学、合理。  5、操作简单,对操作人员无任何要求,随教随会。  该仪器的主要性能指标:  传感器量程:0~100牛顿  剥离速度:0.1-- 300mm/min(±10mm)  回程速度: 0.1--300mm/min  剥离长度:100mm  剥离宽度:50mm  测试精度: 相对误差≤±2%  电 源:220V 1A  功 率:80W  纺织品的剥离实验主要应用  * 针对粘合衬生产企业:  1、剥离强度的准确数据是产品达标、分类、分级的重要依据。  2、测试不同底布、不同胶料或不同涂布工艺的剥离强度,以便改进 生产工艺,降低生产成本。并非粘合衬的剥离强度值越大越好,剥离强度值太大将会导致面 料僵硬,失去弹性,影响面料原有的风格,并且加大企业的生产 成本;并非剥离强度值越大越不容易起泡,关键是要解决面料与衬布之间的应力问题。当面料外部环境(温、湿度)发生变化,面料就会发生相应的伸长或收缩变化,这时,面料与衬布之间的应力就会发生变化。即使具有较好的剥离强度,当面料和衬布之间的应力大于剥离强度时,依然会导致服装起泡。在时间、温度、压力一定的情况下,离散系数小于15%即表示粘合衬涂胶均匀,比化学方法更直观地反映出涂布均匀性。  3、为用户提供粘合衬的参考压烫条件(温度、时间、压力),提供不同面料与衬布的配伍。  海达仪器剥离强度试验机为粘合衬企业提高服务档次提供了可能,售前服务(产品介绍、配衬),售中服务(送货上门、现场示范)等。  4、保证新产品的开发和质量的监督。  目前,国内粘合衬中低档衬布供大于求的情况严重,而高档衬布 基本上依赖进口。这就要求粘合衬企业必须进行产品结构调整,寻求技术革新,不断提高产品的档次,抢占高端市场,以质优价廉的产品取代进口产品,从而使企业获得更强的市场竞争力。  * 针对服装生产企业:  1、对采购进厂的粘合衬布的主要质量指标进行检验,确保原材料质量合格。  2、按服装产品标准对粘合衬剥离强度的要求,利用该仪器确定正确 的压烫工艺(温度、压力、时间),使生产工艺达到最佳水平, 实现低耗、高产、优质。  3、对生产过程进行质量监督,可随时利用该仪器抽查粘合衬热压工序半成品的剥离强度,发现不合格产品时,及时分析原因(设备、工艺、人员)解决问题,避免造成重大质量问题和损失。  4、保证新产品的开发和质量的监督。

  • 【有奖讨论】食品、饮料接触性陶瓷或玻璃技术要求与测试仪器!!!

    2010年5月27日安第斯共同体秘书处通报消息,哥伦比亚于近期制订了另一项食品接触性材料技术标准——与食品、饮料接触性陶瓷或玻璃材料、容器、物品、设备的技术要求。 其中,对物质迁移限量的规定如下: 陶瓷、珐琅、釉彩等材质的食品、饮料接触性物体或容器的总物质迁移限量:50mg/kg水,或者8mg/dm2接触面;特定物质迁移量:对于非盛装性物体,(Pb): 0.8 mg/dm2 ; (Cd): 0.07 mg/dm2;对于盛装性容器,(Pb): 4.0 mg/L; (Cd): 0.3mg/L;对于烹饪用具、容量大于3L容器,(Pb):1.5 mg/L;(Cd): 0.1mg/L。 对于水晶/玻璃材质的食品、饮料接触性物体或容器,特定物质铅(Pb)迁移限量(LME)为:非盛装性物体LME: 0,8 mg/dm2;容量低于600ml的容器LME: 1.5 mg/L;容量介于600~3000ml的容器, LME: 0.75 mg/L;容量大于3L的容器,LME: 0.50 mg/L。诚然,这些要求在欧盟及中国等国家已经有了相关的要求,针对食品接触性陶瓷或玻璃的测试应该说是已经很成熟了。希望有经验的能讨论一下这些测试中的仪器设备要求:[color=#013add]需要哪些仪器?可以满足同样测试需求的仪器,哪些最合适?为什么?需要哪些设备?用途是什么?需要哪些试剂?[/color][color=#f10b00]讨论有奖,每条2分。精彩内容,额外奖励![/color]

  • 注射器拔出力测试仪

    注射器拔出力测试仪也叫注射器针头护帽拔出力测试仪,是专业检测预灌封注射器组合件的试验仪器,该仪器符合YBB00112004国标检测,注射器拔出力测试仪由济南三泉中石研发生产。  注射器拔出力测试仪的研发工程师告诉我们:市场上预灌封注射器质量问题十分严重,国家药品监督管理局不定期进行抽查,发现不合格产品居多,主要是易氧化物的最大残留量、容量允差和注射针的牢固度等问题,影响到产品的使用安全。另外注射器针头护帽的拔出力也是很多企业没有重视的检测项目。下面给大家介绍下注射器拔出力测试仪的性能参数:  测试原理  将试样装夹在医药包装撕拉力测试仪两个夹头之间,两夹头做相对运动,通过特殊夹头将进行穿刺或开启力试验,通过注射器拔出力测试仪测力系统精确测试此过程中的力值变化与位移变化,从而得出相应力值数据。  适用范围  注射器拔出力测试仪 YYB-01应用于安瓿瓶、丁基胶塞、铝塑组合盖、聚丙烯组合盖、薄膜、复合膜、药用铝箔、PVC硬片、预灌封注射器、注射针等药品包装材料,进行折断力、穿刺力、滑动性、开启力、拉伸强度、热合强度、剥离强度等拉压撕试验。  仪器特点  注射器拔出力测试仪支持多种试验模式,配合不同试验夹具可满足不同实验要求,夹具更换方便快捷。仪器采用进口品牌高精度传感器,测试结果精确稳定,无极调速可满足不同实验对试验速度的要求。医药包装撕拉力测试仪是一款多用途高性能医药包装综合性能测试仪器。注射器拔出力测试仪应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位。

  • 【求助】激光衍射粒度分布测试仪

    我单位需购买一台激光衍射粒度分布测试仪,测试样品为对苯二甲酸,现用筛分法测定粒度分布,粒度从45um到大于250um,平均粒度在110--130um之间。现要求如下:1当然要准确。2分析速度快。3能同时给出体积比和重量比 4仪器操作简单,但用工作站控制。 5仪器维护方便,比如样品池易清洗,更换镜头方便或不用换镜头。初步打算选择英国马尔文公司Mastersizer 2000型或美国贝克曼LS系列。请各位老大给个建议,特别是用过的老大!!!如果那位有LS系列的详细资料请发给我邮箱zyxdbox@yeah.net谢谢!!!!

  • 玻璃原料粒度的控制

    玻璃原料粒度的控制前言玻璃行业对原料的控制水平可以分为三个台阶:一是成份的控制,这包括原料的高品位、成份的稳定及水分的稳定等;二是颗粒度的控制,包括对最大颗粒的限制、对超细粉的控制以及对各种不同颗粒级别的配比的控制;三是配合料控制,即通过控制混合料的氧化-还原势,使熔化、澄清和均化达到更科学、合理的状态。随着行业技术的不断发展进步,人们现在已经越来越深刻地认识到原料质量对玻璃生产的影响,其中对原料成份的控制,已被人们广为接受并得以充分地重视,而对颗粒度的控制也应作为一个重要课题。这是现今玻璃行业必须直面,并要努力跨越的重要技术台阶。玻璃原料粒度对生产的影响玻璃原料按其在玻璃中起的作用主要分为,原料和辅助原料。主要原料是形成玻璃结构的主体原料,它决定着玻璃的主要物理,化学性质。这些原料熔融反应后即生成硅酸盐,构成玻璃液的主体,如硅砂,纯碱等。辅助原料其用量较少,主要用以改善玻璃的熔化,澄清,成形性能或使产品具有某些特殊性能,如加入芒硝作澄清剂,加碳粉作还原剂,加硒钴作着色剂等。原料颗粒度的控制包括三个方面:一是颗粒上限,即允许粉料中最大颗粒的尺寸,超过上限尺寸的称为大颗粒。大颗粒的存在会对熔化质量产生很坏的影响。二是颗粒下限,即允许粉料中最细颗粒的尺寸,小于下限尺寸的往往就称为细粉。三是颗粒级配,指在粉料中,各种不同尺寸级别的颗粒所占的比例。颗粒级合理的配合料将会有助于熔化质量的提高。目前国内一般水平的浮法生产线对原料的颗粒度还不太重视,只有较先进的浮法玻璃生产线,对硅质原料的要求均很严格,大颗粒限制得越来越小,细粉含量限制的越来越少。要想达到节能降耗,提高玻璃产量和质量的目的,首先合理地控制好玻璃原料的粒度。如果大颗粒过多时,会造成玻璃熔化困难,最终会形成夹杂物等缺陷而影响玻璃质量。细粉颗料之间有许多细小的空隙,夹杂着许多气体,占据着一定的空间,这些气体空间会形成隔热层,降低了混合料的热传导性,从而提高了熔化难度,产生大颗粒的效应。同时这些气体空隙的存在还降低了玻璃熔体的润湿性,容易导致产品中的微气泡。其次在水份较大的情况下,粉料容易形成卵状细粉料团,这种料团有时在混合机中也打不开,形成“料蛋”造成混合料不均。即便是水份较低的粉料,也会由于过多细粉的存在而影响混合料的均匀性。此外细粉中含重质难熔矿物成份较多,易带来较多的杂质和熔化缺陷。济南微纳粒度仪应用WINNER2308是一款干湿一体大量程激光粒度仪,采用新一代设计理念,成功解决了干湿一体化的各项技术问题,实现干湿一键切换,使用非常便捷,融合了济南微纳公司的多项专利技术,采用会聚光傅里叶变换专利技术、频谱放大技术,不仅克服了透镜孔径对散射角的限制,在有限的空间内实现量程的大范围扩展,并添加多个辅助集成光电探测器,能有效采集测试量程所对应的各个角度的散射光,实现全量程内的测试准确度和可靠性。采用紊流分散专利技术,利用激波的剪切效果,使颗粒样品达到充分的分散,分散系统关键部位采用耐磨陶瓷,不仅提高了使用寿命,而且还保证测试。是颗粒种类较多且颗粒分布较宽的工业生产质量控制部门及科研机构的首选。产品应用案例河北省沙河玻璃技术研究院是由沙河市人民政府与武汉理工大学共同组建的科研单位。定位是以玻璃应用基础研究与技术转化为主导方向,立足玻璃材料科学前沿,通过自主创新,以推动玻璃产业的技术进步。研究院主要开展浮法玻璃生产关键技术和新品种、新能源玻璃技术、产品缺陷快速诊断与分析等核心技术的研究开发。研究院拥有一批先进的玻璃材料制备、性能测试、质量检测的专业仪器与设备。近年来,河北省沙河玻璃技术研究院采用济南微纳颗粒仪器股份有限公司提供的新型激光粒度仪对玻璃应用技术进行革新与研究。济南微纳提供的测试服务与支持,得到了研究院院士们的一致好评。研究所构筑了玻璃材料及其关键技术研究的支撑体系,将在玻璃材料的研究与开发中发挥重要作用。

  • 关于实验室水分测试仪应用前的预防建议

    水分测试仪是比较常用的仪器,凡是需要测定水分如食品等行业都必须用到水分测定仪,水分测定仪的运用范围广,作用大,不仅用于液体样品中水含量的测量,还于适用于气体样品中水含量的测量,可广泛用于石油、化工、冶金、电力、医药、卫生、环保、食品等生产和科研工作中物质含水量的测量。同时它也是属于一种精密的仪器。因此在使用水分测定仪的时一定要注意以下7点:    1.进样之前一定要用滤纸从末端到前端的擦拭进样气的针头部分,避免针头附着的水分带入到试剂中或附着在进样垫上,造成测试结果的不准确。    2.取样要准确,一般来说规定的需要取用10mg水,就尽量使用10ul取样器,这对甲醇试剂和乙酯也是同样的道理。因为这样不但准确、速度快,还能够防止水滴粘附。同样取放完毕后应注意尽量缩短反应池打开的时间。    3.磁性搅拌速度调整:在反应池中,因为滴定试剂加入时在局部,与电极不在一处,因此搅拌速度最好以快到不形成湍流为止,这样可以最快达到终点。    4.滴定速度设定一定要先快后慢,并且在滴定时先快速以尽量缩短试验时间,在接近终点时应变慢,这样可提高计量精确度。    5.在每次试验完毕后,一定要排空系统中的卡尔-费休试剂,然后用甲醇清洗干净,千万不能用水清洗系统,因为其不容易挥发,将造成下次试验时试剂标定不实。用甲醇清洗这样就能保证测量的精准性。    6.在日常生活中水分测试仪应该远离强磁场,避免工作时电子显示跳动,出现不正常现象。尤其是对手动的水分测定仪,因为必须使用玻璃自动滴定管计量卡尔-费休试剂和甲醇溶剂,而玻璃滴定管本身因为平衡压力的关系,又必须与外界接通。 7.系统尽量密闭。手动的水分测试仪需要在吸球管路和玻璃滴定管上口加接填充干燥剂的U型管,以便减少空气水分对测试结果的干扰。在空气相对湿度大于70%的环境下,应尽量不安排水分测试。此外,在调整滴定管的滴定速度时,最好调整到1滴/秒。滴定速度太快将导致到达终点时产生的延时误差较大;而滴定速度太慢则会延长测试的过程,上述干扰容易导致迟迟不到达终点。

  • 请给推荐一款干法粒度测试仪

    今天,上面要我们寻找一款干法粒度测试仪,尽量是产自美国/法国的,仪器要求是最先进的款式;请各位推荐一款,谢谢。

  • 马尔文粒度测试仪器

    能提供马尔文纳米粒度测试仪器的分析和ZETA电位分析,粒度仪器型号为NANO-ZS,测试范围为纳米级别不知道这样发帖是否算违规,如果违规,抱歉,谢谢

  • 【转帖】酒精测试仪的原理

    目前使用的酒精测试基本上利用同样的原理,那就是呼吸中的酒精浓度和血液中酒精浓度会呈现出一定比例关系。当人饮酒时,酒精被吸收,但并不会被消化,一部分酒精挥发出去,经过肺泡,重新被人呼出体外。经测定,这种呼出气体中的酒精浓度和血液中酒精浓度的比例是2100:1,也就是说,每2100ml呼出气体中含有的酒精,和1ml血液中含有的酒精,在量上是相等的。通过这个比例,交警就可以通过测定驾驶者的呼气,很快计算出受测者血液中的酒精含量。目前,市面上常用的酒精测试仪,按照不同测试方式,大致可分为三类:Breathalyzer、Intoxilyzer和Alcosensor III or IV。Breathalyzer是一种利用化学反应剂来测定呼出气体中酒精浓度的测试仪。1954年,美国印地安那州的一位警察罗伯特伯肯斯坦发明了Breathalyzer,这是世界上第一台酒精测试工具。直到今天,它仍是世界上使用频率最高的酒精测试仪。 除了一般测试仪都有的构件外,Breathalyzer还配有两只装着化学混合剂的玻璃瓶。当受测者的呼气通过这些玻璃瓶时,如果气体中含有酒精,瓶中的混合剂会从橙色变成绿色,而化学反应产生的电阻也会令指针移动,精确标示出呼气中酒精的浓度,并通过微电脑将其换算成血液酒精的浓度。 Intoxilyzer是通过酒精分子吸收红外线的程度,来确定酒精的含量;Alcosensor III or IV是通过带有正负电极的燃料电池来完成测试工作。这种电极由铂金属制成,当含有酒精的气体进入燃料电池时,会和铂发生反应,产生电流生成读数。这些酒精测试仪都十分敏感。如果没有酒精测试仪的“帮忙”,警察就只能通过血检或尿检的方式来测定驾驶者有没有喝过酒,但这种检查工作会耗去1-2天的时间。

  • 注射器连接力测试仪

    注射器连接力测试仪是制药机械检测仪器中应用较为广泛的一种,全称为注射器针与针座连接力测试仪,这款仪器由济南三泉中石研发并生产,注射器连接力测试仪符合国标YBB00112004的检测。注射器是一种常见的医疗用具,用于医疗设备、容器、如有些色谱法中的科学仪器穿过橡胶隔膜注射。将气体注射到血管中将会导致空气栓塞,从注射器中去除空气以避免栓塞的办法是将注射器倒置、轻轻敲打、然后在注射到血流之前挤出液体。注射器针筒可以是塑料也可以是玻璃制成的,并且通常上面都有表示注射器中液体体积的刻度指示。注射器连接力测试仪的检测对于保证医疗器械的质量有着重要的意义。下面介绍下注射器连接力测试仪的基本信息:技术特征大液晶显示测试过程、PVC操作面板配备微型打印机,快速打印实验结果通过调换不同夹具,可扩展进行多种试验项目限位保护、自动回位等智能配置,保证用户的操作安全丝杠传动系统速度随意调节,注射器连接力测试仪保证试验速度及位移准确性一机具备拉压试验、剥离强度、开启力、穿刺力等四项单独实验项目,满足不同包材测试需要专业电脑软件操作系统,注射器连接力测试仪方便用户连接计算机进行数据保存、分析、打印采用进口传感器系统,注射器连接力测试仪的测试精度在行业内遥遥领先,有效的保证了试验结果的准确性仪器配置标准配置:注射器连接力测试仪主机、微型打印机、胶塞穿刺力夹具、拉环开启力夹具、测试软件、通信电缆选用配置:折断力夹具、组合盖开启力夹具、拉伸夹具等注射器连接力测试仪是一款多用途高性能医药包装综合性能测试仪器,广泛应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位,济南三泉中石研发生产的注射器连接力测试仪现已被多家知名药企采购使用,包括北京协和药厂、哈药集团、海正辉瑞制药、黑龙江哈尔滨医大药业、山东鲁抗医药集团、深圳华润九新药业、河北爱尔海泰制药等近千家企业。文章来自知名的检测仪器研发生产厂家--济南三泉中石实验仪器有限公司官方网站,欢迎转载,转载请标明出处。

  • 测试玻璃化温度Tg的仪器

    需要测试聚丙烯酸酯的玻璃化温度,大概-40度左右,除了DSC还有什么仪器选择。需要价格便宜,操作方便。公司实验室用。以前在学校的时候用的DSC测Tg很不准确,升温速度,样品制作等Tg测试结果都有很大的影响。我是做压敏胶的,暂时还没有Tg测试的标准,但Tg对产品性能又有很大的影响,出口产品的出厂检测有一项Tg要求,不知道怎么测试好。

  • 全自动玻璃表面应力仪FSM6000LE测试原理

    全自动玻璃表面应力仪FSM6000LE测试原理

    一、测试基础:  FSM-6000LE玻璃[url=http://www.dorin17.com/][b]表面应力仪[/b][/url]是用于测量化学强化和物理强化玻璃的表面应力。机器利用专用光源(LED灯)产生平面偏振光,让通过让光沿着玻璃表面传播,根据光弹性测试法计算出其表面的应力以及应力层深度。  二、测试法原理:  平面偏振光透过受有外力作用的双折射棱镜时,分解成两束相互垂直的偏振光,分别在两个主平面上振动,且传播速度不等,其结果从双折射棱镜上每一点透出的振动方向相互垂直的两个光波间产生光程差。如果再使它通过偏振镜,则产生光的干涉现象,得到等倾线和等差线两种干涉条纹。由等倾线可以求得主应力方向,由等差线可以求得主应力差σ1-σ2,再配合其他方法则可以求解出双折射棱镜上一点的主应力σ1和σ2。根据双折射棱镜相似理论可以由双折射棱镜应力换算求得真实零件上的应力。  附:测试原理图[url=http://album.sina.com.cn/pic/003DCsBIgy72wgdjq6B39][img=玻璃表面应力仪FSM-6000LE测试原理,479,225]http://s10.sinaimg.cn/mw690/003DCsBIgy72wgdjq6B39&690[/img][/url]  三、测试用试剂:  本测试装置用折射率为1。64的折射液体。  四、测试装置:  应力测试仪主机由:由光源、准直透镜、起偏振镜、1/4波片、加载架、1/4波片、检偏振镜、视场透镜、高分辨率工业相机等部件组成。本机带有电脑,能够减少测量者的误差也更便于测量数据的管理。  五、测试装置图示:[url=http://album.sina.com.cn/pic/003DCsBIgy72wgetdIAf8][img=玻璃表面应力仪FSM-6000LE测试原理,554,244]http://s9.sinaimg.cn/mw690/003DCsBIgy72wgetdIAf8&690[/img][/url]  六、测试装置功能及说明:  1。LED光源  2。起偏振镜  3。1/4波片  4。双折射棱镜  5。测试试样  6。1/4波片  7。起偏振镜  8。成像透镜系统  9。高分辨率工业相机(CCD)  七、外观尺寸图:[url=http://album.sina.com.cn/pic/003DCsBIgy72wgfuqRo56][img=玻璃表面应力仪FSM-6000LE测试原理,554,269]http://s7.sinaimg.cn/mw690/003DCsBIgy72wgfuqRo56&690[/img][/url]  1。LED光源及组件。2。光源升降架。3。双折射棱镜。4。棱镜固定框架。5。废液收集盒。6。废液收集盒固定板。7。废液收集瓶(环保,可拆卸)。8。镜筒支撑固定块。9。镜筒连接杆。10。滤光盒。11。成像镜筒。12。工业相机。13。光源升降调节手轮。14。镜筒角度调节固定座。15。镜筒角度调节杆。16。主机底板。17。主机盖板。18。调水平脚垫。19。主机箱体。  八、测试软件界面:[url=http://album.sina.com.cn/pic/003DCsBIgy72wgh93i535][img=玻璃表面应力仪FSM-6000LE测试原理,336,277]http://s6.sinaimg.cn/mw690/003DCsBIgy72wgh93i535&690[/img][/url]  九、测试装置优点:  1。具有其他型号没有的唯一的测量方法(折射计光弹性分析原理)。  2。自动测量,因测试者造成的个人差小。  3。能够用电脑保存数据,便于品质管理。  4。测试条件不佳的试料可以进行手动测量。  5。使用LED光源,使用寿命长,达到10,000小时。  6。使用了玻璃校准片因此可将机器误差控制到最小。 十、测试装置优点:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908211415418278_3629_2863862_3.jpg!w690x517.jpg[/img]

  • 霍尔效应测试仪 ITO 薄膜测试案例

    样品: ITO 氧化铟锡, 标记为 ITO1, ITO2, ITO3样品薄膜厚度: 60 - 100 nm样品尺寸: 10 * 10 mm实验内容: 载流子浓度, 类型, 霍尔迁移率, 方块电阻 实验仪器: 上海伯东英国 NanoMagnetics ezHEMS [url=http://www.hakuto-vacuum.cn/product-list.php?sid=131][color=#0000ff]霍尔效应测试仪[/color][/url]测试温度和磁场温度: 300K RT 1 Tesla[color=#ff0000]* 在测试开始前, 仪器均经过标准样品校验. 所有样品根据 ASTM 标准.[/color][b][color=#000000]样品 ITO1 测试结果:[/color][color=#000000]I-V 测量结果[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-nano.jpg[/img][/color][/b][color=#000000][b]VdP 测量结果[/b][/color][color=#000000] 测量头类型: RT Head 磁场: 9677G 厚度: 80nm[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-vdp.jpg[/img][/color][b]部分测试结论:[/b]1. 得到的电阻值彼此相容.2. 所有的IV 曲线都是线性的3. 所有样本都是欧姆的,统一的,均匀的.4. Van der Pauw 测试为了保证准确性, 测试了2次, 测试结果是相同的. ...[color=#ff0000]* 鉴于信息保密, 更详细的霍尔效应测试案例欢迎联络上海伯东[/color]

  • 高速粗铝线焊接强度测试仪 拉脱力测试设备

    [color=#ff6600]问[/color]:贵阳董副总,从事粗铝线的客户想采购焊接强度测试仪,寻找焊接强度测试仪,希望推荐比较好的焊接强度测试仪厂家?[color=#ff6600]答:[/color]小编为了方便大家想采购焊接强度测试仪,给大家推荐一下科准测控的焊接强度测试仪,方便大家做想采购焊接强度测试仪时候的参考:科准测控制造厂是一家以研发制造焊接强度测试仪为核心的高新技术型企业,主要经营疲劳拉伸力焊接强度测试仪、电脑式焊接强度测试仪、芯片焊接牢固度焊接强度测试仪。拥有完整、科学的质量管理体系。焊接强度测试仪广泛应用于微电子封装、SMT焊接器件、0402元件、晶片、光电子元器件、ic焊点、金丝键合研究所材料力学研究、材料可靠性测试等应用领域,是Bond工艺、SMT工艺、键合工艺等不可缺少的动态力学检测仪器,能满足包含有:金属、铜线、合金线、铝线、铝带等拉力测试、金球、铜球、锡球、晶圆、芯片、贴片元件等推力测试、锡球、BumpPin等拉拔测试等等具体应用需求,功能可扩张性强、操控便捷、测试高效准确。可根据要求定制底座、夹具、校验治具、砝码和测试工具满足各种不同尺寸的样品。科准测控有限责任公司以诚信、实力和产品质量获得业界的认可。欢迎朋友莅临参观、指导和业务洽谈。[b]焊接强度测试仪设备特征:[/b]1、采用测试工位自动模式,在软件选择测试工位后,系统自动到达对应工作位。2、每项传感器采用独立防碰撞及过力保护系统。3、三个工作传感器,采用独立采集系统,保证测试精度。4、软件自动生成报告及存储功能,支持MES系统。5、荷重单位显示N、Ib、gf、kgf可自由切换。6、人性化的操作界面,人员操作方便。7、每项测试工作采用独立安全限位及限速功能。8、智能数据分析软件,自动记录并计算多点测试数据的Cpk值,可记录单点测试的力值、时间曲线。9、根据客户测试需求,非标定制各种精密测试夹具,有效确保用户测试数据的真实性。[b]焊接强度测试仪产品优势:[/b]1、电脑自动选取合适的推拉刀,无需人手更换2、采用进口传动部件结合独特力学算法,确保机台运行稳定性及测试精度。3、多功能精密四轴自动控制运动平台,采用进口传动部件,确保机台的高速、长久稳定运行。4、旋转盘内置三个不同量程测试传感器,满足不同测试需求,避免因人员误操作带来的设备损坏。5、优异的可操控性,左右双摇杆控制器,可自由摆放手感舒适,操作简单便捷。6、 强大分析软件进行统计、破断分析、QC报表,测试数据实时保存与导出,方便快捷。7、机载统计数据按照等级,平均值,标准差和CPK分布曲线显示测试结果。8、弧线形设计便于调整显微镜支架。9、显微镜光源为双光纤LED,冷光源,不发热,可随意弯曲。10、XY平台,可以根据要求定制,满足更广泛的测试范围。11、图像采集系统,快速简单的设置,安装在靠近测试头位置,以便帮助更快地测试。提高测试自动化速度。[b]设备成功案例:[/b]在上海、河南、安徽、北京、嘉善、苏州、昆山、四川、江苏、厦门、徐州、浙江、陕西、深圳等地区均有科准测控焊接强度测试仪的相关成功案例,欢迎大家前往实地考察。[b]设备常见系列:[/b]1、常用类型:自动焊接强度测试仪、功率强大焊接强度测试仪、全自动焊接强度测试仪、单柱焊接强度测试仪、数显焊接强度测试仪.....2、常见型号:mfm1000焊接强度测试仪、dage焊接强度测试仪、fm1200焊接强度测试仪.....3、试验功能:剪切力、钝化层剪切力、推力、拉力、粘合力.....[b]测试机的采购渠道:[/b]1、线下:可以找直接生产厂家定制、经销商可以批发代理。2、线上:京东、淘宝、知乎商家、抖音等合法线上渠道3、电话:直接拨打厂家销售人员的电话或者400电话,免费服务热线等方式[b]品牌有哪些?[/b]目前焊接强度测试仪市场的常用及认可品牌有(非官宣):科准测控、克拉克、德瑞茵、达格、力新宝、博森源.....等厂家及品牌[b]采购前需要注意的事项:[/b]一般在采购一个产品之前,先找到正规靠谱的生产厂家,然后需要咨询价格以及详细了解焊接强度测试仪的维修手册、维护、板卡驱动、夹具定制、拉力测试耗材、操作原理、相对湿度、力值显示售后服务等条件,可以找供应商提供焊接强度测试仪的产品图片、效果图、彩页、案例图、视频综合进行参考,对各方面都满意后,就可以直接下单采购了。上述内容就是关于焊接强度测试仪的全面解析介绍,从原理到怎么使用、校准方法以及注意事项,仅供您参考了解,如有不足之处欢迎各位用户及同行探讨交流互相补充,如需要详细了解其他相关封装测试设备,可以拨打我们的电话,了解更多!

  • 哪些进口厂家生产测量玻璃容器的摆式冲击仪?

    请专家给点信息,我们单位要采购一台进口的撞击测试仪(抗冲击试验机) 用于进行测量玻璃容器的抗撞击能力,请专家们给点进口厂商的信息吧,不知道谁家生产用于测量玻璃容器的摆式冲击仪,知道的不要吝啬啊http://simg.instrument.com.cn/bbs/images/default/em09507.gif

  • 无机玻璃测试疑问--高盐样品的测试

    我无机玻璃用HF消解后在ICP上测试(稀释到100ML),发现外围火焰呈红色,火焰长,接近炬管,害怕烧了炬管。 而波长扫描结果后发现1 PB220背景很高,峰型不太规则(峰高两翼有波浪型干扰),测试结果1PPM的Pb. 2 CD226.502和CD228.802没峰型,但在CD214.438有较规则峰型,在226.510,226.810处有很规则的峰型,背景也很低,不知道样品到底有没有CD呢? 我想知道:无机玻璃是否是高盐样品(我的无机玻璃是无铅的,是什么高钡料玻璃),对这样的样品应该如何测试(稀释更大倍数?)如果是高盐样品,高盐基体对铅等测试的影响有多大?会不会偏差太大?另外,我想知道226.510,226.810是什么元素的干扰峰?高手指教

  • 多种测试仪器介绍四

    16、 扭矩仪―用于旋转瓶盖的打开或旋紧力测试。 17、 纸箱抗压试验机(纸箱抗压机)-纸箱的耐压,堆码,压溃力,定压力测形变、微控、数显、微打、满足各种试验程序。 18、 初粘测试仪、持粘性测试――测试胶粘剂的初粘性检测指标,斜面滚球法(附标准钢球)。 19、 电子剥离试验机-胶粘剂、胶粘带、复合膜等剥离、拉力试验。 20、 胶粘剂拉伸剪切试验机-应用于粘接强度的剪切、拉伸、扯离、压缩性能试验。

  • 乳液样品的玻璃化温度测试

    客户的样品是乳液(用于涂料行业),测试乳液的玻璃化转变温度,客户提供的信息是玻璃化温度在0-10度左右这样一个区间,但这个温度区间,DSC会出现一个大的吸热峰。请问这样的样品是不是应该先除去水分?

  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    [b][color=#cc0000]摘要[/color][/b]:常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。[color=#cc0000][b]关键词[/b][/color]:真空玻璃、真空绝热板、传热系数、导热系数、U值、在线检测[hr/][b][color=#cc0000]1. 引言[/color][/b] 隔热材料(或保温材料)的热传递主要有对流换热、接触导热和辐射传热三种途径,前两种途径都需要传热介质。在真空环境下,由于气压的降低,气体密度随之降低,气体分子平均自由程将增大,气体分子间和气体分子与真空容器壁的碰撞频率和强度相对减弱,从而使得真空环境阻止了对流和接触这两种传热形式的发生,由此达到隔热效果。如果在真空环境的内壁上涂覆低辐射系数涂层,还可以阻止辐射传热实现绝热效果。 在传统隔热材料中,热辐射占热传递中的20~30%,接触材料占热传递中的5~10%,而隔热材料中气体的对流换热则占剩余的约65~75%。因而,隔热材料中减少这些热传递途径中最重要的一环就是空气传递热量,即通过将隔热系统抽成真空来减少热量传递,目前这种真空型隔热材料比较成熟的产品主要有真空玻璃和真空绝热板两类: (1)真空玻璃(Vacuum Glazing)是一种玻璃深加工产品,是基于保温瓶原理制作而成。真空玻璃的结构与中空玻璃相似,其不同之处在于真空玻璃空腔内的气体非常稀薄,几乎接近0.1 Pa的真空。真空玻璃是将两片平板玻璃四周密闭起来,将其间隙抽成真空并密封排气孔,两片玻璃之间的间隙为0.1~0.2 mm,真空玻璃的两片一般至少有一片是涂覆低辐射系数涂层的低辐射玻璃(Low-E玻璃),由此可将通过真空玻璃的导热、对流和辐射方式散失的热量降到最低。 (2)真空绝热板(Vacuum Insulation Panel——VIP)是由轻质芯材与专用复合阻气膜通过抽真空封装技术复合制成,其内部真空度约为10 Pa能有效地避免气体对流引起的热传递,可大幅度提高绝热效果。 真空隔热材料可广泛应用于建筑节能墙体和门窗、冷链冷藏设备、温室、太阳能和空调型运输工具等领域。在业内评价真空隔热材料一般采用两个技术参数,一个是传热系数(Wm-2K-1),另一个是导热系数(Wm-1K-1),业内也会将传热系数用K值或U值来定义。通常对于真空玻璃采用传热系数K值来评估,对于真空绝热板采用导热系数进行评估。 传热系数和导热系数测试技术是真空隔热材料的关键技术之一,相应的测试技术至少要实现两个功能,第一是需要检测证明真空隔热材料确实含有隔热功能的真空,第二是因为真空空间内存在支撑物和残留气体的导热传热以及辐射传热,有必要检测验证真空隔热材料的传热理论模型,并了解这些不同传热形式之间的相互作用方式。目前常规测试技术一般为成熟的稳态技术,主要包括保护热板法、保护热流计法和保护热箱法。尽管这三种常规方法可以从计量和质量层面可以对真空隔热材料进行准确的测试评价,但它们存在的明显劣势则是要求制作标准尺寸样品和测试周期漫长,无法用于大批量制造生产过程中逐件产品质量的在线检测,因此需要解决真空隔热材料的在线检测技术。 在线检测技术的目的是在真空隔热材料的生产制造过程中,实时验证每个真空隔热材料产品的质量都在规定范围内。在在线检测过程中,因为可以与标准合格产品或样品进行比较,在线检测并不一定需要绝对准确,重要的是生产过程中能保证检测工序可以快速进行,并且检测仪器具有很好的测量重复性。在线检测技术的另外一个目的是可以证明真空绝热材料产品在实际安装过程和使用条件下还能长期保持相应的真空度,即对处于生命周期内的真空隔热材料产品进行实时检测或监测。 针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上介绍了一种便携式快速的新型在线检测技术方案。[b][color=#cc0000]2. 在线检测真空隔热材料热性能的技术挑战[/color][/b] 真空隔热材料的最大特点就是具有超低的传热系数和导热系数,如果再考虑实现在线检测,这就给测量真空隔热材料热性能带来了以下几方面的严峻挑战: (1)所谓在线检测,就是要求采用很小面积尺寸的探头对板状真空隔热材料进行实时检测,同时又因为真空隔热材料的传热系数和导热系数极低,致使只有很少热流能够流经隔热材料。这就意味着在线检测只能检测很小面积的真空隔热材料,而且检测探头还需具有非常高的探测分辨率才能检测到此小面积上的热流变化(毫瓦量级)。 (2)真空隔热材料并非是均质材料,真空隔热部分一般被外部高导热材料(如玻璃或复合铝膜等)夹持在中间,真空隔热部分和外部高导热材料的导热系数相差五个数量级以上,因此在检测过程中非常容易产生沿隔热材料板材表面流动的寄生热损,在检测表面上形成面内温度梯度,这就对小面积在线监测提出了非常高的技术要求。 (3)既然是在线检测,就要求在线检测作为一道流水作业工序,能在真空隔热材料生产线上对每件产品进行实时快速检测,单件产品检测时间小于1分钟,最好能实现10~30秒这样的快速检测能力。 由此可见,真空隔热材料热性能测试对在线检测提出了两个层面的要求,一个层面是具备快速在线检测和判断产品质量是否合格的能力,这就要求在线检测仪器既要具有高分辨率和快速检测能力,还需具备很好的测量重复性。另一个层面是要实现高准确度的测量,准确测量出产品的传热系数和导热系数,与防护热箱法等标准方法测试结果相比要在允许偏差范围内。[b][color=#cc0000]3. 国内外测试方法研究[/color][/b] 面对上述真空隔热材料热性能在线检测的技术挑战,国内外开展了大量研究和探索。下面将对国内外的研究报道进行汇总,并对各种检测方法的优缺点进行讨论。[color=#cc0000]3.1. 稳态法:小面积保护热板法3.1.1. 澳大利亚Collins团队的研究工作[/color] 保护热板法是一种经典的板式样品材料热阻和导热系数稳态测试方法,对被测样品有严格的尺寸要求,样品尺寸一般都大于300×300 mm2的测试面积,而且测试周期至少4个小时以上,同时隔热性能越好则测试时间越长。但由于保护热板法是一种绝对测量方法,测试准确度高,因此常被用来作为标准测试仪器和计量溯源测试仪器,计量机构和检测认证机构通常都会配备这种保护热板法仪器以及相同原理的更大样品尺寸的保护热箱法设备来对真空玻璃和真空绝热板进行质量评估。 澳大利亚Collins团队基于经典的保护热板法开发了一种小面积尺寸的保护热板法用于真空玻璃热性能的测试和研究,其测量原理如图3-1所示。一个小的热导体,这里称为测量块,被放置在被测样品一侧并具有良好的热接触,测量块的所有其它侧面被一个保持恒定温度的等温防护装置包围,该热防护装置也与被测样品保持良好的热接触,由此使测量块上的热量只能在样品方向上传递而周围的热损近乎为零。被测样品的另一侧保持在恒定的低温下,热流从热防护装置流经样品到对面的冷板,热量也从热防护装置流到测量块,测量块热流通过样品流到冷板。 [align=center][img=,600,369]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191121404416_7563_3384_3.png!w600x369.jpg[/img] [/align][align=center][color=#cc0000]图3-1 小面积防护热板法测量装置结构示意图[/color][/align] 测量块与热保护装置之间的温差由嵌在这些元件中的温度传感器进行检测。测量块中的热量由内部电加热器产生并同时升高测量块温度,当测量块温度正好等于热保护装置温度时,这两个部件之间不会发生热流,在这个零温差条件下测量块中所产生的所有能量都流经样品形成所谓的一维热流。按照稳态一维热流傅立叶传热定律,利用测量块的已知面积,最终可以得到样品传热系数的绝对测量值。 澳大利亚Collins团队专门开发了小面积形式的保护热板法测试仪器用于测量真空玻璃中不同的热流传递过程,这些仪器可用来识别真空空间中由于辐射和气体传导而对热传递的单独贡献,其中就包括通过支撑柱进行的热传导。为了做到这一点,测量块所选择的尺寸很小,测量块截面积约为1 cm2,周围保护装置的面积约为100 cm2。由于测量是小面积和真空绝热样品,此仪器必须能够检测非常小的热量变化。 与保护热板法测量装置一样,小面积保护热板法测试仪器研制过程中的关键技术是最大限度减少测量块热损到可忽略的水平,并证明这种热损确实被有效消除。为了验证此测试仪器的热损确实被有效消除,需要测量的微小热量需要检测测量块和热保护装置之间极小温差。分别采用了两种真空玻璃进行了测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),图3-2显示了小面积保护热板法测试仪器所获得的典型实验数据。[align=center][img=,600,514]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124054860_7131_3384_3.png!w600x514.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 小型保护热板法测试仪器获得的典型数据[/color][/align] 为了进行精确的绝对测量,必须使用已知传热系数的样品来校准测量块的有效面积。两片未涂覆玻璃片之间的真空空间为这种校准测量提供了非常方便的样品,因为这种玻璃表面之间的辐射传热速率可以从这种玻璃已知的红外光学中计算得到非常高的准确度。 有限元模型分析可以用于确定玻璃薄板等温外表面上每个支撑柱所引起的热流横向扩散程度,这些数据可用于确定与单个支撑柱相关联的热流比例,这时的测量块的中心线与支撑柱轴线距离不远,而且支撑柱与测量块的圆形区域相交。如果要忽略掉流经支撑柱热流的影响,从这些结果可以计算出与测量块相交的支撑柱需要远离测量块的距离。对于正常尺寸的支撑柱阵列(支撑柱间距约20~30 mm),如果测量块位于支撑柱阵列单元的中心位置,那么支撑柱对热流的测量仍然有一个很小但明显的贡献。为了使得测量忽略掉支撑柱热流的影响,悉尼大学在真空玻璃研究项目中采用了一些缺少一个支撑柱或无支撑柱区域直径约50 mm的真空玻璃样品,用这些样品做的测量为通过真空玻璃的辐射和气体热传递提供了非常准确的信息。 流经单个支撑柱的热流扩散建模分析结果也可以用来计算当测量块直接位于支撑柱上方时此热流在测量值中所占比例,通过减少辐射和气体传导引起的已知热流,可以确定流经支撑柱本身的热流速率,这些测量都已经被用来验证流经单个支撑柱的热流理论模型。在某些情况下在真空玻璃中使用了粗糙表面的支撑柱,这时的测量也可以用来提供关于这些支撑柱热流减少的定量信息,因为支撑柱表面和玻璃板之间的热接触不完整。 综上所述,澳大利亚Collins团队详细研究了在采用保护热板法仪器测量流经真空玻璃热流量,并对小面积保护热板法仪器操作和标定有影响的几个小效应进行了深入研究,由此证明小面积保护热板法装置是一个非常强大的工具来验证通过真空玻璃的热辐射和通过支撑柱热传导的理论模型,该仪器也被用来证明这两个热流过程之间的相互作用足够小而可以被忽略。同时,这种小面积尺寸的保护热板法也可以用于研究真空玻璃内部真空的稳定性及对真空玻璃寿命周期内的性能进行评价。 然而,因为这种小面积保护热板法通常需要大约1小时来进行一次完整测量,此外由于有必要保持热保护装置的温度在一个非常精确的恒定值,并且在室温或室温附近只能使用这个装置来测量样品,这种保护热板法测试仪器的使用实际上仅限于实验室研究用,无法应用于真空玻璃的在线监测。[color=#cc0000]3.1.2. 北京新立基公司研究工作[/color] 北京新立基公司的唐健正老师曾是澳大利亚Collins团队的成员之一,回国后针对真空玻璃的传热系数测试开展了大量研究,基于上述小面积尺寸保护热板法原理研制了精密热导仪和快速热导仪两种热导仪,建立了建材行业“真空玻璃”的传热系数测试标准方法。其中精密热导仪的量程为0~10 Wm-2K-1,标称精度高达0.1 Wm-2K-1,测量时间为30 min,体积小,重量小于15 Kg。快速热导仪量程为0~25 Wm-2K-1,标称精度为0.2 Wm-2K-1,测量时间小于5 min,同样具有体积小、重量轻的特点。与精密热导仪不同的是,其测量精度略低,但测量时间短。 精密热导仪的特点是精度高,能够鉴别出真空度是否达标,但必须有足够的热测量时间。而快速热导测量仪则放宽了精度要求,把测量时间缩短6 倍。这样,在线监测时,后者先把关,把真空度肯定达标的和肯定不达标的筛选出来,把剩下少量的难以判断的由前者作精密判断,这样构成在线热导检测线。 通过对北京新立基公司相关报道的研究,北京新立基公司所研制的热导仪还存在以下不足: (1)随着科学的发展,真空玻璃的传热系数已经小到0.3 Wm-2K-1,如此小的数值就需要精度更高的热导仪才能够测量,这就需要进一步提高热导仪的精度。 (2)热导仪能够测量真空玻璃整体的热导,是支撑物热导、辐射热导和内部真空度共同作用的结果,目前新立基公司研制的热导仪还不能够将这三种热导分别测量。如果能够分别测量出支撑物热导、辐射热导和内部真空度,就可以有目的的改善支撑物材质、改善玻璃表面辐射率或者提高内部真空度。 [color=#cc0000]3.2. 非稳态法3.2.1. 瞬态法[/color] 为了提高真空玻璃在线测试能力,澳大利亚Collins团队提出了一种瞬态测试方法,其测量原理如图3-3所示。温度传感器附着在真空玻璃样品的一侧,通常位于支撑柱阵列单元的中心位置,在真空玻璃板的另一侧放置一个与玻璃板热接触良好内部镶有电加热器和温度传感器的小面积(约10 cm2)导热板。[align=center] [img=,600,287]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124330000_7261_3384_3.png!w600x287.jpg[/img][/align][align=center][color=#cc0000]图3-3[/color][color=#cc0000] 真空玻璃瞬态法测试原理图[/color][/align] 整个样品的初始温度恒定和均匀,并且记录几分钟温度传感器的输出以证实温度确实恒定。然后将已知数量的电功率加载到电加热器上,使电加热器快速升温,升温幅度通常为20~30℃。玻璃板的内表面产生的温差导致热量流经真空夹层,与电加热器相对的样品一侧温度会缓慢增加,该温度的初始速率测量结合真空玻璃热容(由玻璃厚度、比热和密度的乘积给出)和台阶温度升高的幅度,可以得出温度传感器周围区域样品的传热系数。 同样采用了两种真空玻璃进行了瞬态法测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),所有玻璃片厚度都为3 mm,图3-4显示了用瞬态技术获得的典型实验数据。[align=center][img=,600,499]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124513950_3062_3384_3.png!w600x499.jpg[/img] [/align][align=center][color=#cc0000]图3-4[/color][color=#cc0000] 用瞬态技术获得的典型数据[/color][/align] 如果真空玻璃样品冷面上的温度传感器位于支撑柱阵列单元的中心点,则在台阶式升温后的最初几分钟内,几乎所测的温度缓慢变化都是由于真空夹层内的热辐射和气体传导所造成,流经附近支撑柱上的热量需要很长时间才能到达温度传感器,因为它必须沿试样的冷面横向扩散到玻璃片上。这就使得这项技术可以用来测量玻璃的辐射和气体传热系数,并认为热流通过支撑柱的贡献微不足道,即使是标准支撑柱阵列(支撑柱间距约20~30 mm)的真空玻璃也是如此。 瞬态技术也可用于测量高温下真空玻璃样品的传热系数,因此这种技术在真空玻璃长期存储在室温以上时可能导致真空降解的机制研究方面被证明非常有用,该技术已被用来检测真空玻璃在高温老化过程中会释放出大量气体,而当冷却到室温后玻璃表面会发生气体再吸收现象。质谱仪实验表明,在这样的条件下释放出来的气体几乎完全是水蒸气。已证明在制造过程的抽真空阶段充分烘烤真空玻璃可以消除这些真空玻璃数十年使用寿命中的任何显著热释气现象。 瞬态技术不是真空玻璃传热系数的绝对测量方法,所获得的数据必须与样品冷面上的玻璃片热容以及步进温度的增加幅度相结合才能给出热流流经真空玻璃的传热系数。理想情况下,在这个计算中应使用随时间变化的有限元模型分析过程,因为导热板热量需要大量时间通过玻璃板热面来扩散,这就会使得冷面温度的上升初期具有相应的延迟。当采用有限元分析瞬态法时,测量玻璃板冷面温度随时间变化给出了与其他方法吻合很好的传热系数数据。这样,通过测量已知传热系数的相同几何尺寸样品来对瞬态法进行校准就非常简单,即在瞬态法测试过程中,在经历指定时间后(如2分钟)可将被测玻璃冷面温度的总变化与已知样品中获得的相似数据进行比较。 用瞬态法所检测得到的数据具有很好的重复性,此外该技术易于使用、可自动化和可校准,实际测量时间相当短——一般为几分钟。因此,该方法非常适合于真空玻璃批生产中的质量保证测试。瞬态法的缺点是样品温度在测量开始之前必须非常稳定,因此有必要在测量前将样品储存在稳定环境条件下一段时间。[color=#cc0000]3.2.2. 动态冷却法[/color] 为了进一步提高真空玻璃在线测试能力,澳大利亚Collins团队还提出了一种高温动态冷却测试方法,其测量原理如图3-5所示。在冷却法中被测真空玻璃整个样品最初处于高温,然后在被测样品的一侧放置并接触第二块已知传热系数的真空玻璃标准样品形成绝热边界条件,这个标准样品的起始温度可能是高温或是室温,将直径约0.1 mm的细丝热电偶放置在这两个真空玻璃样品的接触面之间。该组件中两块真空玻璃接触面之间的小间隙确保它们有良好的热接触,从而使她们的温度相当迅速的趋于均衡,室温空气在此组件中的两块真空玻璃外表面吹过。与这种强制对流所对应的传热系数相当高,因此两个样品的外玻璃片温度很快就会相对接近室温。从真空玻璃内部玻璃板流出的热量会以两个独立的流动方向分别流经两个样品的绝热真空空间到外部玻璃片,然后再经外部玻璃片流到空气中,因此内玻璃片温度会随着被试样品和标准样品的传热系数以相应速度而缓慢降低。[align=center][img=,600,322]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191125181660_9521_3384_3.png!w600x322.jpg[/img] [/align][align=center][color=#cc0000]图3-5[/color][color=#cc0000] 瞬态法测试中所采用的仪器示意图[/color][/align] 由于标准样品的传热系数已知,因此可以计算被测样品的传热系数。对于由3 mm厚玻璃片制成真空玻璃被测样品和标准样品,图3-6显示了用冷却法获得的真空玻璃中心处的测试结果。对于这些数据,两个样品在测量开始之前都处于高温。外玻璃片温度的初始降低速率可用于确定与这些玻璃板材外表面传热有关的传热系数与流动空气的关系,接触内玻璃板的热量损失率受此外部传热系数的影响,但相对于样品本身的玻璃-玻璃传热系数这个影响程度较小,在较长时间内两个外玻璃板之间的温差与流经各样品的不同热流速率有关。[align=center][img=,600,526]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126140880_4604_3384_3.png!w600x526.jpg[/img] [/align][align=center][color=#cc0000]图3-6[/color][color=#cc0000] 动态冷却法测试得到的典型数据[/color][/align] 与瞬态法一样,冷却法不是测量通过真空玻璃热流值的绝对方法,然而该方法的校准可以使用瞬态法中所用到的任何一种技术——通过依赖时间的有限元模型分析,或者更简单地通过对具有已知传热系数的相同几何尺寸标准样品进行测量。由于两块真空玻璃组件中与内部玻璃板指数冷却形式相关的时间常数可能相当大,通常约为60分钟,这种相对缓慢的冷却速率可确保通过支撑柱的热流足够来沿着玻璃板进行扩散,而内部玻璃板的温度横向变化则是相当小。因此,冷却法能形成真空玻璃总传热系数(辐射+气体+支撑柱)的测量。 由此可见,冷却法可能会用于真空玻璃生产线上,特别是刚刚完成了抽真空过程,在那里它们经受高温下的脱气处理,此时的真空玻璃制品通常处于高温状态。与采用其他在线测试技术相比,将冷却法监测集成到真空玻璃生产线的末端可节省大量的时间和劳动力。[color=#cc0000]3.3. 国内外相关在线测试仪器3.3.1. 德国耐驰公司便携式复合玻璃 Ug 值测量仪[/color] 德国耐驰公司基于改进的动态热源法开发了一种瞬态在线测试技术和相应的便携式复合玻璃传热系数测试仪Uglass,如图3-7所示。此测试仪器通过两个带加热功能的温度传感器,根据一维传热差分模型和软件来测量真空玻璃的传热系数。这种测试技术是一种相对比较法,配备了中空玻璃标准样品。由于测试技术的探测器相对较小,可用于实验室检测,也可用于现场评估,对于普通真空玻璃整个测试过程约为10~15分钟,每次测量之间的时间间隔约 10 分钟。 [align=center][img=,600,643]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126433070_5719_3384_3.jpg!w600x643.jpg[/img][/align][align=center][color=#cc0000]图3-7 耐驰公司便携式复合玻璃传热系数测量仪[/color][/align] 如图3-8所示,测试过程中通过抽气泵将探测器真空吸附在被测玻璃两侧。安装完成后,将其中的一侧探测器加热到高于另一侧探测器温度7~8℃范围,并同时检测另一侧探测器温度的变化ΔT。[align=center][img=,600,263]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127021708_286_3384_3.jpg!w600x263.jpg[/img] [/align][align=center][color=#cc0000]图3-8[/color][color=#cc0000] 传热系测量仪安装布置和测量示意图[/color][/align] 通过分析短暂的不同温度变化过程,可测定真空玻璃的传热系数,其中传热系数测量范围为0.5~40 Wm-2K-1,操作温度范围为-10~60℃,探测器加热温度范围为室温~150℃。 采用Uglass测量仪Kim等人在常温常压下对内部不同间隔的中空玻璃进行了测量,如图3-9所示,分别得到了中空玻璃内部和外部的传热系数随间距的变化结果。[align=center][img=,600,357]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127235359_4034_3384_3.jpg!w600x357.jpg[/img] [/align][align=center][color=#cc0000]图3-9 中空玻璃内部和外部传热系数随中空间距的变化测量结果[/color][/align] 从图3-9所示的测试结果可以看出,随着间隔宽度的增加,内部和外部的双层中空玻璃板的传热系数呈线性减小而无视真空玻璃的内部还是外部。由此可见,双层中空玻璃的传热系数不受周围环境的影响,也就是说,没有边框的双层中空玻璃绝热性能,即使在不同环境下也可以解释为具有相同的绝热性能。 除了普通中空玻璃之外,Kim等人还对中空玻璃内部表面涂覆Low-E涂层对绝热性能的影响进行了对比测量,测量结果如图3-10所示。[align=center] [img=,600,386]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127453461_8401_3384_3.jpg!w600x386.jpg[/img][/align][align=center][color=#cc0000]图3-10 带Low-E涂层和无Low-E涂层中空玻璃传热系数随中空间距的变化对比[/color][/align] 从图3-10所示的测试结果可以看出,随着间隔宽度的增加,涂覆了Low-E涂层的中空玻璃传热系数随间距增大而更加快速的减小,随间距减小的斜率为-150.4 ×103 Wm-3K-1,要比无Low-E涂层时随间距减小的斜率-68.8 ×103 Wm-3K-1快了将近2倍多,当中空玻璃内部间距为15 mm左右时,增加Low-E涂层后的传热系数减小了将近一半,由此证明Low-E涂层在中空玻璃和真空玻璃中所起的重要作用。 从耐驰公司的相关报道可以看出,耐驰公式这款传热系数测试仪器整体尺寸偏大,测量覆盖面积将近400×400 mm2,可以满足中空玻璃的传热系数测试。尽管仪器测量精度标称可以达到±0.1 Wm-2K-1,但并没有看到对小于1 Wm-2K-1的真空玻璃传热系数的测试报道,也没有看到对真空绝热材料(VIP)的导热系数测量结果报道。同时十几分钟的测试时间,以及被测样品两侧夹持测试方法根本无法满足真空绝热材料生产过程中的在线质量监测要求。[color=#cc0000]3.3.2. 日本EKO公司导热仪[/color] 为了真正实现真空隔热材料的在线监测,日本EKO公司开发了HC-10快速导热系数测试仪,如图3-11所示。考虑到在线测试,测试仪采用了单端探头这种最佳的探测模式,只需将探测头放在各种被测材料上,可在1分钟内得到导热系数测量结果。[align=center][img=,600,450]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128042740_1715_3384_3.jpg!w600x450.jpg[/img] [/align][align=center][color=#cc0000]图3-11 日本EKO公司HC-10型快速导热系数测试仪[/color][/align] 这种快速导热系数测试仪的测量原理如图3-12所示,首先将探头加热到高于室温的一恒定温度,同时使被测样品处于室温条件下并达到热平衡。然后将探头放置在被测样品表面,如果样品导热系数低,探头上的热量Q将会缓慢的流经样品而散失,相应的探头表面温度快速上升;如果样品导热系数较高,探头上的热量Q将会快速流经样品而散失,相应的探头表面温度缓慢上升。[align=center][color=#cc0000] [img=,600,484]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128201186_3226_3384_3.png!w600x484.jpg[/img][/color][/align][align=center][color=#cc0000]图3-12 HC-10型快速导热系数测试仪基本原理[/color][/align] 由此可见,这种快速导热系数测试仪中探头加热器的热损失大小与样品的导热系数有关,如果使用已知导热系数的标准样品进行校准,则可以实现样品导热系数的自动测量。日本EKO公司开发的HC-10快速导热系数测试仪已用于各种材料的导热系数测量,其中包括真空绝热板(VIP)的导热系数测量,测试仪的主要技术指标为: (1)导热系数测量范围:1~5000 mW/mK (2)测量精度:+/- 5 % (3)样品尺寸:边长150 ~760 mm,厚度5~50 mm (4)测试时间:60秒 专门针对真空绝热板(VIP),基于HC-10快速导热系数测试仪日本EKO公司还开发了多探头形式的在线HC-121 VIP监测仪,如图3-13所示。 HC-121 VIP监测仪主要用于在线监测真空绝热板质量是否合格,即在1分钟内实时检测真空绝热板(VIP)导热系数是否小于规定数值,通过一个主机可以同时连接最多5个探头进行在线监测。[align=center][color=#cc0000] [img=,600,199]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128367430_3462_3384_3.jpg!w600x199.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-13 日本EKO公司HC-121 VIP监测仪[/color][/align] 与HC-10快速导热系数测试仪不同,HC-121 VIP监测仪只能进行相对测量,探测头需要用户自己进行单独校准,用户需要根据VIP材料生产的实际特征来进行使用。HC-121 VIP监测仪的技术指标与HC-10快速导热系数测试仪基本相同,只是导热系数测试范围基本只针对真空绝热板材料,为1~15 mW/mK。 有关日本EKO公司开发的这两种在线监测仪器,我们并没有看到实际应用方面的报道和测试数据,更没有看到在真空玻璃上的测试应用。从测试原理上来看,这两种仪器完全适合均质材料的超低导热系数测试,但对于真空隔热材料这类非均质复合结构材料而言,可能存在以下问题: (1)真空绝热板(VIP)表面一般都包裹一层高导热金属保护热,测试过程的初期探头上的热量会通过表面金属膜快速散失,所得到的温度变化曲线并不一定能完全代表真实的低导热材料测试过程中的温度变化。类似的情况也会发生在使用了真空绝热板的冰箱生产线上的在线质量监测,因为冰箱的隔热结构也是金属材料包裹真空绝热板。 (2)同样,对于真空玻璃而言,也是高导热系数玻璃板与真空绝热层的复合结构,玻璃的导热系数接近1 W/mK,也是远大于真空隔热层的导热系数,测试过程中也会发生类似的问题。[color=#cc0000]3.3.3. 内部真空度测试仪器[/color] 真空隔热材料的一种重要特点就是材料内部是真空,因此在线测试技术中实时监测真空度的变化也是一种在线监测技术手段。 从目前的各种真空隔热材料内部真空度检测技术的发展来看,大多数是谐振式真空传感器,即将事先标定好的MEMS结构的LC微型传感器植入真空隔热材料中,通过外部探测仪器对谐振传感器进行外部激励得到谐振频率与内部真空度的关系数据。 内部真空度测试技术的最大优势是可以在几秒钟内实现对真空隔热材料内部真空度的检测,但最大的问题是要将标定好的传感器植入产品中。[b][color=#cc0000]4. 现有技术总结[/color][/b] 目前国内外常用于表征真空型隔热材料的标准方法,如保护热箱法和大面积保护热板法,主要是用来测量通过真空型隔热材料的热流速率,这两种测试技术都提供了有关真空型隔热材料的整体热流过程的信息。然而它们在测试过程中相对较慢,同时无法对真空隔热材料中不同传热机理而引起的热流分量进行单独评估。 为了对真空型隔热材料局部热流进行测量,以及适应工业生产和工程应用的需要,目前国内外提出了几种特别设计的测试方法: (1)小面积保护热板法测试装置提供了非常精确的流经真空玻璃的局部热流测量,该装置可用于验证由于辐射、气体热传导和通过支撑柱热传导而引起的不同热流过程的理论模型,也证明了该小面积保护热板法测试装置在考核真空玻璃内部长时间真空稳定性方面非常有用,同样这种方法也可以应用于真空绝热板的热性能测试和评估。小面积保护热板法是目前测试精度最高的方法,但这种方法是一种被测样品双面探测结构,测试时间最快也要好几分钟,比较适合实验室研究使用,但还是不能很好的满足在线测试需求。 (2)瞬态法提供了一种测量真空绝热材料传热系数和导热系数的快速方法,该方法可通过测量已知传热系数和导热系数的标准样品对测试装置进行标定。该方法快捷、易于使用并具有很高的测量重复性,并可在较高温度条件下对真空玻璃的气释过程研究中的作用非常明显。目前国外相关测试仪器基本都是基于这种方法,可见这种方法得到了基本认可。尽管采用这种方法有德国耐驰公司的中空玻璃双面测试结构的便携式测试仪器,也有日本EKO公司的真空绝热板单面探头结构的便携式测试仪器,但目的都是为了满足真空绝热材料传热系数和导热系数的在线测试需求,而我们认为单面探头结构更适用于在线测试,这将是今后这方面测试仪器的一个发展方向。 (3)冷却法提供了真空玻璃整体传热系数的测量。虽然这种方法在实践中不一定实用,但在将来可能将其集成到真空玻璃生产过程中,与其他方法相比,冷却法的成本和时间可能会有很大节省。[color=#cc0000][b]5. 上海依阳公司在线快速检测技术[/b][/color] 上海依阳实业有限公司基于瞬态法,提出了一种新型快速测试方法——动态热流法。动态热流法与日本EKO公司导热仪的测量原理类似,也是采用单面探头结构形式,但不同于日本EKO公司导热仪是测量加热器表面的温度变化,新型测试方法测量的是比温度变化更灵敏的热流密度变化,如图5-1所示为分别测量正常和非正常真空绝热板时的热流密度随时间变化曲线对比。 在动态热流法测量的初期,单面测量探头处于以恒定温度,探头未接触被测样品(真空玻璃或真空绝热板)之前,热流密度测量值较低。但将探头与被测样品表面接触后,探头上的热量经真空绝热材料表面(玻璃或金属保护膜)而迅速散失,材料表面的高导热材料表面的作用而产生较大的热流密度,即使得测量的初期热流密度测量值迅速升高。[align=center][color=#cc0000] [img=,600,433]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128571173_5310_3384_3.png!w600x433.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-1 正常和非正常真空绝热材料热流密度随时间变化测量曲线[/color][/align] 随着探头与样品表面接触时间的增大,流经表面材料的热流受到内部绝热层的阻隔,测量的热流密度会逐渐降低,从而反映出绝热层的低导热特性。由此可知,热流密度曲线降低的速率可以作为衡量样品绝热性能的测量指标,即如果被测样品处于正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“正常绝热状态”那样,向较低的热流密度值进行收敛;如果被测样品处于非正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“非正常绝热状态”那样,向较高的热流密度值进行收敛。 通过上述热流密度变化曲线可以看出,这种动态热流法可以很好的解决真空绝热材料表面高导热层对测试所带来的影响,解决了日本EKO公司在线监测仪器所存在的不足,绝热材料表面的高导热层只会使得初期的热流密度升到很大幅度,并不真正影响热流密度下降速率随内部绝热性能的变化。 动态热流法的整个测试时间主要取决于绝热材料表面的材质和厚度而定,对于普通真空绝热板的测试,测试时间一般为10~15秒;对于普通真空玻璃测试,测试时间一般为20~30秒,这样的测试速度已经完全可以满足在线测试需求。 动态热流法测试得到的热流密度并不能直接用来得到被测样品的导热系数,但因为导热系数与热流密度是线性关系,可以通过测量多个已知导热系数的标准样品来建立导热系数与热流密度的校准曲线,如图5-2所示。此校准曲线存储在测试仪器内,由此根据这种关系曲线通过热流密度测量值可以得到相应的导热系数和传热系数。[align=center][color=#cc0000] [img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191129342020_253_3384_3.png!w600x363.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-2 校准测试曲线[/color][/align] 校准用标准样品的制作基于真空绝热材料内部真空度与传热系数和导热系数的关系,标准样品可以是固定厚度的真空绝热材料,通过精确控制材料内部真空度并采用保护热板法或保护热箱法等仪器进行测量,得到标准样品不同真空度下所对应的传热系数和导热系数关系曲线,这样在采用标准样品进行动态热流法探头校准时,只要调节真空度就可以得到不同的传热系数和导热系数。 动态热流法作为一种高灵敏测试方法,可以用来快速的在线检测和判断真空绝热材料是否具有正常范围内的传热系数和导热系数,可以在30秒时间内检查真空绝热材料是否正常工作。另外,由于动态热流法测量装置是小型单面探头结构,实际测量操作时只需将探头与被测绝热材料表面接触,测试完毕后探头脱离绝热材料,通过机械结构很容易实现自动化测试,完全可以应用到真空绝热材料生产流水线上进行自动化实时监测。同时,动态热流法的检测探头非常小巧,可以实现一台主机配备多个探头对多个绝热材料的同时监测,而且还可以实现不同方向和位置上的测量,如探头放置在冰箱的顶部和侧面监测冰箱内部不同部位真空绝热板是否工作正常,监测窗体上已直立安装的真空玻璃是否工作正常。由于标准绝热材料样品由真空度的精确控制来确定,从而保证了动态热流法探头可以非常方便的进行定期校准。[b][color=#cc0000]6. 参考文献[/color][/b](1)Collins R E,Davis C A,Dey C J,et al. Measurement of local heat flow in flat evacuated glazing. International Journal of Heat & Mass Transfer,1993, 36(10):2553-2563.(2)Simko T M, Elmahdy A H, Collins R E. Determination of the overall heat transmission coefficient (U value) of vacuum glazing. Ashrae Transactions, 1999.(3)张金维, 王立国. 真空玻璃在线测量技术// 2013全国玻璃科学技术年会论文集. 2013.(4)唐健正. 真空玻璃传热系数的计算// 2006中国玻璃行业年会暨技术研讨会. 2006.(5)唐健正, 朱亚勇, 卫正纯. 真空玻璃传热系数相关参数的测量// 2007'中国玻璃行业年会暨技术研讨会(6)中华人民共和国建材行业标准,JC/T 1079-2008,真空玻璃(7) Turner G M, Collins R E. Measurement of heat flow through vacuum glazing at elevated temperature. International Journal of Heat & Mass Transfer, 1997, 40(6):1437-1446.(8) Ng N, Collins R E, So L. Thermal conductance measurement on vacuum glazing. International Journal of Heat and Mass Transfer 49 (2006) 4877-4885.(9) Kim I, Frenzl A, Kim T, et al. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass, Measuring Technique. International Journal of Thermophysics, 2018, 39(1):19.

  • 【讨论】XRF测试玻璃

    有在玻璃行业的同行么 ,,我们在测试玻璃样品的时候发现随着时间的推移,玻璃测试结果总和下降的很厉害,,总和从99.9%,两周内下降到99.0%,测试其他的样品没有此内问题。有哪位兄弟遇到同样的问题没有,怎么解决呢 ,,我们最后使用的是归一。。

  • 玻璃器皿再处理长期稳定性测试报告

    玻璃器皿再处理长期稳定性测试报告

    制药实验室玻璃器皿再处理长期稳定性测试报告 【综述】北京某合资药企质量控制部门,于2009年选购了德国实验室小型清洗消毒烘干一体机(含:程序设定、仪器安装调试、一年保修、终生维修服务),用于实验室玻璃器皿的自动化再处理(清洗、消毒及烘干),日吞吐量达50至100件。2012年6月,客户质量控制部门就细颈玻璃器皿的再处理过程的长期稳定性,提出咨询。德国资深服务部工程师亲临现场,作仪器过滤口排查。德国专家抵达现场考察收集清洗流程、清洗目标、清洗程序、配合试剂、消毒烘干设定等相关问题,并在德国品牌北京实验室作长期稳定性平行测试。 德国实验室小型清洗消毒烘干一体机,由德国设计与生产、整机进口,专业实验室玻璃器皿配置,可以满足实验室各种不同容量、形状的器皿清洗需求。清洗结果不仅可以达到分析级的洁净度、而且还具有可靠的长期稳定性。同时,厂家所提供的安装调试、售后顺访与售后保修、维修服务,及清洗咨询服务,专业性强、响应速度快、响应结果完善。 【客户现场】1. 传送和清洗流程经德国专家亲临现场考察与记录,并未检出异常。http://ng1.17img.cn/bbsfiles/images/2014/08/201408081149_509582_2103768_3.jpg 2. 实验溶剂根据实验的残留物,委托试剂厂家,推荐合适的清洗剂。 3. 清洗温度实验室玻璃器皿生产厂商和德国美诺Miele总部专家研讨回复,推荐合适的清洗温度。4. 清洗剂经试剂厂商推荐与实际清洗验证,清洗剂达到清洗目标,并在清洗后未检出污垢或清洗剂残留。5. 机械力经现场工程师校验机器与清洗测试,未检出机械力运转异常。在机器过滤口(网),发现玻璃破碎残渣。http://ng1.17img.cn/bbsfiles/images/2014/08/201408081150_509583_2103768_3.jpg图1-3 : 现场过滤口发现的玻璃残渣http://ng1.17img.cn/bbsfiles/images/2014/08/201408081242_509599_2103768_3.jpg 图1-4: 现场过滤口清理的玻璃残渣http://ng1.17img.cn/bbsfiles/images/2014/08/201408081243_509600_2103768_3.jpg综上1至5,现场考察与后续研究中1至4项均未发现问题,第5项现场考察后结论在机器过滤口的玻璃残渣需要在发现任何玻璃器皿破损后进行彻底清理。响应制药质量控制部门对于实验室器皿再处理长期稳定性,尤其是细颈玻璃器皿在清洗40次以上的再处理结果,美诺Miele北京实验室做如下测试:[/size

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制