当前位置: 仪器信息网 > 行业主题 > >

固体孔隙定仪

仪器信息网固体孔隙定仪专题为您提供2024年最新固体孔隙定仪价格报价、厂家品牌的相关信息, 包括固体孔隙定仪参数、型号等,不管是国产,还是进口品牌的固体孔隙定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固体孔隙定仪相关的耗材配件、试剂标物,还有固体孔隙定仪相关的最新资讯、资料,以及固体孔隙定仪相关的解决方案。

固体孔隙定仪相关的论坛

  • 测定固体材料孔径分布和孔隙度 压汞法

    测定固体材料孔径分布和孔隙度 压汞法

    一般测试样品的孔径分布,所使用的方法就是静态容量法和压汞法。其原理是通过测试的分压和对应的各级孔的吸附量,来表征材料孔径的分布。表征的方法是,通过各级孔径的体积与对应的分压下的一个曲线图,来表征材料的孔径分布。今天我们主要讲讲测定固体材料孔径分布和孔隙度 -压汞法它的原理如下: [font=宋体]由于非浸润[/font][font=宋体]液体[/font][font=宋体]汞仅在施加外压力[/font][font=宋体]时方可[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔体(不包含[/font][font=宋体]闭孔[/font][font=宋体]),在[/font][font=宋体]不断增压的情况下,[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔[/font][font=宋体]体的汞体积[/font][font=宋体](或孔径)[/font][font=宋体]与外压力具有一定函数关系[/font][font=宋体],[/font][font=宋体]从而测得样品的孔径分布。[/font][font=宋体]在假设孔为圆柱形的前提下,[/font][font=宋体][color=#222222]Washburn方程[/color][/font][font=宋体][color=#222222]给出了压力与孔径[/color][/font][font=宋体][color=#222222]间[/color][/font][font=宋体][color=#222222][font=宋体]的关系[/font],[/color][/font][font=宋体][color=#222222]见下[/color][/font][font=宋体][color=#222222]式[/color][/font][font=宋体][color=#222222]。[/color][/font][img=,156,66]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301515009551_4103_2140715_3.png!w156x66.jpg[/img][font=宋体]其中,[/font]γ为汞的表面张力、θ为汞在样品上的接触角。我们实验室所购压汞仪为美国麦克仪器的9500系列的全自动压汞仪。最高压力可加至33000psia(≈230MPa),可分析孔径范围为0.0055um-400um。压汞检测适用范围: 适用于大多数非浸润多孔材料,不适用于汞齐化的材料,如:金、铝、还原铜、还原镍和银等一些金属;样品预处理: 最好在>110℃温度下,真空状态下干燥处理1h以上;样品尺寸的选择 因为检测中心使用的是5cc的膨胀计,样品尺寸为φ14×20mm的样品较为适宜。 但样品最佳的尺寸要根据所分析材料的总孔体积选择。一般,当Stem Volume Used 小于25%或大于90%时,需要改变分析变量。第一:可以选择稍大或稍小的样品量以提供更好的分辨率,第二改变毛细管体积。具体操作如[b][font=黑体] 1.[/font][font=黑体][color=#222222]样品烘干[/color][/font][/b][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222]10[/color][/font][font=宋体][color=#222222]℃±[/color][/font][font=宋体][color=#222222]5[/color][/font][font=宋体][color=#222222]℃,2h,贮存在干燥器中冷却至室温备用。[/color][/font][font=宋体][color=#222222] [/color][/font][font=宋体][color=#ff0000][font=宋体]最好在>[/font][font=宋体]110℃温度下,真空状态下干燥处理1h以上[/font][/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体][color=#222222]2 [/color][/font][b][font=黑体][color=#222222]膨胀计[/color][/font][font=黑体][color=#222222]装样[/color][/font][/b][font=宋体][color=#222222]将干燥[/color][/font][font=宋体][color=#222222]冷却后的样品[/color][/font][font=宋体][color=#222222]称重[/color][/font][font=宋体][color=#222222]后[/color][/font][font=宋体][color=#222222]放入[/color][/font][font=宋体][color=#222222]一干净的膨胀计中,[/color][/font][font=宋体][color=#222222]用成套[/color][/font][font=宋体][color=#222222]的密封件[/color][/font][font=宋体][color=#222222]密封[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]密封时[/color][/font][font=宋体][color=#222222]必须使用密封脂[/color][/font][font=宋体][color=#222222],确保[/color][/font][font=宋体][color=#222222]密封性[/color][/font][font=宋体][color=#222222],密封不严可能造成真空度无法达到要求[/color][/font][font=宋体][color=#222222]。[/color][/font][font=楷体][color=#222222]注意:在样品装样等过程中必须戴好乳胶手套,皮肤不得直接接触样品和膨胀剂等,全程佩戴好口罩等防护用品。[/color][/font][font=黑体][color=#222222]3 [/color][/font][b][font=黑体][color=#222222]抽真空[/color][/font][/b][font=宋体][color=#222222]抽真空的目的是去除样品中的大多数水分及气体。[/color][/font][font=宋体][color=#222222]首先[/color][/font][font=宋体][color=#222222]将[/color][/font][font=宋体][color=#222222]装有样品的[/color][/font][font=宋体][color=#222222]膨胀计[/color][/font][font=宋体][color=#222222]安装在压汞[/color][/font][font=宋体][color=#222222]仪低压[/color][/font][font=宋体][color=#222222]站,建立低压测试文件开始分析,[/color][/font][font=宋体][color=#222222]真空度[/color][/font][font=宋体][color=#222222]达到小于[/color][/font][font=宋体][color=#222222]50μmHg[/color][/font][font=宋体][color=#ff0000][font=宋体](使用真空泵将膨胀计抽真空至[/font][font=宋体]20mg汞柱[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][color=#222222]要求后开始下一步低压测试[/color][/font][font=宋体][color=#222222]。[/color][/font][font=黑体][color=#222222]4 [/color][/font][b][font=黑体][color=#222222]低压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]抽真空结束后压汞仪[/color][/font][font=宋体][color=#222222]以分级连续升压或在[/color][/font][font=宋体][color=#222222]可[/color][/font][font=宋体][color=#222222]控[/color][/font][font=宋体][color=#222222]的[/color][/font][font=宋体][color=#222222]方式下以步进式[/color][/font][font=宋体][color=#222222]升压[/color][/font][font=宋体][color=#222222]的方式增压[/color][/font][font=宋体][color=#222222]。系统[/color][/font][font=宋体][color=#222222]记录压力和对应的进[/color][/font][font=宋体][color=#222222]汞[/color][/font][font=宋体][color=#222222]体积。当[/color][/font][font=宋体][color=#222222]达到设定[/color][/font][font=宋体][color=#222222]的压力[/color][/font][font=宋体][color=#222222][back=#ffff00](一般为[/back][/color][/font][font=宋体][color=#222222][back=#ffff00]30psia[/back][/color][/font][font=宋体][color=#222222][back=#ffff00])[/back][/color][/font][font=宋体][color=#222222]后,减压[/color][/font][font=宋体][color=#222222]力[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=宋体][color=#222222]当泄压结束后将膨胀计组件松开取下,毛细管向上称重并记录。[/color][/font][font=黑体][color=#222222]5 [/color][/font][b][font=黑体][color=#222222]高压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]安装膨胀计于[/color][/font][font=宋体][color=#222222]高压[/color][/font][font=宋体][color=#222222]站[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]确保密封性。建立高压测试文件开始孔径分布的高压分析。通过[/color][/font][font=宋体][color=#222222]计算机图表[/color][/font][font=宋体][color=#222222]记录[/color][/font][font=宋体][color=#222222]压力和相应的注汞体积。当[/color][/font][font=宋体][color=#222222]达到[/color][/font][font=宋体][color=#222222]所需的最大压力,[/color][/font][font=宋体][color=#222222]逐步减压[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=黑体][color=#222222]6 [/color][/font][b][font=黑体][color=#222222]测试[/color][/font][font=黑体][color=#222222]完毕[/color][/font][/b][font=宋体][color=#222222]从测[/color][/font][font=宋体][color=#222222]孔仪中取出膨胀计前,必须确保[/color][/font][font=宋体][color=#222222]仪器[/color][/font][font=宋体][color=#222222]内的压力已降至大气压。[/color][/font][font=黑体][color=#222222]7 [/color][/font][b][font=黑体][color=#222222]空管校准[/color][/font][/b][font=宋体][color=#222222]为消除由于汞压缩而产生的相对注汞体积、样品管和其他仪器元件等产生的误差[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222][font=宋体]在使用新的膨胀计时需按住[/font][font=宋体]8[/font][/color][/font][font=宋体][color=#222222].2-8.6[/color][/font][font=宋体][color=#222222]进行空管校准测试,建立专用的膨胀计数据,以便后续测试时减去空白,得到样品的真实孔径分布数据。[/color][/font][b][font=黑体]8.结果计算[/font][font=黑体] [/font][/b][font=宋体][font=宋体]通过以上测试获取样品的中位孔径、最可几孔径以及孔径分布曲线等数据,典型孔径分布曲线如下图[/font][font=宋体]1[/font][/font][font=宋体]-3[/font][font=宋体]所示。[/font]8.1压汞图谱介绍[font=宋体] [/font][img=,690,584]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301522043958_4855_2140715_3.png!w690x584.jpg[/img]8.2压汞过程中汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301523249691_5499_2140715_3.png!w690x575.jpg[/img]8.3压力转化为孔径后的汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301524109350_4028_2140715_3.png!w690x575.jpg[/img]8.4压汞测试报告结果[img=,690,274]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301526057747_9550_2140715_3.png!w690x274.jpg[/img]Total intrusion Volume【总侵入体积】,mL/g,是指在分析过程中获得的最大压力下,汞侵入样品孔隙的最大体积。 Total Pore Area【总孔面积】,m2/g,是基于圆柱几何假设的孔壁面积。Median Pore Diameter(Volume)【中值孔径(体积)】,nm,是指在较大和较小的直径上出现等量孔隙体积时的孔径。Median Pore Diameter(Area)【中值孔径(面积)】 ,nm,是在较大和较小的直径上出现相等数量的孔壁面积时的孔径。 注:中值孔径(体积)和中值孔径(面积)经常不同,因为分布中较大的孔对总体积贡献很大,而较小的孔对总孔面积贡献更大。随着孔隙分布变得更宽或呈双峰,这两个数字之间的差异将变得更大。END

  • 药物粉体的密度及孔隙度测定

    [size=18px][b][b]1. 引言[/b] [/b]在药物制剂的研发及生产过程中,往往都会涉及到相关的药物粉体。这些粉体及其片剂的理化性质会影响其混合均匀度、压缩成型过程,以及最终制剂的生物利用度和疗效等,因此,在粉碎、混合、压片、制粒等过程中需要对其相关物理特性进行调控以确保最终制剂质量。除了关注度较高的粒度粒形,比表面积,流动性等性质外,密度及孔隙度的表征也是药物质量的重要指标,并且在研发及生产的众多环节都有所涉及。因而在美国药典USP 、USP ,日本药典JP 3.03,欧洲药典Ph. Eur. 2.9.32、Ph. Eur. 2.2.42和2020年版《中国药典》通用技术0992中,都明确规定了药物粉体相关的密度、孔隙度测定方法。密度主要会影响粉体的流动性,均匀性,压缩性以及离析度、结晶度等等。由片料包裹密度除以骨架密度算得的片料固相分数(Solid Fraction)是辊压过程中的关键工艺参数,测定固相分数可了解药物中固体含量百分比等相关信息,从而提高辊压过程的有效性,并建立可控的辊压速度、辊压压力等工艺操作参数,对工艺过程的参数设置及优化制剂质量具有重要意义。此外,药物材料的骨架密度还可以作为其结晶状态以及二元混合物比例的标志。孔隙度(Porosity)会影响药物的辊压制粒、崩解等过程,以及片剂强度、压实度、含量均匀度及溶出度等性质,是药物崩解、溶出和生物利用度的一个关键质量属性。此外,孔隙度测量还可以预测评估压缩过程中颗粒的变形特性,测量辊压后片料的总孔体积和固相分数,以及评估药物包衣的完整性,帮助确定包衣过程中物料流的参数设置等。综上所述,掌握和控制药物制剂的密度及孔隙度对药物的最终疗效及生产稳定性非常重要。本文将介绍药物粉体密度及孔隙度的定义及测试原理,并举例说明相关测试结果。[b][b]2. 密度测试[/b][/b]密度是单位体积粉体的质量。由于粉体的颗粒内部和颗粒间会存在空隙,所以粉体所占有的体积会因测量方法不同而有所差异,并由此产生如骨架密度、包裹密度等不同的密度概念。(1)真密度和骨架密度(颗粒密度)真密度也称绝对密度,所对应的真体积是指不包含开孔和闭孔的体积。骨架密度(颗粒密度)对应的骨架体积是样品的真实体积与闭孔体积之和,即不包括与外界连通的开孔体积。骨架密度的测定方法一般采用基于阿基米德原理的气体置换法测定,该法是目前世界公认的测真密度、骨架密度可靠的技术之一,并为无损测量。图1所示为麦克仪器的AccuPyc II[b]全自动气体置换法真密度仪[/b],测试采用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,结合样品质量可算得骨架密度。[/size][align=center][size=18px][img]http://img72.chem17.com/9/20200731/637318055225383925887.png[/img][/size][/align][size=18px][/size][align=center][size=18px]图1 AccuPyc II[/size][/align][size=18px][b]全自动气体置换法真密度仪[/b](2)包裹密度包裹密度所对应的包裹体积包含颗粒的骨架体积和开孔、闭孔体积,以及颗粒外表面的一些粗糙空隙。图2所示为麦克仪器的GeoPyc 1365[b]全自动包裹密度分析仪[/b]。包裹密度的测试原理是使用一种独特的替代测试技术,通常采用一种具备高流动性的微小刚性球状准流体介质作为替代介质将样品包裹起来。这种替代介质的颗粒很小,在混合过程中可与样品表面紧密贴合,但不会进入样品的孔隙中。[/size][align=center][size=18px][img]http://img75.chem17.com/9/20200731/637318055440362564765.png[/img][/size][/align][size=18px][/size][align=center][size=18px]图2 GeoPyc 1365[/size][/align][size=18px][b]全自动包裹密度分析仪[b]3. 孔隙度测试[/b] [/b]孔隙度指的是颗粒内的孔隙以及样品间隙所占体积与粉体体积之比,通常可通过压汞法和密度计算法等获得。孔隙度越高则表明药物中的总孔体积越大,对应的固体分数就越低。(1)压汞法压汞法是测量药物孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力。汞压入的孔半径与所受外压成反比,根据Washburn方程可算出汞压入的孔半径与所受外力的对应关系。图3所示为麦克仪器的AutoPore V全自动压汞仪,其分析技术就是在[color=red]精确[/color]控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。压汞法具有快速、高分辨率及分析范围广等优点,除了可测得孔隙度外,该表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。[/size][align=center][size=18px][img]http://img73.chem17.com/9/20200731/637318055737357739692.png[/img][/size][/align][align=center][size=18px]图3 AutoPore V[/size][/align][align=center][b][size=18px]全自动压汞仪[/size][/b][/align][size=18px](2)密度计算法除了压汞法外,通过将气体置换法真密度仪与包裹密度分析仪联用,结合材料的骨架密度和包裹密度,由式①也可直接计算出孔隙度。同时,由式②还可以算出片料的固体分数。[/size][align=center][size=18px][img]http://img74.chem17.com/9/20200731/637318055914530037790.jpg[/img][/size][/align][size=18px][/size][align=center][size=18px][img]http://img74.chem17.com/9/20200731/637318056110665447694.png[/img][/size][/align][size=18px]图4 AccuPyc II[b]全自动气体置换法真密度仪[/b]及GeoPyc 1365[b]全自动包裹密度分析仪[b]4. 密度及孔隙度测试举例[/b] [/b](1)药物辅料硬脂酸镁的骨架密度测定硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器的AccuPyc II全自动气体置换法真密度仪对其进行骨架密度测试,结果表明,仪器在约16分钟内完成了10个测试循环,该硬脂酸镁样品的密度平均值为1.5157 g/cm3,标准偏差仅为0.0006 g/cm3,密度结果均围绕其平均值波动,结果非常稳定,实现了药物材料快速、高精度的体积测量和密度计算。(2)药物的压汞法孔隙度测定使用麦克仪器公司的AutoPore V [b]全自动压汞仪[/b]对某药物进行压汞测试。其堆积密度为1.1639 g/ml,骨架密度为1.5382 g/ml,由此计算得到的孔隙度为24.3332%。(3)药物片料的密度计算法孔隙度及固相分数测定使用麦克仪器的GeoPyc 1365[b]全自动包裹密度分析仪[/b]对辊压后得到的某药物片料进行孔隙度测试。测得该药物的包裹密度为1.3409 g/cm3,其标准偏差为0.0007 g/cm3,结合由AccuPyc II全自动气体置换法真密度仪测得的骨架密度1.4630 g/cm3,最后算得孔隙率为8.35 %。根据上文公式②,由骨架密度除以包裹密度可算得其固相分数为91.65 %。[b][b]5. 总结[/b][/b][/size][size=18px]药物粉体及相关制剂的密度及孔隙度表征对其处方设计、制备、质量控制等都具有重要指导意义。密度和孔隙度不仅是辊压和压片等过程的关键工艺参数,也是硬度、崩解度、溶出度、生物利用度等的关键质量属性,会直接影响和制约药物的性质及疗效。因而研究和掌握药物粉体及制剂的密度、孔隙度对获得高质量的药物至关重要。采用气体置换法真密度仪和包裹密度分析仪可分别获得药物粉体的骨架密度和包裹密度,通过压汞法或者结合两种密度仪的密度计算法可测得药物的孔隙度及片料的固体分数。借助这些性质表征有助于掌握及预测原料药及辅料在配方中的特性,评估药物制剂的批次变化及药物相关性能,从而优化制造过程和提升产品质量。[/size][size=18px][/size][size=18px][font=arial, helvetica, sans-serif][size=16px]关于麦克仪器公司[/size][/font][font=arial, helvetica, sans-serif][size=16px]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/size][/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif]www.micromeritics.com.cn [/font][/color][/url][/size]

  • 固体样品直接做顶空分析

    如题,固体样品测残留溶剂时,有谁试过直接将固体样品放在顶空瓶中而不加任何溶剂吗?根据顶空的原理,只要固体样品均匀应该也可以吧?好像药典上也提到过,只是没见有人做过。

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 【求助】寻北京哪里可以测定比表面积和孔隙率?

    我这里有一批塑料热解后的固体残渣,需要测定一下热解残渣的比表面积和孔隙率,估计比表面积会在100m2/g,空隙应该属于中孔或微孔。请问北京哪里可以测这些东西,知道的短一下电话或单位。这里先谢谢了!

  • 增材制造中的孔隙度表征

    [size=18px][b]前言[/b]增材制造(AM)技术又称3D打印,凭借其定制化、精密制造等优势,近年来在医疗、汽车及航天航空等领域发挥着越来越重要的作用。与传统工艺类似,增材制造工艺中的原材料和成品都需要进行相关的表征测试,以符合相应的质量标准。其中,孔隙度是评估增材制造过程的重要指标,粉体的孔隙度会强烈影响成型过程及成品部件的机械强度和表面质量,同时成品的孔隙度也是评估其性能的关键参数之一,因此相关的孔隙度表征尤为重要。[b][b]孔隙度表征的重要性[/b][/b]孔隙度(porosity)是表征部件或粉体致密程度的指标,为材料中孔隙的体积占总体积的百分比。在增材制造过程中,成品的孔隙度与致密度密切相关,呈反比关系,若部件的孔隙越多,则致密度越低,同时机械强度也越低,在受力环境下越容易出现疲劳或裂纹。因此针对不同应用领域和性能特点的产品,需要精准调控孔隙度以满足实际应用需求。例如在航天航空和电力等领域,由于环境较为极端,相关产品通常需要承受较高的疲劳应力,有些部件的致密度需达到99%以上,由此需要成品具有较低的孔隙度。而在生物医疗领域,如人工骨骼植入体,考虑到生物相容性及复杂的生物环境,植入体需要与较高孔隙度的周围骨组织相匹配。适宜的孔隙度可为细胞提供合适的增殖空间,以及减少应力屏蔽效应并促进骨长入和骨整合,否则易出现骨吸收和植入体松动等问题[1]。同时植入体还需具备良好的生物力学性能,而高力学性能往往和高孔隙度之间有所冲突,这就对精确控制植入体的孔隙度提出了很高要求。成品孔隙度及相关性能往往与粉体孔隙度息息相关,因此精确调控原料粉体的孔隙度也是质量控制中非常重要的一环。一方面,原料粉体的孔隙度会影响其流动性,进而影响送粉稳定性及铺粉均匀性;另一方面,原料粉体的孔隙度会影响增材制造过程中的烧结动力学及最终产品的表面光洁度、孔隙度及机械强度。通常,孔隙度低的粉体成型后部件致密度高,表面光洁度更好。有研究表明,在如粉末床熔融(PBF)这类增材制造工艺中,由于其较快的凝固速率和较高的粉体孔隙度,易造成制件内部产生常见的球形气孔及其它裂纹和孔隙等各类加工缺陷,并且一些缺陷在经过后续热处理等工艺后也难以消除,对成型部件的力学性能带来严重影响[2]。此外,增材制造工艺中常见的球化现象易使成型表面非常粗糙并产生大量球间孔隙,而调节粉体孔隙度也有利于改善此现象,获得致密度和力学性能更好的成品。因此,为了减少相关加工缺陷,表征和调控粉体的孔隙度必不可少。综上可知,了解和掌控原料粉体及成品的孔隙度参数,有利于更好地掌握增材制造的整个过程,对于确保生产过程的高效进行和最终成品的优异性能非常重要。[b][b]孔隙度表征方法及仪器[/b][/b](1)压汞法压汞法是测量粉体和成型产品孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力(如图1所示),并且汞压入的孔半径与所受外压成反比,外压越大,则汞能进入的孔半径越小。压汞法分析技术就是在精确控制的压力下将汞压入材料的多孔结构中,具有快速、高分辨率及分析范围广等优点。除了可测得孔隙度外,压汞法表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。麦克仪器的AutoPore系列[b]全自动压汞仪[/b](如图2所示)可用于测量增材制造行业原料粉体及成品部件的孔隙度。仪器可测量样品在低至3nm的介孔及大孔范围内的孔隙度和孔径信息。测试可采用快速扫描、时间或速率平衡等不同的模式进行,并且测试分辨率高,进汞体积可精确至0.1μL。 [/size][align=center][size=18px] [/size][/align][align=center][size=18px][img=,400,291]http://img5.app17.com/EditImg/20200821/637336024645350226.png[/img][/size][/align][size=18px] 图1 汞压入孔中的示意图 [img=,173,371]http://img5.app17.com/EditImg/20200821/637336024759854427.png[/img] 图2 AutoPore系列[b]全自动压汞仪[/b] (2)密度计算法除了压汞法外,结合材料的骨架密度和包裹密度也可算得孔隙度。麦克仪器具有AccuPyc系列气体置换法密度仪(如图3所示)和GeoPyc系列包裹密度分析仪(如图4所示),将两款仪器连用可以直接算出孔隙度。AccuPyc系列[b]密度仪[/b]采用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度。由于气体分子尺寸比较小,置换气体能够进入相比于样品体积来说非常微小的开口孔隙,对于尤其是增材制造用的这类孔隙度较低的粉体,采用气体置换法测得的骨架密度结果精确度非常高,比传统的阿基米德浸液法更准确,重复性更好。GeoPyc系列[b]包裹密度分析仪[/b]采用独特的替代测试技术,使用一种具备高度流动性的微小刚性球状准流体物质作为替代介质,其在检测过程中紧密覆盖在材料外表面并填充材料间隙,可精确测出样品的包裹体积并算得密度。这两种仪器均为无损检测,能够精确高效地评估原料粉体和成品的孔隙度。 [img=,250,250]http://img5.app17.com/EditImg/20200615/637278273241573999.jpg[/img]图3 AccuPyc系列 气体置换法[b]密度仪[/b] [img=,250,167]http://img5.app17.com/EditImg/20200615/637278274474444164.png[/img]图4 GeoPyc系列[b]包裹密度分析仪 [b]增材制造的孔隙度测试案例[/b][/b]以下以某种采用增材制造工艺获得的镁锌锆合金医疗功能部件为例,采用压汞法对样品进行了孔隙度测试,并分析了其孔径分布,结果如图5所示[3]。该样品通过压汞仪测得的孔隙度为29%,与由阿基米德法测得的表观孔隙度值相吻合。此外,从压汞法给出的孔径分布结果可以看出该部件在不同尺寸范围内的孔隙特征。 [img=,500,383]http://img5.app17.com/EditImg/20200821/637336025783996226.png[/img]图5 采用AutoPore系列[b]压汞仪[/b]对某医疗部件进行孔隙度及孔径分布测试的结果[3][b][b]总结[/b][/b]在增材制造工艺中,材料孔隙度的表征具有十分重要的意义。研究和掌握原料粉体及最终成品的孔隙度对于减少部件内部缺陷,提升加工效率以及获得高质量成品至关重要。麦克仪器可提供一系列用于增材制造行业中表征孔隙度的仪器,AutoPore系列全自动压汞仪可快速高精度地测得原料粉体及成品的孔隙度,此外,还可以将AccuPyc系列气体置换法密度仪与GeoPyc系列包裹密度分析仪连用来测得孔隙度。利用这些仪器可为增材制造行业的孔隙度表征提供精确高效的测试结果,由此更好的筛选原料粉体,优化增材制造工艺以及评估成品性能。 [b][b]参考文献[/b][/b][/size][size=18px]【1】Karageorgiou V, Kaplan D L. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27): 5474-5491.【2】Tammas-Williams S, Zhao H, Léonard F, et al. XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting[J]. Materials Characterization, 2015: 47-61.【3】Salehi M, Maleksaeedi S, Sapari M A B, et al. Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing[J]. Materials & Design, 2019, 169.[b][font=等线] [/font][/b][/size][size=18px][b][font=等线][/font][/b][/size][font=等线][font=arial, helvetica, sans-serif][size=16px]关于麦克仪器公司[/size][/font][font=arial, helvetica, sans-serif][size=16px]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/size][/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif]www.micromeritics.com.cn [/font][/color][/url][/font]

  • 核磁共振应用岩土孔隙结构分析和孔隙度测量

    核磁共振应用岩土孔隙结构分析和孔隙度测量应用背景一般认为土壤由固相(土壤颗粒)、液相(土壤水)和气相(土壤所含气体)三相构成,在土壤颗粒空隙完全由液相填充,即水占土壤空隙的比例为百分之百时该土壤称之为饱和土。反之,土壤孔隙由水和空气填充,即饱和度小于100时但大于0时,该土壤为非饱和土。 土体孔隙中的水,按其存在的状态、性质和流动方式,可分为3类 吸附水、毛细水与重力水; 对于土水间物理化学作用较显著的黏性土, 吸附水在土体中的含量是3类孔隙水中最高的, 当饱和度在70 以下时, 吸附作用将是土水作用的主要形式. 鉴于吸附水在较大饱和度范围内对土体工程力学和物理化学特性的重要影响, 那么对土体中吸附水的含量及其变化的研究工作就具有非常重要的理论和实践意义; 质子核磁共振技术是一项研究单位体积中质子(即氢核)含量与分布的快速、无损探测技术. 由于水中1H 的核磁信号较强, 且水广泛存在于大自然中。核磁共振技术在岩土工程中的应用主要集中在岩石径分布和吸附水含量的测试,具体方法为联合T2 曲线和压汞曲线换算岩石孔径分布及通过离心方法确定吸附水T2 截止值进而测定吸附水含量。 当孔隙内的液体为水且磁场梯度近似为零的条件下,多孔介质体系的横向弛豫时间和纵向弛豫时间只与多孔介质的孔隙结构有关系,主要受体系的表面弛豫机制影响,而近似与其他两类弛豫机制无关核磁共振在石油岩心领域的功能 :1)孔隙度、含水率、含水饱和度的测定2)冻融温度-渗流-应力损伤本构模型3)冻融机理研究4)冻土未动水含量测定5)天然气水合物的形成与过程分解6)毛细水与吸附水含量测定应用举例一:土壤孔径分布http://pic.yupoo.com/niumagnmr_v/EgYE1QNa/mLjjF.png土壤T2分布图以及土壤的孔径分布直方图应用举例二:土壤吸附水含量测试分析http://pic.yupoo.com/niumagnmr_v/EgYElVas/Bw5iy.png

  • 核磁共振_岩心孔隙结构分析_孔隙度

    应用背景岩样中所有孔隙空间体积之和与该岩样体积的比值,称为该岩石(岩心)的总孔隙度,以百分数表示。储集层的总孔隙度越大,说明岩石(岩心)中孔隙空间越大。从实用出发,只有那些互相连通的孔隙才有实际意义,因为它们不仅能储存油气,而且可以允许油气在其中渗滤。因此在生产实践中,提出看了有效孔隙度的概念。有效孔隙度是指那些互相连通的,在一般压力条件下,允许流体在其中流动的孔隙体积之和与岩样总体积的比值,以百分数表示。显然,同一岩石(岩心)有效孔隙度小于其总孔隙度。孔隙度是储层评价的重要参数之一.核磁共振(NMR)可检测到岩心内孔隙流体的信号,且具有无损快速准确等特点,在确定地层孔隙度方面具有其他测井方法无法比拟的优势,因此,在石油勘探和开发领域,核磁共振(NMR)技术在岩心分析 、地球化学和地球物理测井等方面的应用日益引人注目。核磁共振在石油岩心领域的功能 :1)常规岩心孔隙结构,孔径分布及流体饱和度;2) 非常规岩心(致密岩心,泥岩,页岩)孔隙结构,孔径分布及流体饱和度;3) 岩心样品含油含水分布、油水含量测试;应用举例一:玻璃珠孔隙模型测试(不同饱和度下T2弛豫图谱分析)http://i1292.photobucket.com/albums/b570/niumagnmr/niumagnmr/ball.jpg应用举例二:常规岩心孔渗饱测试http://pic.yupoo.com/niumagnmr_v/EqwZXDb3/KysOx.jpg图2.砂岩T2谱及累积T2谱样品的微分谱中可以看出来,饱锰样中加入锰使水的弛豫时间变短,采集不到水的信号,只能采集到油的信号。从饱水样的弛豫谱中可以得到孔隙度,束缚流体饱和度、自由流体饱和度,结合原始样和饱锰样弛豫谱可以得到含油饱和度和含水饱和度。

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 请教顶空GCMS做固体废弃物VOC

    有用顶空GCMS做固体废弃物VOC的版友么?我这里要开展VOC项目了,要检测三氯乙烯,丙酮,2-丁酮,乙酸乙酯,苯甲醛,苯,甲苯,萘,环己酮,苯乙酮,1,2-二氯乙烷等供27种有机物,请问配制这些标样的时候,最低可以配到多低浓度呢?顶空瓶子是20ml的,计划测样品的时候,装入约10ml体积的固体废弃物,标液用甲醇配制,测标液的时直接装10ml标液在顶空瓶内,或者先用甲醇配制成相同浓度的混标,测标液前先往顶空瓶内加甲醇,再加标液,配制成所需浓度,但总体积也是10ml。请大家分享下你们的做法。请教请教。

  • 孔径(孔隙度)分布测定

    孔径(孔隙度)分布测定气体吸附法孔径(孔隙度)分布测定利用的是毛细凝聚现象和体积等效代换的原理,即以被测孔中充满的液氮量等效为孔的体积。吸附理论假设孔的形状为圆柱形管状,从而建立毛细凝聚模型。由毛细凝聚理论可知,在不同的P/P0下,能够发生毛细凝聚的孔径范围是不一样的,随着P/P0值增大,能够发生凝聚的孔半径也随之增大。对应于一定的P/P0值,存在一临界孔半径Rk,半径小于Rk的所有孔皆发生毛细凝聚,液氮在其中填充,大于Rk的孔皆不会发生毛细凝聚,液氮不会在其中填充。临界半径可由凯尔文方程给出了:http://www.app-one.com.cn/images/ps/11.jpgRk称为凯尔文半径,它完全取决于相对压力P/P0。凯尔文公式也可以理解为对于已发生凝聚的孔,当压力低于一定的P/P0时,半径大于Rk的孔中凝聚液将气化并脱附出来。理论和实践表明,当P/P0大于0.4时,毛细凝聚现象才会发生,通过测定出样品在不同P/P0下凝聚氮气量,可绘制出其等温吸脱附曲线,通过不同的理论方法可得出其孔容积和孔径分布曲线。最常用的计算方法是利用BJH理论,通常称之为BJH孔容积和孔径分布。

  • 咨询:固体样品中刺激性气味测试(用顶空可以吗?)

    请教各位大侠,我有固体食品添加剂样品(单甘酯),存在很强刺激性气味。我看了下药典,说是要配置成溶液再顶空。我想直接把样品装到顶空瓶中,收集挥发性气味,这样做可以吗?有没有相关的测试固体样品中刺激性气味的方法?谢谢!

  • 【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    [align=center][color=#333333]物理吸附法[/color][color=#333333]or BET[/color][color=#333333]法?[/color][/align][align=center][color=#333333]---[/color][color=#333333]浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称[/color][/align][align=center][color=#333333]丁延伟[/color][/align][align=center][color=#333333](中国科学技术大学理化科学实验中心,安徽省合肥市,[/color][color=#333333]230026[/color][color=#333333])[/color][/align][b][color=#333333]摘要:[/color][/b][color=#333333]气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。[/color][color=#333333]BET[/color][color=#333333]法作为一种[/color][color=#333333]多分子层吸附理论,常用来计算固体材料的比表面积。[/color][color=#333333]本文介绍了物理吸附法和[/color][color=#333333]BET[/color][color=#333333]法的相关理论及应用,力图规范确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称为物理吸附法。[/color][color=#333333] [/color][b][color=#333333]关键词:物理吸附,[/color][color=#333333]BET[/color][color=#333333]模型,比表面积[/color][/b][color=#333333] [/color][b][color=#333333]1. [/color][color=#333333]前言[/color][/b] 多孔材料由于其特殊的多孔性结构,使其具有高比表面积、高孔隙率、高透过性、高吸附性、可组装性等诸多优异的物理化学性能,因而在化工、生物医药、环保、功能材料等领域均有广泛应用[sup][/sup]。多孔材料的研究已成为当今材料科学研究领域的一大热点。多孔材料的研究离不开结构表征分析,多孔材料的孔隙结构特性主要包括孔径、孔径分布、孔形态、孔容积及孔通道特性等方面。多孔材料的孔隙结构是不规则的,孔穴尺寸在不同方向上存在着差异。多孔材料的这种各向异性状态,可以对其各项性能产生不同程度的影响[sup][/sup]。了解多孔材料的比表面积和孔隙形貌对研究其活性、吸附、催化、力学性能等都具有重要意义。多孔材料的表征方法很多,根据检测目的不同,一般可分为X射线小角度衍射法、气体吸附法、电子显微镜、压汞法、气泡法、离心力法、透过法、核磁共振法等。 气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用[sup][/sup]。气体吸附技术主要分为物理吸附和化学吸附两大类。通常使用物理吸附技术来确定固体材料的比表面积、孔径分布、孔隙度等信息[sup][/sup]。 然而,在许多已经公开发表的各种科研论文、专利等技术资料中通常对用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称存在比较混乱的现象。例如,有些技术资料中称这种方法为BET法,而有的则称为比表面积测定法。本文试图从理论角度来规范这类方法的名称。[b]2.物理吸附相关理论[sup][/sup][/b] 通常将互不相混溶的两相接触所形成的过渡区域称为界面,吸附作用则发生在两相之间的界面上。吸附是物质(通常为固体物质)表面吸着周围介质(液体或气体)中的分子或离子现象,是一种传质过程。吸附质(adsorbate)通常定义为在界面上被吸附的物质,而吸附剂(adsorbent)则被定义为具备从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者液相中吸附某些组分的能力的物质。吸附作用通常可以分为物理吸附与化学吸附。依靠分子间普遍存在的van der Waals力产生的吸附作用称为物理吸附,而由于吸附质分子与吸附剂发生化学作用产生的吸附称为化学吸附。 吸附质在吸附剂上的吸附量([i]x[/i])是绝对温度([i]T[/i])、气体压力([i]p[/i])或液体浓度([i]c[/i])和固体-气体之间的吸附作用势([i]E[/i])的函数,用式(1)表示。[img=,576,135]http://ng1.17img.cn/bbsfiles/images/2017/08/201708140959_01_2984502_3.jpg[/img] 对于给定的气-固体系,当温度[i]T[/i]保持恒定时,通常可认为吸附作用势[i]E[/i]保持不变。此时平衡吸附量[i]x[/i]只是压力[i]p[/i]的函数,该表达式得到的曲线通常称为吸附等温线(adsorptionisotherm)。同样的道理,当压力[i]p[/i]保持恒定时,吸附量[i]x[/i]与温度[i]T[/i]的关系曲线则称之为吸附等压线;当吸附量[i]x[/i]保持恒定不变时,[i]p[/i]与[i]T[/i]的关系则称为吸附等容线。[color=#333333] 物理吸附是由分子间的弱相互作用力所引起的吸附,由于该作用较弱,由此产生的吸附热较小,吸附和脱附速度也都较快。被吸附物质也较容易脱附下来,因此物理吸附是可逆的。例如分子筛对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。[/color] 通常情况下,我们可以通过分析吸附体系的吸附等温线根据相关的理论模型来得到固体材料的比表面积、孔径分布、孔隙度、表面性质等参数。 实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。 由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范[sup][/sup]。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等,其研究深入到吸附作用的机理。[b]3. 气体吸附法测定比表面积与孔参数的基本原理[/b][color=#333333] 用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。本文主要介绍静态容量法仪器的工作原理及实验样品用量。[/color][color=#333333] 静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为[/color][color=#333333]N[sub]2[/sub][/color][color=#333333]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图[/color][color=#333333]2[/color][color=#333333])。[/color][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_01_2984502_3.jpg[/img][/align][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_02_2984502_3.jpg[/img][/align][color=#333333] 根据所测得的吸附[/color][color=#333333]-[/color][color=#333333]脱附等温线可以判断吸附现象的本质,如属于分配(线性),还是吸附(非线性);测量吸附剂对特定吸附质的吸附容量;用于计算吸附剂的孔径、比表面、孔容积、孔形状等重要物理参数。[/color][color=#333333] 气体吸附法测定比表面积利用的是多层吸附的原理。其基本原理是测算出某种气体吸附质分子在固体表面形成完整单分子吸附层的吸附量,然后再乘以每个分子的覆盖面积即得到样品的总表面积。单位质量的吸附剂的总表面积([/color][color=#333333]m[sup]2[/sup]/g[/color][color=#333333])称为比表面积,它是表面积的常用表示方式。[/color][color=#333333]但是由于实际的固体表面并不是理想的二维平面,而是粗糙不平滑的。因此吸附法测得的表面积只是吸附质分子可以直接[/color][color=#333333]“[/color][color=#333333]接触[/color][color=#333333]”[/color][color=#333333]到的表面的面积,这一数值会因吸附质分子大小不同而发生变化。为了得到固体材料的真实有效的表面积,吸附质分子应该尽量小、接近球形而且对表面惰性。高纯氮气、氪气和氩气等气体都是适合的选择。其中,由于液态氮的价格便宜、容易高纯度获得,其在大多数表面上都可以形成典型的[/color][color=#333333] II[/color][color=#333333]、[/color][color=#333333]IV [/color][color=#333333]型吸附等温线,并且分子截面积已经得到了公认值,所以最为常用。气体吸附质分子在固体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出。[/color][color=#333333] 气体吸附法测定孔径分布利用的是毛细冷凝现象和体积等效交换原理,即将被测孔中充满的液氮量等效为孔的体积。[/color][color=#333333] 由于不同材料的孔结构大有不同,因此我们采用不同的数据处理方法与模型(如表[/color][color=#333333]1[/color][color=#333333])对不同情况下的孔结构进行具体处理[/color]。[align=center]表1 常用孔结构分析中的数据处理方法与模型[/align] [table][tr][td] [align=center]孔结构参数[/align] [/td][td] [align=center]数据处理方法或模型[/align] [/td][/tr][tr][td] [align=center]比表面[/align] [/td][td]BET, Langmiur(微孔), DR, BJT, DH[/td][/tr][tr][td] [align=center]中孔分布[/align] [/td][td]BJH, DH[/td][/tr][tr][td] [align=center]微孔分布[/align] [/td][td]DA(DR理论的扩展), HK, SF, MP[/td][/tr][tr][td] [align=center]微孔/中孔分布[/align] [/td][td]NLDFT[/td][/tr][tr][td] [align=center]微孔体积[/align] [/td][td]t-方法, DR(含平均孔宽,分子筛和活性炭等微孔表征)[/td][/tr][tr][td] [align=center]分形维数[/align] [/td][td]FHH, NK[/td][/tr][/table][b]4. BET理论[/b][color=#333333] BET[/color][color=#333333]理论是根据吸[/color]附等温线得到固体材料的比表面积的一种理论模型,最初是由三位美国学者S. Brunauer、P. Emmett和E. Teller于1938年提出的[url=https://baike.baidu.com/item/BET][color=black]BET[/color][/url]多分子层吸附理论,BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。其数学表达式即BET方程。 推导BET方程所采用的模型主要做了以下基本假设:(1)吸附表面在能量上是均匀的,即各吸附位具有相同的能量;(2)被吸附分子间的作用力可略去不计;(3)固体吸附剂对吸附质气体的吸附可以是多层的,第一层未饱和吸附时就可由第二层、第三层等开始吸附,因此各吸附层之间存在着动态平衡;(4)自第二层开始[color=#333333]至第[/color][i][color=#333333]n[/color][/i][color=#333333]层([/color][i][color=#333333]n[/color][/i][color=#333333]→∞[/color][color=#333333]),各层的吸附热都等于吸附质的液化热。[/color][color=#333333] 我们可以通过热力学和动力学两种方法来推导[/color][color=#333333]BET[/color][color=#333333]方程,表达式如下:[/color][align=center][img=,675,272]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141001_01_2984502_3.jpg[/img][/align][color=#333333] 由上式可见,当物理吸附的实验数据按[/color][color=#333333] [i]p[/i]/[i]v [/i]([i]p[/i][sub]0[/sub]-[i]p[/i])[/color][color=#333333]与[/color][i][color=#333333]p[/color][/i][color=#333333]/[i]p[/i][sub]0[/sub][/color][color=#333333]作图时应得到一条直线。直线的斜率[/color][i][color=#333333]m [/color][/i][color=#333333]= ([i]C[/i]-1)/([i]v[/i][sub]m[/sub][i]C)[/i],[/color][color=#333333]在纵轴上的截距为[/color][i][color=#333333]b[/color][/i][color=#333333]=1/([i]v[/i][sub]m[/sub][i]C)[/i][/color][color=#333333],所以以[/color][color=#333333]/V(P[sub]0[/sub]-P)[/color][color=#333333]对[/color][color=#333333]P/P[sub]0[/sub][/color][color=#333333]作图[/color][color=#333333],[/color][color=#333333]得一直线如图[/color][color=#333333]3[/color][color=#333333]所示。[/color][align=center][img=,534,396]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_01_2984502_3.jpg[/img][/align][color=#333333] 根据直线的斜率和截距[/color][color=#333333],[/color][color=#333333]可求出形成单分子层的吸附量[/color][color=#333333]V[sub]m[/sub]=1/([/color][color=#333333]斜率[/color][color=#333333]+[/color][color=#333333]截距[/color][color=#333333])[/color][color=#333333]和常数[/color][color=#333333]C=[/color][color=#333333]斜率[/color][color=#333333]/[/color][color=#333333]截距[/color][color=#333333]+1[/color][color=#333333]。[/color][color=#333333] 根据[/color][i][color=#333333]V[/color][/i][sub][color=#333333]m[/color][/sub][color=#333333]由下式可以计算吸附剂的[/color][color=#333333]BET[/color][color=#333333]比表面积:[/color][img=,557,134]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_02_2984502_3.jpg[/img][color=#333333] 需要指出,为满足以上假设[/color][color=#333333]BET[/color][color=#333333]方程的总有效区为相对压力在[/color][color=#333333]0.05~ 0.3[/color][color=#333333]之间。即便如此,[/color][color=#333333]BET[/color][color=#333333]方程还是不精确的,主要原因如下:([/color][color=#333333]1[/color][color=#333333])吸附剂表面吸附中心能量不均匀;([/color][color=#333333]2[/color][color=#333333])同一层中吸附质分子与相邻分子存在相互作用;([/color][color=#333333]3[/color][color=#333333])在大于[/color][color=#333333]1[/color][color=#333333]的多层吸附中,随吸附质远离吸附中心,相互之间作用力会减弱[/color][color=#333333]。[/color][b][color=#333333]5 [/color][color=#333333]结论[/color][/b] 测定多孔材料的孔结构,关键是通过正确的实验操作获得材料的吸附-脱附曲线,再利用合适的数据处理方法或模型获得相应的结构参数。通过以上分析我们可以清楚的看到,用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的规范名称应为物理吸附法,由物理吸附法可以得到固体材料的比表面积、孔径分布、孔容积、分形维数、孔形状等更为丰富的信息,而BET法只是由吸附曲线中p/p[sub]0[/sub]在0.05-0.3之间的数据根据BET模型计算得到固体材料的BET比表面积。另外,BET法确定比表面积只是确定比表面积的其中一种方法。在实际工作中,我们不应该把这两种不同的方法混为一谈。[align=center]参考文献[/align]1. 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学.北京:科学出版社,2004:13.2. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.3. Ajayan, V. Toshiyuki, M. Katsuhiko, A. New families of mesoporous materials, science and technology ofadvanced materials. Sci Techn Adv Mater, 2006, 10:1.4. Jianlin Shi*, “On thesynergetic catalytic effect of heterogeneous nanocomposite catalysts” , Chemical Reviews, 2013, 113 (3) 2139-21815. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.6. Do D D, Adsorption analysis:equilibria and kinetics, Imperial College Press, 1998.7. Guiqing Lin, Huimin Ding,Daqiang Yuan, Baoshan Wang, and Cheng Wang, J. Am. Chem. Soc.2016, 138,3302-3305.8. Matthias Thommes, KatsumiKaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol and Kenneth S. W. Sing.Physisorption of gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.2015 87(9-10): 1051-10699. 甄开吉,王国甲,毕颖丽, 李荣生, 阚秋斌. 催化作用基础科学出版社,2005.

  • 固体粉末直接使用顶空检测

    概要:想用顶空-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url] 检测固体粉末中的残留溶剂(主要是异丙醇等醇类)内容:1)由于样品不溶于冷水和任何溶剂,所以使用液体溶解后再进顶空有点难 2)用过加水后蒸馏对溶剂进行收集后再用顶空或者直接进样,但是过程太繁琐各位老师有没有使用粉末样品直接加入到顶空瓶中,里面不加水或者任何溶剂,然后进行检测,数据是否可以稳定和准确

  • 全自动比表面积及孔隙度分析仪行业应用

    全自动比表面积及孔隙度分析仪行业应用

    [font=S?hne, ui-sans-serif, system-ui, -apple-system, &][size=16px][color=#343541]  全自动比表面积及孔隙度分析仪行业应用  全自动比表面积及孔隙度分析仪是一种用于测量材料的比表面积和孔隙度的仪器,它在多个行业中具有广泛的应用。以下是一些行业应用领域:  材料科学与研发:全自动比表面积及孔隙度分析仪在材料研究和开发中发挥关键作用。研究人员可以使用这种仪器来评估新材料的比表面积和孔隙度,以了解它们的性能和适用性。  化学工业:在化学工业中,比表面积和孔隙度的分析对于催化剂、吸附剂、分离膜和其他化学制品的设计和优化非常重要。全自动分析仪可以帮助工程师调整产品性能,提高生产效率。  石油和天然气开采:在油田开采中,比表面积及孔隙度分析仪可用于评估沉积岩样本的孔隙度和渗透性,以确定油气资源的可采储量和提取方法。  制药业:在制药领域,这种仪器可用于评估药物载体的孔隙度和吸附性能,以改善药物制备和控制释放速度。  食品和饮料工业:在食品和饮料生产中,比表面积及孔隙度分析仪可以用于评估颗粒、粉末和颗粒材料的特性,如流动性和储存稳定性。  环境监测:在环境领域,这种仪器可用于评估土壤、沉积物和环境样本的孔隙度,以了解污染情况和土壤质量。  建筑材料:在建筑行业,全自动比表面积及孔隙度分析仪可用于评估混凝土、砖块和其他建筑材料的孔隙度和渗透性,以确保建筑结构的质量和耐久性。  总之,全自动比表面积及孔隙度分析仪在多个行业中都具有广泛的应用,可用于评估材料的特性,优化产品设计和生产过程,以及解决各种工程和研究问题。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311031009229821_4652_6098850_3.jpg!w690x690.jpg[/img][/color][/size][/font]

  • 请教 顶空法测固体物质中有机物质残留

    我们的样品为固体粉末,不溶于任何溶剂,不易分解,要测二甲苯,乙苯,邻二氯苯残留  之前用溶剂萃取法,可是发现样品本身对二甲苯有干扰,所以只能用顶空法做。  我是这样做的,比如只看乙苯,首先配置不同浓度的乙苯DMF溶液。 分别取两份3g样品于20ml顶空瓶中,一份中加入10ulDMF,另一份中加入10ul前面配置好的乙苯标液。平衡温度90度,平衡时间50分钟。进样后发现标样那份的所有物质的峰面积较样品都有所增加。按道理应该是只有乙苯的峰增加啊?为什么会出现这种情况?  有人说是溶剂的量不够,我还是分别取两份3g样品置于20ml顶空瓶中,再分别加入10gDMF。一份为样品,另一份加入5ul的纯乙苯,则为标样。 可是标样中的所有峰面积较样品还是全部增加了。 请问到底该怎么办?

  • 固体和半固体石油产品的取样方法

    石油产品中固体和半固体产品的取样方法执行SH/T 0229-1992(2004)固体和半固体石油产品取样法,该标准参照采用TOCT 2517-1969石油产品取样法。1.取样工具 (1)采取膏状或粉状石油产品试样时,使用螺旋形钻孔器或活塞式穿孔器,其长度有400mm和900mm两种。在活塞式穿孔器的下口,焊有一段长度与口部直径相等的金属丝。 (2)采取固体石油产品试样时,使用刀子或铲子。2.取样的一般要求 (1)根据分析任务确定合适的取样量。 (2)取样工具和容器必须清洁。采取试样前应该用汽油洗涤工具和容器,待干燥后使用。 (3)用来掺和成一个平均试样时,允许用同一件取样器或钻孔器取样,这件工具在每次取样前不必洗涤.3.取样方法 (1)膏状石油产品的取样 ①取样件数:装在小容器中的膏状石油产品,要按包装容器总件数的2%(但不应少于2件)采取试样,取出试样要以相等体积掺和成一份平均试样,车辆运载的大桶、木箱或鼓形桶按总件数的5%采取平均试样。 ②取样:将执行取样的容器顶部或盖子朝上立起,用抹布擦净顶部或盖子,取下的顶盖表面朝上,放在包装容器旁边。然后,从润滑脂表面刮掉直径200mm,厚度约5mm的脂层。 用螺旋形钻孔器采取试样时,将钻孔器旋人润滑脂内,使其通过整个脂层一直达到容器底部,然后取出钻孔器,用小铲将润滑脂取出。若用活塞式穿孔器采取试样时,将穿孔器插人润滑脂内,使其通过整个脂层一直达到容器底部,然后将穿孔器旋转180°,使穿孔器下口的金属丝切断试样,取出穿孔器,用活塞挤出试样。但在大桶或木箱中取样时,应先弃去钻孔器下端5mm脂层。 从每个取样容器中,采取相等数量试样,将其装人一个清洁而干燥的容器里,用小铲或棒搅拌均匀(不要熔化)。取出试样后,白铁桶、铁盒、木箱要用盖子盖好,大桶、鼓形桶要把顶盖装好。 (2)可熔性固体石油产品的取样 ①取样件数:装在容器中的可熔性固体石油产品,要按包装容器总件数的2%(但不应少于两件)采取试样。取出的试样要以大约相等的体积制成一份平均试样。 ②取样:打开捅盖或箱盖(方法同前),从石油产品表面刮掉直径200mm,厚度约10mm的一层,利用灼热的刀子割取一块质量约1kg的试样。 从每块试样的上、中、下部分别割取3块体积大约相等的小块试样 将割取的小块试样装在一个清洁、干燥的容器中,由实验室进行熔化,注人铁模. 从散装用模铸成的可熔性固体石油产品采取试样时,在每100件中,采取的件数不应少于10件;未经模铸的产品,要在每吨中采取一块试样(总数不少于10块)。从不同的位置选取一些大小相同的块料作为试样,再从每块试样的不同部分割3块体积大致相等的小块试样,装在一个容器中,交给实验室去熔化,搅拌均匀后注人铁模。 (3)粉末状石油产品的取样 ①取样件数:包装中的粉末状石油产品,要按袋子总件数的2%或按小包总件数的1%(但不应少于两袋或两包)采取试样,取出的试样要以相等体积掺和成一份平均试样. ②取样:从袋子或小包中取样时,将穿孔器插入石油产品内,使穿孔器通过整个粉层,将取出的试样装人一个清洁、干燥的容器中,搅拌均匀。随后,将袋或包的缺口堵塞。 (4)散装不熔性固体石油产品的取样:不熔性固体石油产品在成堆存放或在装车和卸车时,按规定用铲子采取试样,取出的试样要以大约相等的数量掺和成一份平均试样。不允许用手任意选取几块固体石油产品作为试样。目视大于250mm的块料,不能作为试样。将取出的试样装人一个箱子里,拌匀后用盖子盖好。在24h内将试样捣碎成不大于25mm的小块。将试样捣碎,执行四分法直至试样质量达到2-3kg为止。4.试样的保管和使用 (1)按规定所采取的膏状石油产品试样,要分装在两个清洁、干燥的牛皮纸袋或玻璃罐中,一份试样作为分析之用,另一份试样留在发货人处保存两个月,供仲裁试验时使用。 (2)装有试样的玻璃罐要用盖子盖严,可用牛皮纸或羊皮纸封严。 (3)在每个装有试样的玻璃罐上或纸包上,要把叠成两折的细绳固定在贴上标签的地方,细绳的两个绳头要用火漆或封蜡粘在塞子上,盖上监督人的印戳。标签必须写明:产品名称和牌号,发货工厂名称或油库名称 取样时货物的批号或车、铁盒、大桶和运输等编号 取样日期 石油产品的国家标准、行业标准或技术规格的代号。

  • 【求助】电位滴定仪测固体酸酸度

    最近,采用电位滴定法确定固体酸的酸量。以正丁胺溶液为碱滴定剂滴定固体酸乙腈溶液。跟据一阶突越确定等当点。但是,当催化剂只含有Lewis酸而无B酸时,滴定过程中没有出现电位突越,请教各位高手是何原因?后将滴定速率调小,出现突越。请问电位滴定法对Lewis酸是否响应,另外非水相复合电极的工作原理是什么?先谢谢诸位了!

  • 气体吸附法比表面积及孔径分布(孔隙度)测试中,对测试过程和结果会产生非常重要的影响的因素

    气体吸附法比表面积及孔径分布(孔隙度)测试中,有几个因素对测试过程和结果会产生非常重要的影响。对测试结果的有效分析需考虑这些因素。这些因素包括:样品处理条件,吸附质气体特性,测试方法的不同等,以下分别进行详细介绍。样品处理条件由于比表面积和孔隙度的测定与颗粒的外表面密切相关,且吸附法测定的关键是吸附质气体分子“有效地”吸附在被测颗粒的表面或填充在孔隙中,因此样品颗粒表面的是否“洁净”至关重要。样品处理的目的主要是让被非吸附质分子占据的表面尽可能地被释放出来,以便测试过程中有利于吸附质分子的表面吸附,一般的样品测定前都需进行预处理,处理的方法依测定的样品特性进行选择。一般情况下,大多数样品需要去除的是其表面吸附的水分子,因此高于100℃(一般取105℃-120℃)常压下的烘干即可达到此目的,这样有利于简化操作流程。对于含微孔类的或吸附特性很强的样品,常温常压下就很容易吸附杂质分子,或是在制造过程中导致其表面吸附很多其它分子,通常情况下有必要在真空条件下进行脱气处理,有时还必须在预处理过程中通入惰性保护气体,以利于样品表面杂质的脱附。总之,样品预处理的目的是使样品表面变得洁净,以确保比表面积及孔径(孔隙度)测量结果的准确有效。吸附质气体特性气体吸附法比表面积及孔径分布分析测试中,对吸附质气体最基本要求是其化学性质稳定,被吸附过程中不会对样品本身的性能和表面吸附特性产生任何影响,且必须是可逆的物理吸附。氮气是最常用的吸附质,实践表明,绝大多数物质的测定选择氮气作为吸附质,测试的结果准确性和重复性都很理想。对于含有微孔类的样品,若微孔尺度非常小,基本接近氮气分子的直径时,一方面氮气的分子很难或根本无法进入微孔内,导致吸附不完全;另一方面,气体分子在与其直径相当的孔内吸附特性非常复杂,受很多额外因素影响,因此吸附量大小不能完全反应样品表面积的大小。对于这类样品,一般采用分子直径更小的氩气或氪气来作为吸附质,以利于样品的吸附和保证测试结果的有效性。测试方法因素不同的测试方法对测试结果也会有很大的影响,不同的测试方法有着各自的优缺点。连续流动法中,由于采用的是“对比”的原理,相比容量法,能有效降低样品处理对测试结果的影响。通过对比的方法,在某种程度上,标准样品和被测样品由于处理的不完善导致的误差可以抵消掉,前提是两种样品的表面结构和吸附特性相近似,处理条件相同。这对于用于产品质量现场控制目的的检测非常有价值,减少样品处理时间,可以大大提高检测效率。如果用同样的物质作为标准样品和被测样品,由于表面结构和吸附特性近似,比表面积测试结果就会对样品处理条件不敏感,换句话说就是误差被抵消掉。因此连续流动法非常适合产品质量现场检测。相反,容量法可以说对样品处理非常敏感,因其采用的是绝对的吸附量测定原理,任何的表面不洁净或其它影响吸附质吸附过程的因素都会对测定结果产品直接的影响。

  • 煤储层微小孔孔隙结构的低场核磁共振研究

    煤层气主要以吸附状态存在于煤孔隙中,正确认识煤的孔隙结构及分布特征,是研究煤储层孔隙性、空间结构、渗流特征以及煤层气可采性的重要依据。目前,岩石孔隙结构和孔径分布特征主要通过压汞法分析获得的毛细管压力曲线和低温 氮吸附脱附实验得到吸附脱附曲线来进行评价和分析。鉴于,煤储层与常规储层相比,具有易碎、易压缩、孔隙结构复杂性和高度非均质性等特 征,这使得两种方法在煤储层应用方面存在较多不足。如低温氮吸附脱附实验方法对样品孔径的测试范围在1. 7 ~ 300 nm,能较好地反映微小孔 及中孔的分布情况,而无法反映大孔及裂隙的分布情况,测试范围具有局限性; 压汞法对样品有损坏,且无法重复利用低场核磁共振技术测试原理与上述两种方法不同,主要通过测量煤岩孔隙中流体的T2弛豫时间来获取煤样孔隙系统中微小孔、中孔、大孔及裂隙的分 布情况、连通性以及煤岩的各种物性参数。该方法具有快速、无损、信息量丰富等优点低场核磁共振实验结果通过低场核磁共振实验,得到煤样的T2弛豫时间谱( 图3)。根据样品T2谱的形态特征可得,样品按照孔隙大小主要分为两类: 一类微小孔为主,中孔、大孔及裂隙对不发育,如高煤阶 样品; 另一类样品微小孔、大孔或裂隙发育为主,中孔相对不发育,如中煤阶样品。http://pic.yupoo.com/niumagqw1/FIyv44f0/uwWAO.png煤样液氮吸/脱附曲线特征与表面弛豫率关系http://pic.yupoo.com/niumagqw1/FIyv4a8R/13IJuA.png高煤阶煤表面弛豫率明显低于 中煤阶煤,其主要原因为: 高煤阶煤的微孔比例相对较高,孔隙结构较复杂,且多以“细颈瓶”型毛细孔为主。因此,表面弛豫率的大小,与样品孔隙结构的复杂性及孔隙类型具有较好的对应关系。

  • 【我们不一YOUNG】+ 土壤的五种吸收固体、液体和气体的能力

    [b][font='微软雅黑',sans-serif][color=black]①机械吸收作用:[/color][/font][/b][font='微软雅黑',sans-serif][color=black]这是指土壤将大于土壤孔隙而悬浮于溶液中(如骨粉、饼肥、磷矿粉及粪便残渣等)的微细颗粒机械地阻留下来,使之不随土壤中渗水而流走的一种作用。由于土壤颗粒愈小,排列愈紧密,土壤孔隙愈细,因此机械吸收作用就越强,则土壤保肥性能就好。这种作用对新改稻田、新水库、塘坝有利增强保水蓄水的功能。[/color][/font][b][font='微软雅黑',sans-serif][color=black]②物理吸收作用:[/color][/font][/b][font='微软雅黑',sans-serif][color=black]它是指土壤胶体依靠其表面能将分子态养分吸附在表面上,而胶体与被吸附物不起任何化学反应的一种作用。这种作用,由于对分子态养分有保持能力,因此,土壤中的氨气、尿素、氨基酸等分子态氮就会减少挥发损失。平常在施用易挥发的铵态氮肥时要求复好土就是这个道理。[/color][/font][b][font='微软雅黑',sans-serif][color=black]③化学吸收作用:[/color][/font][/b][font='微软雅黑',sans-serif][color=black]这是指土壤中可溶性养分(如某些离子与带不同电荷的离子发生化学作用),由纯化学作用产生不溶性沉淀而固定在土壤内的作用。这种作用,虽然有减少可溶性养分的流失,但被固定下来的养分就难以再被作物吸收利用,故降低了养分的利用率。因此,把磷肥集中施或与有机肥混和施,制成颗粒球肥施和根外喷施,就是避免化学吸收作用的发生,减少土壤对磷酸的固定。[/color][/font][b][font='微软雅黑',sans-serif][color=black]④代换吸收作用:[/color][/font][/b][font='微软雅黑',sans-serif][color=black]这又叫物理化学吸收作用。它是指土壤胶体表面吸着许多与它带相反电荷离子的同时,其表面上又有等当量的同电荷的其它离子被代换出来的作用。其实质是一种离子(阳离子或阴离子)代换过程,是土壤胶体所吸收的离子和土壤溶液中的离子在相互代换。所以这种作用是可逆的,即胶体所吸收的离子,又能重新被其它离子代换到溶液中去。从而,这种作用在调节土壤中可溶性养分的保蓄和供应,具有重要意义。[/color][/font][b][font='微软雅黑',sans-serif][color=black]⑤生物吸收作用:[/color][/font][/b][font='微软雅黑',sans-serif][color=black]这是指生活在土壤中的微生物及作物根系和动物等,吸收养分构成有机体而保留在土壤中的一种性能。由于生物是根据自身需要,从土壤溶液中选择吸收各种可溶性养分,形成有机体。当它们死亡后,有机残体又逐渐分解,把营养物质释放出来,供作物吸收利用。所以生物吸收作用,能保持养分,积累养分,提高土壤肥力。[/color][/font]

  • ?填充柱常见问答:何为固体固定相?大体可以分为几类?

    指直接装填到色谱柱中作为固定相的具有活性的多孔性固体物质。固体固定相大体可分为二类:第一类是吸附剂。如:分子筛、硅胶、活性炭、氧化铝等;第二类是高分子聚合物。如国内的GDX型高分子多孔微球,国外Porapak系列等;第三类是化学键合固定相。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中,通常是将固定液涂敷在载体表面上。采用化学键合固定相分析极性或非极性物质通常都能够得到对称峰,柱效很高,固定相的热稳定性也有所改善。

  • 【讨论】固体制剂溶解定容体积的问题

    定量检测时, 一般是称取适量的样品溶于容量瓶中,在分析主药含量较少(要求做含量均匀度的固体制剂)的药品时,取样量往往比较多,但常常不溶性辅料也很多,影响了实际定容体积,这时,加入的溶剂体积与容量瓶的实际体积有较大差距,还能以容量瓶的体积做的计算稀释倍数代入计算吗?

  • 如何测纤维束丝的固体紫外光谱?

    我想测纤维束的固体紫外可见光谱,纵坐标想为T%。纤维表面有抗紫外涂层。不知道需要如何制备纤维样品。纤维样品量需要多少?我今天试了一下,就把纤维团成一团直接放到固体样品架上夹上,中间有很多的空隙。测出来的效果不好,200-400nm透射率第一次测90% 以上,第二次测60%以上。不知道是什么原因啊。应该如何制备样品呢?固体样品架的光照面积大概5毫米直径的圆。可不可以把纤维束堆一堆夹在石英片中间测试呢?在测试的时候需要有什么特殊的设置吗?能直接像测液体那样直接进行测试吗?用积分球需要设置什么吗?拜托了,谢谢大家

  • 实验室分析仪器--气相色谱固体固定相-无机吸附剂

    在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中对分离起主要作用的是固定相,可分为固体固定相和液体固定相,分别对应气固色谱法和气液色谱法,前者主要用于气体和低沸点化合物的分离。固体固定相有两类,分别由无机材料(包括以其为基质用化学键合方法制备的键合固定相)和有机化合物聚合制成。固体固定相的保留和选择性取决于两个因素:①材料的化学结构(极性),即表面官能团的类型和数目,与分子间相瓦作用有关。②几何结构(孔结构和分布),也即比表面积。在使用固体固定相时,应注意三个方面:①使用前要进行活化,使用时要避免一些有反应性或腐蚀性的气体使之失活。②对组分吸附性太强时,会发生不可逆吸附。在某些情况下,在固体固定相表面上涂渍少量固定液,不仅可减少吸附,而且可改变选择性,改进特定组分的分离。③不同批次的产品色谱性能有差异(特别是无机材料制成的产品)。[b]无机吸附剂[/b]由无机材料制成的吸附剂,用于色谱法的有分子筛、硅胶、氧化铝和碳素。[b]1、分子筛[/b]分子筛是天然或人工合成的硅铝酸盐,化学组成是[M[sub]2[/sub]M']OAl[sub]2[/sub]O[sub]3[/sub]xSiO[sub]2[/sub]yH[sub]2[/sub]O,其中M为Na[sup]+[/sup]、K[sup]+[/sup]、Li[sup]+[/sup]等一价阳离子,M'是Ca[sup]2+[/sup]、Ba[sup]2+[/sup]、Sr[sup]2+[/sup]等二价阳离子,分子筛Na型与Ca型之分在于前者1/4~3/4的Na[sup]+[/sup]被Ca[sup]2+[/sup]置换:X、Y型之分是Al[sub]2[/sub]O[sub]3[/sub]与SiO[sub]2[/sub]的比例有不同,其中数字表明平均孔径的大小(单位为?,1?=0.1nm,下同)。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中最常用的分子筛为5A与13X型分子筛,前者由Ca-Al-Si的氧化物组成,有效孔径为5?:后者则由NA-AL-Si氧化物组成,有效孔径为10?。分子筛可能是吸附剂中极性最强的,因此CO[sub]2[/sub]、H[sub]2[/sub]O应从载气中除去。同时使用前要活化好,否则分离性能不好,柱中的水量将影响CO和CH[sub]4[/sub]的分离状况及流出次序。活化方法是在550℃活化2h(或在减压下于350℃活化2h;300℃活化4h;250℃活化12h)。分子筛因吸水而失活,在250℃通载气一夜可除去吸附水。分子筛受欢迎是由于它们分离O[sub]2[/sub]/N[sub]2[/sub]的独特能力,在通常的长度(1~2m)和正常的操作温度(室温~100℃)即可。它们也能用于分离H[sub]2[/sub]、CH[sub]4[/sub]、CO、NO和惰性气体He、Ne、Ar、Kr、Xe等。5A分子筛适于分离Ar与O[sub]2[/sub],13X分子筛则特别适于C[sub]6[/sub]~C[sub]11[/sub]烃的族分析。[b](二)硅胶[/b]硅胶由硅酸凝胶制成,化学成分是SiO[sub]2[/sub]nH[sub]2[/sub]O,分析C1~C4烷烃和SO[sub]2[/sub]、H[sub]2[/sub]S、COS、SF[sub]6[/sub]等气体硫化物。新购入的硅胶要用盐酸(1:1)浸泡2h,然后用水洗涤至无Clˉ。使用前于160℃左右活化2h。硅胶的缺点是分离性能不稳定,不同批次生产的性能不一样。硅胶曾用于分离CO[sub]2[/sub]和其他永久性气体,CO[sub]2[/sub]在C[sub]2[/sub]H[sub]6[/sub]后流出,因而在多柱系统中很有用。但是,现在这方面的应用大多数已由多孔聚合物代替。新一代硅胶基质的固定相如Spherosil和Porasil有较好的标准化的色谱性能,这些材料是多孔小球,无论是否涂固定液均可使用。Chromosil特别适于痕量硫化物的分析。[b](三)氧化铝[/b]氧化铝的化学组成是Al[sub]2[/sub]O[sub]3[/sub],其晶型有五种,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法常用的为y型,其次为a型使用前要使用水、液体固定相或无机盐(如KCl或Na[sub]2[/sub]SO[sub]4[/sub])失活。氧化铝是轻烃分析的理想色谱柱,缺点是对极性化合物如醇、醛、酮等有很强的保留,即使在200℃,它们仍流不出来。因此,要防止高沸点化合物或极性不纯物进入柱子。即使用了KCl失活,H[sub]2[/sub]O和CO仍被Al[sub]2[/sub]O[sub]3[/sub]吸附导致保留时间减小。如果样品中水含量大于1μL/L,保留时间将减少,选择性发生变化。此时,柱子可在200℃以上活化15~30min再生柱子。第一次使用时需在450~1350℃活化2h。氧化铝具有中等吸附性,主要用于分离烃,它对不饱和烃异构体如C[sub]4[/sub]不饱和烃有独特的分离能力。经KCl改性的Al[sub]2[/sub]O[sub]3[/sub]PLOT柱稳定性大大提高,可进行C[sub]1[/sub]~C[sub]9[/sub]烃的分离分析。此外,Al[sub]2[/sub]O[sub]3[/sub]还能用于分离氢的自旋异构体。[b](四)碳素[/b]碳素的化学组成是碳,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法使用的有活性炭、碳分子筛及石墨化炭黑。活性炭由果壳或木材烧制而成,结构为无定形碳(微晶碳),具高比表面积(800~1500m[sup]2[/sup]/g),用于分析永久性气体及C[sub]1[/sub]~C[sub]2[/sub]烃类。新购的活性炭要用等体积的苯冲洗3次,通空气吹干后,改用水蒸气于450℃活化2h,降温至150℃用空气再吹干。再生时可不用苯处理。活性炭由于宽的孔分布和组成差异,制备重复性差使得色谱性能难重复,其吸附性能强使分离的组分拖尾严重,不太适合做[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]固定相。活性炭由于其批与批之间再现性差,在色谱上使用有限。Kaiser利用聚偏二氯乙烯高温热解灼烧后得到的残留物,发展了一个类似于分子筛孔结构的碳材料,称为碳分子筛,比表面积一般在400~1200m/g。与活性炭相反,孔径分布较窄。活化方法为在180℃通氮气4h。它对分离气体和很短链化合物有用。一根单柱就能分离永久性气体和C[sub]1[/sub]~C[sub]3[/sub]烃。分离O[sub]2[/sub]、N[sub]2[/sub]、CO[sub]2[/sub]具独特能力,也能用于H[sub]2[/sub]O、SO[sub]2[/sub]、H[sub]2[/sub]S等气体的分析,特别适于分析在有机物之前流出的微量水。烃根据其不饱和程度分离,饱和烃后出峰。石墨化炭黑是炭黑在惰性气体中于2500~3000℃煅烧而成的结晶形碳,比表面积为5~260m[sup]2[/sup]/g活化方法与活性炭相同。表面几乎完全除去了不饱和键、弧电子对、自由基和离子。吸附主要由色散力引起,其大小很大程度上取决于吸附剂表面和被吸附分子间的距离。因此,石墨化炭黑尤其适合于分离几何结构和极化率上有差异的分子。如用Carbopack或F-SL可将8个C[sub]5[/sub]醇异构体分离开;用Carbograph ISC可把SF[sub]6[/sub]、SO[sub]2[/sub]、H[sub]2[/sub]S、COS、硫醇、二硫化合物很好地分离开。能使难分离化合物如间/对二甲酚、戊醇的所有八个异构体得以分离,同时对C[sub]1[/sub]~C[sub]10[/sub]范围的有机物如游离脂肪酸、醇、胺、烃等有杰出的分离能力,也能分离含硫小分子,许多在普通条件下易被吸附的痕量化合物可流出,出峰次序取决于几何结构和极化率。石墨化炭黑的缺点是机械强度较低。石墨化炭黑的吸附性能比活性炭小,最好在分析酸性物质时,用磷酸作削尾处理;分析碱性物质时,用碳酸钠处理。还可以用苦味酸、Carbowax1500、Carbowax 20ML改性。

  • 【求助】土壤孔隙度的测定

    我们的土壤是自己配的,易碎,不能采用环刀法测定土壤容重,也就不能计算土壤孔隙度,请问除了此法还有什么方法能测定土壤孔隙度的吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制