当前位置: 仪器信息网 > 行业主题 > >

石灰石钙定仪

仪器信息网石灰石钙定仪专题为您提供2024年最新石灰石钙定仪价格报价、厂家品牌的相关信息, 包括石灰石钙定仪参数、型号等,不管是国产,还是进口品牌的石灰石钙定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石灰石钙定仪相关的耗材配件、试剂标物,还有石灰石钙定仪相关的最新资讯、资料,以及石灰石钙定仪相关的解决方案。

石灰石钙定仪相关的资讯

  • 赫施曼助力石灰石及白云石中氧化钾和氧化钠含量的测定
    石灰石及白云石的质量指标对冶金工艺的质量有显著影响,如氧化钾、氧化钠对高炉中球团矿的膨胀裂化和焦炭的加速催化作用,因此其含量需要准确测定和控制。根据GB/T 3286.12-2023,测定灰石及白云石中氧化钾和氧化钠含量的方法是火焰原子吸收光谱法。其原理是:试样用盐酸、氢氟酸和高氯酸分解,蒸发至近干,用盐酸溶解盐类,稀释定容。在原子吸收光谱仪上,采用空气-乙炔火焰,分别在波长766.5nm和589.0nm处测量钾、钠的吸光度,采用校准曲线法分别计算钾、钠的质量分数。实验涉及试料的分解、标准曲线的配置:试料的分解:将试料(称取 0.50g试样,精确至 0.0001g)置于250mL聚四氟乙烯烧杯(容量250mL)中,用少量水润湿,用赫施曼瓶口分液器加入10 mL盐酸(1+1)。2 mL高氯酸(ρ=1.67g/mL),5mL氢氟酸(ρ=1.15g/mL),低温加热至冒高氯酸白烟,继续加热蒸发至近干,取下,稍冷。再用瓶口分液器加入5mL盐酸(1+1),20mL水,低温加热至盐类溶解,取下,冷却。移入100mL塑料容量瓶中,用水稀释至刻度,混匀。标准曲线的配置:采用20mL规格的opus电子瓶口分配器,stepper模式,设置2组分液体积,第一组1.00、2.00、4.00、6.00mL,第二组8.00、10.00mL,然后按分液键,将6个体积的钾标准溶液(30μg/mL)和钠标准溶液(30μg/mL)分别加入100mL塑料容量瓶中,另设一个不加的做空白对照;再向每个容量瓶中加入10mL底液(20mg/mL,以Ca计),用瓶口分液器加入5mL盐酸(1+1)用水稀释至刻度,混匀。此校准溶液钾、钠的含量范围为0~3.0μg/mL。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的酸(包括氢氟酸等强酸)、碱、有机试剂等的移取。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 发布东晶全自动石灰活性度检测仪A6-LA105新品
    A6-LA105全自动石灰活性度测定仪1、简价石灰的活性度是指它在熔渣中与其它物质的反应能力。用石灰在熔渣中的熔化速度来表示。通常用石灰与水的反应速度表示。具体也可以说在标准大气压下10分钟内,50克石灰溶于40摄氏度恒温水中所消耗4N HCl水溶液的毫升数就定义为石灰的活性度。目前石灰活性度平均值一般可以超过300 ml/4N-HCl,可以显著缩短炼钢转炉初期渣化时间,降低吨钢石灰消耗,并对前期脱P极为有利。炼钢实践表明,这种石灰可以提高脱磷脱硫效率80%,同时缩短冶炼时间,在3-5min之内可以完全与钢水中酸性物质反应完毕,而一般石灰的方应时间至少要6-10min。此外提高炉龄40%以上,炉料的消耗也降低5-8kg/t钢,以1000万t计算,每年节约1500万左右,生产效益显著(以上数据仅供参考)。石灰活性度一般采用酸碱滴定法测定,应客户的需求,在符合行业标准YB/T 105-2014(替代YB/T105-2005老标准)的前提下对石灰石活性度测定仪的研制和开发该设备目前,国内石灰石活性度还是人工滴定,其存在问题如下:1)检测过程繁琐不便洁。2)检测数据值及精度难以得到保证,同时,容易产生人为偏差。3)不能进行历史数据查询。自动活性度滴定仪则是采用计算机与PLC结合的方式,操作简便,工作稳定,测量结果偏差极小。同时具备人性化的操作界面和数据文件存储、查询等功能。设备还汲取国内外同类产品测定仪的最新技术,基于我们公司顾问专家常年从事化检事业的多年经验研发出的新一代产品,本设备最大的特点:1.体积减小、重量轻;2.电气整体设计简洁而合理,器件布局层次分明,线路简约而清晰,给维护和调试工作带来了许多便利;3.机械运动动作优化,大大降低了故障频率,提高了设备长期正常运行的可靠性;4.自动化程度提高,开放了大量用户使用窗口,在满足用户自动测试的同时也降低了维护人员繁琐的维护工作,大大降低了维护费用。2、技术参数技术参数 人机界面 人机界面是完成用户直接参与控制和了解设备内部详细资源的窗口,通过该人机界面,用户可以对本设备进行丰富的参数配置,功能执行,自动校正等人性化功能,详细请参阅后章节。 基本工作原理 该设备基于上位计算机和PLC的程序设计,计算机作为人机对话的窗口丰富地反映了设备的基本工作状况,可以按照用户的需要对该设备进行基本设置等功能。PLC作为该设备控制的核心器件,主要负责控制设备的升降、搅拌、滴定等。本设备包含自动/手动两种工作方式,用户选择自动方式可以自动按照预编程好的工作模式进行:用户选择手动方式可以手动点动调试各个部件的工作情况。 自动试验程序:烧杯放入拨杯定位架里,按下启动键,烧杯左转30度到热炉上,然后供水2000ML加热。加热到40度水温后,拨杯器右转60度,到搅拌工位,搅拌泵和PH电极下降到设定位,人工加石灰,搅拌,蠕动泵供给盐酸并计量,测PH值。电脑全程记录变化。试验运行10min时完成并搅拌泵自动上升,拨杯器左转30试到原点,取出烧杯。 1、PH值检测器,0-14.00PH,分辨率0.01PH,工业型; 2、计量精度:0.5mL 3、搅拌器速度:300 r/min; 搅拌浆杆:Φ6×-250mm 搅拌叶片:0.5×10×60mm 材质:四氟 4、工作电压AC220V±10% 50HZ±5%; 工作环境5℃≤环境温度≤40℃,湿度≤85%,无强磁场,无剧烈振动。 5、工作台面:500*700mm 6、升降机行程:0-300mm,功率:90w 7、蠕动泵:步进电机0-2000r/s 8、烧杯移位:400w伺服电机 9、烧杯加热:1000w陶瓷电子炉 10、温度控制:红外线测控仪 量程0.5-200度。 11、水位限量:XKC-Y25超声壁外测定3、设备结构及工作原理3.1结构及组成部分3.1.1搅拌电机:搅拌电机出轴速度为300转/分,符合国标要求的270-300转/分。搅拌电机出轴连接着一根搅拌棒,可以深入到下面溶液内进行搅拌,可以充分搅拌溶解在烧杯内的石灰石等物质。3.1.2注酸口:注酸口是使用耐酸碱材料加工而成的,对酸液或碱液具有耐腐蚀能力,滴定的酸液的软管可以插入该注酸口,酸液通过该口流入下面的烧杯内。3.1.3 PH计:PH计是测量下面烧杯内溶液内的电极传感器,通过和仪表连接在一起,可以实时测试溶液内的PH值,该PH计设置有保护罩,在长期不使用的时候,请使用保护罩将其罩住,以保持PH计的湿润。pH/ORP计的使用,很大程度上取决于对电极的维护。首先应经常清洗电极,确保其不受污染,并每隔一段时间对电极进行重新标定,以纠正电极在使用过一段时间后所产生的斜率误差,标定操作请参见后面相关章节。其次,无论在反应过程还是放料后,都应确保电极浸泡在被测溶液中,否则会缩短其寿命;同时还必须保持电缆连接头清洁,不能受潮或进水。活化:如果电极储存在干燥的环境下,则使用前必须用蒸馏水浸泡24小时,使其活化,否则标定和测量都将产生较大误差。清洗:发现电极受到污染影响测量精度时,可用细软的毛刷轻刷电极头部,再用清水清洗。 创新点:自动化程度高,滴定准确,无人为影响的误差东晶全自动石灰活性度检测仪A6-LA105
  • 话说实验室第十六期:趣味化学3
    大家好,欢迎来到葛老师话说实验室。 石灰是人们生活中常见的物质。石灰家族里有名叫生石灰、熟石灰、石灰水、石灰乳、碱石灰等的兄弟姐妹,当然还有他们的妈妈石灰石。   石灰石,是一种出产在深山里的青色的石头。由石灰石构成的山,一般风景都是较为优美的,像是以山水甲天下的桂林就多产石灰石。石灰石的主要化学成分是碳酸钙(CaCO3),是一种十分重要的工业原料。与石灰石成分相同的是她的妹妹,名叫大理石,她长得洁白、晶亮且漂亮。常被用作高级建筑物的装饰材料。   石灰石通过锻烧就变成了生石灰。生石灰的成分是氧化钙(CaO),白色块状物,他的吸水性很强,常用作干燥剂,它与水反应变成熟石灰。   熟石灰的成分是氢氧化钙〔Ca(OH)2〕,白色粉末状,具有强烈的腐蚀性,因此又名苛性钙,主要用作建筑材料,室内墙壁、像是砌砖的料浆就缺她不行。化工方面主要用她制成漂白粉。因为她是生石灰加水消化而成的,因此又名消石灰。  石灰乳是混浊的石灰水,又称氢氧化钙混浊液,它是固体和液体的混合物。常用于粉刷旧墙壁、配制波尔多(与硫酸铜配合)和石硫合剂(于硫磺配合)作为农药来杀虫。 石灰乳澄清(通过静置)后的上层清液是饱和的石灰水,碱性很强,家庭里常用它来做米豆腐。    碱石灰,是氧化钙与氢氧化钠的混合物。 以上就是本期人和《葛老师话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。更多详情欢迎来电咨询:400 820 0117同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、GRABNER、EXAKT、ATAGO、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、SIEMENS、YAMATO等。】
  • 中州技术中心第一分析室通过中国实验室国家认可委员会复评审
    10月20~21日,中国合格评定国家认可委员会现场评审组对中州分公司技术中心分析一室进行了实验室认可复评审,这是分析一室通过国家实验室认可后的第一次复评审。  此次复评审主要是对分公司质量体系、《检测和校准实验室认可准则》要求的要素进行符合性评审,对申请认可的氧化铝及氢氧化铝、铝土矿、石灰石以及氢氧化钠、煤、润滑油的化学及物理检测项目进行考核认定。参数考核方式包括检测产品类别、常规实验、人员比对和仪器比对。评审组认真审核了体系文件和有关记录,查看了实验室及仪器设备维护、使用纪录,对分析一室通过国家实验室认可后的质量体系运行情况进行了充分肯定,一致认为:分析一室质量手册要素齐全 程序文件涉及质量活动和技术活动开展的各个层面,操作性强 操作规程、检测细则等内容覆盖了申请认可的检测范围所涉及的仪器设备和相关方法,科学实用 实验室建立健全了涉及质量记录和技术记录的各种表格,操作务实。整个文件体系全面、系统、协调,管理体系和技术能力均能满足《检测和校准实验室能力认可准则》和《实验室资质认定评审准则》的要求,同意通过现场评审。
  • 一文了解领先的意大利西姆沉淀碳酸钙生产工艺
    p style="text-indent: 2em "span style="font-family: 宋体 line-height: 1.75em text-indent: 28px "沉淀碳酸钙是将石灰石等原料煅烧生成石灰和二氧化碳,再加水消化生成石灰乳,然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,根据用途可进行碳酸钙粒子表面改性处理,最后经脱水、干燥粉碎而制得。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_422477_newsimg_news.png" style="border: 0px margin-left: -3em !important "/br//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "沉淀碳酸钙是重要的无机粉体填料之一,用途十分广泛。据了解目前中国已经发展成为世界沉淀碳酸钙第一大生产与消费国,但是就生产而言,与国外同行业相比差距仍然较大。如企业规模普遍较小,设备陈旧、水平低、产品品种单一、质量差等问题都急需解决。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "意大利西姆作为领先的沉淀碳酸钙生产工艺设计制造工程公司,其提供的技术、工艺和设备具有一定的先进性,对国内企业的生产具有一定的借鉴作用。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong意大利西姆介绍/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "1967年,意大利西姆诞生于欧洲第二个工业大省——意大利贝加莫,贝加莫是一个具有悠久历史和生产石灰、水泥和磨细碳酸盐的地区。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_459162_newsimg_news.gif" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆最初供应单轴石灰窑,三阶段水合物和包装机等,随后通过扩大其技术范围,继续引进回转窑等设备。目前已成为世界著名的提供石灰工业有关技术、设备与工程的工程公司。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong西姆在世界/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆主要业务包括双筒蓄能活性石灰窑,干式消石灰生产装置,PCC工厂建造等。截止2017年10月,西姆足迹遍及5大洲60个国家,共229个石灰窑、169个水化设备??/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong全球西姆业务分布图/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_490464_newsimg_news.png" width="400" height="300" border="0" vspace="0" title="" alt="" style="border: 0px margin-left: -3em !important width: 400px height: 300px "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong各地区西姆设备分布图/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_568358_newsimg_news.jpg" width="400" height="300" style="border: 0px margin-left: -3em !important "/br//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong229个石灰窑:/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "北美国+欧洲94个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "南美国+中欧/东欧23个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "AFTRIC+中东27个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "亚洲+大洋洲85个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong style="line-height: 1.75em "169个水化设备:/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "北美国+欧洲103个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "南美国+中欧/东欧30个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "AFTRIC+中东16个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "亚洲+大洋洲20个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong西姆沉淀碳酸钙工艺/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆沉淀碳酸钙生产线/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_578396_newsimg_news.png" width="557" height="472" style="border: 0px margin-left: -3em !important width: 557px height: 472px "//pol class=" list-paddingleft-2" style="padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal "lip style="padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em "span style="font-size: 16px "石灰煅烧/span/p/li/olp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆石灰的煅烧采用全自动双筒蓄能气烧石灰窑,燃烧介质为天然气或煤气,体积分数在25%左右,入窑石灰石块度小,可降低石灰石的损耗,并可以生产高活性的轻烧石灰石,(相比国内机制窑活性300 ml(4NHCl))蓄能窑的活性可达370ml(4NHCl)。高活性石灰对消化工序与碳化工序设计运行有直接影响,机理上对 PCC 粒子晶型确定,成核,晶体成长,以及粒径分布有积极作用。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "2.石灰消化/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "PCC生产中,西姆采用的三级消化技术,厢式连续搅拌消化机,消化能力大,出渣量小,设备占地面积小,Ca(OH)2浓度是浓度 8-16%。消化后过旋液分离器和振动筛,采用二级制冷,一级采用工艺水制冷入口温度74° C ,出口温度34° C;二级冷冻水制冷入口温度34° C,出口温度调到25° C以下。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "3.碳化工艺/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆的碳化示意图/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_757857_newsimg_news.png" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆的碳化采用两级碳化工艺。一级碳化为大气液比连续碳化塔,碳化过程连续进料,以便快速形成晶核。也称为晶核预成器。Ca(OH)2和CO2进行连续碳化反应。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "二级碳化采用了大容积、搅拌式鼓泡碳化方式,调整pH在7以下。能够提供20、27、40、57m3等4个规格的碳化器。碳化器采用双叶轮搅拌器,碳化反应时间为60-90分钟一塔。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong造纸微米钙和橡塑纳米钙的碳化/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_779250_newsimg_news.png" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "4.包覆工艺/span/pul class=" list-paddingleft-2" style="padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal "lip style="padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em "span style="font-size: 16px "?皂化/span/p/li/ulp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "皂化采用30立方的皂化釜,硬脂酸与氢氧化钠高温皂化形成硬脂酸钠,皂化温度控制在80-85℃。/span/pul class=" list-paddingleft-2" style="padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal "lip style="padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em "span style="font-size: 16px "?活化/span/p/li/ulp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "活化采用体积50m3,直径3.5m的活化釜,高温、高转速、高剪切搅拌活化,温度控制在80-85℃。加入皂化液后,搅拌2小时进行包覆,与碳酸钙表面结合。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "5.干燥粉碎/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "一般的沉淀碳酸钙产品不需要粉碎可以直接包装,如果认为细粉含量低,仍有团聚,可以另外加解聚装置,采用日本细川公司生产的针形磨,进一步粉碎降低团聚体和吸油值。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "对于纳米碳酸钙来说,其干燥被国内专家称为国内 PCC 技术的“瓶颈”。西姆的技术采用英国阿碎得(ATRITOR)干燥粉磨机,同时完成轻质碳酸钙PCC生产中的干燥和解聚工序,是生产高等级超细钙和纳米轻质碳酸钙的重要设备。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_789796_newsimg_news.png" width="509" height="295" style="border: 0px margin-left: -3em !important width: 509px height: 295px "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong西姆产品特点与指标/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "平均粒径尺寸(20-70nm);比表面积(70-18 m2/g);形状规则,粒径分布小;表面包覆硬脂酸,用量1.9-4%,纯度高。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆的SC纳米碳酸钙指标/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_823374_newsimg_news.png" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆的造纸钙指标/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_839392_newsimg_news.png" style="border: 0px margin-left: -3em !important "//p
  • 南开学者新成果有望助水泥行业“脱碳”
    近日,南开大学电子信息与光学工程学院光电子薄膜器件与技术研究所教授罗景山课题组,针对水泥生产过程中大量碳排放问题,结合课题组在电化学水分解和二氧化碳还原反应方面的研究基础,提出了一种基于电化学的石灰石转化生产消石灰和有价值碳质产物的方法。有别于传统水泥生产制备工艺中,石灰石高温热解释放二氧化碳的同时得到生石灰的方法,该方法不排放二氧化碳,而是将石灰石中的碳元素转化成有价值的碳质产物,可以用作燃料和化学品生产,未来有望用于水泥行业脱碳,助力实现“双碳”目标。该研究以已经在线发表在国际学术期刊《交叉科学》(iScience)上。在众多工业生产过程中,建筑材料水泥的生产是最大的二氧化碳排放源之一。2020年,水泥行业碳排放占我国碳排放总量的13.5%,水泥行业绿色低碳发展对我国实现“双碳”目标至关重要。统计报告显示,生产1吨水泥约排放0.6吨二氧化碳,其中约60%排放来自于石灰石的热分解,其余约40%排放来自于加热过程中化石燃料利用及相关设备的电力消耗。化石燃料利用和电力消耗产生的二氧化碳排放可以通过使用可再生燃料和可再生能源来减排,但消除石灰石热分解生成生石灰过程中排放的二氧化碳仍然面临巨大挑战。针对这一难题,罗景山课题组提出了一种基于电化学系统的石灰石转化生产消石灰和有价值碳质产物的方法。有别于石灰石高温热解方法,该方法不排放二氧化碳,而是将石灰石中的碳元素直接转化成有价值的碳质产物,可以用作燃料和化学品,为水泥行业碳减排提供了新的思路。首先,本工作基于中性水分解反应体系对石灰石进行处理转化。此过程利用中性水分解反应中析氧反应过程产生的氢离子与生石灰反应,生成钙离子及二氧化碳,钙离子与体系中生成的氢氧根结合形成消石灰,可直接用于水泥生产。其次,通过切换施加电压,将体系中生成的二氧化碳原位转化成有价值的碳质产物,如一氧化碳、甲烷、烯烃等,反应产物可以通过调换催化剂实现调控。 (A) 电解池体系中石灰石电化学转化为消石灰和碳质产物过程的示意图;(B)生石灰(C)消石灰扫描电子显微镜图像及(D) X射线衍射谱图;(E) 不同金属电极在生石灰中性电解液体系中生成有价值碳质产物的法拉第效率。南开大学供图该论文相关技术已由南开大学和海螺集团联合申请国家发明专利。此项技术提出了基于电化学法进行水泥生产来实现水泥行业脱碳的新概念,目前仍处于实验室科学研究阶段,未来实际应用还需进一步研究,罗景山团队正在对反应体系和反应器件进行优化设计,以期实现工业化应用的目标。
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p  湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。/pp  但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中?/pp  我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。/pp  燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。/pp  大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。/pp  一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。/pp  脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。/pp  烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。/pp  中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因!/pp  接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。/pp  这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。/pp  这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。/pp  有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。/pp  烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。/p
  • 如何对气烧石灰窑的入炉煤气热值进行准确测量
    因入炉煤气资源丰富,且属于可被循环利用的废气,故煤气是气烧石灰窑最理想的燃料,如高炉煤气、转炉煤气、焦炉煤气、电石尾气(煤气)、发生炉煤气等。由于气烧石灰窑的煅烧温度,关系到石灰质量,煅烧温度又与入炉煤气的热值直接相关,同时入炉煤气热值高、火焰短等因素易造成石灰窑的过烧或生烧现象,所以必须对入炉煤气的热值进行分析,以便现场工作人员根据实际工况调节窑内煅烧温度,提高气烧石灰窑的生产效率与企业经济效益。煤气分析仪(在线型)Gasboard-3100 煤气中贡献热值的气体有CO、CH4、CnHm和H2,所以在实际生产过程中,企业多采用在线煤气成分及热值分析仪对入炉煤气浓度进行实时在线测量,并根据成分浓度计算得出煤气的热值。由四方仪器自控系统有限公司研发推出的煤气分析仪(在线型)Gasboard-3100采用将自主知识产权的红外气体传感器与基于MEMS技术的热导传感器、电化学O2传感器相结合的方法,以消除气体间的相互干扰和外界因素对测量结果的影响,实现对煤气中CO、CO2、CH4、CnHm、H2及O2多组分的同时测量,并根据组分浓度计算得出准确度高的煤气热值,可替代燃烧法热值仪。一、CO、O2、CO2、CH4对H2的干扰校正 从上表可以看出,煤气主要成分中CO、O2与背景气N2的热导系数相当,对H2的测量结果影响不大,但是CO2、CH4对H2测量影响明显。通过理论分析,如果气体成分中含有CO2,会使H2的测量读数偏低;如果气体成分中含有CH4,会使H2的测量读数偏高。因此为了得到准确的H2浓度,需对H2浓度进行CO2、CH4的浓度校正。 此外,对于检测H2的热导测量通道,实验证明,煤气成分中CO、O2对H2的测量准确性影响不大,主要是CO2、CH4的影响。Gasboard-3100可对煤气中的各组分进行分析测量,并将各组分间的相互影响进行浓度校正和补偿,最大限度的减小煤气中CO、O2、CO2、CH4对H2的影响,保证H2浓度测量的准确性。二、控制流量波动对H2测量的影响 由于热导传感器的基本原理是通过对气体流动带走的热量计算进行换算,如果采用直接流通式的热导检测池,很难控制气流,从而影响H2浓度的准确测量;且目前国内对H2浓度的分析大都采用双铂丝热敏元件制成的热导元件,体积大,精度低,传感器死区大。Gasboard-3100配置了基于MEMS技术的热导传感器,采用了旁流扩散式的热导检测池,流量在0.3~1.5L/min的范围内波动对热导传感器的测量无影响,可有效减少因流量波动对H2浓度测量结果的影响。旁流扩散式的热导检测池三、CnHm浓度测量,保证热值测量准确性 在煤气成份中,特别是焦炉煤气,除CH4外,还含有CnHm。现市面上大多数红外分析仪仅以CH4为测量对象,并以此来计算煤气热值。而Gasboard-3100除对CH4浓度进行测量外,同时还可测量CnHm浓度(如C3H8),将CH4与CnHm的浓度折合成碳氢化合物的总量,以此计算得出煤气热值,保证入炉煤气热值测量的准确性。四、CnHm与CH4干扰的浓度修正甲烷、乙烷、丙烷、丁烷的红外吸收光谱 根据红外吸收原理,在甲烷特征波长3.3um左右,甲烷与乙烷等碳氢化合物有吸收干扰,从而导致热值测试不准。对此,Gasboard-3100在软件上进行了升级,产品采用abc系数修正算法,预先在软件运算过程中插入CnHm与CH4的浓度修正系数,修正CnHm与CH4的相互干扰,确保测量结果的准确性。五、单光源、双光束减小零点与量程漂移 为减少因为光源不稳定以及电子元器件老化造成的零点和量程漂移,Gasboard-3100内置了自动调零装置,可实现对仪器零点的自动标定,以减小零点漂移,相应减小量程漂移。同时,Gasboard-3100基于NDIR气体分析技术,采用单光源双光束法对煤气中不同波长的组分进行测量。光源经过两个不同波长的滤光片,进行滤光处理,得到两个不同波长的信号:检测信号与参考信号。检测信号与参考信号的强度之比与光源强度的波动及电子元器件的老化等因素无关,这样就最大限度的减小了光源不稳定及电子元器件老化造成的零点、量程漂移,从而保障了仪器测量的准确性与稳定性。单光源、双光束技术原理图 高准确度的煤气热值有利于正确指导工作人员调节现场工况,保证石灰窑炉的煅烧温度,既能提高出炉石灰的质量,又可合理使用回收煤气,真正地实现节能降耗,提高企业经济效益。作为武汉四方光电旗下的全资子公司,四方仪器始终秉承“把握关键技术,实现产业创新”的发展理念,以自主知识产权的传感器核心技术为依托,致力于煤气分析仪器的研发创新、生产及销售,为我国煤气能源的高效利用提供更加合理、有效的行业解决方案。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • 认监委发文:组织开展这些检验检测领域国际能力验证活动
    认秘函〔2022〕31号认监委秘书处关于组织开展水质、铁矿石和石灰石国际检验检测机构能力验证活动的通知 中国合格评定国家认可中心,中国科学院生态环境研究中心,北京中实国金国际实验室能力验证研究有限公司,各有关检验检测机构:  为充分发挥检验检测、认证认可对国际贸易和“一带一路”建设的技术支撑作用,经研究,认监委决定在水质、铁矿石和石灰石检验检测领域组织开展国际能力验证活动,组织国内相关检验检测机构并邀请“一带一路”沿线国家检验检测机构参与,推动标准和检测结果联通,为后续相关业务交流和技术能力提升奠定基础。现将有关事项通知如下:一、能力验证项目和参加要求  本次能力验证活动委托中国合格评定国家认可中心提供技术支撑,委托中国科学院生态环境研究中心水质分析实验室具体承担“水中砷和氨氮的测定”项目实施,委托北京中实国金国际实验室能力验证研究有限公司承担“铁矿石中TFe、SiO2、P、S的测定”和“石灰石中SiO2、CaO、MgO、Fe2O3、Al2O3的测定”项目实施。  具备相关检测项目技术能力的国家产品质检中心应积极报名参加相关能力验证项目。因故不能参加的,需向项目承担单位提交书面情况说明。  项目承担单位负责联系和邀请“一带一路”沿线国家和地区的检验检测机构参加本次能力验证。二、检测标准和样品信息(一)“水中砷和氨氮的测定”能力验证项目  水中砷的测定可采用ISO 17378-2:2014《Water quality — Determination of arsenic and antimony—Part 2:Method using hydride generation atomic absorption spectrometry (HG-AAS)》;GB/T 5750.6-2006 6.1《氢化物原子荧光法》;GB/T 5750.6-2006 6.5《电感耦合等离子体发射光谱法》;GB/T 5750.6-2006 6.6《电感耦合等离子体质谱法》。  水中氨氮的测定可采用ISO 11732:2005《Water quality — Determination of ammonium nitrogen — Method by flow analysis (CFA and FIA) and spectrometric detection》;ISO 6778:1984《Water quality — Determination of ammonium — Potentiometric method》;ISO 7150-1:1984《Water quality — Determination of ammonium — Part 1: Manual spectrometric method》;ISO 5664:1984《Water quality — Determination of ammonium — Distillation and titration method》;GB/T 5750.5-2006 9.1《纳氏试剂分光光度法》;GB/T 5750.5-2006 9.2《酚盐分光光度法》;GB/T 5750.5-2006 9.3《水杨酸盐分光光度法》。  “水中砷和氨氮的测定”能力验证项目测试样品为水溶液,样品规格20毫升/瓶,每个检验检测机构随机发1个浓度水平样品2瓶。(二)“铁矿石中TFe、SiO2、P、S的测定”能力验证项目  “铁矿石中TFe、SiO2、P、S的测定”可采用GB/T 6730系列铁矿石化学分析方法,SN/T 0832-1999《进出口铁矿石中铁、硅、钙、锰、铝、钛、镁和磷的测定波长色散X射线荧光光谱法》,ISO 9516-1:2003《 Iron ores-Determination of various elements by X-ray fluorescence spectrometry-Part 1: Comprehensive procedure》等标准方法。  测试样品为2种含量水平的铁矿石粉末样品,样品规格15克/瓶,用玻璃瓶包装,每个检验检测机构发放1种含量水平的样品1瓶。(三)“石灰石中SiO2、CaO、MgO、Fe2O3、Al2O3的测定”能力验证项目  可采用GB/T 3286系列石灰石化学分析方法,ISO 12677:2011《Chemical analysis of refractory products by X-ray fluorescence (XRF) — Fused cast-bead method》等标准方法。  测试样品为2种含量水平的石灰石粉末样品,样品规格15克/瓶,用玻璃瓶包装,每个检验检测机构发放1种含量水平的样品1瓶。三、时间安排(一)报名:2022年8月-9月;(二)样品发放:2022年10月-12月;(三)检测结果反馈:2023年1月底前;(四)初步技术分析报告:2023年2月底前;(五)结果发布:2023年3月底前。四、其他事宜(一)报名参加的检验检测机构应填写报名表(见附件),通过发送电子邮件方式进行报名。(二)联系方式1. “水中砷和氨氮的测定”能力验证项目中国科学院生态环境研究中心水质分析实验室郑蓓,李红岩:+86-10-62849466,szfxsys@126.com2. “铁矿石中TFe、SiO2、P、S的测定”能力验证项目北京中实国金国际实验室能力验证研究有限公司吴珂,唐凌天:+86-10-62185713,wuke@analysis.org.cn3. “石灰石中SiO2、CaO、MgO、Fe2O3、Al2O3的测定”能力验证项目北京中实国金国际实验室能力验证研究有限公司朱生慧,唐凌天:+86-10-62185713,zsh@analysis.org.cn附件:1. 水中砷和氨氮的测定能力验证报名表2. 铁矿石中TFe、SiO2、P、S的测定能力验证报名表3. 石灰石中SiO2、CaO、MgO、Fe2O3、Al2O3的测定能力验证报名表
  • 《火电厂污染防治技术政策》正式发布(附全文)
    p  中国大气网从环保部了解到,为防治火电厂排放废气、废水、噪声、固体废物等造成的污染,改善环境质量,保护生态环境,促进火电行业健康持续发展及污染防治技术进步,环保部已正式发布《火电厂污染防治技术政策》,具体详情如下:/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201710/noimg/bcac8b61-1646-4c47-9793-7bc9a6865eed.jpg" title="环保部.png"/ /pp style="text-align: center "  span style="color: rgb(0, 0, 0) "strong关于发布《火电厂污染防治技术政策》的公告/strong/span/pp  为贯彻《中华人民共和国环境保护法》,改善环境质量,保障人体健康,完善环境技术管理体系,推动污染防治技术进步,环境保护部组织制定了《火电厂污染防治技术政策》,现予公布,供参照执行。/pp  文件内容可登录环境保护部网站查询。/pp  附件:火电厂污染防治技术政策/pp  环境保护部/pp  2017年1月10日/pp  抄送:各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局。/pp  环境保护部办公厅2017年1月11日印发/pp  附件/pp  火电厂污染防治技术政策/pp  一、总则/pp  (一)为贯彻《中华人民共和国环境保护法》等法律法规,防治火电厂排放废气、废水、噪声、固体废物等造成的污染,改善环境质量,保护生态环境,促进火电行业健康持续发展及污染防治技术进步,制定本技术政策。/pp  (二)本技术政策适用于以煤、煤矸石、泥煤、石油焦及油页岩等为燃料的火电厂,以油、气等为燃料的火电厂可参照执行。不适用于以生活垃圾、危险废物为主要燃料的火电厂。/pp  (三)本技术政策为指导性技术文件,可为火电行业污染防治规划制定、污染物达标排放技术选择、环境影响评价和排污许可制度贯彻实施等环境管理及企业污染防治工作提供技术支撑。/pp  (四)火电厂的污染防治应遵循和提倡源头控制与末端治理相结合的技术路线 污染防治技术的选择应因煤制宜、因炉制宜、因地制宜,并统筹兼顾技术先进、经济合理、便于维护的原则。/pp  二、源头控制/pp  (一)全国新建燃煤发电项目原则上应采用60万千瓦以上超超临界机组,平均供电煤耗低于300克标准煤/千瓦时。/pp  (二)进一步提高小火电机组淘汰标准,对经整改仍不符合能耗、环保、质量、安全等要求的,由地方政府予以淘汰关停。优先淘汰改造后仍不符合能效、环保等标准的30万千瓦以下机组。/pp  (三)坚持“以热定电”,建设高效燃煤热电机组,科学制定热电联产规划和供热专项规划,同步完善配套供热管网,对集中供热范围内的分散燃煤小锅炉实施替代和限期淘汰。/pp  (四)进一步加大煤炭的洗选量,提高动力煤的质量。加强对煤炭开采、运输、存储、输送等过程中的环境管理,防治煤粉扬尘污染。/pp  三、大气污染防治/pp  (一)燃煤电厂大气污染防治应以实施达标排放为基本要求,以全面实施超低排放为目标。/pp  (二)火电厂达标排放技术路线选择应遵循以下原则:/pp  1.火电厂除尘技术:/pp  火电厂除尘技术包括电除尘、电袋复合除尘和袋式除尘。若飞灰工况比电阻超出1× 104~1× 1011欧姆· 厘米范围,建议优先选择电袋复合或袋式技术 否则,应通过技术经济分析,选择适宜的除尘技术。/pp  2.火电厂烟气脱硫技术:/pp  (1)石灰石-石膏法烟气脱硫技术宜在有稳定石灰石来源的燃煤发电机组建设烟气脱硫设施时选用。/pp  (2)氨法烟气脱硫技术宜在环境不敏感、有稳定氨来源地区的30万千瓦及以下燃煤发电机组建设烟气脱硫设施时选用,但应采取措施防止氨大量逃逸。/pp  (3)海水法烟气脱硫技术在满足当地环境功能区划的前提下,宜在我国东、南部沿海海水扩散条件良好地区,燃用低硫煤种机组建设烟气脱硫设施时选用。/pp  (4)烟气循环流化床法脱硫技术宜在干旱缺水及环境容量较大地区,燃用中低硫煤种且容量在30万千瓦及以下机组建设烟气脱硫设施时选用。/pp  3.火电厂烟气氮氧化物控制技术:/pp  (1)火电厂氮氧化物治理应采用低氮燃烧技术与烟气脱硝技术配合使用的技术路线。/pp  (2)煤粉锅炉烟气脱硝宜选用选择性催化还原技术(SCR) 循环流化床锅炉烟气脱硝宜选用非选择性催化还原技术(SNCR)。/pp  (三)燃煤电厂超低排放技术路线选择时应充分考虑炉型、煤种、排放要求、场地等因素,必要时可采取“一炉一策”。具体原则如下:/pp  1.超低排放除尘技术宜选用高效电源电除尘、低低温电除尘、超净电袋复合除尘、袋式除尘及移动电极电除尘等,必要时在脱硫装置后增设湿式电除尘。/pp  2.超低排放脱硫技术宜选用增效的石灰石-石膏法、氨法、海水法及烟气循环流化床法,并注重湿法脱硫技术对颗粒物的协同脱除作用。/pp  (1)石灰石-石膏法应在传统空塔喷淋技术的基础上,根据煤种硫含量等参数,选择能够改善气液分布和提高传质效率的复合塔技术或可形成物理分区和自然分区的pH分区技术。/pp  (2)氨法、海水法及烟气循环流化床法应在传统工艺的基础上进行提效优化。/pp  3.超低排放脱硝技术煤粉锅炉宜选用高效低氮燃烧与SCR配合使用的技术路线,若不能满足排放要求,可采用增加催化剂层数、增加喷氨量等措施,应有效控制氨逃逸 循环流化床锅炉宜优先选用SNCR,必要时可采用SNCR-SCR联合技术。/pp  (四)火电厂灰场及脱硫剂石灰石或石灰在装卸、存储及输送过程中应采取有效措施防治扬尘污染。/pp  (五)粉煤灰运输须使用专用封闭罐车,并严格遵守有关部门规定和要求。/pp  (六)火电厂烟气中汞等重金属的去除应以脱硝、除尘及脱硫等设备的协同脱除作用为首选,若仍未满足排放要求,可采用单项脱汞技术。/pp  (七)火电厂除尘、脱硫及脱硝等设施在运行过程中,应统筹考虑各设施之间的协同作用,全流程优化装备。/pp  四、水污染防治/pp  (一)火电厂水污染防治应遵循分类处理、一水多用的原则。鼓励火电厂实现废水的循环使用不外排。/pp  (二)煤泥废水、空预器及省煤器冲洗废水等宜采用混凝、沉淀或过滤等方法处理后循环使用。/pp  (三)含油废水宜采用隔油或气浮等方式进行处理 化学清洗废水宜采用氧化、混凝、澄清等方法进行处理,应避免与其他废水混合处理。/pp  (四)脱硫废水宜经石灰处理、混凝、澄清、中和等工艺处理后回用。鼓励采用蒸发干燥或蒸发结晶等处理工艺,实现脱硫废水不外排。/pp  (五)火电厂生活污水经收集后,宜采用二级生化处理,经消毒后可采用绿化、冲洗等方式回用。/pp  五、固体废物污染防治/pp  (一)火电厂固体废物主要包括粉煤灰、脱硫石膏、废旧布袋和废烟气脱硝催化剂等,应遵循优先综合利用的原则。/pp  (二)粉煤灰、脱硫石膏、废旧布袋应使用专门的存放场地,贮存设施应参照《一般工业固体废物贮存、处置场污染控制标准》(GB 18599)的相关要求进行管理。/pp  (三)粉煤灰综合利用应优先生产普通硅酸盐水泥、粉煤灰水泥及混凝土等,其指标应满足《用于水泥和混凝土中的粉煤灰》(GB/T 1596)的要求。/pp  (四)应强化脱硫石膏产生、贮存、利用等过程中的环境管理,确保脱硫石膏的综合利用。/pp  1.石灰石-石膏法脱硫技术所用的石灰石中碳酸钙含量应不小于90%。/pp  2.燃煤电厂石灰石-石膏法烟气脱硫工艺产生的脱硫石膏的技术指标应满足《烟气脱硫石膏》(JC/T 2074)的相关要求。/pp  3.脱硫石膏宜优先用于石膏建材产品或水泥调凝剂的生产。/pp  (五)袋式或电袋复合除尘器产生的废旧布袋应进行无害化处理。/pp  (六)失活烟气脱硝催化剂(钒钛系)应优先进行再生,不可再生且无法利用的废烟气脱硝催化剂(钒钛系)在贮存、转移及处置等过程中应按危险废物进行管理。/pp  六、噪声污染防治/pp  (一)火电厂噪声污染防治应遵循“合理布局、源头控制”的原则。/pp  (二)应通过合理的生产布局减少对厂界外噪声敏感目标的影响。鼓励采用低噪声设备,对于噪声较大的各类风机、磨煤机、冷却塔等应采取隔振、减振、隔声、消声等措施。/pp  七、二次污染防治/pp  (一)SCR、SNCR-SCR、SNCR脱硝技术及氨法脱硫技术的氨逃逸浓度应满足相关标准要求。/pp  (二)火电厂应加强脱硝设施运行管理,并注重低低温电除尘器、电袋复合除尘器及湿法脱硫等措施对三氧化硫的协同脱除作用。/pp  (三)脱硫石膏无综合利用条件时,应经脱水贮存,附着水含量(湿基)不应超过10%。若在灰场露天堆放时,应采取措施防治扬尘污染,并按相关要求进行防渗处理。/pp  八、新技术开发/pp  鼓励以下新技术、新材料和新装备研发和推广:/pp  (一)火电厂低浓度颗粒物、细颗粒物排放检测技术及在线监测技术,烟气中三氧化硫、氨及可凝结颗粒物等的检测与控制技术。/pp  (二)W型火焰锅炉氮氧化物防治技术。/pp  (三)烟气中汞等重金属控制技术与在线监测设备。/pp  (四)脱硫石膏高附加值产品制备技术。/pp  (五)火电厂多污染物协同治理技术。/pp  (六)火电厂低温脱硝催化剂。/p
  • 源自NASA的火星探测技术用于文化遗产保护
    美国国 家航空航天局(NASA)曾为火星探测计划开发研制过小型XRD/XRF联用的检测仪,用于火星土壤样本和矿石样本的探测分析,以确定火星地质形成过程。曾先后搭载“勇气号”和“机遇号”,成功地完成了对火星地质的考察。现在,这项技术已成功应用于于文化遗产保护领域。 曾任NASA科学家的Philippe Sarrazin联合美国盖蒂保护研究所首席科学家Giacomo Chiari将火星探测技术应用于专门的文化遗产保护研究项目,开发出了便携式的XRD-XRF联用分析仪——Duetto,首 款专门为文化遗产设计的商用XRD/XRF仪器。Duetto可对一个物体的一个小区域进行无损伤性的原位分析。Duetto可以在实验室使用或放置在使用多种安装选项的现场(如博物馆、考古遗址、修复遗址等)//主要特点“太阳系zui小”体积,仅35cm,6kg内置为宇航任务研制的X射线源采用高灵敏制冷型面阵CCD探测器XRD与XRF联用,可同时获取数据功耗仅40W,野外可连续工作一天//应用案例Duetto用于分析意大利瓦拉洛圣山大教堂的壁画Duetto被部署在雅典厄瑞克忒翁神庙旧神庙的门廊,分析围堰天花板的表面材料。通过原位XRD分析测量了石灰石现代腐蚀的证据。Duetto被部署在雅典厄瑞克忒翁神庙旧神庙的门廊,分析围堰天花板的表面材料。通过原位XRD分析测量了石灰石现代腐蚀的证据。 每年六月第二个星期六为我国的“文化遗产保护日”,古建筑、石刻和壁画等文物承载着民族历史文化记忆,应得到受保护,但目前我国文化遗产保护正面临着极大的挑战:文物真实性、完整性原则难以保证。 当今,我们应当清楚地认识到文化遗产保护任重而道远,期待在Duetto这类文物保护技术的应用下,文化遗产保护原则能得到很好地贯彻,并得到可持续发展。
  • 拉曼光谱新应用:根据矿物粒大小对岩石进行分类
    粒度指常指矿物或颗粒的直径(毫米、微米)大小。沉积物颗粒的大小对沉积物的成岩作用有较大的影响,因此沉积岩矿物组成的粒度大小可以反映沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时对于其性质和潜在用途有着非常重要的影响,例如,在同等孔隙度条件下,颗粒越粗,对应的渗透率越大。石灰岩是一种典型的沉积岩,在建筑、冶金、化工、塑料、涂料、食品等工业领域有着广泛应用。而粒度是石灰岩的分类与利用的关键因素之一,不同工业用途对于矿物粒度的要求也不同。如在冶金工业中,炼铁所需的石灰石粒度在15-60mm,烧结则要求粒度≤3mm。以往的研究表明,拉曼光谱信号和背景的强度取决于所测试样品的颗粒及其大小。研究人员在此基础上研究了钙质材料的拉曼信号强度变化和相关背景强度随晶粒尺寸的变化,并开发出一种可以从拉曼光谱中提取平均晶粒尺寸定量信息的方法。研究人员对来自不同意大利采石场的一组沉积钙质岩样品进行岩石学分类,然后进行拉曼光谱分析,同时还对相应的微球和结晶方解石粉末样品进行了分析,发现拉曼信号与粒径之间存在明显的相关性,并获得了校准曲线。实验实现了拉曼信号和背景强度对晶粒和粒径的可重复行为,因此证明了从前者的测量中获得后者的半定量信息的可能性。该成果可以在石灰工业领域以及各种科学环境和其他材料生产链中加以利用。由于设备便携,该技术在采石时期就可以对石灰岩进行快速分析并分类,有利于有利于缩短石灰石材料的生产周期,减少成本。
  • 嫦娥五号月球样品证明月球晚期玄武岩富含富铁高钙辉石
    14日,记者从中科院国家天文台获悉,基于嫦娥五号月球样品的实验室分析结果,并结合遥感探测数据,国家天文台李春来、刘建军研究员领导的团队证明,嫦娥五号月壤的光谱特征主要是由其富含的富铁高钙辉石引起,而非此前认为的富含橄榄石所致。相关研究成果在线发表于《自然通讯》杂志。“我们的研究解答了过去对月球晚期玄武岩遥感光谱解译的疑惑,纠正了月球晚期玄武岩独特遥感光谱特征的物质成分解译结果。”中科院国家天文台研究员李春来告诉记者。基于以往地基望远镜和月球轨道器遥感光谱数据,曾经天文学家普遍认为,月球正面西部晚期月海玄武岩覆盖的区域富含橄榄石。因此,富含橄榄石是理解月球晚期玄武岩成因的重要因素。然而,由于缺乏实际样品,这一推论的正确性一直无法得到证实。嫦娥五号任务采集的月球样品,为解答这一问题提供了宝贵的机会。利用嫦娥五号返回样品纠正月球晚期玄武岩的遥感光谱解译(图片由中科院国家天文台提供)通过对带回的月球样品开展实验室光谱和X射线衍射分析,同时,与以往获取的月球样品进行对比,并结合电子探针分析的数据结果,研究团队证明,嫦娥五号月壤的光谱特征主要是由其富含的富铁高钙辉石引起,而非富含橄榄石所致。“由于国外历次月海采样任务鲜有以富铁高钙辉石为主的月球样品,加之富铁高钙辉石晶体结构的特点在光谱特征上与月球上常见的橄榄石光谱相近,导致了月球晚期玄武岩的遥感光谱被错误地解译为富含橄榄石。”李春来说。研究团队进一步分析显示,月表其他被认为是晚期玄武岩覆盖的区域与嫦娥五号着陆区有着相似的光谱学和地球化学特征。这说明,它们可能具有与嫦娥五号样品相似的岩石矿物学组成,都应是以富铁的高钙辉石为主,而非过去遥感光谱推测的橄榄石为主。李春来表示,这项研究对回答月球晚期玄武岩物质组成问题,深化对月球热演化历史,特别是月球晚期火山活动特点的认识具有重要意义。
  • 几种常见煤电超低排放技术汇总
    p  本文介绍了几种常见的燃煤电厂超低排放技术,主要有二级串联吸收塔石灰石-石膏湿法脱硫技术原理及特点、高效低氮燃烧器+SCR脱硝技术原理及特点、五电场静电除尘器+湿式静电除尘器原理及特点等,内容如下:/pcenterimg alt="超低排放" src="http://img01.bjx.com.cn/news/UploadFile/201702/2017021710142297.jpg" width="500" height="325"//centerp /pp 二级串联吸收塔石灰石-石膏湿法脱硫技术原理及特点/pp  二级串联吸收塔石灰石-石膏湿法脱硫工艺原理为:采用价廉易得的石灰石作为脱硫吸收剂,石灰石小颗粒经磨细成粉状与水混合搅拌制成吸收浆液。在两级吸收塔内,吸收浆液分两次分别与锅炉烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去携带的细小液滴,再经换热器加热升温后排入烟囱。脱硫石膏浆液经脱水装置脱水后回收,脱硫石膏和脱硫废水经处理后供电厂综合利用。/pp  石灰石-石膏湿法脱硫工艺由于具有脱硫效率高(脱硫效率可达95~98%)、吸收剂利用率高、技术成熟、运行稳定等特点,因而是目前世界上应用最多的脱硫工艺。/pp  白杨河电厂两级脱硫吸收塔均采用喷淋塔结构,喷淋塔具有脱硫效率高、系统可靠性和可用率高、系统适应性强等优点,目前运行的喷淋塔对于低、中、高燃煤硫分都有较多成熟的案例,国内90%以上的湿法脱硫装置都是采用的喷淋塔。/pp  centerimg alt="超低排放" src="http://img01.bjx.com.cn/news/UploadFile/201702/2017021710150086.jpg" width="535" height="600"//centercenter style="TEXT-ALIGN: center" img alt="超低排放" src="http://img01.bjx.com.cn/news/UploadFile/201702/2017021710150791.jpg" width="541" height="276"//centerp/pp /pp  高效低氮燃烧器+SCR脱硝技术原理及特点/pp  低氮燃烧器降低氮氧化物浓度的原理是:改变通过燃烧器的风煤比例,使燃烧器内部或出口射流空气分级,以控制燃烧器中燃料与空气的混合过程,尽可能降低着火区的温度和降低着火区的氧浓度,在保证煤粉着火和燃烧的同时有效抑制氮氧化物生成。在富燃料燃烧条件下,选择合适的停留时间和温度可使氮氧化物最大限度地转化成氮气。/pp  选择性催化还原(ive-catalytic-reduction,SCR)脱硝技术的工艺流程为:烟气在锅炉省煤器出口处被平均分为两路,每路烟气并行进入一个垂直布置的SCR反应器里,烟气经过均流器后进入催化剂层,然后进入空预器、电除尘器、引风机和脱硫装置后,排入烟囱。在进入烟气催化剂前设有氨注入的系统,烟气与液氨蒸发产生的氨气充分混合后进入催化剂发生反应,脱去氮氧化物。/pp  SCR的化学反应机理比较复杂,但主要的反应是在一定的温度和催化剂的作用下,有选择地把烟气中的氮氧化物还原为氮气。目前,世界各国采用的SCR系统有数百套之多,该技术具有技术成熟运行可靠、脱除率高等特点,我国近几年也已在燃煤发电机组中大面积推广使用SCR脱硝系统。/pp  centerimg alt="超低排放" src="http://img01.bjx.com.cn/news/UploadFile/201702/2017021710152936.jpg" width="373" height="546"//centerp  centerimg alt="超低排放" src="http://img01.bjx.com.cn/news/UploadFile/201702/2017021710153639.jpg" width="640" height="231"//centerp/pp /pp  五电场静电除尘器+湿式静电除尘器原理及特点/pp  静电除尘器与湿式静电除尘器的除尘原理,其实与常规干式电除尘器除尘相同,而工作的烟气环境不同。都是向电场空间输送直流负高压,通过空间气体电离,烟气中粉尘颗粒和雾滴颗粒荷电后在电场力的作用下,收集在收尘极表面,但干式电除尘器是利用振打清灰的方式将收集到的粉尘去除,而湿式电除尘器则是利用在收尘极表面形成的连续不断的水膜将粉尘冲洗去除。/pp  湿式静电除尘器除具有极高的除尘效率外,对微细颗粒物PM10、PM2.5和石膏颗粒的去除效率较高,一个电场的除尘效率能够大于90%。湿式电除尘器对烟气中雾滴的去除效果较高,去除效率可达60%。湿式电除尘器对二氧化硫的去除效率能够超过60% 同时,湿式电除尘器能够有效控制重金属汞排放,汞脱除效率能够达到40%。/pp  centerimg alt="超低排放" src="http://img01.bjx.com.cn/news/UploadFile/201702/2017021710155539.jpg" width="600" height="237"//centerp/pp /pp  建议:大力发展超低排放的煤电机组/pp  我国发电用煤量约占煤炭消费总量的一半,而发电排放的污染物则远低于50%,煤电机组的污染物排放水平远低于其他工业和民用锅炉。从发达国家的情况看,发电用煤占煤炭消费总量的比例是随经济发展水平逐步提高的,美国发电用煤的占比接近100%。/pp  发电用煤的占比越高,污染物的排放总量就越低,这是因为发电机组的大量集中用煤,便于高效经济地集中处理污染物,而分散的工业和民用锅炉则不便于污染物的处理。今后,我国煤炭消费总量将会受到控制乃至逐步降低,但发电用煤的占比则会不断提高。分析我国目前的煤炭消费结构,可以预见今后燃煤发电机组仍有很大发展空间,当然其中相当部分会是热电联产机组。/pp  我国的资源秉赋决定了煤电的基础性作用,同时发展可再生能源发电也需要煤电的配合。水电是可再生能源中最为可靠、质量最好的电能,但一则其总量不足,二则由于其季节性特点,需要煤电的支撑。风电、光电等则更需要煤电的支撑。天然气发电虽然清洁高效低碳,但受到资源供应的制约。核电发展也受到诸多制约,且由于我国人口密集,核电厂址选择更难。因而,煤电的基础地位不会动摇。/pp  煤电带来的主要污染物是二氧化硫、氮氧化物、烟尘和重金属。近年来,燃煤电厂的污染物控制技术取得了巨大进步,利用最新技术,燃煤发电机组的污染物排放不仅可以达到我国《火电厂大气污染物排放标准GB13223—2011》,而且可以达到其中天然气燃机发电的排放标准。需要指出的是,此项排放标准已经被誉为史上最严标准(世界范围内)。/pp  如果在我国的大城市和其他重要地区,燃煤发电机组的排放达到天然气燃机机组的排放标准,将有助于大大改善这些地区的环境。而且,在技术上并无难以逾越的障碍,目前国内技术可敷使用,发电成本的增加也可接受。/pp  对于脱硫,主要是采用脱硫系统改造技术并辅以脱硫添加剂等,可使二氧化硫的排放由100毫克/立方米进一步降至35毫克/立方米以下 对于脱硝,主要是进一步改进低氮氧化物燃烧系统,并在SCR脱硝系统中增加一级催化剂,可以保证氮氧化物排放低于50毫克/立方米 对于除尘,采用布袋除尘器、电袋除尘器、低温电除尘器等,并改进脱硫塔内的除雾器,然后加装湿式电除尘器,可使烟尘排放低于5毫克/立方米。/pp  湿式电除尘器对于PM2.5也有较高的脱除效率,同时还有提升脱硫效率的作用。针对重金属(主要是汞)的排放,华能开发了协同脱汞技术,并已应用于北京热电厂,使烟气排放的汞低于0.8微克/立方米。这些技术的组合应用,可保证燃煤发电机组的烟气排放达到天然气燃机机组的排放标准。/pp  近年来,由于我国东部出现大范围雾霾天气,部分城市拟关停燃煤供热电厂。如果一个城市的天然气供应充足,且城市及其邻近地区已经全面杜绝烧煤,则关停燃煤热电联产机组不失为进一步改善环境的重要举措。若城市及其邻近地区依然拥有大量工业与民用燃煤锅炉,而选择关停大容量的热电联产机组,则不是经济合理的选择。/pp  鉴于我国资源禀赋和经济发展状况,城市供热全部依赖天然气,在近中期实现难度较大。保留部分环保性能好的大容量热电联产机组,并进一步提升其环保性能,在现阶段当是经济合理、现实可行的选择。/pp  发展超低排放的大容量高效燃煤发电机组,是我国近中期支撑经济发展同时确保环境逐步改善尤其是控制雾霾的必然选择。同时,鉴于我国城市发展水平和能源供应现状,我国城市及其周边地区应更多采用超低排放的大容量燃煤热电联产机组,而不是全面地“煤改气”。/p/p/p/p/p
  • 篡改监测仪器数据 8电厂遭问责
    中电投等旗下电厂遭环保部问责 涉嫌人为修改排放数据  近日,环保部发出《关于2010年脱硫设施不正常运行电厂名单及处罚结果的公告》,其中8家电厂因二氧化硫超标而被环保部问责,涉及中电投、国电、华电、大唐旗下多家发电企业。  环保部认为,此次8家电厂存在着不正常运行脱硫装置、不正常使用自动监控系统、监测和DCS数据弄虚作假、二氧化硫超标排放等行为。因此,要求所在地县级以上环境保护行政主管部门依据《中华人民共和国大气污染防治法》第四十六条和《污染源自动监控管理办法》第十八条有关规定进行处罚。  环保部要求,上述企业2011年年底前,必须完成整改任务,并且全额缴纳2010年二氧化硫排污费金额,核实已经征收的二氧化硫排污费,追缴差额部分。  8家电厂遭问责  据《关于2010年脱硫设施不正常运行电厂名单及处罚结果的公告》,受罚企业包括中电投旗下的内蒙古中电投霍煤鸿骏铝自备电厂、华电旗下的湖南华电石门发电有限公司、大唐旗下的甘肃西固热电公司、河南国电民权发电有限公司、河南能信热点有限公司、江苏连云港新海发电有限公司、广东东莞市三联热电厂等。  上述电厂中,大部分涉嫌人为修改排放数据的违法行为。  内蒙古中电投霍煤鸿骏铝自备电厂位于内蒙古通辽市,现有8台机组,总装机容量为1200MW,2010年发电量72.4亿千瓦时,煤炭消费量 663.6万吨。环保部称,经核查核实,该电厂3号和4号机组采用两炉一塔半干法脱硫工艺,二氧化硫浓度长期超标排放。为逃避处罚,弄虚作假,人为修改数据,将超标排放浓度修改为达标排放浓度。  类似的情况出现在河南国电民权发电有限公司,该公司现有2台600MW机组,2010年发电量62.3亿千瓦时,煤炭消耗量278万吨,全年享受国家脱硫电价补贴政策。经环保部核查核实,该公司两台机组采用一炉一塔石灰石-石膏湿法脱硫工艺,由于实际燃煤硫份长期超过脱硫设施设计硫份,经常开启旁路运行,二氧化硫超标排放现象严重。同时,脱硫设施监测仪表故障长期不维修,运行参数混乱。为逃避处罚,人为修改脱硫设施运行历史数据,弄虚作假。  而江苏连云港新海发电有限公司如出一辙,经核查核实,该公司两台机组采用一炉一塔回流式烟气循环流化床半干法脱硫工艺,脱硫设施的石灰石投料系统不按规范要求运行。全年时开时停,并有多次10天以上停加石灰石问题,二氧化硫排放浓度超标问题突出。为逃避处罚,人为修改烟气自动在线监测仪器参数,弄虚作假。  火电减排将进一步强化  环保部指出,火电厂超标排放问题由来已久,主要还是环保意识不到位,有的也确实面临脱硫设备改造的技术和资金上的难题。据统计,被通报的8家火电公司去年一年的二氧化硫排放平均值在1万吨以上,属于严重超标。  公开信息显示,虽然我国在“十一五”时期全国火电脱硫机组比例明显提升,火电企业的大气污染物排放已得到明显改善,但我国人均装机容量远低于发达国家平均水平,我国的能源结构决定了在今后相当长时间内燃煤机组装机容量还将不断增长,火电厂排放的二氧化硫、氮氧化物和烟尘仍将增加。  据报道,今年上半年,我国氮氧化物总量控制形势总体不乐观。上半年,在化学需氧量、氨氮、二氧化硫、氮氧化物4种主要污染物中,氮氧化物一项指标不降反升,与去年同期相比增长了6.17%,二氧化硫等其他各项主要污染物排放的下降幅度也不明显。  因此,在今年6月,环保部总量司大气处处长吴险峰表示,为达到“十二五”规划纲要中要求的二氧化硫和氮氧化物须分别减排8%和10%的要求,火电行业的排放标准必须严格执行《火电厂大气污染物排放标准》。即二氧化硫排放上限为200毫克/立方米,氮氧化物为100毫克/立方米。这意味着即将出台的《火电厂大气污染物排放标准》最终稿中的各项标准不会较二稿放宽。  环保部相关负责人告诉《每日经济新闻》记者,“十二五”将会从严排放标准,强化火电厂的减排措施,火电厂脱硫将突出工程减排、结构减排和管理减排。
  • 丁仲礼院士:碳中和的战略逻辑和技术需求
    文 | 丁仲礼在中国宣布“双碳”目标后,中国科学院设立了一个大型咨询项目,组织百余位来自多个学部的院士和专家,着重就此问题做了“清单式”的研究。本文将以这个研究为依据,从碳中和的概念和逻辑入手,重点介绍完成碳中和的“技术需求清单”,并在此基础上讨论几个公众比较关心的问题。碳中和的概念碳中和应从碳排放(碳源)和碳固定(碳汇)这两个侧面来理解。碳排放既可以由人为过程产生,又可以由自然过程产生。人为过程主要来自两大块,一是化石燃料的燃烧形成二氧化碳(CO2)向大气圈释放,二是土地利用变化(最典型者是森林砍伐后土壤中的碳被氧化成二氧化碳释放到大气中);自然界也有多种过程可向大气中释放二氧化碳,比如火山喷发、煤炭的地下自燃等。但应该指出:近一个多世纪以来,自然界的碳排放比之于人为碳排放,对大气二氧化碳浓度变化的影响几乎可以忽略不计。碳固定也有自然固定和人为固定两大类,并且以自然固定为主。最主要的自然固碳过程来自陆地生态系统。陆地生态系统的诸多类型中,又以森林生态系统占大头。所谓的人为固定二氧化碳,一种方式是把二氧化碳收集起来后,通过生物或化学过程,把它转化成其他化学品,另一种方式则是把二氧化碳封存到地下深处和海洋深处。过去几十年中,人为排放的二氧化碳,大致有54%被自然过程所吸收固定,剩下的46%则留存于大气中。在自然吸收的54%中,23%由海洋完成,31%由陆地生态系统完成。比如最近几年,全球每年的碳排放量大约为400亿吨二氧化碳,其中的86%来自化石燃料燃烧,14%由土地利用变化造成。这400亿吨二氧化碳中的184亿吨(46%)加入到大气中,导致大约2ppmv的大气二氧化碳浓度增加。所谓碳中和,就是要使大气二氧化碳浓度不再增加。我们可以这样设想:我们的经济社会运作体系,即使到有能力实现碳中和的阶段,一定会存在一部分“不得不排放的二氧化碳”,对它们一方面还会有54%左右的自然固碳过程,余下的那部分,就得通过生态系统固碳、人为地将二氧化碳转化成化工产品或封存到地下等方式来消除。只有当排放的量相等于固定的量之后,才算实现了碳中和。由此可见,碳中和同碳的零排放是两个不同的概念,它是以大气二氧化碳浓度不再增加为标志。二氧化碳排放来源及实现碳中和的基本逻辑 我国当前二氧化碳年排放量大数在100亿吨左右,约为全球总排放量的四分之一。这样较大数量的排放主要由我国的能源消费总量和能源消费结构所决定。我国目前的能源消费总量约为50亿吨标准煤,其中煤炭、石油和天然气三者合起来占比接近85%,其他非碳能源的占比只有15%多一点。在煤、油、气三类化石能源中,碳排放因子最高的煤炭占比接近70%。我国能源消费结构中,煤炭占比如此之高,在世界主要国家中是绝无仅有的。约100亿吨二氧化碳的年总排放中,发电和供热约占45亿吨,建筑物建成后的运行(主要是用煤和用气)约占5亿吨,交通排放约占10亿吨,工业排放约占39亿吨。工业排放的四大领域是建材、钢铁、化工和有色,而建材排放的大头是水泥生产(水泥以石灰石(CaCO3)为原料,煅烧成氧化钙(CaO)后,势必形成二氧化碳排放)。电力/热力生产过程产生的二氧化碳排放,其“账”应该记到电力消费领域头上。根据进一步研究,发现这45亿吨二氧化碳中,约29亿吨最终也应记入工业领域排放,约12.6亿吨应记入建筑物建成后的运行排放。所以我们说,我国工业排放约占总排放量的68%,如此之高的占比在所有主要国家中,也是绝无仅有的,这是我国作为“世界工厂”、处在城镇化快速发展阶段、经济社会出现压缩式发展等因素所决定的。根据我国二氧化碳的排放现状,我们就非常容易作出这样的推断:中国的碳中和需要构建一个“三端共同发力体系”:第一端是电力端,即电力/热力供应端的以煤为主应该改造发展为以风、光、水、核、地热等可再生能源和非碳能源为主。第二端是能源消费端,即建材、钢铁、化工、有色等原材料生产过程中的用能以绿电、绿氢等替代煤、油、气,水泥生产过程把石灰石作为原料的使用量降到最低,交通用能、建筑用能以绿电、绿氢、地热等替代煤、油、气。能源消费端要实现这样的替代,一个重要的前提是全国绿电供应能力几乎处在“有求必应”的状态。第三端是固碳端,可以想见,不管前面两端如何发展,在技术上要达到零碳排放是不太可能的,比如煤、油、气化工生产过程中的“减碳”所产生的二氧化碳,又比如水泥生产过程中总会产生的那部分二氧化碳,还有电力生产本身,真正要做到“零碳电力”也只能寄希望于遥远的将来。因此,我们还得把“不得不排放的二氧化碳”用各种人为措施将其固定下来,其中最为重要的措施是生态建设,此外还有碳捕集之后的工业化利用,以及封存到地层和深海中。电力供应端的技术需求传统上,电力供应系统包括了发电、储能和输电三大部分,从现在业界经常谈到的“新型电力供应系统”的角度,还应把用户也统筹考虑在内。从实现碳中和的角度,我国未来的电力供应系统应该具备以下六方面特点:一是电力装机容量要成倍扩大。我国 目前的发电装机容量在24亿千瓦左右,如果考虑以下因素: (1)未来要实现能源消费端对化石能源的绿电替代和绿氢替代; (2)从世界大部分先发国家走过的历程看,人均GDP从一万美元到三四万美元之间,人均能源消费量还会有比较明显的增长; (3)风、光等波动性能源的“出工能力”只有传统火 电的三分之一左右,那么我国2060年前的装机容量至少需要60亿到80亿千瓦。二是风、光资源将逐步成为主力发电和供能资源。其 中西部风、光资源和沿海大陆架风力资源是主体,各地分散式 (尤其是农村) 光热资源是补充。三是“稳定电源”将从目前的火电为主逐步转化为以核电、水电以及综合互补的非碳能源为主。四是必须利用能量的存储、转化、调节等技术,弥补风、光资源波动性大的天然缺陷。五是火电还得有,但主要作为应急电源和一部分调节电源之用。与此同时,火电应完成清洁、低碳化改造,有条件的情况下,用天然气代替煤炭,以降低二氧化碳排放强度。六是在现有基础上,成倍扩大输电基础设施,把西部充沛的电力输送到中东部消纳区。与此同时,加强配电基础设施建设,增强对分布式能源的消纳能力。在这样的电力供应系统中,碳中和本身的目标要求未来电力的70%左右来自风、光发电,其他30%的稳定电源、调节电源和应急电源也要尽可能地减少火电的装机总量。正因为如此,未来需要促进发电技术、储能技术和输电技术这三方面的“革命性”进步。发电技术要为绿色低碳电力生产提供支撑。这里面需重点促进可再生能源发电技术的进步,特别是要注重发展以下技术:(1)光伏发电技术虽已发展到可平价上网的程度,但这类技术在降成本、增效率上还有潜力可挖;(2)太阳能热发电技术对电网友好,既可保证稳定输出,也可用于调峰,但目前发电成本过高,未来应在材料、装置上寻求突破;(3)风力发电技术也基本具备平价上网的条件,未来要在大功率风机制造、更高空间风力的利用、更远的海上风电站建设上下功夫;(4)地热分布广、总量大,但能量密度太低,如要将地热用于发电,还得重点突破从干热岩中提取热能的技术;(5)生物质能也是可再生能源,目前生物质能发电技术是成熟的,但其在总的电力供应上的占比较为有限;(6)海洋能和潮汐能的总量不小,但其利用技术有待进步;(7)传统的水电我国开发程度已经较高,未来在雅鲁藏布江、金沙江上游开发上还有较大潜力。除以上可再生能源发电以外,社会公众还得接受这样的现实:要达到碳中和,核电还得较大程度地发展,因为核电应作为“稳定电源”的重要组成部分。此外,火电还得在“稳定电源”“应急电源”“调节电源”方面发挥作用,正因为如此,“无碳电力”在很长时期内是难以实现的,除非我们把火电站排放出的二氧化碳收集起来再予以封存或利用。储能技术在未来的电力供应系统中将占有突出的位置,这是因为风、光发电具有天然波动性,用户端也有波动性,这就需要用储能技术作出调节。可以这样说,如果没有环保、可靠并相对廉价的储能技术,碳中和目标就会落空。储能是最重要的电力灵活性调节方式,包括物理储能、化学储能和电磁储能三大类,而灵活性调节还有火电机组的灵活性改造、车网互动、电转燃料、电转热等方式和技术。物理储能主要有四类:一是抽水蓄能电站,它是最成熟的技术,我国以东部山地为依托,已建、在建和规划中的抽水蓄能电站总量很大,但可再生能源丰富的西部如何建抽水蓄能电站还得探索。二是压缩空气储能,主要是利用地下盐穴、矿井等空间,该类技术在我国还处在起步阶段。三是重力储能,简单地说是利用悬崖、斜坡等地形,电力有余时把重物提起来,需要电力时把重物放下用势能做功,这类技术我国尚处在试验阶段。四是飞轮储能,这是成熟的技术,但其能量密度不高。化学储能就是利用各类电池,大家熟知的有锂电池、钠电池、铅酸(碳)电池、液流电池、液态金属电池、金属空气电池、燃料电池(氢、甲烷)等。不同的电池有不同的应用场景,它们在未来的电力供应系统中具有不可或缺的地位,但今后会遇到电池回收、环保处理、资源供应等问题。电磁储能主要是超级电容器和超导材料储能,目前看,它的作用还有待观察。现有火电机组的灵活性改造是指使其“出工能力”具备灵活性,用电高峰时机组可以发挥100%发电能力,用电低谷时只“出工”20%或30%。这个技术一旦成熟,应该非常管用,尤其在实现“双碳”目标的早中期阶段,应将其作为主打技术。车网互动是指电动汽车与电网的互动。简单地说,今后大量的电动汽车整合起来就是一个非常庞大的储能系统,如果在电网电力有余时,它们中的一部分集中充电,而电力不足时,它们中的一部分向电网输电,这样就起到了平滑峰谷的作用。这个想法很美好,也有点“浪漫”,但如何将理论上的可能性转化为实践中的可行性,估计还得创新商业模式。电转燃料就是把多余电力转化为氢气、甲烷等燃料,电力不足时再把燃料用于发电。电转热储能则是用水、油、陶瓷、熔盐等储热材料把多余的电转化为热储存,需要时再为用户放热。新型电力供应系统的第三个主要组成部分是输电网络。从实现碳中和的逻辑分析,我国未来的电网将有以下几个突出特点:(1)远距离的输电规模将在现有的基础上增加数倍,意味着要把西部的清洁电力输送到东部消纳区,输电基础设施建设的需求巨大;(2)为了统筹、引导大空间尺度上的发电资源和用户需求,大电网应是基本形态;(3)贴近终端用户(如工业园区、小城镇等)的分布式微电网建设将受到重视,并将成为大电网的有效补充;(4)为解决波动性强的可再生能源占比高、电力电子装置比例高的特点,需要在电网的智能化控制技术上实现质的飞跃。从上面的介绍可知,建立一个新型电力系统,其实是逐步“挤出”火电的过程,或者严格地说,是一个把火电装机量占比减到最小的过程,留下的火电也得作“清洁化”改造。我国具有充足的风能、太阳能,从理论上讲,资源绝对足够。但能不能把这些分布广、能量密度低的风、光资源利用起来,并保证电价相对便宜,研发出先进的技术,尤其是储能技术是关键中的关键!能源消费端的技术需求能源消费端的减碳有两个关键词,一是替代,二是重建。所谓替代就是用绿电、绿氢、地热等非碳能源替代传统的煤、油、气,而重建则强调在替代过程中,一系列工艺过程需要重新建立。对此,我们可分九个领域,对能源消费端的低碳化所需研发的技术或替代方式分别作出简单介绍:1、建筑部门应在三个方面发力。首先是对建筑本身作出节能化改造;其次是针对城市的建筑用能,包括取暖/制冷和家庭炊事等,均应以绿电和地热为主;农村的家庭用能,则可采用屋顶光伏+浅层地热+生活沼气+太阳能集热器+外来绿电的综合互补方式。2、交通部门可着眼于五个方面。未来私家车以纯电动车为主;重卡、长途客运可以氢燃料电池为主;铁路运输以电气化改造为主,特殊地形和路段可采用氢燃料电池,同时发展磁悬浮高速列车;船舶运输行业中的内河航运可用蓄电池,远航宜用氢燃料电池或以二氧化碳排放相对较少的液化天然气作为动力;航空则可用生物航空煤油达到低碳目标。3、钢铁行业碳排放主要来自炼焦和焦炭炼铁,它可分两阶段实现低碳化。第一阶段是对炼焦炉、高炉等的余热、余能作充分利用,同时用钢化联产的方式把炼钢高炉中的副产品充分利用起来。第二阶段是逐步用新的低碳化工艺取代传统工艺,研发和完善富氧高炉炼钢工艺,炼钢过程中以绿氢作还原剂取代焦炭,对废钢重炼用短流程清洁炼钢技术等。4、我国建材行业的排放主要来自水泥、陶瓷、玻璃的生产,其中80%来自水泥。建材行业低碳化应从三方面研发技术,一是用电石渣、粉煤灰、钢渣、硅钙渣、各类矿渣代替石灰石作为煅烧水泥的原料,从原料利用上减少碳排放的可能性;二是煅烧水泥时,尽可能用绿电、绿氢、生物质替代煤炭;三是用绿电作能源生产陶瓷和玻璃。5、化工排放来自两大方面,一是生产过程用煤、天然气作能源,二是用煤、油、气作原材料生产化工产品时的“减碳”,比如用煤生产乙烯,需要加氢减碳,其中加的氢如果不是绿氢,就会有碳排放,减的碳一般会作为二氧化碳排放到大气中。因此,化工行业的低碳化应从四个方面入手,一是蒸馏、焙烧等工艺过程用绿电、绿氢;二是对余热、余能作充分的利用;三是适当控制煤化工规模,条件许可时尽量用天然气作原料;四是对二氧化碳作捕集—利用处理。6、有色工业中的碳排放主要来自选矿、冶炼两个过程,在整个冶金行业排放中,铝工业排放占比在80%以上,因为电解铝工艺用碳素作阳极,碳素在电解过程中会被氧化成二氧化碳排放。因此,冶金工业的低碳化一是在选矿、冶炼过程中尽可能用绿电;二是研发绿色材料取代电解槽中的碳素阳极;三是对电解槽本身作出节能化改造;四是对铝废金属作回收再生利用。7、在其他工业领域中,食品加工业、造纸业、纤维制造业、纺织行业、医药行业等也有一定量的碳排放,其排放来源主要有两个方面:一是生产加工过程中用的煤、油、气,二是其废弃物产生的排放。这些行业的低碳化改造主要在于用绿电替代化石能源,同时做好废弃物的回收再利用。8、服务业是一个庞大的领域,但服务业以“间接排放”为主,即服务业用电一般被统计到电力系统碳排放中,运输过程中的用油一般被统计到交通排放中,建筑物中的用能(包括餐饮业的用气)则被统计到建筑排放中,似乎“直接排放”的量并不大。但这样说,并不是说服务业可以置身于低碳化之事外,恰恰相反,服务业亦有可以“主动作为”的地方,这一方面是大力做好节能工作,另一方面是尽可能用电能替代化石能源的使用。9、农业的碳排放主要来自农业机械的使用,与此同时,农业中的畜牧养殖业以及种植业是甲烷(CH4)、氧化亚氮(N2O)的主要排放源,而这二者的温室效应能力是同当量二氧化碳的数十倍至数百倍。从这样的前提出发,农业的低碳化一是农业机械用绿电、绿氢替代柴油作动力;二是从田间管理的角度,挖掘能减少甲烷和氧化亚氮排放但不影响作物产量的技术;三是研发出减少畜牧业碳排放的技术;四是尽可能增加农业土壤的碳含量。根据这九方面的介绍,我们可以看出:在能源消费端用绿电、绿氢等替代煤、油、气,从理论上讲是不难做到的,但工艺和设备的再造重建绝不是一件简单的事。同时我们也可以想象,这样的替代和重建一定会增加最终消费品的成本。所以说,替代和重建需要时间。固碳端的技术需求提起固碳,我们首先想到的是自然过程,即通过海洋和陆地表面把大气中的二氧化碳吸收固定。但这里必须指出,人类活动每年都向大气中排放二氧化碳,这其中的一部分可以被自然过程所吸收,余下部分如不通过人为手段予以固定,则大气中的二氧化碳浓度还会逐年增高。我们讲固碳,主要是指通过人为努力固定下的那部分,而地球自然固碳过程则属于“天帮忙”,很难归功于具体的国家或实体。“人努力”进行固碳一般可分两大途径,一是生态系统的保育与修复,二是把二氧化碳捕集起来后,或加工成工业产品,或封埋于地下或海底,这第二方面就是经常谈到的“碳捕获、利用与封存”——CCUS(Carbon Capture and Utilization-Storage)。公众对生态系统固碳都比较熟悉,它是利用植物光合作用吸收大气中的二氧化碳,所吸收的碳有一部分长久保存在植物本身之中(比如树干),也会有一部分凋落后(比如树叶)腐烂进入土壤中以有机碳的形式得到较为长期的保存,当然有机碳也会部分转化成无机碳并同地表系统中的钙离子结合形成石灰石沉积。地表生态系统尽管类型多样,但真正起主要作用的还是森林生态系统,这是因为森林中的各种树木都有很长的生长期,在树木适龄期内,固碳作用可持续进行;当树木进入成熟期,固碳能力就会减弱,但人们可以通过砍伐—再造林的方式继续保持正向固碳作用,而砍伐的木材可以做成家具等产品,不至于把多年来固定的碳快速返还给大气。因此,生态系统固碳的重点在于森林生态系统,森林生态系统的管理一在于保育,二在于扩大面积。我国有大量适宜森林生长的山地,这些地区过去生态受到过较大程度的破坏,最近几十年来,一直处在恢复之中,而这些人工次生林或乔/灌混杂林都很“年轻”,有进一步发育、固碳的潜力。同时,我国又有不少非农用地可作造林之用,包括近海的滩涂种植红树林,城市乡村的绿化用地种植树木。所以说,生态系统建设在我国实现碳中和过程中将起到至关重要的作用。人为固碳的另一条途径是CCUS,它包括碳捕集技术、捕集后的工业化利用技术(分为生物利用和化工利用两大类)、地质利用和封存技术。对这些技术,国内外尚处在研发阶段,真正大面积的应用尚未见到。碳捕集技术分三大类:一是化学吸收法 ,它用化学吸收剂同烟道气中的二氧化碳生成盐类,再加热或减压将二氧化碳释放并收集。二是吸附法 ,又细分为化学吸附法和物理吸附法。化学吸附法是用吸附材料同二氧化碳分子先作化学键合,再改变条件把二氧化碳分子解吸附并收集;物理吸附法是利用活性炭、天然沸石、分子筛、硅胶等对烟道气中的二氧化碳作选择性吸附后再解吸附回收。三是膜分离法 ,即利用膜对气体分子透过率的不同,达到分离、收集二氧化碳之目的。在具体操作上,碳捕集还可分为燃烧前捕集、燃烧后捕集、化学链燃烧捕集、生物质能碳捕集、从空气中直接捕集等技术。碳捕集后的工业化生物利用技术目前主要有四大类:一是利用二氧化碳在反应器中生产微藻,这些微藻再用作生产燃料、肥料、饲料、化学品的原料。二是将捕集到的二氧化碳注入温室中,用以增加温室中作物的光合作用,这个过程又可称为二氧化碳施肥。三是把二氧化碳同微生物发酵过程相结合,生成有机酸。四是把二氧化碳用于合成人工淀粉。碳捕集后的工业化化工利用又分两大类技术途径,一大类是把二氧化碳中的四价态碳还原后加甲烷、氢气等气体,再整合成甲醇、烯烃、成品油等产品。另一大类为非还原技术,有二氧化碳加氨气后制成尿素、加苯酚后合成水杨酸、加甲醇后合成有机酸酯等技术,也有合成可降解聚合物材料、各类聚酯材料等技术。地质利用技术也有很多类型,这些技术有的已在工业化示范中,有的尚停留在实验室探索阶段。比如利用收集起来的二氧化碳驱油、驱煤层气、驱天然气、驱页岩气等,这属于油气开采领域的应用,这类技术的一个共性是通过生产性钻孔把超临界的二氧化碳压到地层中,利用它驱动孔隙、裂隙中的油、气流出开采性钻孔,达到油气增产或增加油气采收率的目的,与此同时,二氧化碳则滞留在孔隙、裂隙中得以长期封存。该类技术国内外已有工业应用示范。而另一些技术则在探索过程中,比如用于开采干热岩中的地热。干热岩埋深在数千米,其内部基本没有流体存在,温度在180℃以上,开采干热岩中的热能需要打生产井并用压裂手段使岩石增加裂隙,然后在生产井中注入工作介质,让其流动并采集热量,最后从开采井中收集热量。一些研究表明:用二氧化碳作为工作介质,既起到开采干热岩热量的作用,又可把部分二氧化碳封存于地下。地质封存技术则是把二氧化碳收集后直接通过钻孔注入地下深处或灌入深部海水中。这里要特别指出:深海对二氧化碳的溶解保存能力是巨大的。总之,固碳的技术有多种,但这些技术不可避免地需要额外能量加入,因此有可能把最终产品的成本提高一大块。至于地质封存,尽管理论和实践上可行,但它似有“空转”之嫌。从现阶段看,只有生态固态才可兼顾经济效益和社会效益。碳中和的路线图规划实现碳中和,是一个长期过程,需要有一个指导全局性工作的规划,并根据形势的发展、技术的进步,能形成不断完善规划的工作机制。我国的目标是2060年前实现碳中和,显然在目前的认知水平下,要做一个能覆盖近40年时间长度的规划是不太现实的,但有一点我们是必须一开始就要做到心中有数的,那就是我国到时候还可以排放多少二氧化碳,或者说从目前约100亿吨的二氧化碳排放减少到多少才可以宣布完成了碳中和目标。这个问题不易确切回答,但寻找答案的思路是具备的,那就是“排放量=海洋吸收量+生态系统固碳量+人为固碳量+其他地表过程固碳量”这个公式。对此,我们可以逐项做出分析。过去几十年,海洋对人为排放二氧化碳的吸收比例为23%,这个过程还是比较稳定的,尽管我们很难预测未来是否会产生重大改变,但假定海洋将保持这个吸收比例不变,应该是有依据的。我国陆地生态系统固碳能力非常强。根据相关研究,2010—2020年间我国陆地生态系统每年的固碳量为10亿—13亿吨二氧化碳;一些专家根据这套数据并采用多种模型综合分析后,预测2060年我国陆地生态系统固碳能力为10.72亿吨二氧化碳/年,如果增强生态系统管理,还可新增固碳量2.46亿吨二氧化碳/年,即2060年我国陆地生态系统固碳潜力总量为13.18亿吨二氧化碳/年。此外,我国近海的生态系统固碳工程还没启动,这块儿也应该有较大潜力。至于把碳捕集后作工业化利用及封存的量有多大,这要取决于技术水平与经济效益,目前要对此作出估计是有难度的。但我们也可以作出这样的假定:如果届时实现碳中和有“缺口”,政府将对人为工业化固碳予以补贴,争取每年达到3亿—5亿吨二氧化碳的工业化固碳与地质封存。以中国的工业技术发展速度,这个假定还是相对“保守”的。其他地表过程固碳是指地下水系统把有机碳转化成石灰石沉淀、水土侵蚀作用把有机碳埋藏于河流—湖泊系统之中等地表过程,它一年能固定的碳总量目前没有系统研究数据,但粗略估计中位数在1亿吨二氧化碳左右。为此,我们可以做出这样的分析,假如我国2060年前后二氧化碳年排放量在25亿吨左右,那么海洋可吸收25×23%=5.75亿吨二氧化碳,陆地和近海生态系统固碳14亿吨二氧化碳,工业化固碳和地质封存4亿吨二氧化碳左右,基本上可以做到“净零排放”。当然,要从100亿吨的二氧化碳排放量降到25亿吨,难度亦是非常之大的,这需要我们先有一个宏观的粗线条规划。根据我国五年规划的惯例,可考虑以两个五年规划为一个阶段,分四个阶段,四十年时间实现碳中和目标:第一步为“控碳阶段”,争取到2030年把碳排放总量控制在100亿吨之内,即“十四五”期间可比目前增一点,“十五五”期间再减回来。在这第一个十年中,交通部门争取大幅度增加电动汽车和氢能运输占比,建筑部门的低碳化改造争取完成半数左右,工业部门利用煤+氢+电取代煤炭的工艺过程大部分完成研发和示范。这十年间电力需求的增长应尽量少用火电满足,而应以风、光为主,内陆核电完成应用示范,制氢和用氢的体系完成示范并有所推广。第二步为“减碳阶段”,争取到2040年把二氧化碳排放总量控制在85亿吨之内。在这个阶段,争取基本完成交通部门和建筑部门的低碳化改造,工业部门全面推广用煤/石油/天然气+氢+电取代煤炭的工艺过程,并在技术成熟领域推广无碳新工艺。这十年火电装机总量争取淘汰15%落后产能,用风、光资源制氢和用氢的体系完备及大幅度扩大产能。第三步为“低碳阶段”,争取到2050年把二氧化碳排放总量控制在60亿吨之内。在此阶段,建筑部门和交通部门达到近无碳化,工业部门的低碳化改造基本完成。这十年火电装机总量再削减25%,风、光发电及制氢作为能源主力,经济适用的储能技术基本成熟。据估计,我国对核废料的再生资源化利用技术在这个阶段将基本成熟,核电上网电价将有所下降,故用核电代替火电作为“稳定电源”的条件将基本具备。第四步为“中和阶段”,力争到2060年把二氧化碳排放总量控制在25亿—30亿吨。在此阶段,智能化、低碳化的电力供应系统得以建立,火电装机只占目前总量的30%左右,并且一部分火电用天然气替代煤炭,火电排放二氧化碳力争控制在每年10亿吨,火电只作为应急电力和一部分地区的“基础负荷”,电力供应主力为光、风、核、水。除交通和建筑部门外,工业部门也全面实现低碳化。尚有15亿吨的二氧化碳排放空间主要分配给水泥生产、化工、某些原材料生产和工业过程、边远地区的生活用能等“不得不排放”领域。其余5亿吨二氧化碳排放空间机动分配。“四阶段”路线图只是一个粗略表述,由于技术的进步具有非线性,所谓十年一时期也只是为表达方便而定。碳中和带来的机遇和挑战从前面的介绍可知,实现碳中和,可以理解为经济社会发展方式的一场大变革,对当今世界的任何一个国家来说,都是一场巨大的挑战。对我们来说,主要的挑战在以下六个方面:一是我国的能源禀赋以煤为主。在煤、油、气这三种化石能源中,释放同样的热量,煤炭排放的二氧化碳量大大高于天然气,也比石油高不少。我国的发电长期以煤为主,这同石油、天然气在火电中占比很高的那些欧美发达国家比,是资源性劣势。二是我国制造业的规模十分庞大。我们在前面的介绍中提到,我国接近70%的二氧化碳排放来自工业,这个占比高出欧美发达国家很多,这同我国制造业占比高、“世界工厂”的地位有关。三是我国经济社会还处于压缩式快速发展阶段,城镇化、基础设施建设、人民生活水平提升等方面的需求空间巨大。四是我国的能源需求还在增长,意味着我国的二氧化碳排放无论是总量还是人均都会继续增长。五是我国2030年达峰后到2060年中和,其间只有30年时间,而美国、法国、英国从人均碳排放量考察,在20世纪70年代就达峰了,它们从达峰到2050年中和,中间有80年的调整时间。为了更加清晰地阐明碳中和对我国的挑战性,我们下面用几组碳排放有关的数据,以国际比较的方式,来做进一步说明。第一组数据是从1900年到2020年间,不同国家的累计二氧化碳排放量(以亿吨二氧化碳为单位),美国为4047,欧盟27国为2751,中国为2307,俄罗斯为1152,日本为655,英国为618,印度为545,墨西哥为201,巴西为156。这个累计排放量可大略表明一个国家长期以来积累起来的“家底”。上述统计没有考虑人口基数,因此我们需要第二组数据,1900年到2020年间的人均累计排放,这套数据以国家为单位,把每年的全国排放除以人口,获得逐年人均排放,再把这120年来的人均排放加和即可得出(数据以吨二氧化碳为单位),具体为:美国2025,加拿大1522,英国1209,俄罗斯848,欧盟27国713,日本575,墨西哥295,中国190,巴西107,印度58,全球人均累计为375,中国迄今为止只有全球人均的一半,不到美国的十分之一。第三组数据是目前以国家为单位的排放量(以亿吨二氧化碳为单位),具体是:中国100,美国52,欧盟27国30,印度25,俄罗斯16,日本11。如果考虑人均,那么有第四组数据(2016年到2020年人均排放,以吨二氧化碳为单位),具体是:美国15.9,加拿大15.3,俄罗斯11.4,日本9,中国7.2,欧盟27国6.6,巴西2.3,印度1.9。从以上四组数据可知,我国最近几十年的发展具有压缩性特征,故目前的人均和国别排放数据比较高,这也是掌握话语权的西方媒体不断给我国戴上“最大排放国”,甚至是“最大污染国”帽子的所谓“理由”。但如果考察人均累计排放,我国对全球的“贡献”非常小。另外,我国的人均GDP已达全球平均水平,而人均累计排放只是全球的一半,这还是在我国能源以煤炭为主、每年净出口大量制造业产品的基础上达到的,由此说明我国绝不是如一些研究者所说的是“能源资源消耗型”经济体。第五组数据很有意思,它是由国际能源署、世界银行等建立的居民人均消费碳排放,它考虑了国家间通过进出口而产生的“碳排放转移”。2018年到2019年间的数据如下(单位为吨二氧化碳):美国15.4,德国7.6,加拿大7.5,日本7.4,俄罗斯7.0,英国5.7,法国4.4,中国2.7,巴西1.5,印度1.1。这组数据说明,世界上一些国家只是“生存型碳排放”,而有的国家早已进入“奢侈型”或“浪费型”国家行列!前面我们谈了碳中和对中国的五方面挑战,下面再谈五点机遇:一是我国光伏发电技术在世界上已是“一骑绝尘”,风力发电技术处在国际第一方阵,核电技术也跨入世界先进行列,建水电站的水平更是无出其右者。二是我国西部有大量的风、光资源,尤其是西部的荒漠、戈壁地区,是建设光伏电站的理想场所,光伏电站建设还可带来生态效益;东部我们有大面积平缓的大陆架,可以为海上风电建设提供大量场所。三是我国的森林大都处在幼年期,还有不少可造林面积,加之草地、湿地、农田土壤的碳大都处在不饱和状态,因此生态系统的固碳潜力非常大。四是我们实现碳中和目标的过程,也是环境污染物排放大大减少的过程,这意味着我们将彻底解决大气污染问题,其他污染物排放也将实质性降低。此外,碳中和也意味着我们将实现能源独立,国内自产的原油、天然气将能满足化工原料之需要,进口油气将大为减少,所谓的“马六甲困境”将不再是一个实质性威胁。能源独立从某种程度上还会为粮食安全提供助力。五是我国的举国体制优势将在碳中和历程中发挥重大作用,因为碳中和涉及大量的国家规划、产业政策、金融税收政策等内容,需要真正下好全国一盘棋。这点我们从我国推动光伏产业的历程中就可以看出,并且诸如此类的经验未来还会不断被总结、深化。我们甚至可以预计,即使是坚持自由市场经济的那些国家,它们如想真正实现碳中和,也将在国家产业政策设计上获得助力。
  • 赛默飞世尔科技推出新型600W X射线光谱仪
    ECUBLENS, 瑞士(2010年6月1日)-世界服务科学领域的领导者赛默飞世尔科技公司宣布,Thermo Scientific ARL 9900 IntelliPower系列X射线光谱仪有了新成员。新的ARL 9900 IntelliPower 600在600W的功率下运行,可以配备一个游离氧化钙通道,满足水泥工业的大部分分析要求,性能优越,价格合理。  ARL 9900 IntelliPower 600可以配备XRF固定通道,每个通道专门对单个元素进行快速精确的分析。最多可以配备12个固定通道,同时分析水泥工业通常需要检测的元素(或氧化物),包括测定水泥的矿渣添加物中的硫(或硫化物)。ARL 9900 IntelliPower 600也可以无需任何气体进行操作,分析包括钠在内的所有元素。  另外,ARL 9900 IntelliPower 600可以配备两种Thermo Scientific测角仪—SmartGonio™ 和F45通用测角仪,快速而高度准确的无齿轮测角仪可以程控进行定性和定量分析。其莫尔条纹技术提供了优秀的角度定位和高质量的顺序X射线光谱分析能力。SmartGonio用于分析从氟到铀的所有元素,能够满足大部分水泥实验室的分析要求。F45通用测角仪用于测定更轻的元素,例如碳元素。两种测角仪完全满足非常规元素的分析要求,并可以辅助XRF的所有固定通道。与合适的软件包,例如UniQuant™ 或QuantAS™ 联用,可以实现无标样分析。  游离氧化钙通道是一种专用的紧凑型一体化的X射线衍射系统,整个系统由新型的微处理器控制,为水泥熟料中游离氧化钙的分析提供智能化解决方案,有利于水泥厂进行炉窑控制。另外,它可以用于测定炉渣(GBFS,粒化高炉矿渣)中的游离氧化钙 如果在高功率水平下应用,它可以用于分析原材料中的石英,解决水泥质量控制的难题,也可以监测热料煅烧和石灰石添加过程。因此,游离氧化钙通道可以降低水泥厂的成本,提高整体产品的质量。
  • 【网络研讨会】节能降碳,马尔文帕纳科先进分析技术如何助力水泥企业低碳生产!
    《先进分析技术助力水泥企业低碳生产》u 活动日期:12月3日(周五)u 活动时间:14:00-16:00u 活动形式:在线网络研讨会u 技术关键词:XRF、XRD、粒度粒型 点击报名 目前,随着距离2030年“碳达峰”目标的期限越来越近,国家对高能耗企业的节能降耗要求进一步加强,水泥行业作为仅次于电力的高碳排行业,水泥企业又该如何找到一条产业结构调整的成功之路? 我们知道水泥行业的高能耗属性是由于其产品性质和工艺特点决定,其碳排放主要集中在熟料生产过程,各种原材料混合研磨得到的生料,送入水泥窑中高温煅烧,再产出熟料。这一过程,既要使用外购电力、又要燃烧化石能源,并在石灰石分解过程中产生大量二氧化碳,而这些都是水泥行业碳排放的主要来源。 想要降低能耗,不但要推广更为先进的烧成技术,还需要加快原燃材料的清洁替代,例如使用电石渣等替代部分石灰石、生物废弃物或生活垃圾等作为替代燃料降低石油燃料的消耗,以及顺应原燃料变化、精细化的生产过程控制。如何在确保产品质量的前提下更好的进行清洁低碳改造?如何更加精细化的控制生产过程进一步降能增效,这些都离不开不断进步的分析检测技术的助力。 为了解答这些水泥企业关心的问题,马尔文帕纳科将于12月3日(周五)举办《先进分析技术助力水泥企业低碳生产》为主题的网络研讨会,届时将由资深应用工程师介绍最新的XRF、XRD技术在应对水泥行业低碳生产清洁原燃材料所需的分析解决方案,以及马尔文帕纳科激光粒度分析技术如何确保水泥的质量和强度,相比传统的干筛/水筛法又有何优势呢?一堂生动的讲座从分析技术角度帮您解决问题,精彩内容不容错过,期待您的关注和参与! 主讲人信息: 张 华 女士,资深 XRF 应用专家马尔文帕纳科资深XRF应用专家。是90年代初期最早的一批在丹麦F.L.Smidth公司接受新型干法回转窑水泥生产工艺及质控培训的专业技术人员。曾在海螺集团从事多年的质量控制,在马尔文帕纳科公司超过15年的荧光仪应用经历,对分析仪器在水泥行业的应用有着较为全面的了解和丰富的经验。 张彦瑜 女士,XRD 应用工程师马尔文帕纳科XRD应用工程师。2017年于瑞典乌普萨拉大学获理学硕士学位,2018年加入马尔文帕纳科公司,从事X射线衍射仪的应用及X射线粉末衍射等的相关技术支持工作。 张瑞玲 女士,应用实验室主管张瑞玲,马尔文帕纳科应用实验室主管。2006年毕业于电子科技大学应用化学专业,2013 年加入马尔文帕纳科公司,一直从事激光粒度仪、纳米粒度仪的应用和技术支持工作。
  • 莱驰参加水泥化学分析大对比总结表彰会
    德国RETSCH(莱驰)参加全国水泥化学分析大对比总结表彰会  12月22日,第十一次全国水泥化学分析大对比总结表彰会在杭州召开,来自全国约160家水泥行业的先锋单位参与该表彰会,德国RETSCH(莱驰)中国总部作为协办单位应邀参加会议并做报告。     国家水泥质量监督检验中心副主任王雅明主持了当天的会议,浙江省建材科技有限公司建材质量检测中心站长赵观水发言,国家水泥质量监督检验中心主任倪竹君对全国水泥化学分析大对比作了总结。国家水泥质量监督检验中心副部长崔健宣读获奖名单和颁奖。    在下午的技术报告部分,德国RETSCH(莱驰)华东区销售经理冯伟先生就“水泥行业的样品制备”进行了详细的讲解。德国RETSCH公司成立于1915年,是实验室取制样仪器的开山鼻祖,几十年来一直成为固体样品前处理领域中的领头羊,在水泥行业可用到的产品包括了取样、粗粉碎、分样、细粉碎、筛分、压片。比如BB系列颚式破碎仪可以对石灰石等熟料进行初级粉碎,然后用RS200振动盘式研磨仪进行快速的精细研磨,再用PP40自动压片机进行压片,最后就可以用X荧光进行元素分析和检测 对于次生燃料,则可以用SM2000重型切割粉碎仪和ZM200超离心研磨仪进行配套的粉碎,此外,RETSCH公司还提供不同型号的AS系列筛分仪,其专利的三维抛动技术使得RETSCH筛分仪在该领域享有声誉!  当然,中国的水泥行业由于经费和观念问题,对于进口取制样设备的了解还处于初级阶段,仅仅只有拉法基等几家大型水泥企业购买了进口的取制样仪器,此次全国水泥化学分析大对比会议一方面让使用单位了解了RETSCH的品牌和产品,一方面也让RETSCH公司了解了国内用户对该产品的需求和要求,RETSCH公司一定会再接再厉,让水泥界了解RETSCH品质,为促进全国水泥行业产品质量控制提供应有的服务!  德国RETSCH―――精于工,卓于质!
  • 国标委发布47项检测方法国家标准
    国家标准编号国  家  标  准  名  称代替标准号实施日期GB/T 208-2014水泥密度测定方法GB/T 208-19942014-12-01GB/T 3286.5-2014石灰石及白云石化学分析方法 第5部分:氧化锰含量的测定 高碘酸盐氧化分光光度法GB/T 3286.5-19982015-01-01GB/T 3286.8-2014石灰石及白云石化学分析方法 第8部分:灼烧减量的测定 重量法GB/T 3286.8-19982015-01-01GB/T 3286.9-2014石灰石及白云石化学分析方法 第9部分:二氧化碳含量的测定 烧碱石棉吸收重量法GB/T 3286.9-19982015-01-01GB/T 3558-2014煤中氯的测定方法GB/T 3558-19962014-10-01GB/T 4633-2014煤中氟的测定方法GB/T 4633-19972014-10-01GB/T 5059.1-2014钼铁 钼含量的测定 钼酸铅重量法、偏钒酸铵滴定法和8-羟基喹啉重量法GB/T 5059.1-19852015-01-01GB/T 5059.2-2014钼铁 锑含量的测定 孔雀绿分光光度法GB/T 5059.2-19852015-01-01GB/T 5059.3-2014钼铁 铜含量的测定 火焰原子吸收光谱法GB/T 5059.3-19852015-01-01GB/T 5059.5-2014钼铁 硅含量的测定 硫酸脱水重量法和硅钼蓝分光光度法GB/T 5059.5-19862015-01-01GB/T 5059.7-2014钼铁 碳含量的测定 红外线吸收法GB/T 5059.7-19882015-01-01GB/T 5161-2014金属粉末 有效密度的测定 液体浸透法GB/T 5161-19852014-12-01GB/T 5447-2014烟煤黏结指数测定方法GB/T 5447-19972014-10-01GB/T 5448-2014烟煤坩埚膨胀序数的测定 电加热法GB/T 5448-19972014-10-01GB/T 5450-2014烟煤奥阿膨胀计试验GB/T 5450-19972014-10-01GB/T 6730.71-2014铁矿石 酸溶亚铁含量的测定 滴定法 2015-01-01GB/T 8358-2014钢丝绳 实际破断拉力测定方法GB/T 8358-20062015-01-01GB/T 13480-2014建筑用绝热制品 压缩性能的测定GB/T 13480-19922014-12-01GB/T 30592-2014透光围护结构太阳得热系数检测方法 2014-12-01GB/T 30594-2014双层玻璃幕墙热性能检测 示踪气体法 2014-12-01GB/T 30701-2014表面化学分析 硅片工作标准样品表面元素的化学收集方法和全反射X射线荧光光谱法(TXRF)测定 2014-12-01GB/T 30702-2014表面化学分析 俄歇电子能谱和X射线光电子能谱 实验测定的相对灵敏度因子在均匀材料定量分析中的使用指南 2014-12-01GB/T 30703-2014微束分析 电子背散射衍射取向分析方法导则 2014-12-01GB/T 30704-2014表面化学分析 X射线光电子能谱 分析指南 2014-12-01GB/T 30705-2014微束分析 电子探针显微分析 波谱法实验参数测定导则 2014-12-01GB/T 30706-2014可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价 2014-12-01GB/T 30707-2014精细陶瓷涂层结合力试验方法 划痕法 2014-12-01GB/T 30709-2014层压复合垫片材料压缩率和回弹率试验方法 2014-12-01GB/T 30710-2014层压复合垫片材料蠕变松弛率试验方法 2014-12-01GB/T 30711-2014摩擦材料热分解温度测定方法 2014-12-01GB/T 30713-2014砚石 显微鉴定方法 2014-10-01GB/T 30714-2014电感耦合等离子体质谱法测定砚石中的稀土元素 2014-10-01GB/T 30725-2014固体生物质燃料灰成分测定方法 2014-10-01GB/T 30726-2014固体生物质燃料灰熔融性的测定方法 2014-10-01GB/T 30727-2014固体生物质燃料发热量测定方法 2014-10-01GB/T 30728-2014固体生物质燃料中氮的测定方法 2014-10-01GB/T 30729-2014固体生物质燃料中氯的测定方法 2014-10-01GB/T 30732-2014煤的工业分析方法 仪器法 2014-10-01GB/T 30733-2014煤中碳氢氮的测定 仪器法 2014-10-01GB/T 30735-2014屋顶及屋顶覆盖制品外部对火反应试验方法 2014-10-01GB/T 30737-2014海洋微微型光合浮游生物的测定 流式细胞测定法 2014-10-01GB/T 30738-2014海洋沉积物中放射性核素的测定 &gamma 能谱法 2014-10-01GB/T 30739-2014海洋沉积物中正构烷烃的测定 气相色谱-质谱法 2014-10-01GB/T 30740-2014海洋沉积物中总有机碳的测定 非色散红外吸收法 2014-10-01GB/T 30741-2014海洋大气干沉降物中总硫的测定 非色散红外吸收法 2014-10-01GB/T 30742-2014海洋大气干沉降物中总碳的测定 非色散红外吸收法 2014-10-01GB/T 30749-2014矿物药材及其煅制品视密度测定方法 2015-01-01
  • 【解决方案】马尔文帕纳科先进分析技术全面支持水泥企业智能化生产
    01打造水泥智能化实验室随着国内水泥行业数字化、智能化的升级不断深入,马尔文帕纳科分析仪器已越来越多地应用于水泥企业智能实验室,其中包括了许多知名的国内外水泥生产厂家。近年来在国内水泥行业使用智能化实验室来进行生产控制已成为许多水泥生产厂家的考虑方案。为什么智能实验室越来收到水泥行业的青睐?究其原因主要有以下几个方面:分析智能化实验室的优势1可为生产控制提供快速、高质量,且不受操作者人为因素影响的测试数据;2可满足节省人力成本减员增效;3在提升产品质量同时又能减少熟料使用而降低成本;4满足节能减排以及固废危废处置等水泥企业的复合需求。如何成功建设一个智能化实验室?除了考虑实验室的自动化控制系统,样品采集传输和处理以外,每个测试仪器单元的性能、稳定性和分析解决方案也是其非常重要的应影响因素。作为领先的材料表征技术专家的马尔文帕纳科可以为水泥企业智能化实验室提供所需的所有种类的测试仪器,且每种仪器都具有行业领先的性能,倍受认可的稳定性和专为水泥工业量身定做的解决方案。马尔文帕纳科配备专业的自动化团队,与国内外著名的全自动集成商长期保持良好地配套合作。是水泥企业智能化实验室仪器测试单元的极佳选择。水泥行业全流程解决方案,助力企业智能化升级目前,马尔文帕纳科可以用于水泥行业的解决方案包括:常规元素分析、跨带在线元素分析、游离氧化钙分析、水合物物相鉴定、固废危废分析、粒度(细度)分析、在线粒度(细度)分析、自动化实验室等,为水泥企业数字化、智能化升级提供有力支持。自动化相关测试单元介绍Zetium X-射线荧光光谱仪Zetium光谱仪传承了在水泥行业享有盛誉的帕纳科Axios系列X-射线荧光光谱的一贯优异性能,具有:高灵敏度高分析速度优异的长期稳定性自主研发的专用X射线光管专业的分析软件Zetium 光谱仪可直接集成于全自动系统中。Aeris X-射线衍射仪高性能台式X-射线衍射仪Aeris,性能可与落地式XRD仪器媲美,且具有节能、无需循环冷却水等配套设备的优点。仪器内置了水泥分析模板,可对水泥相关的组分进行全自动分析,无需人工干预,可自动分析石灰石等原料化学组成、热生料分解率、生料化学组成、熟料(f-CaO和四大矿物组成)、石膏类型、水泥化学组成包括SO3、粉煤灰、炉渣添加量定量分析。熟料分析5分钟即可给出分析结果。可从繁琐的传统手工化学分析中解放出来而得到准确的仪器自动分析结果。 XRF + XRD 联用右图为机柜示意图如上图,可提供专门设计的实验台和落地式X-射线荧光光谱仪集成自动化联用,使实验室整体更为美观。Insitec 在线激光粒度分析仪马尔文帕纳科具有市场领先的全自动激光粒度仪和在线式激光粒度仪。Insitec在线粒度分析仪具有多重散射校正专利技术,适用于大通量、高频次取样,完全消除测量时样品浓度波动对结果的影响。可应用于全自动实验室和生料磨、水泥磨后在线粒度分析,实现粉磨自动控制、提高水泥产品质量。CNA 中子活化跨带分析仪CNA 中子活化跨带分析仪,可用于石灰石堆场、生料自动配比及煤质分析。电控中子活化技术,具有如下优势:1安全可关停,且关停后不产生中子辐射;2运行稳定、电激发中子、中子数目不衰减;3无需定期繁复的停皮带校准;4中子发生器自行制造、来源稳定。其电控中子发生器的特点,可使您减少因使用锎252同位素为射线源的中子分析仪时,放射源价格不断趋高且货源供应也难以保证等问题的困扰。
  • 欧美克张福根博士应邀出席2007’中国国际水泥峰会并做大会发言
    欧美克总经理张福根博士于2007年4月24日-4月26日在北京友谊宾馆出席了由中国水泥协会和中国国际贸易促进委员会建筑材料行业分会共同主办的“2007’中国国际水泥峰会”,本届峰会以“构建可持续发展的水泥工业”为主题,邀请了中外43个国家和地区、600余位中外大型水泥企业领导和政界要人及行业内的专家、学者参加,共同研讨国际大型水泥企业集团的发展轨迹及管理经验,探讨通过兼并重组提高水泥生产集中度,调控市场及盈利水平的途径,推广创新的节能、降耗和减排技术,实现行业的发展与生态的和谐。 国家发改委副主任欧新黔、国务院参事室副主任蒋明麟、国家发改委经济运行局副局长张莉、中国水泥协会会长雷前治、中国水泥协会副会长曾学敏、中国产业发展促进会副会长甘智和、瑞士HOLCIM集团全球执委汤姆• 克劳夫、拉法基中国区首席代表文英勇、海螺水泥集团副总经理余彪等出席了开幕式。 总经理张福根博士以“粒度检测与控制技术对行业节能降耗的贡献”为题进行了大会发言,提出通过粉磨系统的改进,优化现行水泥粒度,达到节能降耗的目的。经测算,粒度优化后可节能熟料8%。以2006年水泥产量计,一年可节约石灰石8382万吨,标煤1215万吨,减少二氧化碳排放6400万吨。他的发言新颖、严谨、具商业价值,给与会代表带来了思想启迪。 峰会期间,有关领导、专家学者、企业家约30人就中国水泥产业运行情况及政策导向、中国水泥市场特征及发展趋势、打造世界级水泥工程服务企业、提高水泥厂能源效能的综合途径、水泥国际化行销经验分享、资源综合利用、节能、环保、减排等话题进行了精彩讲演。
  • 石灰药催熟芒果无安全隐患
    青芒果变成橙芒果,竟然用石灰加药剂催熟?这会不会影响食用者的健康? 近日,北京市政府食品安全办公室表示,专家进行风险评估的结论是:石灰药剂催熟芒果不存在安全隐患,市民可放心食用。  不久前有市民举报北京市大兴区有商贩用生石灰兑“乙烯利”药水制成“药垫儿”催熟芒果的问题。北京市政府食品办公室立即组织芒果、植物激素及食品安全方面的专家进行了风险评估。  专家的评估结论是,芒果是一种热带易腐水果,通常在七八分熟时进行采收,以满足长途运输或贮藏保鲜等需要。使用乙烯利能加速芒果的后熟过程。乙烯利能释放出植物内源激素乙烯,乙烯是一种易挥发的气体,这种物质在人体没有相应的受体(乙烯起作用的位点),在正常使用情况下,不会对人体产生危害。  专家指出,商贩用的生石灰,其学名为氧化钙,这种物质遇水会产生化学反应并释放一定的热量,这种热量能提高芒果的贮藏温度,加快芒果的后熟过程。  专家认为,食用者食用芒果时,即使芒果果皮上沾染少量的石灰,通过清洗、去皮等过程,也不会对食用者的健康造成影响。此外,根据《食品添加剂卫生标准》(GB 2760-2007),氧化钙是允许使用的加工助剂,在食品加工过程中可根据生产需要使用。  据专家介绍,传统催熟果品的方法很多,国家并无禁止催熟果品的相关规定,也并未禁止对果品进行二次加工。至今,北京无一例因食用芒果而中毒事件。  市政府食品安全办公室也表示,将会同相关食品安全监管部门进一步规范市场商贩制售食品行为,切实落实食品市场准入制度,加大市场食品风险监测力度,强化对监测不合格食品的退市。
  • 投资5000万元建西南唯一国家级盐化工质检中心
    记者29日从四川省质监局了解到,国家盐化工产品质量监督检验中心近日在四川省自贡市正式开工建设。该中心集盐化工产品质量监督检验、行政许可检验、产业技术研发职能于一体,是国家目前设在西南地区唯一的盐化工质检中心。  该中心规划占地面积20亩,总投资超过5000万元。中心建成使用后,将承担全国盐化工产品的质量监督检验、行政许可检验、委托检验、仲裁检验,并为我国盐化工企业参与国际竞争提供保障。  四川省盐卤和石灰石资源富集,岩盐矿储量180亿吨,居全国第一位,为发展电石、烧碱、聚氯乙烯等盐化工产业链提供了原料保障。目前,四川食用及工业盐、聚氯乙烯、烧碱、钾碱和电石等产业已初具规模并形成特色优势,是全国重要的盐化工基地。
  • 这些光谱相关国标即将实施 涉及AAS、FTIR、XRF等
    在国家标准目录中,有7项光谱标准已于今年3月9日发布,并将于今年10月1日正式实施,其中涉及到火焰原子吸收光谱仪、火花原子发射光谱仪、原子荧光光谱仪、傅里叶红外光谱仪以及波长色散X射线荧光光谱仪五大类光谱仪器。小编发现,有越来越多的标准主要起草单位是科学仪器厂商,比如GB/T 6609.30就有岛津公司的身影,所谓“质量提升,标准先行”,仪器厂商绝对不能小看标准的重要性!更多关于标准的详细内容可点击标准号下载,仪器信息网提供最全,最新的资料!标准号标准名称GB/T 4333.8-2022硅铁 钙含量的测定 火焰原子吸收光谱法GB/T 41404-2022铂合金中铂含量的测定 火花原子发射光谱法(差减法)GB/T 41331-2022染料产品中砷、汞、锑、硒的测定 原子荧光光谱法GB/T 24581-2022硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法GB/T 8152.16-2022铅精矿化学分析方法 第16部分:氧化钙含量的测定 火焰原子吸收光谱法GB/T 6609.30-2022氧化铝化学分析方法和物理性能测定方法 第30部分:微量元素含量的测定 波长色散X射线荧光光谱法GB/T 3286.11-2022石灰石及白云石化学分析方法 第11部分:氧化钙、氧化镁、二氧化硅、氧化铝及氧化铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)另外,日期小编还整理过今年11月即将实施的标准,详情可点击查看:最新公布的光谱仪器相关标准
  • 循环经济助力碳达峰研究报告:“十四五”对碳减排的综合贡献率将达30%
    为进一步明确循环经济在实现碳达峰碳中和进程的重要作用,2021年中国循环经济协会参考CDM及CCER项目方法学,以国家统计局等有关部门、相关行业年度报告和权威学术文献等已公开发布的数据为基础,就资源再生循环利用、大宗固废综合利用、生物质废弃物能源化利用、余热余能回收利用、园区循环化改造、再制造等循环经济重点领域对我国碳达峰碳中和的贡献进行了量化研究,形成了《循环经济助力碳达峰研究报告(1.0版)》,核心观点如下:   发展循环经济支撑碳减排的量化贡献和预测   研究表明,发展循环经济是实现碳达峰碳中和的重要途径,与开发利用原生资源相比:   ——2020年,我国通过发展循环经济,共计减少二氧化碳排放约26亿吨;   ——总结“十三五”,发展循环经济对我国碳减排的综合贡献率约为25%左右;   ——展望“十四五”,发展循环经济对我国碳减排的综合贡献率将达30%,到2030年达到35%。   ——受量化研究边界的制约,本报告的研究结果相对保守,未能反映所有循环经济活动对碳减排的贡献。   发展循环经济支撑碳减排的主要原理   ——材料替代:通过利用粉煤灰等大宗固废替代石灰石等碳酸盐类高载碳原料,减少生产过程的碳排放。   ——流程优化:通过回收利用废钢铁、废铝、废塑料等再生资源,缩短工艺流程,有效减少能源和资源消耗。   ——燃料替代:利用生物质废弃物等碳中性燃料替代化石能源,减少化石能源消费带来的碳排放。   ——能效提升:通过回收利用余热余能、产业园区能源基础设施共建共享等措施,大幅提高能源利用效率,有效减少化石能源消费带来的碳排放。   ——产品循环:通过再制造、翻新、延寿等技术手段,大幅削减制造原型新品带来的碳排放。   发展循环经济支撑碳减排的重要领域   ——资源再生循环利用:利用废钢铁、废有色金属、废塑料、废纸等再生资源,替代原生资源。   ——大宗固废综合利用:利用粉煤灰、冶炼渣等大宗固废替代石灰石水泥熟料;生产固废基胶凝材料替代水泥;生产轻质节能免煅烧绿色建材替代传统烧结类建材等。   ——生物质废弃物利用:多种形式实现生活垃圾、厨余垃圾、市政污泥、畜禽粪污、农作物秸秆、工业有机废水、轻工业生物质固体废物等生物质废弃物的清洁能源利用,替代煤炭、石油、天然气等传统化石能源。   ——余热余能回收利用:回收电力、冶金、建材、化工等工业部门的余热余能,提高系统能效。   ——园区循环化改造:通过能源基础设施共建共享、污水等污染物集中治理、主导产业与静脉产业循环链接、强化园区物质流管理等措施,大幅提高园区资源能源利用效率,有效降低碳排放强度。   ——废旧产品再制造:通过再制造替代原型新品使用,最大限度保留产品部分零部件价值,延长产品的使用寿命,提高材料的利用效率,减少原型新品的重复制造,从而大幅降低碳排放。
  • “碳达峰碳中和关键技术研究与示范”重点专项2022年项目申报指南
    根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发〔2014〕11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发〔2014〕64号)、《科技部 财政部关于印发的通知》(国科发资〔2017〕152号)等文件要求,现将国家重点研发计划“碳中和关键技术研究与示范”重点专项2022年度项目申报指南向社会征求意见和建议。征求意见截止时间为2022年3月28日。国家重点研发计划相关重点专项的凝练布局和任务部署已经战略咨询和综合评审特邀委员会咨询评议,国家科技计划管理部际联席会议研究审议,并报国务院批准实施。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,根据征求意见情况,修改完善项目申报指南。征集到的意见和建议将不再反馈和回复。相关意见建议请于3月28日24点之前发至相应电子邮箱。联系邮箱:sfs_zyhjc@most.cn科技部社会发展科技司2022年3月21日“碳达峰碳中和关键技术研究与示范”重点专项 2022 年项目申报指南 “碳达峰碳中和关键技术研究与示范”重点专项面向国家碳达峰碳中和重大需求,聚焦社会发展和二氧化碳难减排行业关键技术突破,综合提升我国应对气候变化技术研发能力。到“十四五”末 时,使我国在该领域技术研发总体上取得重要突破,并与其他领域重点专项形成互补,为我国二氧化碳 2030 年前碳达峰提供重要的技术支撑、2060 年前实现碳中和提供技术储备,为全球气候治理提供技术贡献和系统解决方案。 2022 年,本专项立足碳达峰碳中和问题的复杂性和迫切性,跨领域综合交叉形成重大科技创新,拟重点解决其他重点专项难以统筹考虑的碳中和共性支撑技术研究示范、低碳/零碳工业流程再造工艺技术与示范、面向碳中和的前沿和颠覆性技术创新与研发、面向碳中和的创新体系与全球气候治理技术等关键问题原则/要求, 围绕面向碳中和的脱碳模型构建与决策支持系统、面向碳交易检测和监测关键核心技术研发、新型二氧化碳捕集、化学利用、区域封存安全性评价、生物质负排放技术、非二氧化碳温室气体减排、钢铁行业的富氢气体还原冶炼、钢-化联产技术、水泥行业耦合碳捕集利用封存流程再造技术、碳中和的前沿和颠覆性技术、非二氧化碳温室气体监测、碳中和技术发展路线图与创新支撑体系、碳中和进程重大治理策略、全球气候治理关键问题与应对等方向,按照基础前沿技术、共性关键技术、示范应用,拟支持 17 个研究方向。 同一指南方向下,除特殊说明外,原则上只支持 1 项(青年科学家 1项目除外),仅在申报项目评审结果相近、技术路线明显不同时, 可同时支持 2 项,并建立动态调整机制,根据中期评估结果,再择优继续支持。 本重点专项所有项目均应整体申报,须覆盖全部研究内容和考核指标(青年科学家项目除外)。项目实施周期 3-4 年。一般项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家,项目设 1 名负责人,每个课题设 1 名负责人;青年科学家项目不再下设课题, 项目参与单位总数不超过 3 家,项目设 1 名负责人,项目负责人年龄要求,男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日以后出生。 本专项鼓励产学研用联合申报,项目承担单位需推动研究成果 转化应用和支持专项数据共享。 1. 碳中和共性支撑技术研发示范 1.1 面向碳中和的脱碳模型构建与决策支持系统 研究内容:提出基于全国分城市/行业详细排放清单的地区与 行业减排进程与成效监测评估指标体系和数据采集体系,构建碳达峰碳中和脱碳成本模型,并实现应用示范;针对重点控排企业,开发融合多源数据和基于先进算法的分布式企业碳排放数据智能核查信息管理系统,形成碳排放的监管动态监测预警系统;研究数据驱动的碳中和转型路径与关键不确定性评估方法,建成国家碳中和决策支撑系统;集成上述研究成果,在典型区域和城市开展系统的落地示范。 考核指标:研发面向碳达峰/碳中和的进程与成效监测评估的技术方法及指标体系 1 套;构建多维度的脱碳成本模型,并实现示 23 范应用;研发分布式企业碳排放数据采集与核证综合信息管理系统 1 套,并被政府管理部门采用;完成国家碳中和决策支持系统,具 备“平战结合”的全域管控与决策支持能力,系统应急响应时间小 于 6 小时,并被政府管理部门采用,集成以上系统在典型区域和城市示范应用。 1.2 面向碳交易检测和监测的关键核心技术研发 研究内容:针对代表性排放源和产业技术的升级迭代,开展以二氧化碳为主体的持续检测,获得具有产业和技术特征的排放因子集,形成面向碳交易的系列碳排放核算的国家标准;针对国家、省 市与工业园区碳排放复杂性和随机性,研究车载走航二氧化碳、甲烷及其碳 13(13C)的同位素在线监测技术,实现典型区域二氧化碳、甲烷浓度分布以及高浓度区域碳来源监测;研发无人机超光谱温室气体遥感监测设备和反演算法,实现对目标区域二氧化碳、甲烷等温室气体的多时段米级分辨率水平空间分布遥测,构建融合实测信息的高分辨率大气垂直分布先验廓线数据库;突破红外多波段下高精度、高覆盖率、高时空分辨的多源超光谱卫星温室气体(二氧化 碳、甲烷等)联合反演技术,形成典型区域碳排放的点-线-面-区 域全方位监测解决方案,发展区域和工业园区碳排放快速精准核算方法。考核指标:构建代表性行业持续检测体系,形成代表性排放行业排放因子集,形成 8-10 项面向碳交易的碳排放核算国家标准, 较现有方法精度提高 10%以上;监测体系中,二氧化碳测量范围: 380~1000ppm,二氧化碳测量精度 0.1ppm,δ13C-二氧化碳测量精度 1‰,甲烷测量范围:0~100ppm;甲烷测量精度 1ppb+5‰,δ13C-4 甲烷测量精度 1‰;无人机超光谱遥测设备,10ppm~100ppm 空间探测分辨率≤10 米,单格点探测时间分辨率≤10 秒;通过卫星的联合反演算法中,获取每日覆盖率30%,分辨率为 2 公里×2 公里的甲 烷 、二氧化碳浓度数据集,形成区域和工业园区碳排放快速精准核算方法体系。 1.3 新型二氧化碳捕集技术研发和示范 研究内容:研究新型相变吸收剂、非水溶剂吸收剂、复合吸收 剂等二代溶剂吸收法碳捕集技术和高效固体吸附法碳捕集技术,开展关键材料的设计、宏量制备和生产技术研究,开展示范工程设计、 建设和运行;研发用于直接空气捕集的新型吸收剂/吸附新材料, 开发强化吸收/吸附分离的技术和样机,完成技术验证;研发二氧 化碳捕集-转化一体化的可行途径,开发吸附-催化多功能新材料, 建立集成工艺,优化过程参数,形成与典型排放源紧密结合的新型碳减排集成方案,完成技术验证。 考核指标:形成新型吸收法碳捕集关键技术,建设和运行万吨 级示范线 1 套,二氧化碳捕集率大于 90%,能耗小于 2.2 吉焦尔(GJ) /吨二氧化碳;形成吸附法碳捕集关键技术,二氧化碳捕集率大于 90%,能耗小于 2.1 吉焦尔(GJ)/吨二氧化碳,并建设和运行万吨级示范线;研发并验证具备大规模推广潜力的直接空气捕集技术 1 项,创制百吨级样机并实现稳定运行;建立百吨级二氧化碳捕集- 转化一体化验证装置 1 套,二氧化碳捕集率大于 90%,转化率大于 90%。1.4 二氧化碳高值化化学利用关键技术与示范 研究内容:开展二氧化碳高效化学转化合成高附加值化学品研5 究,构建高活性、高选择性以及高稳定性的反应体系;探明二氧化 碳高效合成醇酯类化学键断裂重构规律及表界面微观反应机理,阐 明提高碳-氧双键活化的关键因素和传递反应耦合强化机制;探索新型可再生能源驱动的二氧化碳高效利用新途径,实现低成本、规 模化应用的技术突破。 考核指标:开发构建新型高效二氧化碳化学转化装置 2-3 套, 建设和运行十万吨级示范 1-2 套,二氧化碳利用率大于 90%,产物选择性大于 80%,完成新型二氧化碳光电催化转化关键技术验证, 并具备较好的经济效益。 1.5 二氧化碳地质封存风险监测、评价与控制技术集成示范 研究内容:面向二氧化碳地质封存潜力评估和安全需求,解决地质封存二氧化碳潜力、泄漏和力学稳定性等问题。开展主要盆地 -重点区块的封存潜力评估,深化场地与各行业集中排放源的动态 匹配分析;深化二氧化碳在地层及井简内的迁移机制及泄漏规律研 究,研发封存过程大规模高效数值模拟软件;开发集成陆上地质封 存安全系统。 考核指标:形成我国区域与行业封存潜力的评估报告和图集; 完成实际场地千万网格非均质模型高效计算软件及陆上封存安全 评价方法 1 套;形成陆上二氧化碳封存安全监测系统 1 套,地表空气二氧化碳质量分数遥测量程 20000ppm 浓度、误差小于读数的 2%, 浅层水溶解二氧化碳质量分数监测量程 30000ppm 浓度、误差小于 读数的 2%(20~300 米深度区间),深层水溶解二氧化碳质量分数 监测量程 60000ppm 浓度、误差小于读数的 2%(1500~2000 米深度 区间),上述评价、模拟和监测技术需要通过规模万吨级以上、深度大于 1500 米的现场试验进行检验。 1.6 碳负排放的生物质综合精炼研究与示范 研究内容:针对我国农林生物质废弃物体量大、种类复杂和资源化利用率低等问题,开展生物质超微结构解译,建立典型农林生物质结构信息数据库,研究生物质微观结构、区域化学、键合机制在不同预处理环境下的时空演变规律与应答机制;研究纤维素酶解过程调控技术及基于纤维素糖利用的连续发酵技术,开展基于微生物集群效应的生物膜催化体系研究,降低发酵周期,提高总糖利用效率,开发面向木质纤维素成分的发酵强化与连续化技术;研究木质素组分的高效改性技术和选择性催化解聚的反应规律,开发木质素分离提取及高值材料化利用技术,实现传统生物炼制废弃物木质素的工业示范应用;研究生物质完全拆解系列生物基工业原料产品关键技术与装备,建立生物质利用高效可持续的碳负排放集成示范。 考核指标:建成百吨级秸秆高效预处理示范装置,实现高品质木质素与棕纤维的高效分离,木质素得率≥60%,纯度≥90%(残糖 <3%,灰份<5%),混合糖得率≥80%;形成生物质完全拆解单宁、 纤维素、木质素、糖、糖醛酸、糠醛、氨基酸、微生物肥等系列生物基产品成套关键技术,生物质原料干物质利用率 100%;建立生物质综合精炼的万吨级示范线 1-2 条,并具有较好的经济效益。 1.7 分布式生物质光热转化制氢或合成气 研究内容:发展利用太阳能全裂解生物质制氢气或合成气的方 法,建立全套太阳能光热生物质转化的集光吸热连续反应装置。具体内容包括:发展高效的多种来源生物质的预处理方法,高收率低 能耗获得能用于太阳能光热转化的混合糖液;开发混合糖液光热转 67 化的光催化剂,将混合糖液全裂解转化为氢气或合成气,并探究糖类碳-氢和碳-碳健的断裂机理和光催化剂表界面微观反应机理。开发太阳能分光谱利用技术,研究高光透性的流动式反应器,建立集光吸热的太阳能光热连续反应系统,实现大规模的糖液全裂解转化制氢气或合成气的工艺流程。 考核指标:形成成套分布式生物质光热转化制氢或合成气技术, 建立集光吸热的太阳能光热连续反应系统,日处理混合糖 50 公斤, 实现连续稳定运行时间大于 200 小时。按混合糖计算,当目标产物为氢气时,每吨混合糖的氢气产量不低于 80 公斤;当产物为氢气 和一氧化碳时,每吨混合糖的氢气和一氧化碳产量分别不低于 30 公斤和 550 公斤。2. 低碳/零碳工业流程再造工艺技术与示范 2.1 富氢气体及氢气直接还原技术研发与示范研究内容:针对直接还原-电炉熔分短流程低碳炼铁技术体系 需突破的关键科技问题,研究富氢气体及氢气还原铁矿粘结机理与过程强化规律,研究直接还原竖炉氧化球团技术、竖炉直接还原技术和流化床直接还原技术、高能效电炉生产技术及装备,开发气基竖炉和流化床直接还原成套工艺及装备,开展工程示范。 考核指标:发展铁矿气基直接还原过程强化技术,形成 1-2 项 气基直接还原铁(DRI)成套关键技术与装备;建成不低于 50 万吨 DRI/年富氢气体竖炉直接还原生产线,DRI 金属化率>92%,富氢气体消耗折合能耗不高于 11 吉焦尔(GJ)/吨-DRI,二氧化碳排放不 高于 0.7 吨/吨-DRI,完成竖炉直接还原-电炉熔分成套技术示范。 建成 1 万吨 DRI/年流化床氢气直接还原示范装置,DRI 金属化率>8 92%,氢气消耗折合能耗不高于 10.5 吉焦尔(GJ)/吨-DRI。 2.2 钢铁行业二氧化碳气体发酵技术研发与示范 研究内容:针对钢铁行业尾气,针对将二氧化碳、氢气混合气体生物发酵法转化为乙醇等有机化学品实现工业化应用需要突破的关键技术问题,研究针对不同气体组分的气体净化技术,研究不同氢气比例对二氧化碳生物发酵过程转化的影响规律,研究二氧化碳、氢气混合气体高效生物发酵关键工艺参数控制技术,研究气体发酵-蒸馏耦合膜系统技术,研究高效气液传质发酵反应器装备; 研究发酵菌体蛋白高值化利用技术,开发二氧化碳气体发酵制乙醇成套系统集成工艺技术,开展万吨级二氧化碳发酵制乙醇工业化示 范。考核指标:开展二氧化碳、氢气混合气体发酵制乙醇中试规模试验,二氧化碳利用率≥60%,氢气利用率≥75%,乙醇选择性≥80%, 实现连续稳定运行时间大于 200 小时,二氧化碳综合减排不少于 2 吨/吨乙醇,单级发酵乙醇浓度不小于 20 克/升;开发气液强化传质及高效发酵技术,形成 1-2 项成套发酵关键技术装备;形成二氧化碳生物发酵制乙醇集成工艺技术路线;建成万吨级二氧化碳发酵制乙醇工业化示范装置。 2.3 钢厂尾气制乙醇技术及 20 万吨工业示范 研究内容:研发钢厂尾气(焦炉气、转炉气、高炉气)为原料的甲醇制乙醇技术,实现钢厂尾气的高价值环保转化利用。具体内容包括:特定结构高性能二甲醚羰基化催化剂的可控合成;高性能乙酸甲酯加氢催化剂的开发;催化剂放大制备及对催化剂性能的影 响,以满足长期运行的需要;研究两步反应串接及一氧化碳、氢气循环利用工艺,有效解决工业化过程中反应热的撤离问题,并在此基础上进行反应器的设计和优化;完成不小于 20 万吨/年规模钢厂尾气制乙醇技术的工业示范。 考核指标:研制开发甲醇制乙醇技术高效催化剂,二甲醚羰基化催化剂单程寿命一年以上(>8000 小时),乙酸甲酯时空产量≥ 0.45/小时,乙酸甲酯选择性≥99%;研制开发高效乙酸甲酯加氢催 化剂,乙酸甲酯单程转化率≥90%,乙醇总选择性≥98%(相对于理 论值),催化剂寿命≥1 年;编制不小于 20 万吨/年规模的钢厂尾气制乙醇技术工业示范装置工艺包,并实现装置投产和运行,综合技术经济指标达到国际领先水平。 2.4 低钙高胶凝性硅酸盐水泥熟料制备关键技术与低碳水泥生产及应用示范 研究内容:针对水泥行业碳中和迫切需求,以减低水泥生产中石灰石消耗,减少二氧化碳排放为目标,研究直接减少石灰石用量的低钙高胶凝性熟料新型物相体系设计与亚稳态结构调控,建立物相形成热动力学模型,形成高胶凝性新型熟料制备关键技术;研究替代原料/被替代原料间的物理化学耦合效应及调控机制,开发典型富钙固废大比例替代石灰石关键技术与装备,形成熟料矿相调控及其品质与环境安全保障等综合技术体系。构建全流程低排放、低环境负荷的低碳水泥新体系及其评价技术体系,并实现规模化生产 与应用示范。 考核指标:低钙高胶凝性熟料体系石灰石用量较传统硅酸盐水 泥熟料降低 15%以上;富钙固废替代石灰石的比例不低于 30%。熟料28 天抗压强度不低于 58 兆帕,制备的 42.5 等级通用硅酸盐水 9泥的熟料系数不高于 0.75。熟料二氧化碳排放减少 150 公斤/吨以 上,水泥二氧化碳排放减少 25%以上。编制相关标准(草案)3 项, 成果在 3 条不低于 3000 吨熟料/天规模化生产与应用示范。 3. 面向碳中和的前沿和颠覆性技术创新与研发 3.1 二氧化碳光/电催化前沿新材料与新技术试验验证 研究内容:研发用于二氧化碳电催化还原转化的新型催化剂材料和气体扩散电极,建立低成本、规模化催化剂合成和电极制备技 术;开展先进原位波谱表征技术,探究二氧化碳电催化还原过程中催化剂的演化过程和电极反应动力学;建立二氧化碳电还原制备高 附加值化学品的试验验证。研发新型高效稳定光催化二氧化碳还原 材料,构建新型光催化二氧化碳还原验证器件。设计构建高效光电催化二氧化碳还原全器件,并评估其实际运行稳定性等参数。 考核指标:电催化二氧化碳还原:研发高效、稳定运行时长≥ 1000 小时的催化剂材料和气体扩散电极;揭示电催化二氧化碳还原过程中催化剂演化过程和电极反应动力学;实现电催化二氧化碳还 原制备高值化学品的试验验证,产物选择性≥80%,能量转换效率 ≥50%。研发新型稳定高效光催化二氧化碳还原材料 1-2 种;揭示 光催化二氧化碳还原转化机制;实现太阳能到燃料转化效率≥3%。 开发新型高效光电极材料和电催化剂材料 2-3 种;构建高效光电催 化二氧化碳还原全器件,实现太阳能到燃料转化效率≥5%;揭示光电催化过程中光生电荷分离和传输机制及光电极材料和助催化剂协同工作机制。3.2 变革性高能量密度、低成本水系液流电池储能技术 研究内容:在碳中和背景下,面向以新能源为主体的新型电力 10系统对电化学储能技术的重大需求,探索开发高安全、低成本、高能量密度液流电池新体系,构建以无机多电子转移电对为活性物质的电化学储能新过程,研究水系多电子转移体系电化学反应机制, 电解液中离子的输运机制和规律;离子跨膜输运机制及关键膜材料的选择与设计,电解液稳定调控机制等。突破高选择性、低成本离 子传导膜、高活性电极、高稳定性电解液制备技术,高功率密度单体电堆设计和集成技术,开发新一代高能量密度、低成本液流电池新体系,开展 100 千瓦级系统示范,推动液流电池储能技术的可持续发展。考核指标:研究探索新一代高能量密度、低成本多电子转移的液流电池新体系,阐明多电子转移体系电化学反应机制。突破其关 键材料和电堆的规模放大技术,推动示范应用。新体系液流电池单 电池在 80 毫安/平方厘米恒流充放电条件下,能量效率≥85%,能 量密度≥200 瓦时/升。 3.3 面向碳中和相关的颠覆性技术研究(青年科学家项目) 研究内容:面向国家碳达峰碳中和重大需求和世界科技前沿, 开展非二氧化碳温室气体监测、源头解决温室气体排放、可再生能 源与传统化石能源化工衔接、能源和工业流程低/零碳改造等颠覆性技术研究;开展大数据、人工智能、生物技术等与新能源、新材料、高端装备融合颠覆性技术研究;开展氢能、光伏、核能等清洁能源替代颠覆性技术研究;石油基产业向可循环生物基产业转型的 颠覆性技术研究;碳基产业替代产品颠覆性技术研究;其他方向具有颠覆性特征的技术探索等。 有关说明:通过评审,拟部署前沿颠覆性技术 5-10 项青年科 11学家项目。6. 面向碳中和的创新体系与全球气候治理关键技术研究6.1 碳中和技术发展路线图与创新支撑体系研究 研究内容:面向 2060 年碳中和目标,研究关键行业和产业发 展的低碳/零碳技术需求,形成碳中和关键技术发展评估与预测方 法体系、行业领域数据库和综合分析评估模型;围绕电力、非电能源、工业、建筑、交通、负排放技术、系统集成优化等大类技术领 域,根据技术发展状况与趋势研究提出近中远期部署重点和实施路 径;研究重点技术路线的中长期跨系统影响,提出高精度产业部署 路径和高分辨率空间布局;编制和更新碳中和技术发展路线图;围绕碳中和技术发展路线图的实施,研究提出面向技术、行业和产业 等多维度协同推进碳中和技术发展的创新体系方案。 考核指标:形成关键行业碳中和技术评估预测方法学 5-8 套, 技术数据库 5-8 套,综合评估模型 1 套;形成 5-8 个行业领域碳中 和技术路线图和总体技术路线图一套;3-5 个重点产业碳中和部署 路径和空间布局方案;提出推进碳中和创新体系方案 1 套。 6.2 我国碳中和进程重大治理策略研究 研究内容:研究分析气候变化科学进展、国际政策及碳中和进程对我国技术创新、产业发展、环境治理和经济社会的综合影响, 定量评估有关国际组织和国家碳边境调节措施、国际贸易与全球产业链中的碳排放标准等对我国相关产业与经济发展、产业链和供应链安全的影响,研究技术解决方案和应对策略;系统评估我国绿色 低碳技术推广应用面临的行业性和区域性政策瓶颈,模拟研究技术创新政策、产业发展政策、财税金融政策、环境经济政策等对协同 12推进碳达峰碳中和的效果及综合影响,研究提出政策优化方案;统筹发展和低碳关系,开发面向行业和区域碳达峰碳中和进展评估体系,引导行业和区域稳健推进;针对重点行业和区域开展协同碳达 峰碳中和与环境质量改善的技术路径识别和综合方案模拟研究。 考核指标:形成国际气候政策及碳中和进程对我国综合影响评估模型 1 套;形成 5-8 个重点行业受碳边境调节措施和产业链排放标准影响等评估和应对策略;提出绿色低碳技术发展政策评估体系 1 套及相关政策建议 4-6 套;形成碳达峰碳中和进展评估体系并应用于 5-8 个行业和区域;形成碳达峰碳中和与环境质量改善协同的模型 1 套。 6.3 全球气候治理关键问题与应对研究 研究内容:开展全球碳中和进程下气候治理体系发展趋势研究, 提出我国参与全球气候治理的策略;围绕联合国气候变化框架公约 与航空海运等国际组织与碳中和相关的谈判议题开展综合影响研 究并提出中国方案;研究以贸易、航运、制造业分包与来料加工等 跨境业务为基础的气候治理国际合作新路径,形成以碳中和目标与经济发展深度结合的合作机制;开展对主要发达国家、发展中国家和国际组织气候、创新动向与合作需求研究,形成有针对性的双多边合作策略;开展进程与重大脱碳技术创新对我国经济社会与产业发展的影响和机遇研究。 考核指标:提出全球气候变化治理中多双边气候合作战略、低碳和脱碳技术创新与产业机遇、技术合作与贸易、参与气候变化谈判策略等重大问题的策略方案 15 套。
  • 四部门关于印发建材行业碳达峰实施方案的通知
    四部门关于印发建材行业碳达峰实施方案的通知工信部联原〔2022〕149号教育部、科技部、财政部、交通运输部、农业农村部、商务部、人民银行、市场监管总局、统计局、工程院、银保监会、能源局、林草局,各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、发展改革委、生态环境厅(局)、住房城乡建设厅(局),有关协会,有关中央企业:现将《建材行业碳达峰实施方案》印发给你们,请认真贯彻落实。工业和信息化部国家发展和改革委员会生态环境部住房和城乡建设部2022年11月2日建材行业碳达峰实施方案建材行业是国民经济和社会发展的重要基础产业,也是工业领域能源消耗和碳排放的重点行业。为深入贯彻落实党中央、国务院关于碳达峰碳中和决策部署,切实做好建材行业碳达峰工作,根据 《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意 见》《2030 年前碳达峰行动方案》,结合《工业领域碳达峰实施方案》,制定本实施方案。一、总体要求 (一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,坚持稳中求进工作总基调,立足新发展阶段,完整、 准确、全面贯彻新发展理念,构建新发展格局,坚持系统观念,处理好发展和减排、整体和局部、长远目标和短期目标、政府和市场的关系,围绕建材行业碳达峰总体目标,以深化供给侧结构性改革 为主线,以总量控制为基础,以提升资源综合利用水平为关键,以低碳技术创新为动力,全面提升建材行业绿色低碳发展水平,确保如期实现碳达峰。 (二)工作原则坚持统筹推进。加强顶层设计,强化公共服务,加强建材行业上下游产业链协同,保障有效供给,促进减污降碳协同增效,稳妥有序推进碳达峰工作。 坚持双轮驱动。政府和市场两手发力,完善建材行业绿色低碳发展政策体系,健全激励约束机制,充分调动市场主体节能降碳积极性。 坚持创新引领。强化科技创新,促进科技成果转化,加快节能低碳技术和装备的研发和产业化,为建材行业绿色低碳转型夯实基础、增强动力。 坚持突出重点。注重分类施策,以排放占比最高的水泥、石灰等行业为重点,充分发挥资源循环利用优势,加大力度实施原燃料替代,实现碳减排重大突破。 (三)主要目标“十四五”期间,建材产业结构调整取得明显进展,行业节能低碳技术持续推广,水泥、玻璃、陶瓷等重点产品单位能耗、碳排放强度不断下降,水泥熟料单位产品综合能耗水平降低 3%以上。“十五五”期间,建材行业绿色低碳关键技术产业化实现重大突破, 原燃料替代水平大幅提高,基本建立绿色低碳循环发展的产业体系。确保 2030 年前建材行业实现碳达峰。二、重点任务 (一)强化总量控制1.引导低效产能退出。修订《产业结构调整指导目录》,进一步提高行业落后产能淘汰标准,通过综合手段依法依规淘汰落后产能。发挥能耗、环保、质量等指标作用,引导能耗高、排放大的低效产能有序退出。鼓励建材领军企业开展资源整合和兼并重组,优化生产资源配置和行业空间布局。鼓励第三方机构、骨干企业等联合设立建材行业产能结构调整基金或平台,进一步探索市场化、法治化产能退出机制。(工业和信息化部、国家发展改革委、生态环境部、市场监管总局按职责分工负责)2.防范过剩产能新增。严格落实水泥、平板玻璃行业产能置换政策,加大对过剩产能的控制力度,坚决遏制违规新增产能,确保总产能维持在合理区间。加强石灰、建筑卫生陶瓷、墙体材料等行业管理,加快建立防范产能严重过剩的市场化、法治化长效机制, 防范产能无序扩张。支持国内优势企业“走出去”,开展国际产能合作。(工业和信息化部、国家发展改革委、生态环境部、商务部按职责分工负责)3.完善水泥错峰生产。分类指导,差异管控,精准施策安排好错峰生产,推动全国水泥错峰生产有序开展,有效避免水泥生产排放与取暖排放叠加。加大落实和检查力度,健全激励约束机制,充分调动企业依法依规执行错峰生产的积极性。(工业和信息化部、 生态环境部按职责分工负责)(二)推动原料替代4.逐步减少碳酸盐用量。强化产业间耦合,加快水泥行业非碳酸盐原料替代,在保障水泥产品质量的前提下,提高电石渣、磷石膏、氟石膏、锰渣、赤泥、钢渣等含钙资源替代石灰石比重,全面降低水泥生产工艺过程的二氧化碳排放。加快高贝利特水泥、硫 (铁)铝酸盐水泥等低碳水泥新品种的推广应用。研发含硫硅酸钙矿物、粘土煅烧水泥等材料,降低石灰石用量。(工业和信息化部、科技部按职责分工负责)5.加快提升固废利用水平。支持利用水泥窑无害化协同处置废弃物。鼓励以高炉矿渣、粉煤灰等对产品性能无害的工业固体废弃物为主要原料的超细粉生产利用,提高混合材产品质量。提升玻璃纤维、岩棉、混凝土、水泥制品、路基填充材料、新型墙体和屋面材料生产过程中固废资源利用水平。支持在重点城镇建设一批达到重污染天气绩效分级 B 级及以上水平的墙体材料隧道窑处置固废项目。(工业和信息化部、国家发展改革委、生态环境部按职责分工负责)6.推动建材产品减量化使用。精准使用建筑材料,减量使用高碳建材产品。提高水泥产品质量和应用水平,促进水泥减量化使用。开发低能耗制备与施工技术,加大高性能混凝土推广应用力度。加快发展新型低碳胶凝材料,鼓励固碳矿物材料和全固废免烧新型胶凝材料的研发。(工业和信息化部、住房和城乡建设部、科技部按 职责分工负责)(三)转换用能结构7.加大替代燃料利用。支持生物质燃料等可燃废弃物替代燃煤,推动替代燃料高热值、低成本、标准化预处理。完善农林废弃物规模化回收等上游产业链配套,形成供给充足稳定的衍生燃料制造新业态,提升水泥等行业燃煤替代率。(工业和信息化部、农业农村部、能源局、林草局按职责分工负责)8.加快清洁绿色能源应用。优化建材行业能源结构,促进能源消费清洁低碳化,在气源、电源等有保障,价格可承受的条件下, 有序提高平板玻璃、玻璃纤维、陶瓷、矿物棉、石膏板、混凝土制品、人造板等行业的天然气和电等使用比例。推动大气污染防治重点区域逐步减少直至取消建材行业燃煤加热、烘干炉(窑)、燃料 类煤气发生炉等用煤。引导建材企业积极消纳太阳能、风能等可再生能源,促进可再生能源电力消纳责任权重高于本区域最低消纳责任权重,减少化石能源消费。(工业和信息化部、生态环境部、能源局、林草局按职责分工负责)9.提高能源利用效率水平。引导企业建立完善能源管理体系, 建设能源管控中心,开展能源计量审查,实现精细化能源管理。加强重点用能单位的节能管理,严格执行强制性能耗限额标准,加强对现有生产线的节能监察和新建项目的节能审查,树立能效“领跑 者”标杆,推进企业能效对标达标。开展企业节能诊断,挖掘节能减碳空间,进一步提高能效水平。(国家发展改革委、工业和信息化部、市场监管总局按职责分工负责)(四)加快技术创新10.加快研发重大关键低碳技术。突破水泥悬浮沸腾煅烧、玻 璃熔窑窑外预热、窑炉氢能煅烧等重大低碳技术。研发大型玻璃熔 窑大功率“火-电”复合熔化,以及全氧、富氧、电熔等工业窑炉节能 降耗技术。加快突破建材窑炉碳捕集、利用与封存技术,加强与二 氧化碳化学利用、地质利用和生物利用产业链的协同合作,建设一 批标杆引领项目。探索开展负排放应用可行性研究。加大低温余热 高效利用技术研发推广力度。加快气凝胶材料研发和推广应用。(工业和信息化部、国家发展改革委、科技部、生态环境部按职责分工负责)11.加快推广节能降碳技术装备。每年遴选公布一批节能低碳 建材技术和装备,到 2030 年累计推广超过 100 项。水泥行业加快 推广低阻旋风预热器、高效烧成、高效篦冷机、高效节能粉磨等节 能技术装备,玻璃行业加快推广浮法玻璃一窑多线等技术,陶瓷行 业加快推广干法制粉工艺及装备,岩棉行业加快推广电熔生产工艺 及技术装备,石灰行业加快推广双膛立窑、预热器等节能技术装备, 墙体材料行业加快推广窑炉密封保温节能技术装备,提高砖瓦窑炉装备水平。(工业和信息化部、国家发展改革委按职责分工负责)12.以数字化转型促进行业节能降碳。加快推进建材行业与新 一代信息技术深度融合,通过数据采集分析、窑炉优化控制等提升能源资源综合利用效率,促进全链条生产工序清洁化和低碳化。探索运用工业互联网、云计算、第五代移动通信(5G)等技术加强 对企业碳排放在线实时监测,追踪重点产品全生命周期碳足迹,建立行业碳排放大数据中心。针对水泥、玻璃、陶瓷等行业碳排放特点,提炼形成 10 套以上数字化、智能化、集成化绿色低碳系统解决方案,在全行业进行推广。(工业和信息化部、国家发展改革委、 生态环境部按职责分工负责)(五)推进绿色制造13.构建高效清洁生产体系。强化建材企业全生命周期绿色管理,大力推行绿色设计,建设绿色工厂,协同控制污染物排放和二氧化碳排放,构建绿色制造体系。推动制定“一行一策”清洁生产改造提升计划,全面开展清洁生产审核评价和认证,推动一批重点企业达到国际清洁生产领先水平。在水泥、石灰、玻璃、陶瓷等重点行业加快实施污染物深度治理和二氧化碳超低排放改造,促进减污降碳协同增效,到 2030 年改造建设 1000 条绿色低碳生产线。推进绿色运输,打造绿色供应链,中长途运输优先采用铁路或水路,中短途运输鼓励采用管廊、新能源车辆或达到国六排放标准的车辆,厂内物流运输加快建设皮带、轨道、辊道运输系统,减少厂内物料二次倒运以及汽车运输量。推动大气污染防治重点区域淘汰国四及以下厂内车辆和国二及以下的非道路移动机械。(工业和信息化部、国家发展改革委、生态环境部、交通运输部按职责分工负责)14.构建绿色建材产品体系。将水泥、玻璃、陶瓷、石灰、墙体材料、木竹材等产品碳排放指标纳入绿色建材标准体系,加快推进绿色建材产品认证,扩大绿色建材产品供给,提升绿色建材产品质量。大力提高建材产品深加工比例和产品附加值,加快向轻型化、集约化、制品化、高端化转型。加快发展生物质建材。(工业和信息化部、生态环境部、住房和城乡建设部、市场监管总局、林草局按职责分工负责)15.加快绿色建材生产和应用。鼓励各地因地制宜发展绿色建材,培育一批骨干企业,打造一批产业集群。持续开展绿色建材下乡活动,助力美丽乡村建设。通过政府采购支持绿色建材促进建筑品质提升试点城市建设,打造宜居绿色低碳城市。促进绿色建材与绿色建筑协同发展,提升新建建筑与既有建筑改造中使用绿色建材,特别是节能玻璃、新型保温材料、新型墙体材料的比例,到2030 年星级绿色建筑全面推广绿色建材。(工业和信息化部、财政部、住房和城乡建设部、市场监管总局按职责分工负责)三、保障措施(一)加强统筹协调。各相关部门要加强协同配合,细化工作措施,着力抓好各项任务落实,全面统筹推进建材行业碳达峰各项工作。各地区要高度重视,明确本地区目标,分解具体任务,压实工作责任,加强事中事后监管,结合本地实际提出落实举措。充分发挥行业协会作用,做好各项工作支撑。大型建材企业要发挥表率作用,结合自身实际,明确碳达峰碳减排时间表和路线图,加大技术创新力度,逐年降低碳排放强度,加快低碳转型升级。(工业和信息化部、国家发展改革委牵头,各有关部门参加)(二)加大政策支持。严格落实水泥玻璃产能置换办法,组织开展专项检查,对弄虚作假、“批小建大”、违规新增产能等行为依法依规严肃处理。加大对建材行业低碳技术研发和产业化的支持力度。建立健全绿色建筑和绿色建材政府采购需求标准体系,加大绿色建材采购力度。在依法合规、风险可控、商业可持续的前提下,支持金融机构对符合条件的建材企业碳减排项目和技术、绿色建材消费等提供融资支持,支持社会资本以市场化方式设立建材行业绿色低碳转型基金。加强建材行业二氧化碳排放总量控制,研究将水泥等重点行业纳入全国碳排放权交易市场。完善阶梯电价等绿色电价政策,强化与产业和环保政策的协同。实行差别化的低碳环保管控政策,适时纳入重污染天气行业绩效分级管控体系。加强建材行业高耗能、高排放项目的环境影响评价和节能审查,充分发挥其源头防控作用。强化企业社会责任意识,健全企业碳排放报告与信息披露制度,鼓励重点企业编制绿色低碳发展报告,完善信用评价体系(工业和信息化部、国家发展改革委、科技部、财政部、生态环境部、住房和城乡建设部、人民银行、银保监会按职责分工负责)(三)健全标准计量体系。明确核算边界,完善建材行业碳排放核算体系。加强碳计量技术研究和应用,建立完善碳排放计量体系。研究制定重点行业和产品碳排放限额标准,修订重点领域单位产品能耗限额标准,提高行业能效水平。加强建材行业节能降碳新技术、新工艺、新装备的标准制定,充分发挥计量、标准、认证、检验检测等质量基础设施对行业碳达峰工作的支撑作用。推动建材行业建立绿色用能监测与评价体系,建立完善基于绿证的绿色能源消费认证、标准、制度和标识体系。研究制定水泥、石灰、陶瓷、玻璃、墙体材料、耐火材料等分行业碳减排技术指南,有效引导企业实施碳减排行动。推动建材行业将温室气体管控纳入环评管理。加强低碳标准国际合作。(国家发展改革委、统计局、工业和信息化部、生态环境部、市场监管总局、能源局、林草局按职责分工负责)(四)营造良好环境。建立建材行业碳达峰碳减排专家咨询委员会,发挥战略咨询、技术支撑、政策建议等作用。整合骨干企业、科研院所、行业协会等资源,建设建材重点行业碳达峰碳减排公共服务平台,提供排放核算、测试评价、技术推广等绿色低碳服务。加快“双碳”领域人才培养,建设一批现代产业学院。积极推动建材行业节能降碳设施向公众开放,保障公众知情权、参与权和监督权。定期召开行业大会,加大对建材行业节能降碳典型案例、优秀项目、先进个人的宣传力度,全面动员行业力量,广泛交流经验,形成建材行业绿色低碳发展合力。(工业和信息化部、国家发展改革委、教育部、生态环境部、中国工程院按职责分工负责)
  • 答记者问:专家详解电厂污染控制技术路线
    p  在19日举办的中国煤电清洁发展与环境影响发布研讨会上,中电联党组成员、专职副理事长、中国环境保护产业协会副会长、秘书长易斌、清华大学环境学院院长、中国工程院院士、国电环境保护研究院院长朱法华、中国电力工程顾问集团公司副总工程师、工程技术中心副主任龙辉对记者提出的有关电厂污染控制技术路线中,白雾、烟气换热器、氨逃逸、硫酸盐、颗粒物等问题进行了详细的解答。/pp  问题:我想请教一下王理事长,我们在平时的生活中经常看到电厂有一些大量的白色烟雾排放出来。有人认为这个是水汽,也有人说这是一个污染。还有一种说法就是干法脱硫是没有白烟出来的,我想问一下普通民众有没有办法进行判断?还有这种白色烟气对雾霾影响大吗?/pp  王志轩:确实, 作为普通民众来判断烟囱里冒出的烟是水蒸气还是排放的污染物确实不容易,说实在的,即便是专业工程师也不一定能够判断出来。因为烟气的颜色既与烟气的特性有关,也与环境的温度、湿度都有关系,比如天有时候是蓝天白云,但有时候也是乌云密布,所以同样的水汽也有各种不同的表现方式。但是可以这样说,现在中国的燃煤电厂我们能看到的排放的白色的烟雾大部分是水汽。之所以能够看到,那就是水蒸气在遇到温度低的时候会形成很小的液滴,我们看到的实际上是很微小的液滴组成的烟雨。但是水蒸气或者水汽所产生的影响对环境来说基本上是没有的,不然美国在早期开始研究烟气脱硫之后为什么不加水汽呢?最最主要的原因就是当污染物控制下来以后,水汽对于环境污染的影响实际上已经很小。但是可能会产生视觉的污染,有的叫污染,有的可能叫视觉的影响,就是我不喜欢看,也有这种情况。另外可能也有在烟囱周围小的水滴下来了,我们叫烟囱雨。如果说除尘效果不好的话,有一些脱硫以后的石膏加在里面形成石膏雨。一般情况下这种污染物是烟囱周围二三百米的范围。当然有时候你看冷却塔的排放也是白色的烟雨,一般情况下大概在1公里左右。所以一般我们现在最核心的还是看它采取什么最核心的污染控制措施,如果你看到烟囱是浓烟滚滚,那肯定是污染物排放。另外刚才说到干法脱硫或者是半干法脱硫就不向空气里排水,实际上这也是一种误解。我们能看到的实际上就是水汽凝结以后形成的小液滴。但是干法脱硫温度高的话或者是湿法脱硫加温以后看不见了,大家可以想一想,水仍然存在。/pp  比如我们家里蒸馒头,锅开了以后,虽然是开了,盖着盖,馒头、包子看得很清楚,一打开锅盖以后蒸汽出来了,难道锅盖盖的时候没有蒸汽吗?不是。再比如我们冬天经常在汽车里面看到玻璃上的雾,一加热就没有了。包括舞台上的效果,并不是喷水,只是把干冰、二氧化碳温度降低了以后,把空气里的水凝结了。这就是能看见的和看不见的,不等于没有水汽。实际上干法脱硫和半干法脱硫也是排水的,水从哪里来?从煤中来。比如说煤中氢燃烧形成的水,和煤本身的外在水份、内在水分。/pp  湿法脱硫和干法脱硫水分能增加多少?就我们国家平均来看,大致可以增加10%左右。但是也不能一概而论,有一些干法脱硫,我们褐煤还是比较高的,如果是湿法脱硫还可以把水分去掉,因为湿法脱硫温度低。所以总体来说不能靠视觉来判断情况。第二,即便水分排出去以后并不是污染。第三,个别的如果说没有按照规定做的,可能会在烟囱周围会有雨滴或者是石膏雨的情况出现,一般这种情况下,并不是说不能加温,要根据实际情况,这个我们可以通过环境影响评价和其他方式加以解决。/pp  问题:我想问一下贺教授。刚才报告中提到“十一五”、“十二五”期间电力行业大气污染排放量大幅度下降,“十三五”还会继续下降,您怎么样评价电力行业对大气污染减排的贡献呢?/pp  贺克斌:电力行业对大气污染减排和治理的贡献可以从两方面讲。第一个是直接减排的污染物,我刚才发言里讲到了,在过去“十一五”、“十二五”期间,中国出现二氧化硫和氮氧化物排放量的拐点,就是我们电力增长情况下出现的总排放量的拐点主要是电力贡献的,我们其他的非电工业、民用等等有一部分还有所增加。所以减排的幅度比例在报告里都有数据,我就不一一列举了。但是有一个数据就是减了这些污染物以后,空气当中空气质量的贡献是怎么样的?在去年的中国工程院受环保部委托做了一个“大气十条”实施效果评估,组织了一批国内专家评估。从2013年到2015年“大气十条”的中期,PM2.5的浓度改善平均在25%左右。而这25%里贡献最大的是重点污染源的改造,剩下的还有结构调整、扬尘治理、机动车等等都有,但是最大的是重点行业的提标改造,贡献达到了三分之一左右。而重点行业提标改造最大的贡献者就是电力行业。所以从排放量和空气当中的浓度下降这两个指标都可以说明,在已经发生的这个阶段电力行业是最重要的贡献者。/pp  问题:我想请教一下朱院长。最近比较热的是有专家说湿法脱硫中烟气中含有可溶性的硫酸盐颗粒物,每年会有很多排到大气当中,是导致空气污染的元凶。但是我也看过朱院长的文章,您说湿法脱硫是治疗雾霾的功臣。到底湿法脱硫是元凶还是功臣,希望您给介绍一下。还有在未来的发展趋势上,湿法脱硫的技术在推广和普及的价值上是怎么样的?或者还有其他的哪些技术值得推广?/pp  朱法华:谢谢你关心我的文章。我想湿法脱硫大家最关心的就是排放的可溶盐。首先说湿法脱硫里有没有可溶盐?当然有。在湿法脱硫中形成的盐主要是硫酸钙、亚硫酸钙,以及没有反应的碳酸钙。这些盐就和大家在家里吃的盐差不多,它们是不会汽化和升华的,这些盐不会自己变成气体跑出来,只能是以固体形式存在或者是溶解在水里面。如果是以固体形式,就是可过滤颗粒物,如果是以液态存在的,就溶解在水里面,就像大家回家以后把盐放在水里一搅会溶掉。我刚才讲到的脱硫过程中形成的硫酸钙、亚硫酸钙以及没有反应的碳酸钙在水里的溶解度比我们吃的盐要低得多,就是不太容易溶解,我们叫它微溶。这是第一个想法。/pp  第二个想告诉大家的,湿法脱硫替代了大量的水汽。50度左右的水汽的含量应该在112克每立方米。所以含的水汽是比较多的,但是就像大家看的烟囱冒的一样,大量的是水蒸气。根据我们测试,99.6%左右是水蒸气。水蒸气里面是不含盐的,水蒸气是不溶解盐的,气态水。只有0.4%左右的水是液态水,就是液滴里面可能溶解盐。由于刚才讲的盐都是微溶的,水量只有0.4%左右,所以两者相乘大家就知道湿法脱硫替代的可溶盐不可能多。正是因为不可能多,所以全世界采用湿法脱硫已经有50年的历史,但是没有一个国家制定湿法脱硫可溶盐的排放监测方法,并没有湿法脱硫排放的可溶盐标准。刚才这些都是理论分析,在这个基础上因为大家关切,我们也做了一些工程,对可溶盐里面进行了研究性监测。为什么是研究性监测?因为没有标准的测试方法。所以我们进行了多种方法,在多个电厂进行研究性监测,监测的结果都表明石灰石石膏湿法脱硫后,适应性排放替代的可溶盐小于一毫克每立方米,所以这个浓度很低。折算全国石灰石石膏湿法脱硫排放的可溶盐也就是一万吨左右,所以这个对霾的影响是非常小的。这是回答你说的第一个问题。第二个问题就是推广和其他方法的前景和普及情况。我想在相当长的时间内,湿法脱硫在我国以及在世界其他燃煤电厂为主的国家都是主流技术,但是我们仍然希望有新的技术出现,就是现在国家大气专项里提出研究的,就是资源化技术。怎么把燃煤烟气当中的二氧化硫进行资源化。比如说我们正在开展研究的,也是国家支持的,活性焦脱硫、脱硝、脱汞,把二氧化硫变成硫酸或者是其他硫产品,这个就是一种新技术。当然现在还在研究和示范过程中,我感觉是比较有前景的一种方法。谢谢。/pp  提问:我想问一下龙总,是不是发达国家湿法脱硫后都安装了GGH呢?为什么我国大部分电厂没有安装呢?/pp  龙辉:刚才美国环保协会的张博士也提到了美国1996年以后基本上不设GGH。美国火电机组主要是以湿烟气为主,他们的大多数机组都是离城区非常远,有几百公里。他们基本上都是不设GGH。另外是在日本,我和日本的三菱、日立公司接触问他们为什么设GGH?因为他们国家非常小,他们的电厂分布基本上都是在城市密集的地区。他们的第一台燃煤火电机组上脱硫的时候确实没设GGH,但是飘了一些石膏雨或者是白烟,影响了当地居民。所以他们上了一百多台的GGH,我和日本的阿尔斯通公司的经理交流,他说后面的机组全部上了GGH,为了满足当地老百姓的要求。德国以前有一个排烟温度的要求,2002年以前有一个72度的排烟温度烟气要求。所以那个之前上了一些机组,但是那些机组都是41万或者35万的机组。2002年以后他们上了一些大机组,全部采用排烟塔排放,去了GGH。/pp  还有一个就是国内,国内的发展历程是这样,国内一开始上脱硫脱销装置的时候,有30%到40%的电塔当时上了回转式GGH,回转式GGH实际运行情况基本上都是在1%以上,甚至是接近2%。这个要满足我们国家现在的99%以上的脱硫效果的话肯定是不行的。所以大部分的电厂把回转式的脱硫器都拆除了。再一个就是部分电厂上了MGGH,改成MGGH的电厂是无泄漏式的GGH,这个现在也很多了,不是说大多数,就是电厂没有上GGH。现在从秦皇岛开始,到后来华能的海平电厂和其他一些电厂,咱们五大电力集团都有一些电厂现在都陆续上了MGGH。他们有些是为了满足城市电厂的需要,包括上海外高桥电厂或者是上海的外高桥一厂二厂、三厂,他们主要是当地有一些环保要求,人口密集、不影响老百姓的生活,所以他们上了,是这么一种情况。/pp  王志轩:我补充一下,我们国家从开始说有后来又没有,这个过程可以说是中国的环保工程师经过了若干次的讨论。而且我记得很清楚,当时我们在进行湿法脱硫的技术引进之前的前期学习,当时用的世界银行的贷款,由美国的工程师给中国工程师培训。首先是编制教材,教材当时是电力环保所翻译的,上面专门讲GGH的问题,讲了美国的经验,美国是大部分取消了,美国老百姓可以认同这个烟气不产生污染。还有一个需要说明的是,我们和当年的德国技术合作公司,也是德国政府资助的,也是给中国培训脱硫的教材,对于设GHH和烟气温度的问题都做了非常详细的解释。核心一点,GGH提高烟气温度扩散对环境质量的影响和脱硫之后,控制下来是最主要的。剩下的扩散了对环境质量的影响微乎其微。/pp  现在有一种说法是温度高可以增大扩散,扩散了以后对环境很好。事实上扩散只是说最大落地浓度的点,原来没有GGH可能近一点,有GGH可能远一点,但是总量是没有变化的,而且环境质量并不产生影响,因为97%以上的污染物都得到了减排。但是还有一点很重要,不是说不加热抬升高度就一定低。大家可以想想GGH是通过锅炉烟气自身的温度在加热,不进GGH这些能量整体要算,也不一定就产生出气体。为什么?因为我们一般算都是干烟气抬升,如果是湿烟气抬升,我们专门有专家研究过,比如说在南方如果湿度大的时候,湿烟气的抬升比干烟气的抬升还要高。可以说这是经过多位大气污染物扩散的专家反复讨论所得到的结果,既有国际的经验也有我们自己的实践,谢谢。/pp  提问:我想问一下贺院士,就是燃煤电厂采用超低排放后比天然气电厂还要干净,您如何评价?/pp  贺克斌:发电的两种燃料就是煤电和气电。长期以来大家知道天然气因为燃料特性决定了硫和尘的排放是非常低的,如果氮氧化物不采取任何措施,是有一定的初始浓度的。燃煤电厂是三种污染物都要对付。我们1996年的时候硫的标准是几百上千,但是现在进展到了特别排放限值,然后再到了超低排放,比如二氧化硫从原来的几百变成了几十,然后到现在是35的量。氮氧化物从原来的几百变成50,颗粒物要求严到了10左右。所以实现燃煤电厂的超低排放,还有一个词叫近零排放,就是在硫和尘的指标上已经和天然气的效果是一样的了。但氮氧化物的指标,天然气和煤都要采取措施。有一段时间有人讲天然气跟煤的比较。如果说采取了低氮燃烧加后续的后处理装置,天然气的氮氧化物也会降下来。现在初始浓度和降的水平来看,超低排放采取的措施和没有超低排放采取的措施,使尘、硫、氮三个指标都跟天然气采取了氮的措施之后的那一个指标,三个加在一起对比的时候基本上是一致的。当然说比它还要干净的说法可能不那么绝对,因为不同的案例。但是总体上讲达到相当的水平更准确一些。/pp  提问:我想问下易会长,燃煤电厂现在用的脱硫工艺90%以上是石灰石石膏湿法脱硫技术,请问脱硫技术路线现在是怎么选择的?有没有考虑用干法脱硫?/pp  易斌:刚才我发言的时候讲的比较快,可能没有说的很清楚。为什么使用湿法,刚才几位专家介绍了美国、欧洲和日本的情况,应该说比较清晰了。在我们国家遇到的情况也是类似的,我想主要有几个原因。从早期来讲,八十年代的时候我们国家在很多电厂还是做了一些干法的实验,到后来还在一些小规模装置上做了电子树、活性焦的实验。当时追求的目标是考虑到中国当时经济实力较弱。做了很多年下来的结果最后还是选择了湿法,主要的原因就是几个比较重要的原因。我们现在真正应用的一个是石灰石石膏法,另外一个是烟气循环流化床,烟气循环流化床刚才王理事长说了,我在报告里特别强调了它是一个半干法。另外一个还有氨法,还有一些大的应用。其实技术路线选择的过程中更多的主要还是从可靠性,要达到比较高的要求,特别是对电厂来讲可靠性是非常重要的。另外还有一个是脱硫产物资源化利用的问题,等等综合因素的决定,所以电厂主要是选择了干法。/pp  举一个例子,现在的烟气循环流化床大家看到的是水用的少,其实少多少呢?只是水的用量少了三分之一左右,因为氮最后也是以水蒸汽形式排出去的。它最大的问题是对大的机组,要长期稳定可靠不停运行的话是有难度的。另外副产物也是很重要的,副产物不是稳定的,石灰石膏法的副产物是比较稳定的石膏,是亚硫酸钙为主,应用过程中有很多问题,工业化的利用也有很多问题。所以现在目前主要还是用在小型的机组,特别是在一些工业上用的比较多。这是一个情况。另外,国家的有关政策方面一直都是多方案的选择,我想更多的还是方方面面的原因,一直强调因地制宜、因厂制宜、因煤制宜等等这些因素考虑的,不是简单的说谁非要用这个石灰石石膏法。/pp  王志轩:我简单补充一下。首先中国电力行业是不是忽视了干法或者忽略了干法,没有注意。当然,干法一般来说比如用CFB锅炉,可以说是干法,一般的烟气脱硫是半干法,主要是为了提高反应的速度和活性。我想说的是中国从七十年代末到九十年代,对于干法的研究工业实验,一直到现在都没有停止过,为什么?因为我们从八十年代、九十年代开始,当时湿法脱硫的成本大致占当时电厂筹资的三分之一左右,所以当时我们干不起。但是干法脱硫相对比较便宜,再一个是系统比较简单,另外省一点水。所以说根据当时中国的国情,我们首先先选择干法,做了大量的实验室实验、工业实验。我自己到了能源部之后,包括国际合作项目,比如跟日本的绿色援助计划,就是在山东洪岛有一个半干法的工业实验,当时就想将来这些方法可能在中国比较适合,因为它的造价比较便宜,脱硫的效率当时按照85%左右设计。在南京下关电厂,单位引进的也是半干法。中国有很多已经进入了商业化的阶段,确实再大的机组,从全世界来说,像今天介绍的日本用活性焦,我也看过,但是一般的半干法在大型机组中用得比较少。我曾经在德国跟专门搞半干法设计的工程师聊过,有两台30万就是经他手设计的,但是后来不行。我们是通过对半干法的反复实验、研究,包括国际经验,最后得到一个现有的湿法脱硫工艺的选择,更重要的是效率、稳定性、副产物的处理整体上的考虑。我也非常赞成刘司长讲到的现在的脱硫工艺是全世界中环保工程师几十年研究、实验、检验的结果,不是说中国几个人拍脑袋形成的现在的情况。谢谢。/pp  提问:我想问一下王理事长,目前燃煤电厂从大气方面来说脱硫、脱硝、除尘的工艺大家愿意上,而且也是强制性上的,另外废水零排那块,从目前来说国内也只是鼓励和推荐,没有形成强制性,目前会有这方面的政策出台吗?另外如果现在做零排的话,对水资源的匮乏和环境污染会有很大的影响吗?/pp  王志轩:简单回答一下。首先今天潘主任在发布报告的时候也涉及到燃煤电厂的用水和排水的情况。大家看一度电的时候可能看电是能量单位。但是我们搞环保的、资源的,我们看一度电的时候,它不仅是能量也是资源。比如说当我看一度电的时候我想到它消耗了多少煤、排放了多少污染。过去我们的一度电消耗三公斤水,但是现在我们和过去比节水达到了90%,应该说达到了世界先进水平。是不是一定要零排放?我个人的意见是首先要从需求出发,零排放一个是从水资源的角度,第二个是从环境治理或者对环境影响的角度,这是最核心的。因为污染物的排放与当地的水的功能是相关的,因为我们现在电厂排放的水的污染对燃煤电厂来说目前主要的还是里面的盐,就是可溶盐,原因主要是湿法脱硫产生的。湿法脱硫本身并不是原料里的,而是煤里面的氯化物通过湿法脱硫过程中的捕缉,最后基本上达到2万多毫克甚至3万毫克的程度,因为不能在系统里停留了,必须要排出去,这部分首先是要看当地的水环境质量的要求是什么情况。/pp  在国际上并不是说全世界湿法脱硫的水都是要零排放,恰恰大部分都是排放的,因为要满足当地的环境质量。从水资源的角度也是这样,要综合考虑。如果零排放的话,不仅仅要考虑到水,零排放现在的工艺不管怎么说,最后的盐到哪儿去了?如果这部分盐不能够得到有效的利用,或者是它里面的污染物不能得到很好的无害化的处理,也是需要考虑的。所以总的来说一定要注意到零排放环境的需求、资源的需求和它产生的其他二次污染物综合的影响,才能决定是不是在全国、全行业大面积推广。对于已经确定的采取的工艺或者要求,我认为还是要严格进行评估。谢谢。易斌:回答你的第一个问题,据我了解现在从国家的层面,没有统一要求电厂都要做零排放,我想短期内也不会有这样的要求。第二,技术的问题和工程的问题,现在是有少量的电厂,包括别的行业在做含盐废水零排放的工作,我们电厂也有建好的,但是主要的问题是不太经济,还是很贵。这是第一个问题。第二个问题,盐的出路问题,如果我们要做零排放,关键是盐要有销路,我们现在很多地方,包括一些煤化工所谓的零排放,盐是做成杂盐,杂盐出来是危险废物。如果做成混合的盐,这条路线可能是有问题的。如果要做,一定要分成一个个的单质盐才有可能将来应用。但是单质盐的成本比较高,还有行业接受度的问题,比如说我们不是电厂的,是做煤化工的,将来煤化工回收的是氯化钠还是氯化钾,要在化工行业用,在哪儿找出路现在是一个很难的问题。因为中国不缺盐,电厂的废水里回收的盐也主要是氯化钠。/pp  提问:我想问一下王理事长。我国火电厂年利用小时数在下降,火电厂调峰任务增多,机组运行不稳定,启停增多,请问环保设施受影响吗?是否会增加空气污染?谢谢。/pp  王志轩:这个问题问得很专业。我想是这样的,作为脱硫装置来说,包括污染控制设施来说,最希望的是主机稳定运行,最好是投上以后一年运行6000小时或者是5500小时。所有的工程设计都是按照基本工控。但是现在不可避免的从未来来看,燃煤电厂的利用小时数下降这也是个趋势,最主要的原因是燃煤电厂的功能可能会发生一些变化,调峰的任务更加频繁,低负荷运行时间也会增多,特别是启停的时候增多。这些情况毫无疑问对于污染控制设施系统上是有影响的,而且脱硝、除尘、脱硫三个装置之间互相也有影响。我记得日本最早开始的时候,这三个是分开的,后来合在一起,就是要充分考虑它们之间的互相影响。而机组的影响必然造成对系统的影响,这需要我们环保产业公司在脱硫工艺考虑的时候要充分考虑到这种影响。当然现在我认为已经考虑到了,因为中国是世界上燃煤电厂全部取消了烟气旁路的国家,烟气旁路取消了就意味着一旦你环保设施出了问题的时候,整个机组必须要停,因为没有办法,所以说设施的可靠性必须要保证。而且相对处理污染物的容量也要大一些,因为适应它的波动性。/pp  另外,为什么说我们现在脱硫脱硝的技术,在引进消化吸收再创新上又前进了呢,就是要更多地考虑到它波动性的影响。我相信第一有影响。第二有办法可以解决。但是我们的核心还是要考虑这种影响最终对环境质量影响的大小,如果说这种影响对环境质量的影响并没有明确的相关,我们应该允许它在非正常情况下的排放,在排放标准的评价上要有所适应。比如说我们现在燃煤电厂控制它的达标情况基本上或者达成一种共识,按照一小时超标就算超标,当然有个省不是这样。美国是按照月平均值,甚至有一些特殊工程的话,是三个月滚动评估,欧盟也是月评估。所以如果我们按照排放标准的数字,在不影响环境质量的前提下可以使我们的污染控制设施的运行和它的投入或者成本能够达到一个很好的适应。谢谢。/pp  提问:我想请教一下朱法华先生。我之前看到过一次硫酸工业协会关于硫酸的工作简报,就是湿法脱硫后的烟气当中含有可溶性的硫酸盐细颗粒物,他们检测的结果是最高到200毫克每立方米,一般情况下是30毫克每立方米,我不知道是不是因为行业的原因所以特别高。我们燃煤电厂的湿法脱硫当中的硫酸盐可溶性离子含量您刚提到大约是0.4%的液态水中含有可溶性盐。看起来排放量不是特别高。但是有一种说法就是这种可溶性盐离子排放到大气中之后会形成一个核,吸附其他的小颗粒,从而形成PM2.5。所以从这个角度来讲,不知道这种烟气是否应该回收处理?另外,我在中国知网的门户中检索发现至少有几十篇各个电力公司工程师们发表的论文,就是关于湿法脱硫之后排气当中检测到了极细颗粒物,它的浓度是增加的,就是PM2.5的处理效果很好,但是这些细颗粒物的浓度增加了,我比较奇怪,像这种情况的出现是因为我们湿法脱硫技术后续过滤的装置和其他处理技术还不够完善,还是因为我们的燃煤有独特性或者是其他什么原因,有没有改善的办法?谢谢。/pp  朱法华:谢谢你的问题,很专业。我刚才前面回答的问题是可溶盐,你刚才讲到硫酸工业协会的简报,实际上是讲硫酸物,我前面讲的是盐,盐在常温情况下以及烟气条件下是固态的。硫酸物是指三氧化硫,因为三氧化硫在常温条件下都是气态的,看不见的,但是存在着。但是三氧化硫有水的时候它跟水会接触,有一部分会溶解在水里面,那个在我讲的第一点上的问题,就是硫酸盐里。另外一方面,三氧化硫跟水接触以后呈雾状的,就是气态的。我们要弄清楚三氧化硫是从哪儿来的?实际上三氧化硫是煤燃烧过程中部分硫被氧化成三氧化硫,绝大部分都是氧化成二氧化硫。氧化成三氧化硫比例在0.5%-2%,大数是1%左右。另外,现在性催化还原,就是SCR烟气脱硝过程中也会有一部分的二氧化硫被氧化为三氧化硫,这个比例大数也是在1%左右。这个就是氧化形成三氧化硫,所以进行湿法脱硫,有一部分溶解到水里,有一部分是以雾状形式存在。所以首先三氧化硫的产生和湿法脱硫是没有关系的,湿法脱硫不会形成三氧化硫。相反,湿法脱硫可以脱除部分三氧化硫。我们早期测试的结果破除三氧化硫在百分之二三十左右,因为早期的脱硫效率比较低,现在都测到90%的脱除效率。/pp  为什么脱三氧化硫的效率提高呢?是因为我们现在的湿法脱硫脱二氧化硫的效率高了,就要延长接触时间,进一步增加烟气和浆液的接触,在这个过程中三氧化硫脱除的量也增多了。所以现在一般来说对于复合法脱硫脱除三氧化硫的效率一般在70%以上,所以效果还是很明显的。脱除以后,三氧化硫有没有?还有,所以三氧化硫这块在国内外都有测试方法标准,因为它还是有一定的量的。所以这块实施我们国家实施的方法标准就是GBT-T21508-2008,就是有一个国标,就是燃煤烟气脱硫设备性能测试规范,在这个规范里有附录C是专门测烟气中三氧化硫浓度的。怎么测试?是通过一个水流的装置来采集烟气中的三氧化硫或者是硫酸物进行分析,我们对全国100多台机组进行过测试,在没有搞超低排放之前,三氧化硫浓度平均在不到30毫克每立方米,搞了超低排放以后,因为湿法脱硫,脱除三氧化硫的效率要提高很多。所以现在超低排放以后,我们测出来的结果平均值在8.86毫克每立方米。后面加了湿式电除尘器机组,平均值是6.6毫克每立方米。所以实际上超低排放以后三氧化硫的排放量也是大幅下降的。/pp  第二个问题,湿法脱硫以后极细颗粒物浓度增加了,是不是技术不完善或者怎么样?湿法脱硫就像下大暴雨一样,喷淋层在里面一直喷,所以绝大部分湿法脱硫之后总颗粒物浓度以及细颗粒物浓度都是有所下降的。但是在早期的脱硫装置当中,确实存在着总颗粒物浓度和细颗粒物浓度都上升的情况,就像你讲的好多工程师很关注这个事情,为什么关注?它不正常,所以大家关注。就是说通过研究,发现湿法脱硫导致颗粒物浓度增加主要有三方面原因,实际上就是总颗粒物浓度增加,细颗粒物浓度增加,增加主要是三方面原因。第一个是除雾器的效果不好,第二个是塔内的烟气流出过大或者不均匀,就是局部过大,第三个是喷淋塔喷淋出来的液滴过小,也会导致细颗粒物浓度增加或者总颗粒物浓度增加。所以现在原因弄得比较清楚了,解决这个问题也比较有针对性。我想2015年以后石膏雨的影响越来越少了,从现在测试的结果来看,湿法脱硫对颗粒物的脱除效果从早期的50%提高到现在的80%,这个结果和日本测试认定的湿法对颗粒物的脱除效果也是比较一致的,甚至有些还会更高。我们86.7%都测到过。所以对细颗粒物的浓度还是有很大改善的。前面讲到电力行业不仅对酸雨改善作出了巨大贡献,对现在大气的治理也在发挥重要的作用,所以总量浓度肯定是下降的。粒子可能会变小,但是变小的比例,在总的颗粒物里小的比例是增多了,但是小的绝对值是没有增加的。所以这个技术应该说还是很完善的。/pp  另外,冲洗是一个物理过程,就像下雨的时候,大气当中有什么颗粒跟颗粒的性质没有关系,不管什么颗粒都得淋下来。所以跟颗粒的性质没有什么关系,总体来说效果还是很好的。当然,烟气脱硫系统也好,脱硝系统也好,除尘系统也好,不是说没有进一步完善的地方,因为现在实现了超低排放,超低排放是一个系统工程,前面理事长也提到了,日本原来除尘是除尘的规范,脱硫是脱硫的规范,脱硝是脱硝的规范,我们国家也是这样,我们现在正在制定燃煤电厂烟气超低排放工程技术规范,就不是一个一个的了。为什么要组合在一块?就是燃煤电厂超低排放烟气治理系统是个系统工程,之间相互影响,所以怎么对系统进行优化,可以实现减排的同时还实现积累。这个我们都有工程案例,没有实现超低排放之前,厂用电力比实现超低排放之后还要高,实现超低排放之后厂用电力还下降了。所以可以做到节能和减排,当然这个是需要工程技术人员进一步优化,目前电厂一般人员还很难做到。所以这个应该说也是下一步电力行业烟气治理进一步做到节能减排的一个方向,也是我们院现在正在做的事情。/pp  问题:刚才介绍一些脱硫和脱硝的技术,我们也看到一些燃煤电厂在烟气脱硝的过程中会用到氨,也有一些案例和报道提到过量的喷氨会产生氨逃逸,我想问一下王理事长过量的氨逃逸会对环境造成哪些影响?会造成哪些污染?/pp  王志轩:首先是尽可能地控制,不要让氨过量。但是有些措施具体喷氨的工艺等等可能会造成过量,这个过量一般是叫做氨逃逸,氨逃逸主要是在脱硝的工序里多出了一部分氨。逃逸之后并不是直接逃到空气里,是进入到后续系统,所以它和烟气里其他的污染物,比如说形成硫酸氨还有其他污染物,可能会粘在后面的空气预热器和其他的设备上,这个会对系统后面的设备产生堵塞等等各个方面的问题,所以首先从工艺上要进行避免。专门有这样的标准,就是说每立方米里逃逸的氨不能超过规定的限值,这个是技术规范有要求。当然,如果说在规范之内逃出去以后,在设备上粘到一些,后面有除尘系统,都会把逃逸的一部分氨拿下来。1992年欧洲经济委员会专门有一个烟气脱硝的工作组,他们在当时就做了大量的分析工作,分析氨逃逸之后到底跑哪儿去了?基本上80%多是逃到灰里面去了,还有一部分逃到水里了。/pp  所以我们前面的脱硝,后面脱硫的时候,为什么脱硫废水里面检测出氨呢?实际上就是逃逸氨出来了。还有一部分是通过烟囱最后排出去了,这一部分对大气环境造成了污染。一部分变成颗粒物了,一部分变成气溶胶了,逃出的这部分氨大致说在5%以内。当然有时候也能看到有一些电厂所谓的蓝色烟雨或者褐色的烟雨,也有这样的问题。但是这个问题首先是它没有按照规范或者不是按照达标排放标准做的,相当于是一个病人。我们首先谈的前提是说按照技术规范的要求,可以说按技术规范是可以做到的,比如说为什么脱硝的时候要进行流程模拟,要加上喷烟的喷嘴或者格栅的布局,整个系统首先是可以做到的,但是没有做到,那是设计、建造、运行的问题。我想说的是逃出的这部分氨是能够满足污染物排放标准的基本要求。/pp  易斌:我补充一下。脱硝的国家标准里明确提到大概是3个PPM,是在氨反应器的出口,不是指烟囱的出口,大家一定要把这个概念搞清楚,就是每立方米2.28毫克,从设计来讲确实这个规范基本上能做到。因为脱硝的反应是个化学反应,要有一定的化学当量比,比脱除的氮氧化物当量还低的话就做不到高效的脱除氮氧化物,所以有一点氨的逃逸是技术工程上的问题。另外,其实进入大气的很少,一个是进入后面除尘系统里80%以上,还有将近20%是形成了铵盐,在系统里,不会到烟囱里。前一段时间人家给我提出今年20个电厂测试的结果,我们标准要求是2.8个毫克每立方米,这些厂家都做到2以下,1点几,基本上是这么一个水平。/pp  提问:我想问一下朱院长,刚才提到PM2.5的浓度和细颗粒物的浓度倒挂的现象,您刚才提到三个原因,这是极个别的现象吗?另一个问题问一下王理事长,现在很多超低排放,在华北、华东地区的一些火电厂出现了预热器堵塞的问题,想问一下您怎么看待这个问题?/pp  朱法华:湿法脱硫之后颗粒物浓度增加,这种情况应该说在我们国家早期投运的脱硫装置当中也不算是个别现象。应该说当时大家关注的是脱硫,实际上需要获得一定的脱硫效率,对脱硫这块除尘的结果,去除颗粒物的效果不是太关注。再一个,一开始对脱硫技术本身也不是很懂,所以石膏雨在五年前或者更长一点经常听到很多人说它,就像前面的记者问的,他在网上查了很多文章,那个时候是一个比较大的问题,也是一个热点问题,所以大家做了很多研究。弄明白了,解决这个问题也就比较容易了。现在如果说还有这种倾向,那应该是个别的。比如说现在哪个厂脱硫之后颗粒物浓度显著增加,那一定是个别的,而且这个厂的环保电价是拿不到的。为什么拿不到?因为我们现在超低排放火电厂污染防治可行技术指南,这个也是我牵头制定的,环保部5月份发布的标准,这里面我们对湿法脱硫后烟气当中的雾滴浓度规定要小于25毫克每立方米。/pp  原来的工程技术规范是75毫克每立方米,所以现在工程质量明显提高了。雾滴浓度低了,里面含的成份,自然而然排放颗粒物的浓度也就少了,因为好多颗粒也是跟着水出去的。这个我觉得也很正常,任何一个技术发展都有一个过程,从不成熟到成熟,从不会用到用得越来越熟练,就像我刚才前面提到的,超低排放工程是一个系统工程,尽管我们现在大量的电厂都实现超低排放了,但实际上目前来说对超低排放系统工程的优化应该说还远不到位。包括前面讲的氨逃逸,要搞超低排放,喷淋氨就增多,如果没有完全反应,逃逸的量就会增大,还是说明对它认识不到位。如果喷进去的氨是完全可以反应掉的,所以这个就有优化。实际上这个我们也在做研究,包括流程研究、喷氨精准控制方面的研究,包括温度场的研究等等都在做。总体来说我们现在已经实现超低排放了,下一步会在超低排放的基础上更进一步节能减排,我讲的节能减排包括减少液氨的消耗量,包括减少用电,同时减少二氧化硫、氮氧化物和烟尘的排放。/pp  王志轩:我用一句话回答一下这个问题,大约20年前我的一位老领导,也是一位老专家,总结了国际上当时普遍应用的脱硫技术的时候,他说湿法脱硫我们现在可以用,就是湿法烟气治理技术的历史就是一部与腐蚀、磨损、堵塞做斗争的历史。到今天这句话仍然适用,好在我们无论从理论上还是实践上都积累了相当的经验,可以解决这些问题。/p
  • 太阳能电池组件污染的实际成本
    越来越多的太阳能行业报告表明,太阳能电池组件污染所造成的经济损失和生产损失令人吃惊。什么是太阳能电池组件污染,它会造成哪些影响,可以采取什么措施来预防或减少这种污染?Kipp & Zonen 公司研发的灰尘监测系统DUSTIQ是如果解决这一难题的? 什么是太阳能电池组件污染? 太阳能电池组件污染是由空气中的污染物和颗粒物(如沙子、土壤、盐、鸟粪、花粉、雪、霜)以及不同类型的尘埃颗粒物(如二氧化硅、灰烬、钙和石灰石)沉降在光伏组件表面造成的。地面上小至 25 微米的微尘,通过风吹、农业活动、火山活动、交通运输以及附近人和动物的运动而移动。 中东和北非 (the MENA region) 是粉尘积聚发生率最高的地区,这一问题影响了全球的光伏工业园区,导致维护、维修的成本增加,并可能降低了能源产量。如果不加以控制,最初的光伏污染会导致能量的产能减少;特别是长期积累的污垢,如遇潮湿会导致微粒胶结,鉴于此情况下形成的硬质不透明层几乎不可能去除,最终会致使太阳能电池组件完全丧失产能。在较干燥的环境中(降水量通常需要超过 20 毫升才能影响组件表面的清洁),以及在倾斜角度较小的光伏组件配置中,空气污染和污染物积聚的严重程度会加剧。大部分电力于正午时(太阳在天空中处于最高点时)在光伏站内产生,日出和日落时的生产损失最大,虽然这些时刻仅占当天剩余时间的总产能的一小部分,但准确监测颗粒污染可以为维护计划提供信息,从而降低运行和维护成本 (O&M),并充分发挥太阳能转换高效生产时间的潜能。光伏组件的性能还受到组件温度和辐照度变化的影响,致使最初的颗粒污染进一步恶化为软硬阴影问题。在多支路配置中,单个电池或隔离区内的软阴影可以通过公用逆变器在其他并联支路中引发电流不平衡。在单个支路上,光伏阵列隔离区上的硬阴影将降低支路电压,但与在单个支路上的软阴影一样,逆变器将检测并调节降低电压。然而,并联阵列中不同支路上的电压不匹配(即部分阴影),意味着连接到单个公共逆变器的不同并联支路将传送不同电压,致使调节最佳电压值以达到最大功率这一过程变得复杂且不可预测。 如何降低光伏污染的影响,同时提高产能 减少因光伏组件污染而导致的发电量,降低产量损失造成的不利影响, 重要因素是准确收集有关污染率(SR) 的数据,并与同类“洁净”组件的预期数据进行比较。详细而准确地监控污染率将通过显著减少“停机”时间来确定计划内和计划外维护的时间和成本效益。有效的数据记录和报告可使清洁污染的光伏组件的时间更有效,而非依赖固定的维护计划。这种固定维护计划可能会产生不必要的清洁成本或在纠正不可预测的环境事件的影响方面出现延误。优化电厂组件功能的关键在于正确的预防性、纠正性的维护策略。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制