当前位置: 仪器信息网 > 行业主题 > >

应变控制式仪

仪器信息网应变控制式仪专题为您提供2024年最新应变控制式仪价格报价、厂家品牌的相关信息, 包括应变控制式仪参数、型号等,不管是国产,还是进口品牌的应变控制式仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合应变控制式仪相关的耗材配件、试剂标物,还有应变控制式仪相关的最新资讯、资料,以及应变控制式仪相关的解决方案。

应变控制式仪相关的论坛

  • 【讨论】如何实施GB/T228中规定的应变速率控制??

    [color=#DC143C][size=4]在GB/T228中规定的下屈服强度的测定中要求使用应变速率进行测量控制,大家在平时的工作中有没有什么好的方法,提供出来和大家分享!问题1、现在我们那些厂家生产的试验机可以实现该种控制方式? 2、如何实现应变速率控制? 3、是否可以根据标准要求通过粗略计算而使用其它的控制方式来实现?[/size][/color]

  • 各个试验机厂家应变控制方法

    前段时间采用ISO6892方法A中的应变控制模式做实验,使用的INSTRON的设备,发现一个和MTS不同的地方。MTS C64.305的型号,中PID参数需要自己调整,而INSTRON的则是全自动的。只用过这两家的设备,求助别的试验机厂家是怎么样达到应变控制目的?

  • 温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    [align=center][size=16px] [img=温度调制式差示扫描量热法MTDSC中实现正弦波温度控制的方法,650,411]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241524097587_3670_3221506_3.jpg!w690x437.jpg[/img][/size][/align][size=16px][color=#990000]摘要:在调制温度式差式扫描量热仪(MTDSC)中,关键技术之一是正弦波加热温度的实现,此技术是制约目前国内无法生产MTDSC量热仪的重要障碍,这主要是因为现有的PID温控技术根本无法实现不同幅值和频率正弦波这样复杂的设定值输入。本文将针对此难题提出了相应的解决方案,即采用具有外置设定点功能的特制PID控制器来实现正弦波温度控制。[/color][/size][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 调制温度式差式扫描量热法(MTDSC)是由差示扫描量热法(DSC)演变而来的一种热分析方法,该方法是对温度程序施加正弦波扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统DSC线性变温基础上叠加一个正弦振荡温度程序,如图1所示,由此可随热容变化同时测量热流量,然后利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。[/size][align=center][size=16px][img=01.调制式差示扫描量热法正弦波温度变化曲线,606,395]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527062808_6964_3221506_3.jpg!w606x395.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图1 调制式差示扫描量热法正弦波温度变化曲线[/b][/color][/size][/align][size=16px] 与DSC(差式扫描量热仪)相比,MTDSC(温度调制式差式扫描量热仪)主要会涉及到两项完全不同的技术,一是正弦波温升变化的实现,二是测量信号的傅里叶变换分析。这两项技术作为MTDSC的核心技术,也是制约目前国内无法生产MTDSC量热仪的重要障碍。特别是在正弦波温度变化控制方面,现有的PID温度控制技术根本无法实现正弦波这样复杂的设定值输入。为此,本文将针对正弦波温度的实现提出相应的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在温度自动控制方面一般常会使用PID调节器,PID温度调节器的基本原理是根据设定值与被控对象测量值之间的温度偏差,将偏差按比例、积分和微分通过计算后形成控制输出量,对被控对象的温度进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。对MTDSC量热仪而言,设定曲线则是正弦波和一条斜线的叠加而成的曲线,其中的斜线是需设定的平均升温速率,而正弦波则是需设定幅值和频率的正弦温度波。[/size][size=16px] 由此可见,解决MTDSC温度正弦波控制的关键是PID温度控制器的设定值可以按照所需的正弦波和线性曲线叠加后函数进行设置。为此,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外置设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)配套一个函数信号发生器,给PID控制器传输所需的正弦波和线性叠加信号。[/size][size=16px] 依据上述方案内容所确定的PID控制装置及其接线如图2所示,具体内容如下:[/size][align=center][size=16px][img=02.调制温度式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图,690,216]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527309145_3057_3221506_3.jpg!w690x216.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图2 调制式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图[/b][/color][/size][/align][size=16px] (1)具有外置设定点功能的PID控制器[/size][size=16px] 所用的具有外置设定值功能的PID控制器具有两个输入通道,主输入通道作为测量被控对象的温度传感器输入,辅助输入通道用来作为外置设定点输入。与主输入通道所能接收的信号一样,辅助输入通道的外置设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入辅助输入通道作为外置设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px] (2)函数信号发生器[/size][size=16px] 对于MTDSC而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现MTDSC的温度以正弦波形式的周期性变化,可以采用各种相应的信号发生器输出相应幅值和频率的正弦波信号和线性信号,对这两路电压信号进行叠加后传送给辅助输入通道。[/size][size=18px][color=#990000][b]3. 控制器的接线、设置和操作[/b][/color][/size][size=16px] 为了正常使用正弦波温度控制装置,还需进行相应的接线、设置和操作。[/size][size=16px] 首先,对于图2所示的正弦波温度PID控制装置,也可以用作常规PID温度控制器。即主输入通道连接温度传感器,主控输出1通道连接温控执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,由此可以通过内部设定点或设定程序进行PID温度控制。[/size][size=16px] 如果要在MTDSC热分析仪上实施正弦波温度变化的控制,则使用外置设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器。[/size][size=16px] 完成外部接线后,在运行使用外置设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,且需要满足以下几方面要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的外置设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,在开始使用外置设定点功能之前,还需要激活外置设定值功能。外置设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1)内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择外置设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的开关实现外置设定点和本地设定点之间的切换,开关闭合时为外置设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种外置设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决温度调制式差式扫描量热仪(MTDSC)的正弦波温度的控制问题,温控器模块化结构可很容易与MTDSC热分析仪进行集成,无需再研发和配置复杂的控制电路和软件。随机配备的计算机软件可方便的进行控制运行和调试,便于热分析研发工作的开展。[/size][size=16px] 解决方案的另一个优势是所采用的PID温控器具有很高的测控精度,其中24位AD、16位DA、双精度浮点运算和0.01%的最小输出百分比,这可以满足MTDSC高精度温度控制需求。[/size][size=16px] 另外,本解决方案中的控制器还可以进行多种拓展,除可实现被控对象周期性调制波的加载之外,还可非常便于实现第二类和第三类边界条件的精密PID控制,同时还可以实现其他物理量,如真空、压力和张力等的串级控制、分程控制和比值控制等。[/size][align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 非接触式应变位移视频测量仪

    求助各位朋友,有谁知道以下这个设备是那个生产厂家的,请加我,谢谢非接触式应变位移视频测量仪:一、性能要求1. 非接触式应变位移视频测量分析软件,用于处理摄像机视频图像信息,测量全场应变位移;2. 控制软件配置开放接口,可加配红外热像仪控制节点;3. ★所有测试数据,能够与MTS共享。二、技术参数1. 可测量参数:包括应变、位移、泊松比、拉伸/压缩模量、应力-应变曲线等。2. 仪器专用CCD摄像,象素≥1380x1024,15fps,1394b。3. 专用镜头(6-19mm标距,70mm物距)4. 结构监测镜头焦距50mm,25mm5. 测量间距:不小于500mm6. 标距可调:最小不大于5mm,最大不小于150mm7. 视频扫描频率:不小于100次/秒。8. ★测量位移分辨率:不大于0.05微米(可用MTS检测);9. ★应变分辨率:不小于5个微应变(可用MTS检测)10. 提供数字和模拟信号的输入和输出。模拟输入: 16单/8双通道;分辨率:16位;电压范围:+/-0.2V到+/-10V 模拟输出:通道:2 ;分辨率:16位电压范围:+/-10V 数字输入:通道:4 ;数字输出:通道:4 三、仪器配置1. ★一体化视频测量仪(含主机、摄像机及镜头、视频光源);2. 笔记本电脑: 13’屏;CPU i5;硬盘500G ;内存4G;独显2G;配三脚架。

  • DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    XTDIC三维全场应变测量分析系统,结合数字图像相关技术(DIC)与双目立体视觉技术,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的测量,具有便携,速度快,精度高,易操作等特点。http://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595779_3024107_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595780_3024107_3.png图:系统测量原理及散斑图像追踪过程系统组成:统主要由测量头、控制箱、标定板、标志点、计算机及检测分析软件等组成系统应该包含系统测量头(含两台高速工业相机、进口相机镜头,带万向手柄可调节LED光源)、相机同步控制触发控制箱、系统标定板、系统可移动支撑架、动态采集分析软件、载荷加压控制通讯接口、计算机系统等组成。1.1 主要应用XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,其主要应用有:在材料力学性能测量方面:DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。在细观力学测量方面:借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。在损伤与破坏检测方面:DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。在生物力学测量方面:DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。对于大中专院校的研究教学应用,本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。亦可为学生提供可视化的教学工具,让学生的基础学习课程变得直观和可视,使复杂问题简单化、抽象问题直观化、隐蔽问题可视化。1.2 系统功能(1)基本测量功能:l ※测量幅面:支持几毫米到几米的测量幅面,可以根据需求定制测量幅面。l 测量相机:支持百万至千万像素、低速到高速、千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps。l ※相机标定:支持多个相机(可多于8个)多种测量幅面的标定,支持外部拍摄图像标定。l ※测量模式:三维变形测量,同时支持单相机二维测量。l ※实时计算:采集图像的同时,可以实时进行三维全场应变计算,具备在线和离线两种计算处理模式。l 计算模式:具备自动计算和自定义计算两种模式。l 测量结果:全场三维坐标、位移、应变数据等动态变形数据,应变模式有工程应变、格林应变、真实应变等三种。l 多个检测工程:系统软件支持多个检测工程的计算、显示及分析。l ※支持系统:支持32位、64位windows操作系统,具备64位计算和多线程加速计算功能。(2)分析报告功能l ※18种变形应变计算功能:X、Y、Z、E三维位移;Z值投影;径向距离、径向距离差;径向角、径向角差;应变X、应变Y和应变XY;最大主应变;最小主应变;厚度减薄量;Mises应变;Tresca应变;剪切角。l ※坐标转换功能:321转换、参考点拟合、全局点转换、矩阵转换等多种坐标转换功能。l ※元素创建功能:三维点、线、面、圆、槽孔、矩形孔、球、圆柱、圆锥。l ※分析创建功能:点点距离、点线距离、点面距离、线线夹角、线面夹角、面面夹角。l 数据平滑功能:均值,中值,高斯滤波等多种平滑功能。l 数据插值功能:自动和手动两种数据插值模式。l 材料性能分析:自动计算材料的弹性模量和泊松比等参数。l 三维截线功能:可对三维测量结果进行直线或圆形截线分析。l 曲线绘制功能:所有测量结果均可以绘制成曲线图。l 成形极限分析功能:可绘制和编辑FLD成形极限曲线。l 视频创建功能:可将测量过程二维图像或者三维测量结果制作成视频并输出保存。l 数据输出功能:测量结果及分析结果输出成报表,支持TXT,XLS,DOC文件的输出。(3)采集控制功能l ※采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。l 相机同步控制:多相机外同步触发信号。l ※外部采集通讯接口:支持外部载荷如微电子万能试验机等外部载荷联机采集通讯接口,通过串口通讯或者模拟量实时采集外部的加载力、位移等信号,并与三维全场应变测量数据实现同步,实现应力和应变数据的融合和统一。l 光源控制:可以实现测量过程中不同补光需要的LED光源控制。(4)预留扩展接口:l ※多测头同步检测接口:可以支持1~8个测头的多相机组同步测量,相机数目任意扩展,可以同步测量多个区域的变形应变,适用于不同实验条件需求下的变形应变测量。l ※显微应变测量:配合双目体式显微镜,系统可以实现微小视场的三维全场变形应变检测,并可支持扫描电镜、原子显微镜等显微图像的应变数据计算。l ※大尺寸全方位变形接口:支持摄影测量静态变形系统,实现全方位变形和局部全场应变检测数据的融合和统一。1.3 技术指标 指标名称技术指标1. ※核心技术多相机柔性标定、数字图像相关法2. 测量结果三维坐标、全场位移及应变,可视化显示及测量过程的视频录制输出,测量结果及数据输出成报表,支持TXT,XLS,DOC文件的输出。3. ※测量幅面支持1mm-4m范围的测量幅面,并配备相应编码型标定板标定架,可定制更多测量幅面。4. ※测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps)5. 相机标定简单快捷,需要可支持任意数目相机的同时标定,支持外部图像标定6. ※位移测量精度0.005像素7. ※应变测量范围0.01%-1000%8. ※应变测量精度0.001%9. 测量模式三维变形测量,可兼容二维测量10. ※实时测量计算采集图像的同时,实时进行全场应变计算11. ※系统控制2采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。2相机同步控制:多相机外同步触发信号。2外部采

  • 液位控制仪表系统故障分析步骤

    (1)液位控制仪表系统指示值变化到最大或最小时,可以先检查检测仪表看是否正常,如指示正常,将液位控制改为手动遥控液位,看液位变化情况。如液位可以稳定在一定的范围,则故障在液位控制系统;如稳不住液位,一般为工艺系统造成的故障,要从工艺方面查找原因。  (2)差压式液位控制仪表指示和现场直读式指示仪表指示对不上时,首先检查现场直读式指示仪表是否正常,如指示正常,检查差压式液位仪表的负压导压管封液是否有渗漏;若有渗漏,重新灌封液,调零点;无渗漏,可能是仪表的负迁移量不对了,重新调整迁移量使仪表指示正常。  (3)液位控制仪表系统指示值变化波动频繁时,首先要分析液面控制对象的容量大小,来分析故障的原因,容量大一般是仪表故障造成。容量小的首先要分析工艺操作情况是否有变化,如有变化很可能是工艺造成的波动频繁。如没有变化可能是仪表故障造成。

  • 【资料】WAW-600B微机控制电液伺服万能试验机(双控制)

    [b][color=#3300ff][img]http://www.okyiqi.com/uploadfile/081201200632.jpg[/img]WAW-600B微机控制电液伺服万能试验机(双控制)[/color][/b]一、主要功能及特点:试验机主机采用液压缸下置式:液压油缸在试验机的下部,活塞在液压力的作用下向上顶,可实现对试样的压缩、弯曲、剪切试验;上下钳口座为全开式结构,装夹试样方便,稳定性好。该结构设计合理、简洁、稳定性好,可靠、易维护,液压伺服加载系统, ,确保系统高精高效、低噪音、快速响应, 实现对试验的自动控制加载、换向;[b]WAW-600B微机控制电液伺服万能试验机[/b]微机控制及处理系统:a:电液伺服控制系统:准确完成试验过程中试验参数的设定、试验过程的自动控制、数据采集、处理、分析、存储及显示(试验数据包括:上下屈服点、抗拉强度、断裂强度、弹性模量、各点延伸率、非比例伸长等)。它除了具备基本的试验力、试样变形、活塞位移和试验进程的闭环控制及等速应力、等速应变、等速试验力、等速位移、试验力保持、位移保持等控制功能外,还具备方便快捷的开环控制功能。b: 试验力,峰值、试样变形、活塞位移、试验曲线的屏幕显示功能,全键盘输入操作和控制模式智能设置专家系统,实现了控制模式的任意设置和各种控制方式之间的平滑切换,使系统具有最大的灵活性。加、卸载平稳,试验过程中既可进行程序控制,同时兼有固定程序的“快捷键“操作,也可采用鼠标灵活调整试验速度;[img=326,257]http://www.okyiqi.com/uploadfile/20081201200223769.jpg[/img] c:可以按GB228-2002《室温材料 金属拉伸试验方法》等国家标准的要求完成试验的数据自动采集和处理。试验过程能够模拟再现和试验数据的再分析、试验曲线放大、比较、遍历。试验曲线可任意选择坐标轴,并可自由放大和缩小;d:基于WindowsXP操作系统的试验软件,放大器调零、传感器标定采用可靠的硬件支持和软件支持相结合使得品质更臻完美;可对使用者实行分权限管理,具有多种图形显示窗口和单位换算功能;e:试验数据以数据库化管理,可以进行网络数据库通讯和管理;f:试验机具有扩展和更新能力;g:强大的自检功能。 6、保护功能: a) 油缸限位保护;b) 液压系统过载溢流保护;c) 试验力过载保护;d) 过流、过压保护;e) 试样破断时安全保护;f) 试验结束自动保护。 [b]二、WAW-600B微机控制电液伺服万能试验机主要技术指标:[/b]1、最大试验力:600kN2、试验力测量范围及精度:0-600kN;0-300kN;0-120kN;0-60kN;4级;试验力精度:优于±1%(从每档满量程的20%起) 3、 变形测量范围及精度:分1;2;5;10四档测量;优于±0.5%FS4、 位移测量范围及精度: 250mm;优于0.01mm5、 拉伸钳口之间最大距离(包括活塞行程): 600mm6、 上下压盘之间的最大距离: 550mm7、 圆试样夹持直径: Ф13-40mm8、 扁试样夹持宽度及厚度: 70mm ;0-30mm9、 上下压盘尺寸: Ф160mm10、 弯曲试验支座间距: 10-500mm11、 活塞最大行程: 250mm12、 应力速度范围: 1MPa/S-25MPa/S13、 应变速度范围: 0.00025/S-0.0025/S14、 拉伸速度: 0.5-70mm/min15、 试验空间调整速度: 120mm/min16、 主机尺寸(长x宽x高包括活塞行程mm): 890×580×2400m17、 控制台尺寸(长x宽x高mm): 1200x800x1100 mm18、 总功率:3.0kW[b]三、WAW-600B微机控制电液伺服万能试验机控制部分技术参数:[/b]〈1〉、试验力测量显示部分:(1).测量方式: 采用高精度油压传感器测量试验力(2).量程转换方式: 自动\手动切换(3).试验力显示方式: 微机屏幕显示〈2〉、变形测量显示部分:(1).测量方式: 采用高精度引伸计测量试样变形(2).量程转换方式: 自动/手动切换(3).变形显示方式: 微机屏幕〈3〉、位移测量显示部分:(1).测量方式: 采用高精度光电编码器测量活塞位移(2).变形显示方式: 微机屏幕〈4〉、自动控制部分:(1).控制方式: 微机自动控制/手动控制两种模式(2).自动控制阀: 进口高精度高频宽电液伺服阀(3).控制模式:a.等速率活塞行程控制:等速设定范围:0.5-70mm/min 控制范围:活塞置零点---活塞行程最大点b.等速率试验力控制:速度设定范围:0.1-2.0满量程/min控制范围:5-100%满量程c.等速率应变控制:速度设定范围:0.1-50%/min控制范围:伸长满量程的5-100%伸长满量程0.1-100mmd.金属材料自动拉伸试验控制:应力速率控制:1-50MPa/sec等速率活塞行程控制:0.5-50mm/min带有试样破断而自动停止机能 (4).试验条件设定方式:人机对话形式:微机键入式(5).试验条件设定项目: 试样截面积、控制速度、保持点、保持时间等〈5〉手动控制部分: 开环功能:可手动控制试验力、位移、变形。三、[b]WAW-600B微机控制电液伺服万能试验机[/b]基本配置1、下置式试验机主机(600kN) 1台2、综合操作台 1台3、液压试样夹紧系统(控制台内) 1套主要元件:3.1、液压泵机组 1套 3.2 、电磁换向阀 1套 3.3 、叠加溢流阀 1套4、液压伺服加载系统 1套5、高精度油压传感器 1套6、变形测量引伸计(标距100mm 变形25mm北京钢院) 1支7、位移测量装置 1套8、附具类: 8.1、拉伸附具(圆钳口 Ф13-40mm;平钳口0-30; ) 各1套8.2、压缩附具(Φ 160mm ) 1套8.3、弯曲附具 (10-500mm) 1套9、联想微机(M260E/ P4/160G/17”液晶) 壹台 10.A4激光打印机(HP1008 ) 壹台11、 试验机WindowsXP中文版软件 1份.

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 【转帖】品质控制的基本知识

    品质控制的基本知识品质控制的演变1.操作者控制阶段:产品质量的优劣由操作者一个人负责控制。.班组长控制阶段:由班组长负责整个班组的产品质量控制。3.检验员控制阶段:设置专职品质检验员,专门负责产品质量控制.4.统计控制阶段:采用统计方法控制产品质量,是品质控制技术的重大突破,开创了品质控制的全新局面。5.全面质量管理(TQC):全过程的品质控制。6.全员品质管理(CWQC):全员品管,全员参与二,品质检验方法1、全数检验:将送检批的产品或物料全部加以检验而不遗漏的检验方法。 适用于以下情形:①批量较小,检验简单且费用较低;②产品必须是合格;③产品中如有少量的不合格,可能导致该产品产生致命性影响。2、抽样检验:从一批产品的所有个体中抽取部分个体进行检验,并根据样本的检验结果来判断整批产品是否合格的活动,是一种典型的统计推断工作。①适用于以下情形:a. 对产品性能检验需进行破坏性试验;b. 批量太大,无法进行全数检验;c. 需较长的检验时间和较高的检验费用;d. 允许有一定程度的不良品存在。②抽样检验中的有关术语:a.检验批:同样产品集中在一起作为抽验对象;一般来说,一个生产批即为一个检验批。可以将一个生产批分成若干检验批,但一个检验批不能包含多个生产批,也不能随意组合检验批。b.批量:批中所含单位数量;c.抽样数:从批中抽取的产品数量;d.不合格判定数(Re):Refuse的缩写即拒收;e.合格判定数(Ac):Accept的缩写即接收;f.合格质量水平(AQL):Acceptable Quality Level的缩写。通俗地讲即是可接收的不合格品率。3、抽样方案的确定: 我厂采用的抽样方案是根据国家标准GB2828《逐批检验计数抽样程序及抽样表》来设计的。具体应用步骤如下①确定产品的质量判定标准:②选择检查水平:一般检查水平分Ⅰ、Ⅱ、Ⅲ;特殊检查水平分S-1、S-2、S-3、S-4,一般情况下,采用一般水平Ⅱ。③选择合格质量水平(AQL):AQL是选择抽样方案的主要依据,应由生产方和使用方共同商定。④确定样本量字码,即抽样数。⑤选择抽样方案类型:如一次正常抽样方案,加严抽样方案,还是多次抽样方案。⑥查表确定合格判定数(AC)和不合格判定数(Re)。三、检验作业控制1、进料(货)检验(IQC):是工厂制止不合格物料进入生产环节的首要控制点。(Incoming Quality Control)①进料检验项目及方法 :外观:一般用目视、手感、对比样品进行验证;b尺寸:一般用卡尺、千分尺等量具验证;c特性:如物理的、化学的、机械的特性,一般用检测仪器和特定方法来验证②进料检验方法:a 全检, b抽检③检验结果的处理:a 接收 b拒收(即退货) c 让步接收 d全检(挑出不合格品退货)e 返工后重检④依据的标准:《原材料、外购件技术标准》、《进货检验和试验控制程序》、《理化检验规程》等等。2、生产过程检验(IPQC):一般是指对物料入仓后到成品入库前各阶段的生产活动的品质控制,即Inprocess Quality Control。而相对于该阶段的品质检验,则称为FQC(Final Quality Control)。①过程检验的方式主要有:a. 首件自检、互检、专检相结合;b. 过程控制与抽检、巡检相结合;c. 多道工序集中检验; d. 逐道工序进行检验;e. 产品完成后检验; f. 抽样与全检相结合;②过程品质控制(IPQC):是对生产过程做巡回检验。a. 首件检验; b. 材料核对;c. 巡检:保证合适的巡检时间和频率,严格按检验标准或作业指导书检验。包括对产品质量、工艺规程、机器运行参数、物料摆放、标识、环境等的检验 d检验记录,应如实填写。③过程产品品质检验(FQC):是针对产品完工后的品质验证以确定该批产品可否流入下道工序,属定点D检验或验收检验。a. 检验项目:外观、尺寸、理化特性等;b. 检验方式:一般采用抽样检验;c.不合格处理;d.记录;④依据的标准:《作业指导书》、《工序检验标准》、《过程检验和试验程序》等等。3、最终检验控制:即成品出货检验。4、品质异常的反馈及处理:①自己可判定的,直接通知操作工或车间立即处理;②自己不能判定的,则持不良样板交主管确认,再通知纠正或处理;③应如实将异常情况进行记录;④对纠正或改善措施进行确认,并追踪处理效果;⑤对半成品、成品的检验应作好明确的状态标识,并监督相关部门进行隔离存放。5、质量记录:为已完成的品质作业活动和结果提供客观的证据。必须做到:准确、及时、字迹清晰、完整并加盖检验印章或签名还要做到:及时整理和归档、并贮存在适宜的环境中。

  • 试验室的温、湿度控制

    温度和湿度对一些材料的性能有一定的影响,故在标准中对材料测试时的环境条件有明确规定,必须遵守。如热采水泥堵窜室内试验《水泥胶砂强度检验方法(ISO)法》规定,试体成型时试验室温度应稳定保持在20℃±2℃,相对湿度不低于50% 试体带模养护箱温度保持在20℃±1℃,相对湿度不低于90% 试体养护池水温度应在20℃±1℃范围内。为加强试验室的温、湿度控制,试验室可根据自身条件建立一套温湿度控制系统和控制措施,有条件的单位尽可能采用自动温、湿度控制系统。试验速度的控制,在材料力学性能检测试验中,加荷速度的快慢对检测结果有一定的影响。一般加荷速度较快,试件的变形滞后于加在其上的荷载,测出的强度值高于材料固有的强度。如井下工具缸体检测中加荷速度较快,屈服强度和极限强度会有所提高。但在实际试验工作中,有的检测人员忽视了加荷速度,在不了解加荷速度大小时随意加荷检测,或者不严格按照标准规定的加荷速度进行检测,致使检测结果失去可比性、真实性。  检测工作中,检测人员掌握加荷速度是通过每秒荷载增加多少牛顿(N/S)来控制的,而有的标准给出的是每秒应力的增加(MPa/S),这就需要根据试件的实际尺寸加以换算,以便控制试验加荷速度。在实际工作中,检测人员应熟练操作万能试验机,确保试验的速度符合标准的要求,同时加荷应保持连续均匀,直至测出所需荷载值。

  • 【原创大赛】实验室控制图的应用之实战指南

    【原创大赛】实验室控制图的应用之实战指南

    [align=center][b]实验室控制图的应用之实战指南[/b][/align]摘要:控制图在连续质量控制中占据重要地位,能够保证检测过程处于统计可控状态,本文依据CNAS-GL27《化学分析实验室内部质量控制指南 ——控制图的应用》的指导选取控制样品对原子荧光汞元素的控制图制作进行讲解,为化学实验室能够充分利用控制图进行质量控制提供指导。 在制作控制图前,我们应结合实验室实际情况就如何选择控制图的类型及控制线的建立、 控制样品的类型、控制图数据的评定三个方面进行讲解。1、控制图类型的选择----X图在化学实验室内部质量控制中常用到的就是X-图(单值图或者均值图)和R-图(极差图)。R图的首要目的在于监控重复性,并没有对准确性提出要求,也就是计算双样重复分析时可以进行R图的制作,而对于有相对准确的分析结果的基础时,X-图可以监控统计数据的准确与偏倚,所以我们一般会选择X-图作为控制图的类型。而在X-图中,控制线一般有五条,已经建立的控制值的平均值作为中位线,警告线为已经建立的控制值的平均值加上标准偏差的两倍(±2S),行动限为3倍(±3S)。2、控制样品的类型---标准溶液一般会有有证标准物质/标准样品(CRM)、标准溶液以及室内样品或室内标准物质/标准样品(RM)、空白样品、待测(常规)样品四种类型。在实际操作过程中可知,待测样品通常是在做加标回收试验时观测准确性以及评定基体干扰的情况下实施,空白样品用于监控检出限以及污染,而有证标准物质以及标准样品价格不菲,成本不利于实验室利用此方法进行长期的质量控制,而标准溶液实验室能够自己配制,也能根据实际检测值判定配制的效果,所以一般选用标准溶液作为控制样品。3、控制图数据的评定3.1控制值需在警告限之内,控制值不能连续7个以上上升或下降,或者连续10个落在中线同一侧。3.2控制图中超过落在警戒限外的点数不能超过6个,计算最近60个结果的平均值,与前一次的平均值相比,差值不能大于0.35s。3.3如发生失控现象,需排查原因,识别并消除误差,改善精密度,重新制作控制值或者控制图。4、运用EXCEL工具制作控制图4.1首先将控制值列出,求平均值,SD,以及平均值±2SD,平均值±3SD的数值,如图所示(因控制值的位数比常规检测结果多保留有效数字,所以此图中所有数据均未进行修约) 浓度 平均值 2SD 2SD+ 2SD- 3SD 3SD+ 3SD-质控样1 0.965 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样2 0.96 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样3 0.953 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样4 0.985 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样5 0.986 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样6 1.014 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样7 0.987 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样8 0.999 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样9 0.993 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样10 0.978 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样11 0.999 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样12 0.993 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样13 0.986 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样14 0.994 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样15 1.007 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样16 0.987 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样17 0.988 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样18 0.995 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样19 1.005 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样20 1.003 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样21 1.02 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样22 0.994 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样23 1.002 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样24 0.989 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样25 1.016 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样26 1.012 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样27 1.016 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样28 0.988 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样37 1.013 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样29 1.008 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样38 1.011 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样30 0.992 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样39 1.021 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样40 0.993 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样31 1.013 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样41 1.017 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样32 1.003 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样42 1.01 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样33 1.001 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样43 1.013 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样34 0.985 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样44 1.029 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样35 0.989 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样45 1.013 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样36 0.99 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样46 1.013 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样47 1.008 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样48 1.014 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样49 1.014 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样50 1.013 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样51 1.015 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样52 0.982 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样53 0.98 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样54 1.001 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样55 1.012 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样56 1.006 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样57 0.996 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样58 0.985 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样59 0.991 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.953263673质控样60 0.996 0.999016667 0.030501996 1.029518663 0.968514671 0.045752994 1.04476966 0.9532636734.2点击插入图表,选择生成折线图,在图表中选择数据,将数据添加入系列中[img=,525,334]https://ng1.17img.cn/bbsfiles/images/2019/08/201908121725266967_4633_3295053_3.png!w525x334.jpg[/img]4.3在已做好的折线图中点击直线(中位线等),调整虚线实线以及颜色等[img=,690,423]https://ng1.17img.cn/bbsfiles/images/2019/08/201908121725263677_6840_3295053_3.png!w690x423.jpg[/img]4.4已做好的折线图,仍可以进行修改,添加数据,方便数据的管理。5、本文只通过标准溶液进行演示,实验室可通过自己的需求进行改变,但需要注意一点,如果使用质控样品,一定以自己实验室实测值的平均值作为中位线,而不是以标注的数值。总结:本文通过对实验室控制图的类型及控制线的建立、 控制样品的类型、控制图数据的评定三个方面进行讲解,并确定了化学实验室可以实际操作的方法即使用标准溶液进行控制图X图的建立,并通过日常监测能够连续性的提供数据支持。

  • 流量控制仪表系统介绍

    (1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。  (2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。  (3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数PID不合适,如果波动仍频繁,则是工艺操作方面原因造成。

  • 流量控制仪表系统故障的分析步骤

    1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。(2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。(3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数PID不合适,如果波动仍频繁,则是工艺操作方面原因造成

  • 【原创】压力控制仪表系统故障分析步骤

    (1)压力控制系统仪表指示出现快速振荡波动时,首先检查工艺操作有无变化,这种变化多半是工艺操作和调节器PID参数整定不好造成。   (2)压力控制系统仪表指示出现死线,工艺操作变化了压力指示还是不变化,一般故障出现在压力测量系统中,首先检查测量引压导管系统是否有堵的现象,不堵,检查压力变送器输出系统有无变化,有变化,故障出在控制器测量指示系统。

  • 高低温湿热试验箱控制试验过程事故多发

    高低温湿热试验箱控制试验过程事故多发

    近年来,伴随着我国工业产品开发的需要,国外也大量地引进了测试系统,这对我国工业产品的发展起到了很大的推动作用。但是它本身的复杂性大大延长了测试周期,影响了产品的开发。有些操作人员对其工作原理还不清楚,造成了设备出现故障的现象,今天针对[url=http://www.linpin.com/][b]高低温湿热试验箱[/b][/url]进行举例。[align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061616205598_2631_1037_3.jpg!w690x690.jpg[/img][/align]  高低温湿热试验箱在做控制试验时,如果出现加湿系统不工作的状况,实际的湿度会达到99.99%,或者实际湿度与设置的目标湿度相差很大,实际湿度数值较低。这样需要检查湿球传感器的水槽中是否有水分,当水位控制器补给水位不正常时,或是由于湿球纱布使用时间长等原因导致纱布变硬、干燥现象。只有清洗或更换纱布才可以排出现象。  当设备在进行试验运行过程中突然发生故障时,其操作控制仪表上会出现相应的故障提示,并有声音报警提示。操作者可在使用设备故障排除一栏中迅速检查出属于哪一类故障,可请专业人员迅速排除故障,若是自身无法找出故障原因,也需要专业的维修人员来做。保证实验能正常进行。其他环境测试设备在使用时还会出现其他现象,那需要具体现象进行具体分析和排除。  没有什么事情是一帆风顺的,在使用高低温湿热试验箱过程中会出现很多问题,我们应该随机应变,在操作使用前充分阅读使用说明,避免因为自身原因造成设备的损坏,有任何问题可以咨询厂家后再进行操作。

  • 分布式控制系统适用的仪器讨论~

    覆盖全系统的交叉索引,增强了过程控制的智能性,可帮助改进与生产相关的决策。PlantStruxure PES具有以下性能特点:统一数据库PlantStruxure PES 为工厂的设计、运营和维护提供了单个统一的软件环境,使您的自动化系统更简便易用。您可以通过一个统一的管理界面配置过程自动化应用和网络拓扑(控制器、远程输入/输出、操作员工作站和现场设备)。通过采用PlantStruxure PES控制设施过程,您可以访问智能设备和电表中的能耗数据,并根据已完成的生产目标来审核这些数据,从而智能的实现高能效运营。PlantStruxure PES可以自动创建所有的变量、通信、警报和趋势……这项工作非常繁重复杂,以前我们都是手动配置完成,非常耗时耗力,而现在它帮助我们在操作员界面开发方面节省了大量时间。内置能效管理系统通过将能源和过程控制数据整合到一个系统中,PlantStruxurePES实现了过程控制中管理型节能增效的自动化。您可以通过彼此对照的方式查看数据,并在能源消耗过快的地点减少能源浪费PlantStruxure PES中的集成式能源管理库可将来自整个工厂中所有用电设备的数据汇总,通过提供能源使用的全局视图,使您对能耗状况一目了然。并且,根据自定义的负载优先等级,系统在能源成本超出KPI时执行减载。同时,还可利用专门的仪表盘,操作员可以将能源作为一种过程的对象对其进行跟踪。施耐德电气法国执行团队为我们在法国的一个玻璃熔炉工厂选择了PlantStruxurePES ,目的是将能源管理功能嵌入工厂的控制架构中。工厂控制架构改造的开支全部由玻璃熔炉所节省的能源成本支付。对象库PlantStruxure PES提供专门面向特定应用(设备、过程设备)和行业(矿、水泥、食品饮料、水)的预定义、可扩展对象库,减少项目开发的时间、成本和风险。PlantStruxure PES内置了一个标准的对象库,其中包含所有主流的过程对象,如阀门、电机、泵等。您可以在过程中直接使用这些对象,或根据特定要求配置这些对象。PlantStruxure PES还集成了标准的行业过程库,可满足具体行业的需求,包括水泥、食品饮料和水等。这些库是基于我们广泛的过程经验开发而成,可以帮助在多个地点运营的公司保持统一性和一致性。此外,由于我们考虑到了标准的过程要求,因此使开发时间大大缩短。通过对应用中的所有对象实例化,我们生成了90%的项目内容,因此显著缩短了工程设计时间。支持及服务我们遍布全球的支持中心提供全套支持及服务,确保在工厂生命周期的各个阶段都能为PlantStruxure PES提供可靠的支持。我们提供行业领先的创新支持计划,其中的主要服务将为您带来极大获益。这一计划包括一个内容丰富的知识库和经由一个专用的支持门户提供的综合数字化服务。该门户提供在线案例管理以及由我们的支持专家、解决方案架构师和开发团队协作开发的内容,如白皮书和设计指南等。对于技术支持人员可以迅速解决问题,我感到非常满意。通过电话咨询,技术支持立刻给予我正确的解决方案,并告诉我查找所需信息的支持网页,更难得的是,还将这些信息和我需要的其他可下载资料的信息发给我。总之,我对在CSR上获得的这次支持服务非常满意。标准以太网PlantStruxure PES基于标准以太网和EtherNet/IP,将PLC/SCADA 架构的灵活性和开发性优势扩展到了DCS领域。这意味着系统在支持可定制应用的同时,还继续保有其标准化方法和强大的集成功能。水处理和能源管理是施耐德电气的战略性业务领域。西班牙进行的一个脱盐厂项目为我们提供了一次展示自身实力的绝佳机会,借此项目,我们完美展示施耐德电气的一体化分布式控制系统如何控制所有的能源管理子系统。PlantStruxure PES的标准以太网面向所有的核心过程,集成了仪表检测、电机管理和电力管理功能,这最终促使客户选择PlantStruxure PES。施耐德电气开发构建了一种高效的控制系统,并设计了一个使用通用机柜(即服务器机架、通信柜、控制器和输入/输出柜)和全以太网网络架构的解决方案,从而控制并节省了此项目必需的投资开支。对象模型作为新一代的分布式控制系统,PlantStruxurePES提供了一个独特的对象模型,用户可以选择性地使用其结构中的各个组件,更加具有灵活性。而且用户可以只下载必要的组件,因此可以有效优化源程序代码。该模型还支持对象整个生命周期内的变更传播,为未来的扩展和定制预留了充足的空间,此外,还允许同时运行同一对象的不同版本,并支持更改的可追踪性。PlantStruxure PES提供面向对象的数据库,这意味着您可以在开发了一个过程对象之后,根据需要多次重复使用此对象。这样不仅可以节约系统开发的时间和成本,还能确保在整个项目的各个阶段运用和在其他应用的推广。由于以上原因,PlantStruxure PES 为巴西一个覆盖50个城市的大型水资源项目提供了完美的解决方案。PlantStruxure PES最吸引人的地方是在完成对象实例化之后如何在区块之间创建链接;它大大简化了我的日常工作。全面开放性PlantStruxure PES的开放性不只针对于一种标准。您能够以全新方式,开发一个真正开放的过程自动化系统,这其中不仅包括操作人员电脑,还包括对象模型和对象库、控制网络,甚至系统设计与集成的理念。PlantStruxure PES提供所需的一切,使DCS系统达到全新层次的开放性——譬如,您可根据需求调整对象模型,针对过程调节对象库,向第三方系统开放的控制网络,向任何IT 厂商开放的控制室等等。还有很重要的一点是,功能先进、即插即用、向第三方设备和应用开放的平台,借助它,施耐德电气及其联盟合作伙伴能够全方位满足客户需要。在我们的第一个项目部署完成后,我们不禁要由衷地赞叹PlantStruxurePES。有了它,使我们感到一切皆有可能。无论如何,我们都能够部署符合项目规范灵活变通的方案。可扩展硬件平台PlantStruxure PES支持各类不同的控制器,满足您的过程需要。这些控制器平台采用模块化、可扩展和冗余设计,能够在线增删硬件。它们支持多种输入/输出模块,以及专用通信模块和现场总线模块,提供电机控制,并

  • 液压万能试验机生产如何控制质量

    液压万能试验机采用机电一体化设计,主要由负荷感测器、变送器、处理器、负荷驱动器、电脑及彩色喷墨打印机构成。高精度调速电动机可设置五档或七档试验速度。各集成构件间均采用插接方式连接。功能与作用电脑全程控制并显示试验全过程和曲线、微机自动传输试验设置与试验资料。用户可按各自要求修改试验报告,输出标准报告,通过对成组试验曲线的叠加分析,可准确掌握质量调控参数。多方式的资料查询功能,可使管理者清晰把握质量控制发展变化趋势。 液压万能试验机的检定方法,其特征在于,首先根据被检区间的力值,选择标准拉力试样,标准拉力试样的力值为该区间满量程力值的60%~90%之间选择,将标准拉力试样装夹在液压万能试验机,引伸计或应变片将标准拉力试样的伸长量显示出来,根据胡克定律,将伸长量换算为拉力值,再与度盘上与标准拉力试样相同的力值点进行对比,根据比对值的差来确定试验机技术状态及精度。 液压万能试验机用途:本机可对金属、非金属以及构件进行拉伸、压缩、弯曲、剪切、剥离、撕裂、蠕变等试验。软件系统:采用高精度的单片微机控制系统。根据试验机被检区间的力值,将相应力值的标准拉力试样装夹在试验机上,让拉力试验机继续对标准拉力试样进行拉伸,引伸计或应变片将标准拉力试样的伸长量显示出来,将伸长量换算为拉力值,再与拉力试验机度盘上与标准拉力试样相同的力值点进行对比,根据比对值的差来确定试验机技术状态及精度。本方法利用胡克定律,根据标准拉力试样的伸长量换算为力值与试验机度盘力值进行对比,来确定试验机的精度。该方法极大的简化了检定的操作过程,对试验机原始拉伸状态的日常检定带来极大方便和标准化。

  • 【资料】品质控制基本知识

    裴夏收集整理 一.品质控制的演变 1.操作者控制阶段:产品质量的优劣由操作者一个人负责控制。 2.班组长控制阶段:由班组长负责整个班组的产品质量控制。 3.检验员控制阶段:设置专职品质检验员,专门负责产品质量控制。 4.统计控制阶段:采用统计方法控制产品质量,是品质控制技术的重大突破,开创了品质控制的全新局面。 5.全面质量管理(TQC):全过程的品质控制。 6.全员品质管理(CWQC):全员品管,全员参与。 二,品质检验方法 1、全数检验:将送检批的产品或物料全部加以检验而不遗漏的检验方法。 适用于以下情形: ①批量较小,检验简单且费用较低; ②产品必须是合格; ③产品中如有少量的不合格,可能导致该产品产生致命性影响。 2、抽样检验:从一批产品的所有个体中抽取部分个体进行检验,并根据样本的检验结果来判断整批产品是否合格的活动,是一种典型的统计推断工作。 ①适用于以下情形:a. 对产品性能检验需进行破坏性试验; b. 批量太大,无法进行全数检验; c. 需较长的检验时间和较高的检验费用; d. 允许有一定程度的不良品存在。 ②抽样检验中的有关术语: a.检验批:同样产品集中在一起作为抽验对象;一般来说,一个生产批即为一个检验批。可以将一个生产批分成若干检验批,但一个检验批不能包含多个生产批,也不能随意组合检验批。 b.批量:批中所含单位数量; c.抽样数:从批中抽取的产品数量; d.不合格判定数(Re):Refuse的缩写即拒收; e.合格判定数(Ac):Accept的缩写即接收; f.合格质量水平(AQL):Acceptable Quality Level的缩写。通俗地讲即是可接收的不合格品率。 3、抽样方案的确定: 我厂采用的抽样方案是根据国家标准GB2828《逐批检验计数抽样程序及抽样表》来设计的。具体应用步骤如下: ①确定产品的质量判定标准: ②选择检查水平:一般检查水平分Ⅰ、Ⅱ、Ⅲ;特殊检查水平分S-1、S-2、S-3、S-4,一般情况下,采用一般水平Ⅱ。 ③选择合格质量水平(AQL):AQL是选择抽样方案的主要依据,应由生产方和使用方共同商定。 ④确定样本量字码,即抽样数。 ⑤选择抽样方案类型:如一次正常抽样方案,加严抽样方案,还是多次抽样方案。 ⑥查表确定合格判定数(AC)和不合格判定数(Re)。 三、检验作业控制 1、进料(货)检验(IQC):是工厂制止不合格物料进入生产环节的首要控制点。(Incoming Quality Control) ①进料检验项目及方法 : a 外观:一般用目视、手感、对比样品进行验证; b尺寸:一般用卡尺、千分尺等量具验证; c特性:如物理的、化学的、机械的特性,一般用检测仪器和特定方法来验证。 ②进料检验方法:a 全检, b抽检 ③检验结果的处理:a 接收 b拒收(即退货) c 让步接收 d全检(挑出不合格品退货) e 返工后重检 ④依据的标准:《原材料、外购件技术标准》、《进货检验和试验控制程序》、《理化检验规程》等等。 2、生产过程检验(IPQC):一般是指对物料入仓后到成品入库前各阶段的生产活动的品质控制,即Inprocess Quality Control。而相对于该阶段的品质检验,则称为FQC(Final Quality Control)。 ①过程检验的方式主要有: a. 首件自检、互检、专检相结合;b. 过程控制与抽检、巡检相结合; c. 多道工序集中检验; d. 逐道工序进行检验; e. 产品完成后检验; f. 抽样与全检相结合; ②过程品质控制(IPQC):是对生产过程做巡回检验。 a. 首件检验; b. 材料核对;c. 巡检:保证合适的巡检时间和频率,严格按检验标准或作业指导书检验。包括对产品质量、工艺规程、机器运行参数、物料摆放、标识、环境等的检验 d检验记录,应如实填写。 ③过程产品品质检验(FQC):是针对产品完工后的品质验证以确定该批产品可否流入下道工序,属定点 检验或验收检验。a. 检验项目:外观、尺寸、理化特性等;b. 检验方式:一般采用抽样检验;c.不合格处理;d.记录; ④依据的标准:《作业指导书》、《工序检验标准》、《过程检验和试验程序》等等。 3、最终检验控制:即成品出货检验。(Outgoing Q.C) 4、品质异常的反馈及处理: ①自己可判定的,直接通知操作工或车间立即处理; ②自己不能判定的,则持不良样板交主管确认,再通知纠正或处理; ③应如实将异常情况进行记录; ④对纠正或改善措施进行确认,并追踪处理效果; ⑤对半成品、成品的检验应作好明确的状态标识,并监督相关部门进行隔离存放。 5、质量记录:为已完成的品质作业活动和结果提供客观的证据。 必须做到:准确、及时、字迹清晰、完整并加盖检验印章或签名。 还要做到:及时整理和归档、并贮存在适宜的环境中。[color=#DC143C](下文接着以下)[/color]

  • 实验室质量控制及实验室间质量控制有什么不同?

    [align=center][b][size=16px]实验室质量控制及实验室间质量控制有什么不同?[/size][/b][/align][size=15px][color=var(--weui-FG-2)]辉哥聊质量管理[/color][/size] [size=15px]我们的实验室日记[/size] [size=15px][color=var(--weui-FG-2)]2023-03-02 09:22[/color][/size] [size=15px][color=rgba(0, 0, 0, 0)]发表于广东[/color][/size][align=center]实验室质量控制[/align]实验室质量控制是指为将分析测试结果的误差控制在允许限度内所采取的控制措施。它包括实验室内部质量控制和实验室间质量控制两部分内容。实验室内部质量控制包括空白实验、校准曲线的核查、仪器设备的标定、平行样分析、加标样分析以及使用质量控制图等。它是实验室分析人员对对测试过程进行自我控制的过程。[size=18px][b][color=#2fc37f]实验室质控应符合以下基本要求[/color][/b][/size]1 通排风与水电系统和安全设施完备,能满足仪器设备测试要求,并满足检测人员安全作业要求 能避免测试环境对检测结果产生影响和测试过程中的交叉污染影响。2 精密仪器室要具有防火、防震、防电磁干扰、防噪音、防潮、防腐蚀、防尘、防有害气体侵入的功能 室温控制在 18 ℃~25 ℃ ,湿度控制在60%~70% 。3 实验室分析用水、化学试剂、标准溶液配置与标定应符合以下规定:痕量或超痕量分析使用一级水或超纯水 常量分析与常用试剂配置使用二级水 特殊分析项目使用特殊要求的试验用纯水,如无氯水、无氨水、无二氧化碳水、无砷水、无铅(无重金属)水、无酚水、不含有机物的蒸馏水等 实验室制备或购买的纯水,使用前应对其质量进行检验。4 痕量或超痕量分析使用优级纯以上级别的化学试剂 标准溶液配置使用基准级别的化学试剂、常量分析使用分析纯级别的化学试剂 特殊项目分析使用光谱纯、色谱纯和超纯等级别的化学试剂。5 标准溶液直接或间接配置法(标定法),在进行标准溶液标定时,测得浓度值的相对误差不得大于 0.2% 。在质量控制中,仪器设备实验室仪器设备的使用、 维护与检定应符合以下要求[size=18px][b][color=#2fc37f]1 严格执行大型仪器设备操作规程 [/color][/b][/size]2 不得使用未检定校准或检定校准不合格的检测仪器设备 3 对性能不稳定、易漂移、易老化、使用频繁、移动与便携式现场检测仪器设备和恶劣环境下使用的仪器设备,除进行期间核查外,需定期维护、保养与检查,并在每次使用前进行校正后方可投入使用。[size=18px][b][color=#2fc37f]实验室具体质量控制方法[/color][/b][/size][size=18px][b][color=#2fc37f]1 空白样质量控制[/color][/b][/size]空白样主要包括容器、现场、仪器、方法空白样等,通过测定空白样以判断实验用水、试剂纯度、器皿洁净程度、仪器性能及环境条件等的质量状况或是否受控。[size=18px][b][color=#2fc37f]空白实验质量控制应符合以下要求:[/color][/b][/size]①除分析方法另有规定之外,每一批样品小于 10 个时,检验人员制备方法空白样或仪器空白样不得少于 1 个 每一批样品不小于 10 个时, 每 10~20 个样品制备 1 个方法空白样或仪器空白样。②空白试验分析值应低于方法检出限或低于方法规定值 空白平行测定的相对偏差应不大于 50% 。③有质量控制图的,将所测定值的均值点入图中进行控制。④若空白值不符合规定值范围,应查找原因,消除之后,重新分析。[size=18px][b][color=#2fc37f]2 平行样质量控制[/color][/b][/size]平行样质量控制主要包括现场平行样、 实验室平行样和密码平行样, 通过平行样测定判断检测精密度状况或是否受控。[size=18px][b][color=#2fc37f]平行样质量控制应符合以下要求:[/color][/b][/size]①每一批样品小于 10 个时,检验人员制备的平行样不得少于 1 个 每一批样品不小于 10 个,每 10~20个样品制备 1 个平行样。②平行测定值不符合规定值范围的,应查找原因,消除之后,重新测定。③有质量控制图的,将所测定值的均值点入图中,进行控制。[size=18px][b][color=#2fc37f]3 加标回收质量控制[/color][/b][/size]加标回收试验主要包括空白加标、基体加标、实际样品加标和密码加标回收试验,通过加标回收试验判断检测准确度状况或是否受控。[size=18px][b][color=#2fc37f]加标回收试验质量控制应符合以下要求:[/color][/b][/size]①每一批样品小于10 个时,检验人员制备加标样品不得少于 1 个 每一批样品不小于 10 个时,每 10~20 个样品制备 1 个加标样。②加标样品测定值不符合规定值范围的,应查找原因,消除之后,重新分析。③有质量控制图的,将所测定值的均值点入图中,进行控制。[size=18px][b][color=#2fc37f]4 标准物质质量控制[/color][/b][/size]标准物质质量控制是指使用有证标准物质和实际样品同步分析,将标准物质的分析结果与其保证值相比较,评价其准确度和检查实验室内(或检验人员)存在的系统误差。[size=18px][b][color=#2fc37f]标准物质质量控制应符合以下要求:[/color][/b][/size]① 实验室定期采用标准物质质量控制方法对实验室系统误差进行检查和控制 不定期对检验人员或新上岗人员进行分析质量考核检查。②实验室每月标准物质质量控制样品不得少于实验室内质量控制样品总数的 5% ,每个检验项目(参数)室内系统误差检查应不小于 2 次 /a 。③ 检验人员应定期采用标准物质对计量检测仪器和标准溶液进行期间核查 根据实验室检测能力与分析方法变化实际情况等,采用标准物质检查和控制室内系统误差,以保证检测数据的准确性。[size=18px][b][color=#2fc37f]5 精密度偏性分析质量控制[/color][/b][/size]在具有良好管理的实验室中,分析数据的质量取决于分析方法和操作者对分析方法的了解和能否正确运用。好的分析方法应具有较小的随机误差和系统误差,并能达到一定的检出限。因此,对一个方法能否用于分析, 对一个经过改进的方法能否被接受,操作者对分析方法运用的如何等,都需要做出全面评价,然后才可以正式用于分析测试。这种全面评价的试验方法叫做精密度偏性分析质量控制试验。通过对影响分析测定的各种变异因素及回收率的全面分析,确定实验室测试结果的精密度和准确度。[size=18px][b][color=#2fc37f]实验室间质量控制[/color][/b][/size]外部质量控制又称实验室间质量控制,是指由外部的第三者,如上级监督机构!管理部门对实验室及其检测人员的分析检测质量定期或不定期实行考察的过程,其目的是发现和消除实验室检测结果存在的系统误差和影响因素,保证测试结果可溯源性和可比性。外部质量控制有能力验证、实验室间比对和测量审核三种类型。[size=18px][b][color=#2fc37f]1 参加能力验证活动[/color][/b][/size]能力验证是利用实验室间比对来判定实验室和检查机构能力的活动,是对实验室能力状况和管理状况进行客观考核的一种方法,也是认可机构加入和维持国际相互承认协议(MRA)的必要条件之一。化学实验室参加能力验证活动,其结果能客观、公正、科学地反映相关项目的检测现状,是对实验室检测技术水平的最佳检验#通过实验室间比对,可以得到不同实验室对量值测量的一致性和等效性。实验室在可能的情况下要尽可能地参加国际的、国内的(国家认监委、认可委(cnas)组织)能力验证活动。通过参加能力验证活动,发现实验室自身存在的诸如实验室质量管理是否规范、仪器设备是否符合检测要求、采用标准(方法)是否合适、检测人员的技能水平等问题,从中找出差距与不足,有针对性地实施整改措施,最终达到提高检测能力、实现实验室质量控制的目的。[size=18px][b][color=#2fc37f]2 实验室间比对[/color][/b][/size]实验室通过参加国内不同实验室间的比对活动,积极运用科学有效的方法(如Robust法的z值分量评价等)对数据进行统计分析,对实验结果进行评价,可以确定实验室相关检测项目的水平和状态,寻找可能改进和提高的机会,达到检测结果质量控制的目的。此外,当某个实验室开发出一种新的检测方法或技术时,也可以按照预先规定的条件,组织一些实验室进行实验室间比对来验证和评价其有效性和可比性。[size=18px][b][color=#2fc37f]3 测量审核[/color][/b][/size]测量审核是实验室对被测物品进行测试,将测试结果与参考值进行比较的活动,是能力验证活动的一部分,也是实验室检测结果质量控制的重要手段之一。实验室为了考察自己在某个检测项目的能力和水平,通过将某个检测项目的测试结果与提供运作的合作组织、认可机构(如认监委、认可委)指定的参考实验室的参考值进行比较,达到评价实验室是否具有胜任其所从事检测工作的能力以及找出差距、制定补救措施、提高检测质量的目的。进行测量审核通常是在两次能力验证计划之间且没有合适的实验室间比对计划时,采用的一种一对一的能力验证活动,这也是认可组织!政府部门和客户评价实验室能力的重要依据之一。

  • 【分享】食源性病原菌实验室检验的质量控制

    [size=4]实验室分为室内质量控制和室间质量评价两个组成部分[color=#ec0078]一、室内质量控制[/color](一)检验人员的培养1.定期进行新理论、新技术和新方法的业务学习。2.定期进行理论考核和操作技能考核。3.编写作业指导书。(二)仪器设备的功能监测、维修及 保养1.恒温孵箱、水浴箱和冰箱:了解其性能,每天记录温度,定期清理消毒,冰箱定期化霜。恒温孵箱、水浴箱定期检定。2.灭菌器械的效果检测:化学指示剂胶带 嗜热脂肪芽胞杆菌指示菌片 枯草杆菌芽胞3.二氧化碳培养箱:注意CO2含量的监控。4.厌氧箱或厌氧罐:进行厌氧环境监控。美兰指示条,刃天青指示剂5.微生物鉴定仪:a.及时更新系统操作软件。b.定期对仪器的探测部位进行清洁。c.对每批号的鉴定卡、条和板用标准菌株进行测定,并核对每个反应结果。[/size]

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 实验室质量控制的方法

    [font=宋体]实验室[/font][font=宋体]质量控制是指为达到质量要求所采取的作业技术或活动,目的在于监视过程并排除导致不合格、不满意的原因以取得准确可靠的数据和结果。实验中的每一个因素、每一个过程都对实验结果有贡献,只有实验过程中的每一个因素、每一个过程都受控,实验输出的结果才可能满足质量要求。[/font][font=宋体]一般可以从以下几方面进行控制:[/font][font=宋体]1[font=宋体]、有严格的规章制度和相应质量控制程序,有专人负责全面质控工作。[/font][/font][font=宋体]2[font=宋体]、有标准化的检测、仪器使用等标准操作规程([/font][font=Calibri]SOP[/font][font=宋体])。[/font][/font][font=宋体]3[font=宋体]、对[/font][/font][font=宋体]检测[/font][font=宋体]工作人员进行业务培训,普及质控知识。[/font][font=宋体]4[font=宋体]、仪器、量器的定期检定、校正、核查和正确使用。[/font][/font][font=宋体]5[font=宋体]、实验用标准品、水、试剂、质控品的质量符合要求。[/font][/font][font=宋体]6[font=宋体]、实验室内温度、湿度等环境条件符合要求。[/font][/font][font=宋体]7[font=宋体]、选择合适的室内质量控制方法,开展室内质控,对失控结果及时采取相应的处理措施。[/font][/font][font=宋体]8[font=宋体]、参加实验室间的质量评价活动或能力验证试验,分析结果,对失控的项目及时检查原因,并采取相应的改正措施。[/font][/font]

  • 【转贴】噪声控制基础知识

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=186992]噪声控制基础知识.rar[/url]

  • 怎么应对冷热一体控制机安装故障?

    冷热一体控制机在安装的时候需要注意一些小的问题,多注意冷热一体控制机的性能,以正确的安装的状态来进行安装,那么,冷热一体控制机怎么应对安装故障呢?  由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出,因此应尽可能采用热电极较细、保护管直径较小的热电偶。在测温环境许可时,甚至可将保护管取去。  冷热一体控制机在使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管,在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。  由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。为了准确的测量温度,应当选择时间常数小的热电偶,时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,冷热一体控制机绝缘变差而引入的误差。  冷热一体控制机保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。  冷热一体控制机以上的安装故障,尽量避免为好,降低冷热一体控制机的出错率,节约企业运行成本。

  • 详细介绍高低温试验室控制系统

    高低温试验室是帮助一些大型产品进行试验箱的大型试验设备,通常是模拟产品在高温或是低温环境下的使用状态,然后能够快速的得出产品在经过多年使用之后的性能以及参数。不过现在有很多使用这款试验箱的用户对设备的控制系统完全不了解,所以小编下面就为大家详细介绍一下,希望能够帮大家更好的使用这款设备。很多用户都不是特别了解控制系统和控制器之间有什么区别,不过这两者名字虽然相近,但是区别还是非常大的,就比如控制器只是用户在使用过程中用来协助下达命令以及记录、导出试验数据的,而控制系统是在设备运行过程中调整设备状态的。不过现在很多用户都认为这两者是相同的,所以在选购时就只注意了控制器的选择而忽视了试验箱的控制系统。而且目前国内很多厂家现在选用的都是控制器中自带的系统,虽然他们能够实现的性能和选用优质系统的设备差不多,但是在运行过程中的消耗也更大,如果一直这样长时间使用,那么这样的试验箱也更加容易报废。其实在高低温试验室控制系统这方面,多禾真的占据了非常大的优势,因为他们的控制系统是专门从德国引进的,是可以和进口试验箱选用的控制系统相媲美的,再加上多禾在生产设备时使用的都是最好的零配件以及制造技术,保证了试验箱超长的使用寿命以及极低的故障频率。http://www.doaho.com

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 【资料】微机控制电子万能试验机/伺服驱动机技术介绍

    微机控制电子万能试验机/伺服驱动机技术介绍A、机器用途:电脑拉力试验机可对金属、非金属以及构件进行拉伸、压缩、弯曲、剪切、剥离撕裂、蠕变等试验。B、软件系统:中文Windows’2000/XP平台下的软件包。C、动力系统:a、伺服驱动机:日本松下交流驱动器、日本松下伺服电机、德国行星减速机滚 珠丝杆、光杆直线轴承、同步带传动 b、变频驱动机:台湾交流电机、台湾变频器、台湾减速机、T型丝杆、光杆直线轴承、同步带传动。D、量程模式:全量程不分档,等效七档。E、高效辩率:分辨率为+250000码。F、自动存储:试验条件、测试结果、标距位置自动存储。G、自动返回:可自动返回到试验初始位置H、自动校准:负荷、伸长可按所加标准值自动标定。I、多元控制:具有位移、负荷、应力、伸长、应变等控制方式。G、手动装置:多方位的操作单元,使十字头位置调整更为便捷。K、连续试验:一批试验参数设定完成后,可连续进行测试。L、宽测范围:可同时标定多只传感器,扩展测试范围。M、数据编辑:试验完毕后,在试验曲线上可用鼠标编辑数据。N、多种曲线:可选择应力-应变、力-伸长、力-时间、强度-时间等多种曲线,同一图形上可显示三种不同的曲线。O、曲线对比:同组试样的曲线可叠加对比。P、图形分析:试验曲线上任意点可进行局部放大分析。Q、报告编辑:可按用户需求输出不同的报告格式。R、多重保护:系统具有过流、过压、过速、欠流、欠压等保护;十字头行程具有程控限位、极限限位、软件限位三重保护;负荷传感器具有超量程保护;出现紧急情况时可进行紧急制动。S、动态显示:测试过程中,负荷、伸长、位移以及选中的试验曲线随着测试的进行,实时动态显示在主控屏幕上。T、峰值保持:在测试整个过程中,测试项目的最大值始终跟随试验的进行在屏幕窗口上显示。U、便捷调零:负荷、伸长、位移只需按一个键即可手动调零,同时具有测试开始时系统自动进行调零功能。V、一机多用:可增配不同规格的传感器和夹具,拓宽测量范围,从而实现一机多用。W、执行标准:满足ISO、JIS、ASTM、DIN、GB等多种试验方法标准。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制