当前位置: 仪器信息网 > 行业主题 > >

表面形貌检测

仪器信息网表面形貌检测专题为您提供2024年最新表面形貌检测价格报价、厂家品牌的相关信息, 包括表面形貌检测参数、型号等,不管是国产,还是进口品牌的表面形貌检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面形貌检测相关的耗材配件、试剂标物,还有表面形貌检测相关的最新资讯、资料,以及表面形貌检测相关的解决方案。

表面形貌检测相关的资讯

  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 用二次离子质谱法检测锂——表面形貌与化学分析的相关性
    古德伦威廉(Gudrun Wilhelm) 乌特戈拉-辛德勒(Golla-Schindler)蒂莫伯恩塔勒(Timo Bernthaler) 格哈德施耐德(Gerhard Schneider)二次离子质谱 (SIMS) 允许分析轻元素,尤其是锂。研究者使用三种不同的探测器将二次电子图像与表面形貌、化学分析相关的元素映射相结合,过测量标准样品并将其质谱信息与老化阳极的质谱信息相比较来鉴定化合物,获得了对锂离子电池老化现象的新见解。介绍电动汽车、自行车和踏板车的使用正在增加,而这些都需要高性能、长寿命的电池。在开发这些电池时,需要了解的一个重要主题就是老化过程。如果锂电池老化,阳极表面会发生锂富集,这与功能性工作锂的损失成正比,将会降低电池的容量。然而,确切的结构和化学成分仍然难以捉摸。我们预计,将二次电子成像和二次离子质谱 (SIMS) 与锂的相关可视化相结合,将带来新的见解。材料和方法使用配备 Gemini II 柱、肖特基场发射电子枪、Inlens 检测器、Oxford Ultim Extreme EDS检测器和使用镓离子的聚焦离子束的 Zeiss crossbeam 540 进行研究。连接了 Zeiss 飞行时间检测器和 Hiden 四极检测器以实现 SIMS 分析。第三个检测器是一个扇形磁场检测器,它连接到使用氦或氖离子工作的 Zeiss Orion NanoFab。使用三种不同的 NMC/石墨电池系统证明了锂检测,这些系统具有降低的容量 ( 80%) 和更高的 900 次充电和放电循环。 结果使用扫描电子显微镜 (SEM) 检测二次电子可以使循环阳极箔的表面形貌具有高横向分辨率(图 1a、b、c):阳极石墨板覆盖有 (a) 薄壳(几纳米厚),(b)纳米颗粒(约 10-100 nm),(c)大的沉淀物,如球形颗粒(约 100-500 nm),以及微米范围内的大纤维。这些结构具有不均匀分布,表明局部不同的老化条件和过程。化学成分使用能量色散光谱法(EDS,图 1d)进行了分析。EDS 光谱检测元素碳、氧、氟、钠和磷。除碳外,检测到的最高量是氧和氟。很明显,EDS场光谱和点光谱是不同的:场光谱具有更高量的氧、氟和磷。相位映射表明EDS点谱的测量点位于氧和氟含量低的区域,氧和氟都是纳米颗粒的一部分。这证明了不均匀分布与局部不同的元素组成成正比。图:1:具有高横向分辨率的循环阳极箔的表面形貌;石墨板覆盖有(a)结壳,(b)小颗粒,(c)由球形颗粒和微米级纤维组成的大沉淀物;(d) 用 EDS 分析的循环阳极表面;所呈现的点和场光谱显示了氧、氟和磷含量的差异;氧和氟在相位映射中更喜欢相同的表面结构。SIMS 可以检测到高锂信号(m/z 6 或 7),这允许锂映射与二次电子图像相关(图 2a、b)。锂覆盖整个表面并且是所有表面结构的一部分:结壳、纳米颗粒以及大小纤维。由于氧的电负性提高了对锂的检测,因此可以检测到具有高氧浓度的粒子的高信号。锂具有不同的键合伙伴,导致不同的表面结构。示例性地,显示了质荷比 33 和 55(图 2c,d)。M/z 33 是大纤维结构的一部分,而 m/z 55 在小纤维结构中富集。必须仔细解释质荷比。M/z 33 可以解释为正离子 Li2Li3+、OLi2+ 和 Li2F+。M/z 55 可以解释为锰。铜、钴和镍存在于与锰相同的表面结构中。这些元素表明正极材料(Mn、Co、Ni)的分解和负极集流体(Cu)的浸出。结壳和纳米颗粒均不含 m/z 33 和 m/z 55。在正离子质谱中只能检测到 m/z 6、7 和 14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。在正离子质谱中可以检测到图7和14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。 图 2:与 SIMS 元素映射 (bd) 相关的循环阳极箔的表面形貌 (a);(b) 锂覆盖整个表面,是所有表面结构的一部分;(c) m/z 33 和 (d) m/z 55(锰)偏好不同的表面结构,表明不同的化合物。使用 Zeiss Orion NanoFab [1] 测量了隔膜的阳极侧,与传统 SIMS 相比,它具有更高的横向分辨率。横向分辨率取决于离子探针的尺寸,因此 NanoFab 的横向分辨率显着提高(图 3)。可以识别球形颗粒和纳米颗粒。对于 (b) m/z 6 (锂)、(c) m/z 19 (氟)和 (e) m/z 16 (氧),球形颗粒显示出高信号。纳米粒子包含相同的元素和额外的 (d) 硅 (m/z 28)。可以使用每个像素的平均计数来半定量地解释质谱结果。这证明了球形颗粒和纳米颗粒的不同化学组成。 图 3:循环隔膜的表面形貌(阳极侧);与 SIMS 元素映射相关;沉淀物中含有锂和氟以及少量的氧气;纳米粒子含有锂、氟、硅和氧;二次离子质谱测量的半定量解释。SIMS 质谱由元素峰和分子峰组成。元素峰代表单个同位素,分子峰由几个同位素组成。通过将分子峰与标准样品的峰光谱进行比较,可以精确解释分子峰。这已在下一步中完成,并允许确定表面结构的化合物。图 4a 显示了化合物 LiF 的质谱(正离子)。可以找到几个峰:m/z 6、7、14 和 m/z 32 和 33 附近的一系列峰。这些是可以解释为 Li(6 和 7)和 Li2(14)的主峰。该组可能被视为 Li2Li3+ 或 OLi2+ 或 Li2F+。锂同位素 6 和 7 导致几个 m/z 比。该质谱可以与循环阳极的质谱(正离子)进行比较(图 4b)。主峰显示出良好的相关性,而由于循环阳极上的低 LiF 含量,强度较小的峰可能不可见。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。 图 4:(a) LiF 质谱与 (b) 循环阳极质谱的比较;m/z 6、7、14、32 和 33 的峰可以与循环阳极质谱相关;m/z 33 的正确解释需要进一步的标准样品测量。结论显示结壳、纳米颗粒和大沉淀物的不均匀表面形貌可以通过二次电子图像进行可视化,并通过 EDS 和 SIMS 进行分析。使用 SIMS 进行的锂分析表明,所有结构都包含具有不同键合伙伴的锂,例如纳米颗粒中的氧、氟和硅,球形颗粒中的锂、氟和氧,以及小纤维结构中的锰。标准样品(例如 LiF)的制备能够通过质谱解释来定义准确的化合物。 致谢我们感谢 Hiden GmbH 的四极质谱仪和 Graham Cooke 的有益讨论,我们感谢 Peter Gnauck、Fouzia Khanom、Antonio Casares 和 Carl Zeiss 使用 Orion 进行 SIMS 测量,我们感谢 Hubert Schulz 在飞行探测器,我们感谢 IMFAA 合作者的帮助和项目 LiMaProMet 的财政支持。联系古德伦威廉(Gudrun Wilhelm)德国,阿伦(Aalen),阿伦大学(Aalen University),材料研究所 (IMFAA),gudrun.wilhelm@hs-aalen.de 参考文献:[1] Khanom F.、Golla-Schindler U.、Bernthaler T.、Schneider G.、Lewis B.:显微镜和微量分析 25 (S2) S. 866-867 (2019) DOI:10.1017/S1431927619005063 ---------------------------------------------------------------------------------------------------关于作者古德伦威廉(Gudrun Wilhelm)德国,阿伦大学(Aalen University),材料研究所 (IMFAA),Gudrun Wilhelm 在弗里德里希-亚历山大-埃尔兰根-纽伦堡大学学习地球科学,重点是矿物学。2019 年,她以科学员工和博士生的身份加入阿伦大学材料研究所(IMFAA)。她的研究重点是锂离子电池的老化机制。主要方法有扫描电子显微镜法、能量色散光谱法和二次离子质谱法。原文Lithium detection with Secondary Ion Mass Spectrometry,Wiley Analytical Science 2022.8.10翻译供稿:符 斌
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 扫描电镜的衬度信息与表面形貌像——安徽大学林中清33载经验谈(15)
    【作者按】衬度指的是图像上所存在的明、暗差异,正是存在这种差异才使得我们能看到图像。同是明、暗差异,衬度与对比度的不同在于:对比度是指图像上最亮处和最暗处的差异,是以图像整体为考量对象;衬度是指图像上每一个局部的亮、暗差异,它是以图像上的局部细节为考量对象。形貌衬度、二次电子衬度和边缘效应、电位衬度、Z衬度、晶粒取向衬度是展现扫描电镜表面形貌特征的几个主要衬度信息。形貌衬度是形貌像形成的基础,其余的衬度信息叠加在这个基础之上做为形貌像的重要组成部分,充实及完善形貌像所展现的表面形貌信息。依据辩证的观点,这些衬度信息各有其适用领域,相互之间不可能被完全替代。即便是形貌像的基础“形貌衬度”也不具有完全代替其余任何一个衬度的能力。对任何衬度呈现的缺失,都会使得表面形貌像存在程度不同的缺陷,使仪器分析能力受到一定程度的影响,这些都将在下面的探讨中通过实例予以充分的展示。在前面经验谈中有大量的实例及篇幅对以上衬度予以介绍。本文是对过去零散的介绍加以归纳总结,形成体系。下面将从形貌衬度开始,通过实例,依次介绍二次电子衬度、边缘效应、电位衬度、Z衬度以及晶粒取向衬度的成因、影响因素、所展现的样品信息以及应用实例和探讨。一、形貌衬度形貌衬度:呈现样品表面形貌空间位置差异的衬度信息。影响因素:探头接收溢出样品的电子信息的角度。形成缘由:要充分表述表面形貌三维空间的位置信息,形成图像的衬度应当包含两个基本要素:方向和大小。物体图像的空间形态取决于人眼观察物体的角度:侧向观察是立方体,顶部观察为正方形。这是由于该角度包含着形成图像空间形态的两个基本要素:方向和大小。扫描电镜测试时形貌衬度的形成也是同样道理。形貌衬度的形成与探头接收溢出样品的电子信息(二次电子、背散射电子)的角度密切相关。该接收角度发生改变,形貌衬度也将发生变化,形貌像就会跟着出现变动。接收角对形貌像的影响并不单调,而是存在一个最佳范围。不同厂家的不同类型扫描电镜,由于探头位置设计上的差异,各自都存在一个最佳工作距离以形成最佳的信息接收角,呈现出各自所能表达的样品表面形貌的最大空间形态。样品的倾斜会对接收角产生较大的影响,因此倾转样品可以发现表面形貌像的空间信息也会发生改变。任何测试条件的改变都不会带来唯一且单调的结果,而是遵循辨证法的规律,即对立统一、否定之否定和量变到质变。选择测试条件时,要针对样品特性及最终目的做到取舍有度。形貌衬度是形成形貌像的基础,但并不是形貌像的全部。形貌像中许多细小的形貌细节,会受到探头所接收的电子信息(SE和BSE)溢出区大小的影响。电子信息和电子束的能量越大对这些细节的影响也越大,当量变达到一定程度就会影响某些细节的分辨,从而对表面形貌像产生影响。要形成充足的形貌衬度,又该如何选择电子信息接收角的形成方式?依据样品特性及表面形貌特征可分为:A)低倍,低于10万倍,呈现的形貌细节大于20纳米。此时,背散射电子很难完全掩盖这些细节信息,随着所需呈现的样品表面细节的增大,背散射电子对图像清晰度的影响也会减小,图像也将越渐清晰。样品仓内的探头位于样品侧上方,与样品和电子束共同形成较大的电子信息接收角。由该接收角形成的形貌衬度能充分呈现20纳米以上的样品表面形貌细节。随着工作距离、样品台倾斜和加速电压的改变,该接收角的变化幅度较大,图像所呈现的形貌变化也较为明显。镜筒内探头位于样品顶部,与样品和电子束在一条直线上。其对信息的接收角度主要形成于电子信息的溢出角,该角度较小,形成的形貌衬度也较小,不利于充分展现大于20纳米的形貌细节。工作距离、样品台倾斜以及加速电压的改变对接收角的影响较小,图像形态变化不明显。基于以上原因:低于10万倍,观察的样品表面细节大于20纳米。以样品仓探头为主获取的形貌像,空间形态更优异。B)高倍,大于20万倍,观察的形貌细节小于20纳米。表面形貌的高低差异小,形貌衬度也小,电子信息的溢出角度即可满足衬度的形成需求。此时,低角度信息的接收效果将是主导因素,低角度信息越多,图像立体感越强烈。背散射电子因能量较高对这些细节影响较大,必须加以排除。为充分呈现这类形貌信息,应采用镜筒内探头从样品顶部接收充足的二次电子,尽量排除溢出面积较大的背散射电子信息溢出区对样品细节的影响。此时形成形貌像的关键是采用小工作距离(小于2mm),以增加镜筒内探头接收到的低角度二次电子。实例展示及探讨:A )大于20纳米的细节,以样品仓探头为主(大工作距离)形成的形貌像,立体感强、细节更优异,形貌假象较少。B)样品仓探头获取的表面形貌像对工作距离的变化、样品倾斜、加速电压的改变都十分敏感,表面形貌像的形态随之改变也较为明显。镜筒探头位于样品顶端,改变以上条件对接收角的影响不大,形貌像的空间形态变化也不明显。 B1)改变工作距离对表面形貌像的影响(钴、铁、钨合金)B2)样品倾斜对形貌像立体感的影响B3)改变加速电压对形貌像立体感的影响(合金钢)C)小于10纳米的细节,形貌衬度要求较小,溢出样品的低角度电子信息就满足这类表面细节的呈现需求。此时如何避免样品中电子信息的扩散对形貌细节产生影响是首要选择,充分选用低能量的二次电子就显得极为关键。镜筒内探头因位置和结构的特别设计,使得它接收的样品信息以二次电子为主,是展现这类几纳米细节的首选。工作距离越小,镜筒内探头接收到更为丰富的多种角度的二次电子信息,对10纳米以下细节的分辨力最强。D)处于不同位置的镜筒内探头获取的形貌衬度也不相同。位于侧向的镜筒内(U)探头相较于位于顶部的镜筒内探头(T),可获取更多的低角度信息,形貌像的立体感更强。结论:形貌衬度是形成形貌像的基础,探头接收形貌信息的角度是形成形貌衬度的关键因素。不同大小的形貌细节要求的形貌衬度不同,该接收角的形成方式也不同。低倍时,形貌像的空间跨度大,要求的形貌衬度也大,需探头、样品和电子束之间形成一定的角度才能获得充分的形貌像。该角度有一个最佳值,探头位置不同,这个值也不同,形成的形貌像空间感也存在差异。高倍时,形貌空间跨度小,低角度电子信息即可满足形貌衬度的形成需求。此时避免电子信息的扩散对形貌像的影响就极为关键,充分获取低角度二次电子将成为测试时的首选。形貌衬度虽是形成表面形貌像的基础,但并不是唯一因素,要获取充足的形貌像,其他衬度的影响也不可忽视。下面将对形成形貌像的其他衬度加以探讨。二、二次电子衬度和边缘效应一直以来的主流观点都认为:二次电子衬度和边缘效应是形成扫描电镜表面形貌像的主导因素。各电镜厂家都把如何充分获取样品的二次电子做为形成高分辨形貌像的首选,对探头位置的设计,也以充分获取二次电子为目的来展开。这一理论体系的形成依据是:1. 二次电子的溢出量与样品表面斜率相对应,在边缘处的溢出最多。而表面形貌像可看成是不同斜率的平面所组成,故二次电子衬度和边缘效应含有充分的样品表面形貌信息。2. 二次电子能量低,在样品中扩散小,对样品表面那些极细小的细节影响小,分辨能力强,图像清晰度高。 但实际情况却往往于此相反。如下图:右图中二次电子衬度及边缘效应充足,但形貌信息相较左图却十分的贫乏,并在形貌像上带有极为明显的假象。为什么会出现这种与目前主流观点完全不一样的结果?原因何在?这还是要从扫描电镜形貌像的形成因素说起。表面形貌像呈现的是表面形貌高低起伏的三维信息,图像中必须含有两个重要的参数:方向与大小。表述一个斜面,需提供与该斜面相关的两个重要参数:斜率大小和斜面指向,这是向量的概念。二次电子衬度对斜率大小的呈现极为明显,亮、暗差异大;却对斜面指向的呈现极差。对形貌像来说,斜面指向形成的衬度差异对形成形貌像往往更重要。因此由二次电子衬度和边缘效应形成的图像只具二维特性,无法呈现形貌像的三维特征,失去形貌细节也在所难免。探头对样品信息的接收角所形成的形貌衬度能充分表达形貌像的指向差异。因此下探头即便接收的背散射电子较多,对斜率大小的表现较差,但呈现的形貌形态却更充足。任何信息都有其适用范围,在适用范围内总扮演着关键角色。二次电子衬度和边缘效应虽然对斜面指向不敏感,但对斜率大小却极度敏感,该特性能强化平面和斜面区域整体的衬度差异,有利于对区域整体进行区分。区域在形貌像中占比越小,被区分的优势就越大。需要注意:此时区域之间的衬度表述,并非该区域成分和密度的不同,而是各区域中斜面数量和斜率大小的差异。观察区域在图像中面积占比越低,区域中的形貌细节越难分辨,采用形貌衬度对区域进行区分也越难。此时,二次电子衬度和边缘效应对区域进行区分的作用也就越大,如下例:以上是钢铁表面的缺陷,在500倍时采用下探头是无法区分A、B两个区域有哪些不同,很容易被误认为是两块完全相同的平面。但是采用上探头(二次电子衬度优异)发现这两个区域存在非常明显的不同,放大到2万倍,可见区域A和B在形态上的差别巨大,A区域比B区域的起伏大。二次电子衬度和边缘效应的强弱可通过探头和工作距离的选择加以调整。对这一衬度的合理利用,可拓展对样品形貌特征进行分析的手段,获得更充分的形貌信息。此外,充分的运用二次电子,还有利于利用“电位衬度”来扩展对样品表面形貌信息进行分析的方法。三、电位衬度电位衬度:样品表面由于存在少量荷电场,对样品某些电子信息的溢出量产生影响而形成的衬度。影响因素:由于荷电场较弱,受影响的主要是二次电子,背散射电子的溢出量受影响较小。实用方向:样品表面存在有机物污染、局部氧化或晶体结构的改变。这些变化采用Z衬度很难观察到,而形成荷电场强度及位置的些微差异所产生的电位衬度却较明显。该特性在进行样品失效分析时对找出性能改变的区域,作用极其明显。实例展示及分析:A)智能玻璃表面的有机物污染表面镀膜的智能玻璃,通电后总是有明显的光晕出现。该部位用扫描电镜进行微观检测。结果如下:镜筒内(上)探头,SE为主,Z衬度较差。相较于样品仓(下)探头,BSE为主,出现以上类似Z衬度所形成的光斑图案的几率和强度要低,但结果却完全与常规认识相背离。原因何在?从探头的改变对结果影响判断,该图案不是Z衬度所形成,否则下探头图案将更为明显。图案形状如同液体滴在块体上所形成,怀疑为有机液滴落在薄膜表面,造成该处漏电能力减弱,形成局部的弱荷电场,影响二次电子的溢出而酿成电位衬度。背散射电子未受到荷电场的影响,薄薄的液滴层形成的Z衬度又小,故下探头无法呈现反映液滴污染的任何电子信息。能谱分析该处的碳含量略高一些。客户清洗设备,排除任何有机污染的因素,该现象消失。B)铁、钴、镍合金框架表面的氧化斑采用能谱分析颗粒物部位,多出硅和氧的成分信息,说明这里可能存在夹杂物,但含量极少用Z衬度很难区别。而硅、氧造成了其存在区域的漏电能力下降,使得该处的电位衬度极为明显。由此我们可轻松找到材料的缺陷点。通过以上实例可见,材料的缺陷,往往会由于工艺问题使某些部位局部被氧化或污染。这类缺陷采用Z衬度往往很难观察到,而采用电位衬度就会很容易找到。只有在大工作距离下,才可轻松切换样品仓和镜筒探头以分别对某个区域进行观察,针对形貌像所表现出的电位衬度差异,往往很容易找到样品的失效点并分析原因。二次电子和背散射电子都有其善于呈现的衬度信息。二次电子在二次电子衬度、边缘效应和电位衬度的展现上优势明显,上面已经充分的探讨。背散射电子在Z衬度和晶粒取向衬度(电子通衬度ECCI)的表现上更加的优异,下面将分别加以介绍。四、Z衬度Z衬度:由样品各个组成相的平均原子序数(Z)及密度差异所形成的图像衬度。形成因素:相同条件下,SE和BSE的溢出量和散射角会随组成样品的原子序数及密度的不同而不同,造成探头对其的接收量出现差异而形成Z衬度。背散射电子在量的改变上较二次电子更强烈,因此形成的Z衬度更大,灰度差异更明晰。实例展示并探讨:A)高分辨扫描电镜的样品仓探头比镜筒内探头接收到的背散射电子更多,形成的图像中Z衬度更明显。B)样品仓、镜筒、背散射电子探头的Z衬度结果对比。合金钢,能谱图中1、2、3三个区域的色彩,绿色:铁;红色:钨;绿黄:铁、铬。拟合下探头图像所展现的灰度差。低加速电压下,三种探头所形成的Z衬度差异将减弱。五、晶粒取向衬度晶粒取向衬度:晶体材料的晶粒取向差异会造成探头获取的电子信息出现差别,形成的衬度。与EBSD表述的信息有一定的对应性,但对晶粒取向变化的敏感度要远低于EBSD。也称“电子通道衬度”(ECCI),但命名原因及依据不明。形成缘由:从晶体表面溢出的电子信息会随晶粒取向的差异而不同。表现为信息的溢出量及取向上出现差别,使处于固定位置的探头所接收到的电子信息在数量上出现区别,形成表述晶粒取向差别的衬度。背散射电子受晶粒取向不同而出现的衬度差 异较二次电子更为强烈,这与两种电子信息在Z衬度上的表现基本一致。实例展示及探讨:A)zeiss电镜采用三种探头模式观察钢的表面(倍率:×5K)B)日立Regulus8230样品仓和镜筒探头的各种组合结果六、结束语扫描电镜表面形貌像是由呈现表面各种形貌信息的形貌衬度、二次电子衬度及边缘效应、电位衬度、Z衬度及晶粒取向衬度共同形成。其中形貌衬度是形成形貌像的基础,其余衬度叠加在形貌衬度之上,形成完整的表面形貌像。形貌衬度:该衬度的缺失,形貌像将只具有二维特性。形成形貌衬度的关键在于探头接收样品信息的角度,而样品信息(SE\BSE)的能量会对形貌细节的分辨产生影响。背散射电子,因能量较高,在样品中扩散范围较大,对直径小于几十纳米的细节或10万倍以上高倍率图像的清晰度影响较大,对直径十纳米以下细节的辨析度影响极大。虽然二次电子能量较弱,但其对5纳米以下的样品细节或30万倍以上图像清晰度和辨析度还是有明显的影响。低密度样品,以上受影响的放大倍率阈值也会相应降低。探头对信息接收角度的形成方式应依据所需获取的样品信息的特性和样品本身特征来做出合理的选择。样品的表面形貌起伏大于20纳米,所需的形貌衬度较大,需要探头、样品和电子束之间形成一定夹角才能满足需求。背散射电子的扩散,不足以掩盖掉这些细节的展现,相对于形成充分的形貌衬度来说,处于次要地位。此时应选择大工作距离,充分利用样品仓探头对样品信息进行接收,再结合镜筒内探头接收的样品信息给予加持,才能充分展现样品的形貌特征。样品表面起伏越大,样品仓探头在形成形貌像中的占比也相应提高,才有利于充分获取样品的表面形貌信息,形成的表面形貌像也更为充盈。样品表面起伏小于20纳米,所需的形貌衬度较小,溢出样品表面的电子信息角度即能满足形成表面形貌像所需的形貌衬度。此时背散射电子对形貌细节影响将成为形成表面形貌像的主要障碍,必须加以排除。充分利用镜筒内探头,排除样品仓探头的影响将成为获取形貌像电子信息的唯一选择。此时,镜筒内探头能否充分获取低角度电子信息是形成形貌像的症结所在。在实际操作中,选择小工作距离及镜筒内探头的组合就极为关键。有些电镜厂家在物镜下部设置的低角度电子信息转换板,有助于镜筒内探头对低角度电子信息的接收,充分运用该转换板将使得表面形貌像的立体感更加充分,形貌信息更为充实。二次电子衬度与边缘效应:一直以来的主流观点都认为该衬度是形成表面形貌像的基础。但该衬度因缺失对斜面指向因素的呈现,故无法表现形貌像的空间位置信息。由其形成的形貌像对形貌斜面的斜率大小表现充分,而对斜面的指向却没有体现,故形貌像只具二维特性。该衬度容易与Z衬度相混淆而出现形貌假象,但也能够加强斜面区域的衬度,有利于低倍时对形貌不同但组成成分相近的区域进行区分,如多层膜的膜层分割等。电位衬度:该衬度是由样品表面形成的少量荷电场引起的电子信息溢出异常所形成。背散射电子能量较大,信息的溢出量不易受该荷电场影响,故不存在该衬度或存在的衬度值较小。利用不同探头在接收样品信息时,对电位衬度的呈现差异,可对样品中被污染、氧化或发生晶体结构改变而形成漏电能力出现变化的部位,进行区分及分析。这在样品的失效分析中意义重大。Z衬度:由样品组成相的平均原子序数及密度不同所形成的信息衬度。背散射电子从样品表面溢出的数量和角度受样品的组成成份和密度的影响较大,由其为主形成的表面形貌像中,Z衬度的差值更大,图像更锐利,边缘更明晰,但表面细节较差。以二次电子为主形成的形貌像,具有的Z衬度差值较小,图像锐利度不足但细节更丰富。晶粒取向衬度:晶体的晶粒取向差异所形成的信息衬度。主流的称谓是:电子通道衬度(ECCI),命名的原由不明。该衬度如同Z衬度,背散射电子对其的呈现更为明显。对各种衬度信息的充分认识,将有助于正确理解形貌像上各种形貌信息的形成缘由。是正确选择扫描电镜测试条件,获取充分且全面的表面形貌像的基础,必须加以重视。参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社作者简介:林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 延伸阅读:【系列专题:安徽大学林中清33载扫描电镜经验谈】林中清系列约稿互动贴链接(点击留言,与林老师留言互动):https://bbs.instrument.com.cn/topic/7656289_1【专家约稿招募】为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期分享的是林中清老师为大家整理的33载扫描电镜经验谈之扫描电镜的衬度信息与表面形貌像,以飨读者。(本文经授权发布,分享内容为作者个人观点,仅供读者学习参考,不代表本网观点。)
  • 扫描白光干涉表面形貌测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    高附加值产品中元器件的表面形貌,包括几何形状和微观纹理,对于其公差、装配和功能至关重要。表面形貌对制造工艺的变化非常敏感,由不同工艺形成的表面复杂且多样。表面形貌会影响零件的摩擦学特性、磨损和使用寿命,例如航发叶片的表面会影响飞机的空气动力学性能和燃料使用效率。扫描白光干涉术(SWLI),也称为相干扫描干涉术(CSI),是用于测量材料表面形貌最精确的技术之一。作为一种光学测量手段,扫描白光干涉术先天具有高精度、快速、高数据密度和非接触式测量等优势,被广泛应用于精密光学、半导体、汽车及航天等先进制造与研究领域。扫描白光干涉仪光路结构与成像原理示意图扫描白光干涉术经过30多年发展,在制造和科研领域得到验证,成为表面形貌高精度测量技术的标杆,尤其在半导体、精密光学和消费电子等产业的推动下,其测量功能和性能得到了持续提升。以扫描白光干涉术为代表的光学测量技术,充分利用了光的波动属性以及干涉和全息成像的优势,以光的波长作为“尺子”,在先进的光学、电子和机械元器件的支撑下,将在先进制造与智能制造中充当越来越重要的角色。第二届精密测量技术与先进制造网络会议期间,两位专家将现场分享扫描白光干涉技术及其在半导体行业的典型应用。部分报告预告如下,点击报名  》》》中国科学院上海光学精密机械研究所研究员 苏榕《扫描白光干涉表面形貌测量技术:原理及应用》(点击报名)苏榕博士,研究员,博士生导师,中国科学院及上海市海外高层次人才引进。长期致力于超精密光学干涉成像与散射测量仪器与技术研究,聚焦基础理论、核心算法、校准技术、工业应用及相关国际标准制定。主持多项国家和省部级重点研发项目;发表论文40余篇,书籍章节2章,部分技术被国际顶尖仪器制造商采用。担任期刊《Light: Advanced Manufacturing》和《Nanomanufacturing and Metrology》编委及《激光与光电子学进展》青年编委,SPIE-Photonics Europe、EOSAM和ASPE技术委员会委员,全国产品几何技术规范标准化技术委员会委员,中国计量测试学会计量仪器专业委员会委员,中国仪器仪表学会显微分会委员。【报告摘要】扫描白光干涉术是目前最精确的表面形貌测量技术之一,被广泛应用于各种工业与科研领域。从发明至今的三十余年间,在精密光学、半导体、汽车及航天等先进制造领域的需求牵引下,该技术不断取得新的进展与突破。本报告将介绍白光干涉技术的原理与应用,以及近年来的技术创新。布鲁克(北京)科技有限公司应用经理 黄鹤《先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案》(点击报名)黄鹤博士现任布鲁克公司纳米表面仪器部中国区应用经理。服务于工艺设备和测量仪器行业超过15年,尤其在半导体、数据存储和材料表面工程研究领域拥有丰富经验,是一名材料学博士。黄鹤博士先后在香港理工大学任助研;在应用材料公司任高级应用工程师,负责化学机械抛光工艺和缺陷检测应用;在维易科公司任应用科学家,负责白光干涉三维形貌技术推广与导入。【报告摘要】在半导体行业路线图对不断缩小晶体管几何尺寸的快速追求的推动下,PCB/HDI尤其载板制造商正在通过更薄的高密度互连,将多芯片模块(包含芯粒)借由基板上开发更小、更密集的功能。在大批量生产过程中,对于更细线宽的铜线(Line)、更小开口的孔洞(Via)和深沟槽(Trench)及层间对位偏差(Overlay)等三维几何尺寸的测量面临多种新的挑战。而具备计量功能的 ContourSP 大型面板高效测量系统专门设计用于在制造过程中测量载板面板的每一层,确保在生产过程中最短的工艺开发时间、最高的产量、最长的正常运行时间和最稳定的测量结果。此外,本报告也会简略介绍白光干涉技术在晶圆封装时再布线工艺(RDL)监控中的典型应用。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 1095万!天府永兴实验室(超高分辨率表面形貌及元素表征系统)等一批设备采购项目
    一、项目基本情况项目编号:SCZZ32-FZC-2023-0157项目名称:天府永兴实验室(超高分辨率表面形貌及元素表征系统)等一批设备采购项目预算金额:1095.0000000 万元(人民币)最高限价(如有):1095.0000000 万元(人民币)采购需求:本项目为天府永兴实验室(超高分辨率表面形貌及元素表征系统)等一批设备采购项目。合同履行期限:以“第六章 二、项目详细内容”表格内的“签订合同后到货日期”内容为准。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年03月23日 至 2023年03月29日,每天上午9:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:“四川中志招标代理有限公司”官网方式:供应商从“四川中志招标代理有限公司”官网获取招标文件(网址:http://www.sczzzb.com/)。进入“四川中志招标代理有限公司”官网—招标公告—点击欲报名项目采购公告—点击马上报名(具体操作步骤详见《报名操作指南》)。 提示: (1)招标文件售价:人民币300元/份(售后不退,投标资格不能转让) (2)供应商只有在“四川中志招标代理有限公司”官网完成获取招标文件申请并下载招标文件后才视作依法参与本项目。如未在“四川中志招标代理有限公司”官网内完成相关流程,引起的投标无效责任自负。 (3)供应商获取招标文件时必须如实认真填写项目信息及供应商信息;若因供应商提供的错误信息,对自身投标事宜造成影响的,由供应商自行承担责任(供应商欲修改报名信息,请于报名截止时间前登陆“四川中志招标代理有限公司”官网修改报名信息)。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:天府永兴实验室地址:四川天府新区集萃街619号天府海创园2号地块12号楼联系方式:王老师、肖老师 028-606677132.采购代理机构信息名称:四川中志招标代理有限公司地址:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)联系方式:易老师 028-65783579(报名相关事宜咨询)、028-61380227(采购项目相关事宜咨询)3.项目联系方式项目联系人:易老师电话:028-61380227
  • 直播预告!第四届材料表征与分析检测技术网络会议之结构与形貌分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/结构与形貌分析主题专场会议日程:报告时间报告题目报告人专场三:结构与形貌分析(12月15日)09:00--09:30电子束辐照敏感材料的电子显微表征方法探索上海科技大学研究员 于奕09:30--10:00牛津仪器 EBSD 技术最新发展及应用牛津仪器科技(上海)有限公司应用科学家 杨小鹏10:00--10:304D超快电子显微镜及其在低维材料非平衡态动力学中的应用南开大学教授 付学文10:30--11:00布鲁克电子显微分析技术在材料表征中的应用布鲁克纳米分析应用工程师 韦家波11:00--11:30电子显微学在光电材料及器件开发研究中的拓展应用北京工业大学副研究员 卢岳11:30--12:00现代扫描电子显微学功能化方法研究进展和应用浙江工业大学副研究员 李永合直播抽奖:30元京东卡5个嘉宾介绍:上海科技大学研究员 于奕于奕,上海科技大学助理教授。2008年获得北京科技大学材料物理学士学位,2013年获得清华大学材料科学与工程博士学位,2013-2017年在美国加州大学伯克利分校和劳伦斯伯克利国家实验室从事博士后研究工作,2017年至今任上海科技大学助理教授、研究员、博士生导师。于奕博士从事材料微观结构的像差校正电子显微学研究,迄今发表科研论文60余篇,引用5000余次,部分重要成果以通讯或第一作者形式发表在Nature,Science,Nano Letters,J.Am.Chem.Soc等期刊。目前于奕博士的研究聚焦在辐照敏感能源材料的原子尺度电子显微分析。【摘要】 透射电子显微技术是表征和分析材料微观结构与成分的重要手段。对于不耐电子束辐照的材料,在进行显微观察的过程中,电子束会对样品的本征结构产生破坏,导致原始结构、特别是纳米和原子尺度的精细结构难以得到表征。这是一个现有技术手段还无法有效解决的难题。在本报告中,我们以辐照敏感的卤化物钙钛矿半导体材料和锂金属材料为例,介绍我们在显微样品制备、显微成像和谱学分析过程中探索到的能够缓解材料辐照损伤的一些方法,并利用这些方法实现对这两类材料的高分辨原子尺度结构解析。牛津仪器科技(上海)有限公司应用科学家 杨小鹏杨小鹏,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。【摘要】 牛津仪器一直致力于推动 EBSD 技术的发展,最新发布了第三代 Symmetry EBSD探测器 S3,最快采集速度超过5700 花样/秒。同时更新的还有高性价比的C-Nano+ 和C-Swift+ EBSD探测器,最快速度分别达到 600 花样/秒及2000 花样/秒。所有三种型号探测器都可以配置高温荧光屏,满足原位加热EBSD的需求。在软件方面,新发布了花样匹配标定技术 MapSweeper,相比传统EBSD标定技术,对质量差的花样也能标定,提高标定率,改善对大变形样品和TKD样品的分析。MapSweeper还能提高EBSD数据的精度,帮助区分伪对称、相似相、倒反畴界等,这些应用需要对花样进行精细的识别。南开大学教授 付学文 付学文,南开大学物理学院教授,博士生导师,天津市杰出青年基金获得者,入选国家四青人才,南开大学“百名青年学科带头人”,担任国家重点研发计划青年项目首席科学家。2014年获北京大学凝聚态物理博士学位(导师:俞大鹏院士),曾荣获北京市优秀博士毕业生、北京大学优秀博士毕业生和优秀博士论文奖。曾先后在美国加州理工学院(诺贝尔奖得主Ahmed Zewail教授研究组)和美国布鲁克海文国家实验室 (Yimei Zhu教授研究组)做博士后和助理研究员。2019年受聘于南开大学物理科学学院担任教授,牵头建立了南开大学超快电子显微镜实验室。长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究。在Science、Science Advances(3篇)、Nature Communications、Advanced Materials、PNAS、ACS Nano(5篇)、Nano Letters等知名国际期刊发表学术论文40余篇,获授权发明专利1项。研究成果多次被 Science、Phys.org、Physicsword、Nanotechweb、Advances in Engineering等科学媒体选为研究亮点进行报道。【摘要】报告将主要介绍4D超快电子显微镜及其在低维材料非平衡态动力学中的应用。布鲁克纳米分析应用工程师 韦家波韦家波,布鲁克纳米分析应用工程师,负责EDS、EBSD、TKD等产品的技术支持工作,对电子显微镜的相关应用具有多年实操经验。【摘要】 主要分享布鲁克高分辨EDS, EBSD/同轴TKD等产品的技术优势及其在材表征方面的应用。北京工业大学副研究员 卢岳 卢岳,北京工业大学固体微结构与性能研究所副研究员、博士研究生导师。长期从事原位电子显微学、光电及光电催化材料与器件研究。作为项目负责人,承担多项国家自然科学基金和省部级以上科研基金,以第一作者或通讯作者在Joule, Nat. Commun., Adv. Mater., Appl. Catal. B-Environ., ACS Nano, Chem. Eng. J., Adv. Funct. Mater., J. Mater. Chem. A等国际期刊发表SCI论文40余篇。【摘要】报告中主要介绍电子显微学在光电材料及器件开发研究中的拓展应用。浙江工业大学副研究员 李永合李永合,男,副研究员,北京工业大学工学博士学位,德国卡尔斯鲁厄理工学院 (KIT)电子显微学研究室博士后。近年来,针对电池离子输运和催化剂活性反应的基础问题,集中发展工况材料动态结构演变的原位电子显微学可视化方法。以此研究基础,主持承担科技部重点研发子任务、国家自然科学基金青年项目、浙江省自然基金探索项目3项,完成德国洪堡基金项目1项,曾入选德国“洪堡学者”和校高层次人才培育计划。【摘要】 扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,FIB-SEM重构进一步实现材料形貌的三维重构可视化,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,本报告将着重介绍1)发展的STEM-in-SEM方法和FIB-SEM三维重构在弱衬度材料表征应用,以及2)循环条件下,全固态电池失效行为的原位研究等工作。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 微区原位表征多面手!3D/2D表面形貌、力学、电学、磁学等表征均可实现,换样仅需几分钟!
    一、设备简介随着材料性能在芯片制造、新能源、医疗、机械、机电等诸多领域的广泛应用,材料的体相成分信息表征已不能满足当前的研究,越来越多的研究者开始关注材料的微区结构。目前,微区性能通常使用多台设备切换不同表征手段相互印证,很难实现在纳米级精准度的前提下对某一微区进行表征,所获得的研究结果关联性较弱。为此,Quantum Design公司推出了多功能材料微区原位表征系统-FusionScope。该设备结合了SEM和AFM的互补优势,直接选取感兴趣的区域,即可在同一时间、同一样品区域和相同条件下完成样品的原位立体综合表征,实现三维结构、力学、电学、磁性和组成成分的原位分析。该设备简单直观的软件设计,可快速获得所需数据;高分辨率SEM实时、快速、精准导航AFM针尖,从而实现AFM对感兴趣区域的精准定位与测量,轻松表征纳米线、2D材料、纳米颗粒、电子元件、半导体、生物样品等材料。Quantum Design微区性能综合表征系统-FusionScope 二、测量模式2.1 SEM-AFM联用:人造骨骼SEM-AFM测量2.2 微区三维形貌测量2.2.1 接触模式: 聚合物样品2.2.2 动态模式:悬空石墨烯样品2.2.3 FIRE模式(测量样品硬度和吸附力):聚苯乙烯和聚烯烃聚合物样品 2.3微区性能测量2.3.1 导电AFM测量(C-AFM)左图为在Si上Au电极SEM图片,中图为电极的AFM测量结果,右图为电极导电测量结果2.3.2 静电AFM测量(EFM)左图BaTiO3陶瓷样品的SEM图片,中图为样品同一区域AFM形貌结果,右图为+1.5V偏压下EFM表征结果 2.3.3 磁力AFM(MFM)左图为Pt/Co/Ta复合材料AFM表征结果,右图为同一区域的MFM表征结果 三、应用案例3.1 材料微区性能表征左图为双相钢在晶界处的SEM图形,中图为原位AFM形貌测量结果,右图为样品原位顺磁和铁磁区域表征结果3.2 电子/半导体器件分析左图为通过SEM将AFM探针定位到CPU芯片特定区域,中图为选定区域晶体管的AFM表征结果,右图为选定区域晶体管的SEM图像 3.3 二维材料表征左图为通过SEM将AFM探针指引到HOPG所在区域,中图为HOPG样品三维形貌图,右图为中图中HOPG样品的高度(0.3 nm) 3.4 生命科学左图为通过SEM将AFM探针定位到样品所在区域,中图为贝壳上硅藻结构的SEM图像,右图为硅藻结构的AFM三维形貌图
  • 我国科学家在纳米级分辨太赫兹形貌重构显微技术方面取得进展
    蛋白分子膜(蛋白膜)在生物传感和生物材料领域应用广泛。从纳米尺度精确检测蛋白分子的成膜过程,对控制蛋白膜的品质、理解其形成机制和评价其功能表现具有重要意义。然而,目前尚缺少一种能够精确表征蛋白分子在成膜过程中所有形态结构的技术手段,例如,原子力显微镜虽然具有优异的表面成像功能,但是它难以提供样品的亚表面信息,无法揭示蛋白分子层的内部结构信息。        近日,中国科学院重庆绿色智能技术研究院研究员王化斌团队和上海大学材料生物学研究所教授李江团队等合作,报道了一种同时具有表面和亚表面探测能力的纳米级分辨太赫兹形貌重构显微技术。研究团队发展了多介质层有限偶极子近场理论模型,建立了基于样品太赫兹近场光学显微图像重构样品三维形貌的方法,实现了单个蛋白分子、蛋白网状结构、蛋白单分子层和蛋白复合层的精确检测。太赫兹形貌重构显微技术具有无损、无标记的特点,以及表面和亚表面检测能力;其侧向分辨率与原子力显微镜相当,垂直分辨率达0.5 nm。该技术为研究生物分子、功能材料和半导体器件等样品提供了一种全新的技术途径。相关研究成果以Near-Field Terahertz Morphological Reconstruction Nanoscopy for Subsurface Imaging of Protein Layers为题,发表在ACS Nano上。研究工作得到国家重点研发计划、国家自然科学基金、重庆市自然科学基金等的支持。
  • 国家重大仪器项目《超光滑表面无损检测仪》在成都启动
    从成都高新区获悉,由成都太科光电技术有限责任公司承担的国家重点研发计划重大科学仪器设备开发项目《超光滑表面无损检测仪》正式启动。  国家科技部高新技术研究发展中心、中国工程物理研究院、四川省科技厅、成都市科技局、成都高新区科技局相关负责人以及光学行业相关专家近百人参加了启动仪式。  据了解,《超光滑表面无损检测仪》是国家“十三五”重点研发计划重大科学仪器设备开发项目,分别获得国家科技部2000万元、成都高新区200万元资金支持,由成都太科光电技术有限责任公司牵头,协同国内多家技术实力雄厚的大学、研究所和企业形成产、学、研、用相结合的项目团队共同实施。该项目拟研制用于非透明物体超光滑表面及具有多层超光滑平行反射面透明物体的纳米级表面形貌高精密测量的Φ 150 mm超光滑表面无损检测仪。该仪器主要用于高精度非接触测量,可以广泛的应用于高速集成电路、微电子集成电路、光电集成电路、半导体制造、半导体照明以及太阳能新能源电池等基片TTV、弯曲度、表面质量等关键参数的快速检测,还可应用于大型现代光学工程系统,如大型高功率固体激光系统、极紫外光刻、航空航天空间光学等领域中大口径元件面形、材料特性等参数测量。项目预期取得或申请发明专利、软件著作权、相关标准等25项相关知识产权,研究成果预计发表相关论文20余篇。  “以受检测器件芯片为例,芯片是由多层构成且呈透明或半透明状态,受自干涉条纹等条件影响,传统接触式测量中其他表面会影响到待测表面的实际检测,且任何接触都会对芯片本身造成一定伤害。而超光滑表面无损检测仪采用非接触式测量,且采用多表面分离算法,该算法可以分离出待测表面的信息,避免受其它表面的影响。”成都太科光电相关负责人说,该项目的实施,可以提高国内面形检测的能力,实现多表面元件或平行平板的检测,使其主要技术指标达到或超过国外同类产品水平。项目完成后,将研制数台超光滑表面无损检测仪,形成具有自主知识产权的系列化产品和关键技术与产业化路线,为未来产业化发展提供工艺路线。预计项目验收后三年内,完善仪器产品化所有流程,基本形成产品化的标准工艺流程,企业产值达到上亿元。  据介绍,该项目将通过专项带动,集成国内优势力量重点创新,以仪器系统化与集成化结合多表面干涉重叠条纹分离算法为突破口,解决高精度超光滑表面无损检测的关键技术瓶颈,实现高端超光滑表面无损检测仪器国产化,替代国外同类产品,打破国外公司的技术垄断和价格壁垒。项目仪器的研制将带动国内相关产业发展,超光滑表面无损检测仪将在半导体照明、太阳能新能源,高速集成电路、微电子集成电路、光电集成电路以及国家重大光学工程等相关行业和领域得到广泛的应用。改变现在采用的接触式测量方式,大大提高检测精度和测试效率,对于这些应用行业和领域具有巨大的带动和促进作用。  “成都高新区鼓励企业开展自主创新,积极承担国家科技计划项目,提升研发水平和创新能力。”成都高新区科技局相关负责人说,获得国家重大科技创新项目立项支持且项目国拨资金到位的成都高新区企业,可按照国拨资金实际到位额的10%进行配套资助申请,同一项目申请金额最高不超过200万元,同一家企业同一年度申请该类资金额度最高不超过200万元。“未来五年,成都高新区将每年安排不低于10亿元资金、连续5年,支持知名大学科研成果在区内转化 每年安排不低于10亿元资金、连续5年,支持国内外顶尖企业研发中心在区内落户 每年安排不低于10亿元资金、连续5年,支持引进高端人才到成都高新区发展。”  据悉,成都太科光电技术有限公司是国内专业从事集高精度光学干涉检测仪器研发、生产和销售于一体的高新技术企业。公司具有一支从事光学设计、软件开发、机械设计、电子控制等专业齐全、产品研制经验丰富的专业研发与产业化团队。2009年公司研制了国内首台Φ 600mm大口径波长调谐数字干涉仪,技术指标达到国际同类产品水平。获得了波长调谐相移分析技术、干涉测试技术等多项专利。在此技术基础上,公司已经形成了两大系列八个型号的系列化干涉测试仪器产品,占领国内产品市场的80%以上,并远销东南亚、俄罗斯等地。
  • 欧奇奥(Occhio)粒度和形貌表征技术培训研讨会即将举行
    尊敬的客户,您好! 非常荣幸能够邀请您参加北京市理化分析测试中心与美国康塔仪器公司共同承办的“多孔材料的粒度和形貌表征技术进展研讨会”。北京市理化分析测试中心成立于1979年,隶属于北京市科学技术研究院,主要开展食品、环境、材料、生物医药等方面的公益服务和研究工作,是北京地区具有综合理化分析方法研究与检测实力的公益型科研机构。美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在五十年来的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪;至2005年,研制出最新一代、也是目前唯一一台可以进行静态动态化学吸附和物理吸附、具有双站微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb系列。美国康塔不仅专注于多孔材料表征仪器的研发和制造,同时注重与相关领域合作。2012年,美国康塔仪器公司正式介绍欧奇奥(Occhio)系列粒度粒形分析仪进入中国,为广大客户提供材料颗粒特性表征最现代化全方位解决之道。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术和研究成果,帮助大家正确进行参数设置和结果分析,北京市理化分析测试中心与美国康塔仪器公司将于2014年5月14日至15日共同举办“欧奇奥(Occhio)粒度和形貌表征技术培训研讨会”,力争每个用户都能熟练掌握粒度形貌分析的最前沿技术。 日 期:2014 年5 月14日~15日时 间:9:00 ~ 16:00地 点:北京市理化分析测试中心(北京市西三环北路27号,中国青年政治学院右侧)主讲人:美国康塔仪器公司首席代表杨正红先生 (理论部分) 美国康塔仪器公司技术支持经理王战先生(实验部分)粒度粒形培训目录:l 粒度测量技术发展的历史脉络l ? 粒度测量知识基础l ? 不同粒度测量方法的特点和局限l ? 你所测量的粒度准确吗?l ? 粒径和粒形参数及其在催化剂中的应用l ? 如何看懂粒度分析报告?l ? 影响图像法粒度粒形分析仪准确测量的因素l ? 如何选择图像法粒度粒形分析仪——动态和静态图像粒度分析仪用于成型催化剂l ? FC200粒度粒形分析仪的操作,参数设置和数据采集l “骄子”颗粒图像分析软件的应用,及样品分析实例会务联系人:l 美国康塔仪器公司北京代表处联系人:范丽伟联系方式:010-64401522 13810060894 fanliwei@quantachrome-china.coml 北京理化分析测试中心 联系人:高原 联系方式:010-88417670 robin_gy@126.com 备注:乘车路线:300内、300外、323,323快、362、374、408、425、704、730内、730外、811、817、817支、830外、831、836、849、特5、特8外、特8内、944、944支、967、968、运通103、运通108、运通201到万寿寺站下车即到。
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 『爆裂推荐』便携式原子力显微镜(AFM)全新上线!AFM纳米形貌表征从未如此简单!
    近期,QuantumDesign中国引进了加拿大ICSPI公司设计和生产的便携式nGauge原子力显微镜(AFM),该设备基于其有的芯片式自感应探针技术,摆脱了传统AFM对激光的依赖,带给了传统AFM革命性的变化! nGauge便携式芯片原子力显微镜(AFM)具有小巧灵活、方便携带,操作简单,扫描速度快,可扫描大尺寸样品,无需维护、无需减震、超稳定等优点,适合各类纳米表征应用场景,从科学研究、高等教育到工业用户的样品3D表面形貌快速成像分析等,革命性的创新技术大的降低了传统AFM的复杂操作,也大的拓宽了传统AFM的应用范围!图1. nGauge便携式芯片原子力显微镜(AFM)实物图。左图为使用状态,右图为收纳状态。nGauge便携式原子力显微镜(AFM)特点:更小巧,更便携拥有的AFM微纳机电芯片,使得nGauge原子力显微镜(AFM)系统仅有公文包大小,可随身携带。 更简单,更易用只需点击鼠标三次即可获得样品表面纳米形貌信息,无需配置减震平台。 更高性价比扫描速度快,可扫描大尺寸样品。一个针可以进行上千次扫描,无需繁琐的更换针操作和其他后期维护工作。 部分应用案例:材料 - 钢铁抛光样品表面检测光学显微镜图像nGauge AFM三维成像生物 - 皮肤样本光学显微镜图像nGauge AFM三维成像器件 - 微纳光学器件检测SEM图像nGauge AFM三维成像光电子器件检测SEM图像nGauge AFM三维成像部分文章列表:[1]. Zhao, P., et al., Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. Science of The Total Environment, 2021. 775: p. 145846.[2]. Guo, P., et al., Vanadium dioxide phase change thin films produced by thermal oxidation of metallic vanadium. Thin Solid Films, 2020. 707: p. 138117.[3]. Connolly, L.G., et al., A tip-based metrology framework for real-time process feedback of roll-to-roll fabricated nanopatterned structures. Precision Engineering, 2019. 57: p. 137-148.[4]. O' Neill, C., et al., Effect of tooth brushing on gloss retention and surface roughness of five bulk‐fill resin composites. Journal of Esthetic and Restorative Dentistry, 2018. 30(1): p. 59-69. 部分已有用户:样机体验:为了更好的服务客户,Quantum Design中国引进nGauge便携式芯片原子力显微镜样机,为大家提供样机体验机会,还在等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作!
  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“复合/纳米材料的形貌及粒度表征”
    pimg style="WIDTH: 600px HEIGHT: 75px" title="sj0213xuan01_副本.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201511/insimg/8c21f2e9-490e-4a10-b5be-359d731bbccf.jpg" width="600" height="75"//ppstrongspan style="COLOR: rgb(0,0,0)"“复合/纳米材料的形貌及粒度表征”网络主题研讨会/span/strong/ppbr/strongspan style="COLOR: rgb(0,0,0)"会议时间:2015年12月9日 14:00-17:00/span/strong/ppbr/报告日程:/ppbr/span style="COLOR: rgb(112,48,160)"strong报告一:纳米材料的形貌和粒度分析方法及应用/strong/span/ppbr/报告人:朱永法/ppbr/清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。/ppbr/报告概要:/ppbr/主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。/ppbr/span style="COLOR: rgb(112,48,160)"strong报告二:基于PeakForce Tapping模式的纳米材料表征/strong/span/ppbr/报告人: 孙昊/ppbr/布鲁克中国北方区客户服务主管/ppbr/报告提纲:/ppbr/PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。/ppbr/span style="COLOR: rgb(112,48,160)"strong报告三:纳米材料的粒度表征/strong/span/ppbr/报告人:方瑛/ppbr/HORIBA 应用工程师/ppbr/报告概要:/ppbr/颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。/ppbr/span style="COLOR: rgb(112,48,160)"strong报告四:尺度表征用纳米标准样品/strong/span/ppbr/报告人:刘忍肖/ppbr/博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。/ppbr/报告提纲:/ppbr/纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。/ppbr/报名条件:仪器信息网个人用户,自助报名当天参会。br/br/span style="COLOR: rgb(255,0,0)"strong报名方式:扫描下方二维码或点击链接。/strong/spanbr/br/img title="12-9纳米材料研讨会.png" src="http://img1.17img.cn/17img/images/201511/insimg/3c15c368-57fd-486a-a4ab-b1df6999103e.jpg"/br/br/仪器信息网“复合/纳米材料的形貌及粒度表征”网络主题研讨会/ppbr/a title="“纳米材料的形貌及粒度表征应用技术”网络主题研讨会" href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target="_blank"http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749/a/p
  • 仪思奇科技“锂电及多孔材料的粒度和形貌表征技术研讨会”在长沙成功举行
    2019 年6 月11-12日,由仪思奇(北京)科技发展公司举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”分别在中南大学和长沙矿冶研究院成功召开。中南大学是Occhio粒度粒形分析仪的老用户,在6月11日举办的培训分为理论和实践两个部分,由杨正红总经理详细介绍了Occhio粒度粒形分析仪的理论知识和实践操作,为即将进入研究课题的新一届研究生扫清了入门障碍。学院多位老师和20多名研究生参加了此次培训交流,并对Occhio粒度粒形分析仪做出了高度评价。Occhio粒度粒型仪是全新一代的粒度及颗粒形貌表征仪器,集合了激光粒度仪,库尔特计数器和台式电镜的全部功能,并有效的弥补了传统激光粒度仪的不足。 6月12日,在长沙矿冶研究院,来自测试中心、装备所和材料所的多位领导专家,以及研究生参加了此次会议。会议分别针对图像法粒度仪、图像法Zeta电位仪在矿物加工中的应用特点,特别是对令人头痛的气泡测定做了介绍。针对锂离子电池正负极材料的质量控制和检验,介绍了自主研发的比表面和孔径分析仪的突出特点,以及银浆或原浓浆料的物性和电性测定,粒子表面特性分析等,并对石墨的球形度分析进行了深入探讨。大家对接触到如此多的先进技术和解决方案反响热烈,研讨会持续到晚上7点才结束,与会者仍意犹未尽。仪思奇(北京)科技发展有限公司是一家高科技仪器公司,由原美国康塔仪器公司中国区经理杨正红先生领衔组建而成。仪思奇科技力主打造成为“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。仪思奇科技是欧洲Occhio粒度粒形分析仪、CAD视频追踪Zeta电位分析仪和Cordouan时间分辨动态光散射分析仪中国卓越技术服务中心,也是美国DT系列超声法多功能粒度和zeta电位分析仪和Xigo系列胶体比表面分析仪的中国总代理。
  • OPTON微观世界 | 第42期 制样方法对截面样品形貌的影响
    背景介绍硅橡胶是由硅氧键连接构成的高分子聚合物,硅氧键具有很强的键能,热稳定性,化学稳定性好,具有较强的耐老化性能;压缩率大,表面张力小,憎水防潮性好,比热容和导热系数小,不溶于水。填料的含量对聚合物复合材料的性能有很大的影响,还会影响混炼时的加工性能。加入过多的填料,会使混炼变得困难,还会直接影响到聚合物复合材料的力学性能,填料的含量控制在一定范围内,随着填料含量的增加,聚合物复合材料的性能是逐渐增加的,超过这个阈值,聚合物复合材料的性能则不会增加。填料在聚合物中分散越好,越容易形成网络,对聚合物复合材料的性能越佳。而填料的尺寸对其分散性有非常重要的影响:粒径越小,粒子之间越容易团聚,在聚合物中的分散更加困难,会使聚合物的力学性能急速下降;粒径过大,容易在聚合物中形成应力集中点,使其力学性能下降,因此,也不宜添加过多。所以如何控制填料的粒径和含量,需要通过SEM的实验结果来确定。本文采用了两种制样方法,使用蔡司Sigma300在低电压下不喷金直接观测硅橡胶截面形貌,对比观测氧化铝填料在硅橡胶中的分布情况。制样方法如下所示:(1)刀片切割:采用锋利的刀片切割出较薄的截面;(2)液氮淬断:剪取小块样品放入液氮中冷冻,由于橡胶韧性较好,则需冷冻较长时间。如图1所示图1不同制样方法:刀片切割(A);液氮脆断(B)不同制样方法对结果的影响:图2不同制样方法硅橡胶的截面形貌像A1,A2:刀片切割;B1,B2:液氮淬断实验结果表明:刀片切割后的样品,图中的聚合物基体有一定粘连,对判断 Al2O3填料在聚合物中的分散有一定的影响;但在液氮中淬断的样品,聚合物基体无粘连,很容易判断Al2O3填料在聚合物基体中的分散情况,如图2所示。如果聚合物薄膜较薄,直接用剪刀剪断或者刀片切割,样品的截面则会被表层覆盖,更难判断填料在基体中的分散。
  • 专题约稿|锂电材料的物性检测——比表面,孔径分布,真密度
    p arial="" white-space:="" text-align:="" style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "span style="margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "专题约稿|/strong/i/spanstrong style="margin: 0px padding: 0px "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-size: 18px color: red "span style="margin: 0px padding: 0px "span锂电材料的物性检测——比表面,孔径分布,真密度/span/span/span/i/strong/pp arial="" white-space:="" text-align:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "——“锂电检测技术系列——形貌分析技术”专题征文/span/i/pp arial="" white-space:="" text-align:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(作者:span贝士德/span)/span/i/pp  随着新能源行业的迅猛发展,全球锂离子电池产量也取得了突飞猛进的增长。性能优异的锂电池现在也是备受市场的青睐,以松下,LG为代表的日韩企业,以CATL,比亚迪为代表的中国企业占据着锂电行业的半壁江山。如何能够生产出安全可靠,能量密度高,循环性能,倍率性能好的锂电池呢?这不仅仅与电池的制造工艺水平相关,更与所选择电池材料物理化学性质相关,粒径分布,比表面积,孔隙率,孔径分布,真密度等参数都对锂电池的电化学性能有着极其重要的影响。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/8d1186ec-b45e-4b49-beeb-cf9049f7699c.jpg" title="1.jpg" alt="1.jpg"//pp  目前贝士德生产的3H-2000系列全自动快速比表面积测试仪,比表面及孔径分析仪,真密度及孔隙率分析仪,隔膜孔径分析仪等设备在锂电行业中都具有广泛的应用,以电池正负极材料为例,比表面积的检测贯穿整个行业当中,对材料生产企业来说,比表面积这项指标是生产品控中极其重要的一项,对电池生产厂家来说,他们需要比表面仪做为来料检测,判断该原料是否符合他们的质量要求,由此可见比表面这个参数对锂电池生产的重要性。不同用途也决定了仪器选型不同,/pp  对材料生产企业来说,他们对比表面仪的要求是快速,稳定。他们需要在最短的时间内测试出该样品的比表面来判断生产过程是否异常,如果生产条件的改变,生产设备的故障都会导致样品的比表面发生变化,然而静态法比表面仪测试一组样品一般需要1-2个小时,而贝士德公司最新研发的动态法色谱法仪器20min可以完成4个样品的测试,测试效率远超国内外其他品牌的比表面仪,同时针对三元,钴酸锂,锰酸锂等低比表面积样品,该设备具有气体纯化,检测器恒温,风热助脱等6项专利技术,保证了仪器测试的高准确性和稳定性。目前国内电池正负极材料生产商出货量排名前十的企业,有60%以上使用的是贝士德公司的比表面仪,如:杉杉,贝特瑞,北大先行,容百锂电,巴莫,中科星城等。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/93c6f506-f99a-4753-a7ee-5e1f6004f850.jpg" title="2.jpg" alt="2.jpg"//pp  对电池生产厂家来说,比表面仪主要用来做来料检测,另外一个用途是研发使用,对测试效率要求没有那么高,因此动态法和静态法都能够满足企业的要求,静态法比表面仪,同时兼具孔径测试功能,更能满足研发的需求。静态法比表面仪,对设备的真空度和气密性要求更高,贝士德公司生产的静态法比表面仪,气路系统完全模块化,气密性好,气路模块出厂前都会经过英福康氦质谱检漏仪进行检漏,为仪器的高真空,低漏率提供了保证。同时该仪器采用电磁阀+气控阀控制系统,保证了压力测试的准确性,贝士德静态法比表面仪还具有独立的螺旋P0,防污染安全装置等7项专利技术。确保了测试数据的准确性。通过与国内外8家比表面仪厂家的测试数据对比,日本松下最终也选择了贝士德公司生产的比表面仪,国内的一些知名企业如比亚迪,力神,中航锂电,比克,创明等也一直都与贝士德公司保持着长期的合作关系。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/7e1125d2-d274-41c1-8798-17cc1d59621b.jpg" title="3.jpg" alt="3.jpg"//pp  贝士德公司自2006年开始就一直开始深耕比表面的测试技术,尤其是在新能源电池材料方面,累计获得了几十项技术专利,锂电池行业一直以来都是贝士德公司的优势行业,用户量远超国内外其他比表面仪生产厂家,不仅如此,贝士德公司自主开发的真密度仪和隔膜孔径测试仪也是锂电行业具有广泛的应用,真密度仪以其超高的测试效率和稳定性,获得了贝特瑞,星城石墨等公司的认可,这些企业都是以前采购过进口设备,经过反复的测试对比,最终选择与贝士德公司合作。隔膜孔径测试仪,更是弥补了国内锂电隔膜孔径测试厂家的空白,贝士德公司也是目前国内唯一一家能够精确测量隔膜孔径的厂家,该设备采用气液驱排法,可以准确测量隔膜通孔的孔径大小和分布,隔膜的孔径大小和分布对隔膜的安全性和电化学性能也有着相当重要的作用,因此该设备也获得了比亚迪,湖南中锂等企业的认可。相对于前些年,国内隔膜厂家大多数比较关注的是隔膜透气率,孔隙率等基本指标,但是现在已经有越来越多的隔膜生产厂家意识到隔膜的孔径分布和孔径大小是影响着隔膜透气性和孔隙率的重要因素,因此在未来,随着高端锂电隔膜的发展,该设备会在隔膜行业继续扩大其应用。/pp  随着科学技术水平的不断提高,锂电池的安全问题被解决只是时间问题,因此高能量密度的锂电池也将会是各电池生产商角逐的主战场。高镍三元材料,硅碳负极,陶瓷涂覆隔膜都会在未来赢得更多的市场份额。贝士德公司将一如既往的研究相关材料的高效,准确的测试方法,为锂电行业的发展贡献自己的一份力量。/pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "strong style="margin: 0px padding: 0px "  /strongstrong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr style="margin: 0px padding: 0px "//pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 255, 255) text-decoration-line: none background-color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "【征集申报链接】/span/a /ptable border="0" cellspacing="0" cellpadding="0" align="center" style="margin: 0px padding: 0px font-family: Arial, tahoma font-size: 12px color: rgb(68, 68, 68) white-space: normal "tbody style="margin: 0px padding: 0px "tr class="firstRow" style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "系列序号/span/strong/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "专题上线时间/span/strong/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "1/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "电性能检测技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2019/spanspan style="margin: 0px padding: 0px font-family: 宋体 "年/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "1/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月/spanspan style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "【/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "a href="https://www.instrument.com.cn/zt/lidian1" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "span style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "span style="margin: 0px padding: 0px "链接】/span/span/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "成分分析技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2019/spanspan style="margin: 0px padding: 0px font-family: 宋体 "年/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "3/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月/spanspan style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "【/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "a href="https://www.instrument.com.cn/zt/lidian2" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "span style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "span style="margin: 0px padding: 0px "链接】/span/span/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "3/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "形貌分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2019/spanspan style="margin: 0px padding: 0px font-family: 宋体 "年/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月/spanspan style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "【/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "a href="https://www.instrument.com.cn/zt/lidian3" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "span style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "span style="margin: 0px padding: 0px "链接】/span/span/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "4/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "晶体结构分析技术/span/p/tdtd rowspan="3" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "br//td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——X/spanspan style="margin: 0px padding: 0px font-family: 宋体 "射线光电子能谱分析技术/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "6/span/p/tdtd width="359" style="margin: 0px word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "安全性和可靠性分析仪器及设备/span/pdivspan style="margin: 0px padding: 0px font-family: 宋体 "br//span/div/td/tr/tbody/tablepbr//p
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 重庆绿色智能技术研究院王化斌研究员团队,上海大学李江教授团队:在纳米级分辨太赫兹形貌重构显微技术方面取得进展
    近日,中国科学院重庆绿色智能技术研究院研究员王化斌团队和上海大学材料生物学研究所教授李江团队等合作,报道了一种同时具有表面和亚表面探测能力的纳米级分辨太赫兹形貌重构显微技术。蛋白分子膜(蛋白膜)在生物传感和生物材料领域应用广泛。从纳米尺度精确检测蛋白分子的成膜过程,对控制蛋白膜的品质、理解其形成机制和评价其功能表现具有重要意义。然而,目前尚缺少一种能够精确表征蛋白分子在成膜过程中所有形态结构的技术手段,例如,原子力显微镜虽然具有优异的表面成像功能,但是它难以提供样品的亚表面信息,无法揭示蛋白分子层的内部结构信息。研究团队发展了多介质层有限偶极子近场理论模型,建立了基于样品太赫兹近场光学显微图像重构样品三维形貌的方法,实现了单个蛋白分子、蛋白网状结构、蛋白单分子层和蛋白复合层的精确检测。太赫兹形貌重构显微技术具有无损、无标记的特点,以及表面和亚表面检测能力;其侧向分辨率与原子力显微镜相当,垂直分辨率达0.5 nm。该技术为研究生物分子、功能材料和半导体器件等样品提供了一种全新的技术途径。相关研究成果以Near-Field Terahertz Morphological Reconstruction Nanoscopy for Subsurface Imaging of Protein Layers为题,发表在ACS Nano上。研究工作得到国家重点研发计划、国家自然科学基金、重庆市自然科学基金等的支持。
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 汇集分析方案,聚焦材料科学:(二)材料表面分析
    材料是人类赖以生存和发展的物质基础,各种材料的运用很大程度上反映了人类社会的发展水平,而材料科学也日益成为人类现代科学技术体系的重要支柱之一。 材料表面分析是对固体表面或界面上只有几个原子层厚的薄层进行组分、结构和能态等分析的材料物理试验。也是一种利用分析手段,揭示材料及其制品的表面形貌、成分、结构或状态的技术。为此,岛津针对性地提供了全面的表征解决方案,助力材料科学研究。 材料表面分析扫描探针显微镜SPM / X射线光电子能谱仪 / 电子探针显微分析仪EPMA 原子力显微镜 SPM-9700HT SPM-9700HT在基本观察功能的基础上融入了更强的测量功能,具备卓越的信号处理能力,可得到更高分辨率、更高质量的观察图像。SPM-9700HT 应用:金属蒸镀膜的表面粗糙度分析以1 Hz和5 Hz的扫描速度对金属蒸镀膜的表面形貌进行观察,画质及表面粗糙度的分析结果相同。 应用:光栅沟槽形状检测以1Hz和5Hz的扫描速度对光栅的表面形貌进行观察,经过断面形状分析,沟槽形状检测结果均相同。可控环境舱原子力显微镜 WET-SPM WET-SPM为原子力显微镜实验提供各种环境,如真空、各种气体(氮、氧等)、可控湿度、温度、超高温,超低温、气体吹扫等。实现了原位扫描,可追踪在温度、湿度、压力、光照、气氛浓度等发生变化时的样品变化。 WET-SPM 应用:树脂冷却观察室温下树脂的粘弹性图像中,可以观察到两相分离。冷却至-30℃,粘弹性的差异基本消失。 应用:聚合物膜的加热观察聚合物膜在不同加热温度下的形貌变化,在相位图上可清晰观察到样品表面因加热而产生的物理特性变化。调频型高分辨原子力显微镜 SPM-8100FM 岛津高分辨率原子力显微镜SPM-8100FM使用调频模式,极大提高了信号的灵敏度,即使在大气环境甚至液体环境中也能获得与真空环境中同样超高分辨率表面观察图像。无论是表面光洁的晶体样品还是柔软的生物样品,都实现了分子/原子级的表征。SPM-8100FM首次观察到固体和液体临界面(固液界面)的水化、溶剂化现象的图像,因此实现了对固液界面结构的测量分析。 SPM-8100FM 应用:液体中原子级分辨率观察图为在饱和溶液中观察NaCl表面的原子排列。以往的AFM(调幅模式)图像湮没在噪声中。通过调频模式则可以清晰地观察到原子的排列,实现真正的原子级分辨率。 应用:大气中Pt催化粒子的KPFM观察通过KPFM进行表面电势的测定,TiO2基板上的Pt催化粒子可被清晰识别。同时可以观察到数纳米大小的Pt粒子和基板间的电荷交换。右图中,红圈区域是正电势,蓝框区域是负电势。对于KPFM观察,调频模式也大幅提高了分辨率。 X射线光电子能谱仪AXIS SUPRA+ X射线光电子能谱仪(XPS)是一种被广泛使用的表面分析技术,主要用于样品的组成和化学状态分析,可以准确地确定元素的化学状态,应用于各种低维新材料、纳米材料和表面科学的研究中。AXIS SUPRA+是岛津/Kratos最新研发出的一款高端X射线光电子能谱仪,具备高能量分辨、高灵敏度、高空间分辨的特点。 AXIS SUPRA+ 化学状态和含量分析 深度剖析 化学状态成像分析电子探针显微分析仪 EPMA 电子探针显微分析仪(Electron Probe Micro-Analyzer,EPMA)使用单一能量的高能电子束照射固体材料,入射电子与材料中的原子发生碰撞,将内壳层的电子激发脱离原子,在相应的壳层上留下空穴,在外壳层电子向内壳层空穴跃迁的过程中,发出具有特征波长的X射线。EPMA使用由分光晶体和检测器组成的波谱仪检测这些特征X射线,用于材料成分的定性、定量分析。 EPMA的波谱仪的检测极限一般为0.005%左右,检测深度为微米量级,其成分像的二维空间分辨亦为微米量级,定量分析的精度可以达到传统的化学分析方法水平。 配备了多道波谱仪的EPMA是材料学研究中微区元素定性、定量分析的不二之选,属于科研工作必不可少的分析仪器。 EPMA-1720 EPMA-8050G 应用:超轻元素EPMA分析-渗碳均匀性的图象分析
  • 轻松实现粗糙表面样品拉曼成像 ——EasyNav拉曼成像技术包
    HORIBA新推出的拉曼成像技术包——EasyNavTM,融合了NavMapTM、NavSharpTM 和 ViewSharpTM三项革命性应用设计,能够让您便捷导航、实时聚焦、自动定位,轻松实现粗糙表面样品拉曼成像。1NavMapTM快捷导航、定位样品作为一种新的视频功能,NavMapTM可同时显示全局样本和局部放大区域的显微图像,这意味着您可以直接在全局图像上移动,并在局部放大图上鉴别出感兴趣的样品区域。便捷实时导航▼NavMapTM视图2NavSharpTM实时聚焦,获取清晰导航图像在您导航定位样品的同时,NavSharpTM可实时聚焦任意形貌样品,使样品始终处于佳聚焦状态,进而获取清晰样品表面图像。佳聚焦状态,增强用户体验▼ 使用/不使用NavSharpTM的区别3ViewSharpTM构建3D表面形貌图获取焦平面拉曼成像图在粗糙表面样品拉曼成像过程中,ViewSharpTM 可以获取样品独特的3D形貌图,确保样品实时处于佳聚焦状态,反映样品处于焦平面的显微图像。由于不依赖拉曼信号进行实时聚焦,拉曼成像速度要远远快于从前。使用/不使用ViewSharpTM的区别NavMapTM、NavSharpTM及ViewSharpTM技术各有优势,不仅可以单独使用,也可以综合起来,满足用户的不同测试需求,EasyNavTM拉曼成像技术包的功能已经在多种样品上得到实验和验证。晶红石样品的3D表面形貌图晶红石样品的3D拉曼成像图全新 EasyNavpTM 能够兼容 HORIBA 的 LabRAM HR Evolution 及 XploRA 系列拉曼光谱仪,功能更强大,使用更便捷。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 纳米材料形貌可人为控制
    自上世纪30年代起,异质结构的半导体器件就在人们的生活中发挥着越来越重要的作用。在人们的现代生活中,以半导体异质结构为基础的发光二极管、场效应晶体管、太阳能电池等都得到了广泛的应用。因此,发展纳米材料的合成技术,制备具有纳米尺寸的“半导体—半导体异质结构”材料不仅是合成化学所面临的挑战,同时也是发展新型功能纳米材料的一个重要途径。  中国科学院化学研究所高明远课题组在具有特殊结构和形貌的纳米材料的合成方面开展了一系列研究工作,取得了突破性进展。该小组采用高温热分解和分步注射的方法,成功地制备了纳米“火柴”、不对称形貌的纳米“泪滴”等异质结纳米晶体以及In2S3纳米“铅笔”。  最近,该课题组在系统研究工作基础上,利用粒径不同的Cu1.94S的纳米颗粒作为催化剂,并在反应体系中加入硫醇作为表面配体。他们证明了导体 Cu1.94S纳米颗粒可以催化硫化铟纳米晶体的生长,形成具有“半导体—半导体异质结构”的纳米材料,而类似的催化作用之前只在金属类纳米颗粒中被观察发现。研究还表明在In2S3纳米晶体的形成过程中,由铜、铟前体化合物与反应介质十二硫醇的相互作用所导致的凝胶化现象可直接影响纳米材料的晶体生长动力学。据此,通过对凝胶化过程的控制,他们成功地实现了具有异质结构的火柴形及泪滴形的Cu2S-In2S3纳米材料以及铅笔形In2S3纳米材料的制备。  中国科学院汪明博士说,论文的重要意义在于揭示了异质结构纳米晶的形成的过程及其机理,表面配体与金属离子的配位作用所导致的凝胶化对纳米材料的生长,及得到的纳米材料的结构与形貌进行控制具有重要的普适意义。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 手性印迹表面增强拉曼散射检测技术获进展
    a) SERS-CIP检测策略示意图;b)含SERS标记物的SERS-CIP玻璃毛细管照片,识别区域用红色圆圈表示;c)在SERS-CIP上实现手性氨基酸识别检测原理 课题组供图近日,中国科学院烟台海岸带研究所研究员陈令新团队在手性印迹表面增强拉曼散射(SERS)检测技术领域取得重要进展,研究成果“基于手性分子印迹的表面增强拉曼散射检测策略用于绝对对映体区分”发表在最新一期的《自然—通讯》。手性是自然界中普遍存在的现象。手性分子是与其镜像不能重合的分子,对映异构体间很多理化性质相同,但生理活性往往有很大的差别,因而,对单个对映体的选择性识别与检测在生命科学、环境监测和食品安全等领域至关重要。然而,单个对映体的识别存在很多挑战。首先,理想的手性区分策略需要外消旋体中的绝对对映体识别方法和高灵敏度的传感器件,并且保证对多种手性分子广泛适用,如何抑制对映体在手性区分传感器上的非特异性结合是关键。其次,对映体间具有相同的分子大小和官能团,仅结构呈现镜像对称,因此,不能根据一般传感器上的主-客体相互作用结果一概而论。此外,大多数手性识别策略高度依赖手性分子的细微结构特征,无法适用于复杂多样的手性化合物。海岸带是关乎人类社会发展的地球关键带。人类活动通过多种途径影响海岸带生态,使其被开发利用的同时,也造成了生态脆弱、灾害较多等问题,发展海洋生态固碳、保护生态环境是海岸带可持续发展的关键之一。氨基酸是海洋有机碳和有机氮的重要组成部分,氨基酸的手性转化是海洋微生物固碳的重要过程,了解手性氨基酸的结构和功能对于海洋固碳机制研究非常重要。然而,海岸带区域环境中的手性氨基酸含量很低、赋存介质复杂,因此亟需发展能够进行分离富集、降低和消除基质干扰的高灵敏手性分子检测技术。基于上述挑战,陈令新团队创新性发展了基于手性分子印迹的表面增强拉曼散射(SERS-CIP)检测策略,成功实现了对海水中精氨酸、组氨酸、天冬氨酸等8种氨基酸手性对映体的高选择性和高灵敏分析检测。手性分子印迹聚合物(CIP)具有在形状、大小和官能团三方面与目标氨基酸分子互补的空腔,能够高特异性结合目标手性分子,在手性氨基酸识别方面表现出了独特的优势。由于聚合物框架和手性分子的官能团之间的相互作用,不可避免的非特异性结合参与手性识别问题一直是挑战。研究发现,可以通过发展先进的CIP识别机制并通过抑制非特异性结合提高CIP对映体识别特异性。在利用SERS对CIP非特异性结合来源进行详细研究后,团队开发了一种检测识别机制来探索CIP的空间状态,并借此区分特异性结合和非特异性结合的氨基酸对映体分子。通过对映选择性测试、外消旋混合物分析以及在复杂实际样品中的手性识别表明,这种机制能够满足理想的手性识别策略的要求,并具有良好的实用性。该研究成果得到了国家自然科学基金和中科院国际博士后项目等项目的支持。文章的第一作者为助理研究员Maryam Arabi,文章通讯作者为研究员王运庆和陈令新。
  • 定性定量形貌并进,岛津方案让微塑料无处遁形
    春节临近,聚餐活动增多,一盘盘海鲜上来,顿时把大家的味蕾调动起来了。一提到海鲜,大家都会想到什么?螃蟹、鲜虾、牡蛎......每一个都是吃货的最爱,但是你知道吗,在你大快朵颐之时,很有可能将海洋中的“PM2.5”——微塑料吃进肚中。微塑料是指直径小于5毫米的塑料碎片。我们食用海产品、饮用瓶装水等,可能是人体内微塑料颗粒的主要来源。近年来,许多研究者在牡蛎、贻贝和鱼类等食物中,饮用水、海盐,甚至蜂蜜中都发现了微塑料。人类摄入的微塑料尽管大部分随粪便排出,但仍会有少量的存留在体内,长期的蓄积,就可能造成危害。岛津公司作为全球著名的仪器生产厂商,为了实现“为了人类和地球的健康”之愿望,一直致力于开发领先时代、满足社会需求的科学技术,为社会开发生产具有高附加值的测试设备。在微塑料的定性定量测试方面,岛津可提供定性、定量和形貌分析的全面解决方案。1.岛津红外显微镜AIM-9000图1.1 岛津红外显微镜AIM-9000傅里叶变换?红外光谱分析法(FTIR)是目前最常用的化学组分鉴定方法。红外显微镜AIM-9000可实现对微塑料的观察、定义测量位置、测量、鉴别结果,全部操作都能自动执行,并提供高灵敏度结果。应用案例大视野相机使得微塑料及异物更容易被确认,显著缩短决定测量位置的时间。图1.2 微塑料在红外显微镜下的图片(从左到右分别为:大视野相机、透射观察状态及透射测试状态下)测试样品光谱检索结果为PET塑料,见下图:图1.3 微塑料样品红外检索结果(上面为样品红外光谱,下面为PET的标准红外谱图)2.岛津热分析-红外联用系统(TG-FTIR)热分析-红外联用仪,可以将TGA过程产生的气体通过可加热管线引入到红外光谱仪中,分析聚合物等材料热裂解过程产生的气体成分,从而得到聚合物的组成,更好的对热重结果进行分析。岛津热分析使用DTG-60,为热重-差热同步分析仪,一次分析同时得到质量及热量的变化信号,和红外联用,实现材料的定性及定量分析。图2.1 热分析-红外联用系统图应用案例:EVA(乙烯-醋酸乙烯酯共聚物)的分析图2.2 EVA 14%(左)及EVA 40%(右)热重-差热谱图250~400℃(7~16min):失重部分主要是乙酸400~550℃(直至25min):剩余聚合物的热解图2.3 EVA 14%(左)和EVA 40%(右)红外吸收强度随时间的变化图注:2925cm-1:C-H 峰;1800cm-1:C=O峰 (羰基)图2.4 EVA 40%在15.0min,18.0min,22.5min三时间点逸出气体的红外光谱图注:2925cm-1:C-H 峰;1800cm-1:C=O峰 (羰基)图2.5 EVA 40% 在15.0min时间点的红外光谱检索结果(乙酸)图2.6 EVA 40% 在22.5min时间点的红外光谱检索结果(石蜡)图2.7 EVA 14%(左)和40%(右)逸出气体的3D红外光谱图3.能量色散型X射线荧光光谱仪岛津EDX-7000/8000/LE Plus 能量色散型X射线荧光分析仪,采用新型硅漂移检测器(SDD),具有高灵敏度、高分辨率的优点,能够进行快速无损定性-定量分析,方便快捷,无须化学前处理。图3.1 EDX-LE Plus 图3.2 EDX-7000/8000应用案例:1、EDX对微塑料的定性分析图3.3 EDX定性分析结果图3.4 EDX定性分析结果(定性判定材质为PVC材质)图3.5 EDX定性分析结果谱图2、定量分析微塑料成分及RoHS有害元素图3.6 EDX 对RoHS有害元素定量分析结果图3.7 EDX 对RoHS有害元素定量分析谱图通过EDX能量色散型X射线荧光光谱仪对微塑料的定性和定量分析,就可初步知道该微塑料可能为PVC材质塑料(也可进一步使用PY-GCMS有机化合物快速筛查系统进行塑胶材质的确认),同时可以确认该微塑料未检出RoHS指令要求的有害元素(ND表示没有检测到)。4.热裂解-气相色谱质谱联用系统(PY-GCMS)热裂解?气相色谱质谱联用技术(PY-GCMS)可以用来鉴定微塑料类型。PY-GCMS是通过不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入GCMS 检测,从而推断高聚物类型的一种方法,同时可鉴定聚合物及添加剂。PY-GCMS可实现对有机化合物的单步瞬间裂解Single-Shot分析, 热解析/瞬间裂解组合Double-Shot分析, 释放气体分析(EGA分析), 切割-释放气体分析(Heart-cut EGA 分析)。图4.1岛津 PY-GCMS应用案例:微塑料定性分析 图4.2 微塑料样品EGA分析色谱图 图4.3 微塑料样品EGA分析温谱图图4.4 微塑料样品1号峰EGA-MS谱库检索结果图4.5 微塑料样品2号峰EGA-MS谱库检索结果表1. 微塑料样品EGA-MS谱库检索结果POPs、全氟类化合物、多环芳烃、农药等有机污染物易富集在微塑料表面,岛津全面的色谱质谱分析手段,亦可提供全面的毒理效应研究方案。5、岛津电子探针EPMA-1720岛津电子探针EPMA-1720可实现微塑料表面的元素及形貌分析研究。图5.1 岛津电子探针EPMA-1720图5.2 微塑料颗粒面分析的背散射图像(成分相)图5.3 EPMA定性分析微塑料1谱图及半定量结果图5.4 EPMA定性分析微塑料2谱图及半定量结果通过电子探针EPMA-1720分析微塑料表面,在检测出K、Na、Ca、Mg、Al的同时,还检测出了Cl、S、Cr和Fe等元素。微塑料污染及其生态效应已成为全球环境科学研究的热点。微塑料随海流漂流无国界,溯源追责非常困难.因此,建立快速高效的微塑料分析监测方法不仅能为我国的微塑料污染研究提供技术支持。希望我们的全自动红外显微镜系统(AIM-9000)、热红联用仪器(TG-FTIR)、热裂解-气质联用仪器(PY-GCMS)、电子探针(EPMA)和能量散射型X射线荧光光谱仪(EDX)等技术,能够为微塑料的高效分析提供高效的研究基础。撰稿人:王利华、叶英、唐国轩 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 【精彩视频回放】聚焦新材料研究 多种表面分析技术各显其能——第三届表面分析技术应用论坛成功召开
    p  表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着我国新材料领域研究的深入,表面分析技术也日益发挥其重要的作用。当前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、二次离子质谱(SIMS)、扫描探针显微镜(SPM)、辉光放电光谱(GDS)、俄歇电子能谱(AES)等。/pp  为了积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术在新材料研究中的进展,5月20日,仪器信息网联手国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会举办“第三届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”网络主题研讨会,七位专家就相关的研究领域分享了高质量的报告。/pp  此次应用研讨会内容立足表面分析技术在新材料研究中的应用,既有某一课题的科研进展综述,也有某一方向的研究成果分享、最新标准解读,以及相关仪器使用介绍等。组织方希望通过此次表面分析技术应用论坛的平台,让与会者深入交流,共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。本次会议由国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清主持。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/85014051-a8d5-4da7-874c-4853820e8013.jpg" title="姚文清.jpg" alt="姚文清.jpg"//pp style="text-align: center "strong国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/80a5fb64-a7ff-4e04-a2d4-f343cc70cb41.jpg" title="报告嘉宾.png" alt="报告嘉宾.png"//pp  清华大学张强教授主要从事能源材料研究,尤其是在金属锂、锂硫电池和电催化方面开展了一系列的工作。本次报告中,他从能源存储与转化的新机遇讲起,针对工作金属锂界面上的SEI(界面层),以及如何获得稳定的SEI,如何诱导金属锂均匀沉积等多个话题给大家介绍了其所开展的研究工作。报告题目:strong《The Working Surface of Li Metal Anode in Safe Batteries》。/strong/pp  计量、标准、合格评定(检测和认证认可)对人类社会进步和工业发展发挥着不可或缺的基础性作用,2006年联合国与国际标准化组织(ISO)正式明确“计量、标准化、合格评定”为国家质量基础(National Quality Infrastructure,简称 NQI)的三大构成要素。石墨烯由于其独特的性能使其成为代表性的新材料而受到各国政府的产业支持。中国计量科学研究院任玲玲研究员在简要回顾计量、标准的基础上,重点介绍针对急需有序规范发展的石墨烯粉体材料开展的NQI技术研究及成果实施。strong报告题目:《石墨烯粉体材料计量、标准及合格评定全链条实施》。/strong/pp  X射线光电子能谱(XPS)是表面分析领域中的一种崭新的分析技术,通过测量固体表面约10个纳米层左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量或半定量及价态分析。XPS作为一种分析各种材料表面的重要工具,目前广泛应用于与材料相关的基础科学和应用科学领域,包括各种催化材料、纳米材料、高分子材料、薄膜材料、新型光电材料、金属以及半导体等表面性能研究。岛津宋玉婷博士介绍了XPS的技术特点及应用案例。a href="https://www.instrument.com.cn/webinar/Video/play/105159/" target="_blank"span style="color: rgb(255, 0, 0) "strong报告视频精彩回放:《X射线光电子能谱最新应用进展》/strong/span/a/pp  以氮化镓和砷化镓为代表的III-V族化合物,都是直接带隙半导体材料,通过掺杂或能带设计可以调控光电等物理特性,在光电领域具有独特优势。表面分析技术常被用于研究半导体材料及器件性能,分析表面形貌、组分、化学态、结构及能带等信息。本次报告,中国科学院半导体研究所赵丽霞研究员介绍了几个利用表面分析技术在研究III-V半导体光电材料和器件的典型工作。strong报告题目:《表面分析技术在III-V族半导体光电材料器件中的应用》/strong。/pp  扫描隧道显微镜是当前表面物理和化学研究的重要实验设备。扫描隧道显微镜的基本原理是基于量子力学的隧穿效应,隧穿电流与隧穿结的高度灵敏性使扫描隧道显微镜具有原子级的空间分辨能力。扫描隧道显微镜的主要功能包括表面形貌成像、表面电子态密度测量、及原子分子操纵。中科院物理研究所陆兴华研究员的报告通过几个典型应用来展示扫描隧道显微镜的这些基本功能,并对扫描隧道显微镜技术的未来发展方向作了简单的介绍。a href="https://www.instrument.com.cn/webinar/Video/play/105162" target="_blank"strongspan style="color: rgb(255, 0, 0) "报告视频精彩回放:《扫描隧道显微镜技术》。/span/strong/a/pp  飞行时间二次离子质谱(TOF-SIMS)能以极高的灵敏度(ppm~ppb)探测到包括H在内的所有元素及其化合物信息,被誉为是一种普适的分析技术。清华大学分析中心李展平博士的报告介绍了TOF-SIMS的基本原理、技术特点,以及它在环境等各种领域的应用。a href="https://www.instrument.com.cn/webinar/Video/play/105160" target="_blank"span style="color: rgb(255, 0, 0) "strong 报告视频精彩回放:《飞行时间二次离子质谱分析技术及其应用》。/strong/span/a/pp  三氧化钼是一种用途广泛的材料,在催化、抗菌等领域内有独特的应用。MoOsub3/sub@SiOsub2/sub是常见三氧化钼的使用形态,几十年来已经用不少方法进行过很多研究。北京化工大学程斌分享了其实验室对MoO3@SiO2的最近研究方法与结果。a href="https://www.instrument.com.cn/webinar/Video/play/105161/" target="_blank"span style="color: rgb(255, 0, 0) "strong报告视频精彩回放:《氧化钼在MoO3@SiO2上分布的研究》/strong/span/a/pp  虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者没机会参与会议直播的网友,可以点击strong报告视频精彩回放/strong进行学习与分享。/p
  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p  strong腐蚀形貌常用表征方法/strong/pp  在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。/pp  strong激光共聚焦扫描显微镜/strong/pp  激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。/pp  该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。/pp  strong试验材料/strong/pp  试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。/pp  strong试验仪器/strong/pp  红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。/pp  strong腐蚀试验/strong/pp  span style="color: rgb(0, 176, 240) "(1)全面腐蚀/span/pp  将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。/pp  依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。/pp  试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N' -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。/pp  span style="color: rgb(0, 176, 240) "(2)沟槽腐蚀/span/pp  将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。/pp  依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。/pp  试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。/pp  试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。/pp  strong结果与讨论/strong/pp  span style="color: rgb(0, 176, 240) "1 全面腐蚀/span/pp  全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title="图1 全面腐蚀试验后试样的宏观照片.jpg" alt="图1 全面腐蚀试验后试样的宏观照片.jpg"/br/br//strongstrong图1 全面腐蚀试验后试样的宏观照片/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title="图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt="图2 全面腐蚀试验后试样的扫描电镜图.jpg" width="378" height="406" border="0" vspace="0" style="width: 378px height: 406px "//strong/pp style="text-align: center "strong图2 全面腐蚀试验后试样的扫描电镜图/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title="图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt="图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width="400" height="271" border="0" vspace="0" style="width: 400px height: 271px "//strong/pp style="text-align: center "strong图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图/strong/pp  span style="color: rgb(0, 176, 240) "2 沟槽腐蚀/span/pp  由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title="式(1).png" alt="式(1).png"//pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title="图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt="图4 沟槽腐蚀试验后试样的宏观照片.jpg"//strong/pp style="text-align: center "strong图4 沟槽腐蚀试验后试样的宏观照片/strong/pp  式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title="图5 沟槽腐蚀试验参数测定.png" alt="图5 沟槽腐蚀试验参数测定.png"//strong/pp style="text-align: center "strong图5 沟槽腐蚀试验参数测定/strongbr//pp  沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title="图6 沟槽腐蚀试验后试样的金相图.jpg" alt="图6 沟槽腐蚀试验后试样的金相图.jpg"//strong/pp style="text-align: center "strong图6 沟槽腐蚀试验后试样的金相图/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title="图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt="图7 沟槽腐蚀试验后试样的LSCM图.jpg"//strong/pp style="text-align: center "strong图7 沟槽腐蚀试验后试样的LSCM图/strong/pp style="text-align: center "strong表1 不同方法得到的沟槽腐蚀敏感系数/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title="表1 不同方法得到的沟槽腐蚀敏感系数.png" alt="表1 不同方法得到的沟槽腐蚀敏感系数.png"//strong/pp  采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。br//pp  strong结论/strong/pp  (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。/pp  (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。/p
  • “复合/纳米材料的形貌及粒度表征”网络主题研讨会成功召开
    p 纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的综合性学科。其最终目的是直接以物质在纳米尺度上表现出来的特性,制造具有特定功能的产品。准确可靠的表征是纳米材料领域的重要基础。/ppbr//pp 12月9日,“复合/纳米材料的形貌及粒度表征”网络主题研讨会成功召开,网络讲堂特邀请清华大学/北京电子能谱中心朱永法教授、中科院纳米标准与检测重点实验室高级工程师刘忍肖老师、 HORIBA(堀场)、弗尔德(莱驰)、布鲁克的资深工程师在线讲解。/ppbr//pp 本次研讨会历时一天,为网友带来5个精彩的专业报告,共吸引235名来自材料检测领域的用户报名参与。本次研讨会的报告视频均已上线,访问a href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong“复合/纳米材料的形貌及粒度表征”网络主题研讨会/strong/span/a或点击下方报告名称即可在线观看。/ppbr//pp报告内容提要如下:/ppbr//pp报告一:a href="http://www.instrument.com.cn/webinar/video/play/102967" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong纳米材料的形貌和粒度分析方法及应用/strong/span/a/ppbr//pp清华大学/北京电子能谱中心朱永法教授主要讲述:纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。/ppbr//pp报告二:a href="http://www.instrument.com.cn/webinar/video/play/102969" target="_self" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong纳米材料的粒度表征/strong/span/a/ppbr//ppHORIBA 方瑛老师主要讲述:颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。/ppbr//pp报告三:a href="http://www.instrument.com.cn/webinar/video/play/102970" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong动态图像法粒度粒型分析技术/strong/span/a/ppbr//pp弗尔德蔡斌老师主要讲述:上世纪90年代科学家提出了动态图像法颗粒检测技术。德国莱驰于1998年生产了全球第一台动态图像法粒度粒型仪。本报告即针对动态图像法的原理、特点和结构进行介绍,提供给大家一个新的颗粒检测的概念。/pp /pp报告四:a href="http://www.instrument.com.cn/webinar/video/play/102968" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong基于PeakForce Tapping模式的纳米材料表征/strong/span/a/pp /pp布鲁克孙昊老师主要讲述:PeakForceTapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForceTapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。本次报告主要介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。/pp /pp报告五:a href="http://www.instrument.com.cn/webinar/video/play/102971" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong尺度表征用纳米标准样品/strong/span/a/pp /pp中科院纳米标准与检测重点实验室高级工程师刘忍肖老师主要介绍纳米标准样品国内外发展概况、尺度表征用纳米标准样品、使用、选择和示例,粒度、台阶高度纳米标准样品等。/pp /pp更多内容,请观看报告视频。仪器信息网注册用户均可免费在线观看。/pp /pp网络讲堂作为科学分析仪器行业的百家讲堂,近期安排其他议题主题研讨会内容如下,根据您的时间尽早报名参与:/ppbr//ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1763" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong2015年12月23日“热分析技术”网络主题研讨会/strong/span/a/ppbr//ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1771" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong2016年01月20日“宝石及贵金属的真假鉴别与检测”网络主题研讨会/strong/span/a/ppbr//pp您在浏览网络讲堂过程中,遇到问题欢迎随时咨询 010-51654077-8123,微信号:378891527/ppbr//ppimg src="http://img1.17img.cn/17img/images/201512/insimg/9d061582-cdb4-445d-8e21-46dddda6efff.jpg" title="0151105140134.jpg" width="600" height="190" border="0" hspace="0" vspace="0" style="width: 600px height: 190px "//ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制