当前位置: 仪器信息网 > 行业主题 > >

遇水膨胀止仪

仪器信息网遇水膨胀止仪专题为您提供2024年最新遇水膨胀止仪价格报价、厂家品牌的相关信息, 包括遇水膨胀止仪参数、型号等,不管是国产,还是进口品牌的遇水膨胀止仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合遇水膨胀止仪相关的耗材配件、试剂标物,还有遇水膨胀止仪相关的最新资讯、资料,以及遇水膨胀止仪相关的解决方案。

遇水膨胀止仪相关的资讯

  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • Cell:细胞如何避免过度膨胀?
    所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。数十年来,人们一直在寻找实现这一功能的蛋白,现在来自斯克里普斯研究所(Scripps Research Institute)的科学家们终于找到了它。这个称为 SWELL1 的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。论文资深作者、斯克里普斯研究所教授 Ardem Patapoutian 表示:&ldquo 认识这种蛋白及其编码基因,为人们开辟了新的研究方向。&rdquo 相关研究作为封面文章发表在近期的《细胞》(Cell)杂志上。 揭晓谜底水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。&ldquo 实际上水是跟着溶质走的,&rdquo 文章的第一作者 Zhaozhu Qiu 说。&ldquo 细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。&rdquo 几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为 VRAC (体积调控的阴离子通道)。当细胞膨胀时 VRAC 就会开启,允许氯离子和其他一些带负电的分子流出。这时水分子也会跟着流出,从而减轻细胞的膨胀。&ldquo 在过去三十年中,科学家们已经知道 VRAC 通道的存在,但对它并不了解,&rdquo Patapoutian 说。由于技术限制,人们一直未能找到组成 VRAC 的蛋白及其编码基因。现在,Qiu及其同事在这项新研究中进行了快速的高通量荧光筛选。他们改造人类细胞使其产生一种特殊的荧光蛋白,当细胞膨胀 VRAC 通道打开时,这种蛋白发出的光会淬灭。在诺华制药研究基金会基因组学研究所(Genomics Institute of the Novartis Research Foundation)的自动化筛选专家的帮助下,研究人员培养了大量供筛选的细胞,并通过RNA干扰分别在这些细胞中阻断不同基因的活性。他们主要寻找能持续发光的细胞,持续发光表明基因失活破坏了细胞的 VRAC 。研究团队经过几轮测试,最终找到了一个基因。2003年科学家曾发现过这个基因,并将其称为LRRC8,不过当时人们只知道它可能编码一个跨膜蛋白。现在,研究人员将它重新命名为 SWELL1 。涉及的疾病研究人员通过进一步实验发现, SWELL1 的确位于细胞膜上,而且该蛋白的特定突变能改变 VRAC 通道的性能。&ldquo 它至少是 VRAC 通道的一个主要部件,是细胞生物学家长期追寻的蛋白,&rdquo Patapoutian 说。下一步,研究团队将进一步研究 SWELL1 的功能。例如,在小鼠模型中观察不同细胞类型缺乏 SWELL1 所造成的影响。2003 年人们最初发现这个基因,是因为该基因突变会导致一种非常罕见的无丙种球蛋白血症(agammaglobulinemia)。这种疾病的患者缺乏生产抗体的B细胞,因此很容易受到感染。这也说明, SWELL1 是B细胞正常发育所需的蛋白。&ldquo 此前有研究指出,因为中风会导致脑组织肿胀,所以这种体积敏感性的离子通道与中风有关。另外,这种蛋白可能还涉及了胰腺细胞的胰岛素分泌。&rdquo Patapoutian 说。&ldquo 这样的线索有待我们一一解析。&rdquo
  • TA 仪器推出三条全新热膨胀仪产品线
    美国特拉华州纽卡斯尔市。 2017 年 3 月 1 日 - TA 仪器隆重推出三条全新热膨胀仪产品线,性能卓越的 800 平台喜迎新成员:DIL 820、DIL 830 和 ODP 860。这三款系列仪器均采用 TA 的专属真实差分技术,与强劲的竞争对手的系统相比,测量精确度超出十倍,进一步巩固了 TA 作为全球热分析技术领导者的杰出地位。 这三条新热膨胀仪产品线均基于获得专利的光学传感器,能够以高达 1nm 的分辨率分析样品。每款系统均配备新型高速、无温度梯度加热炉,确保温度控制达到最佳状态,缩短不同测试之间的停机时间。 TA 热膨胀仪属于高精度系统,设计用于测量动态热力变化引发的样本尺寸变化。这些热膨胀仪广泛应用于材料科学、陶瓷制造以及金属加工等领域的众多应用。它们在研究环境和生产控制过程中表现出众。 谈及本次发布的这款新产品,TA 仪器的高温产品经理 Piero Scotto先生 表示:“这是行业领先的热膨胀仪产品。通过将崭新系统设计与差分技术(每款仪器的核心)完美相融,TA 已经成为这一产品领域的新晋市场领导者。TA 仪器提供品类齐全的热膨胀仪,其优异性能和优惠价格符合所有用户的不同需求。 这款新平台由以下部件组成:精确测量尺寸变化的 DIL 830 系列高分辨率卧式推杆热膨胀仪、适用于精密烧结研究的 DIL 820 系列创新型立式推杆热膨胀仪以及执行非接触式样品测试的 ODP 860 多模光学膨胀测量平台。TA 仪器是沃特世公司(纽约证交所:WAT)的子公司,是热分析、流变测量和微量热测量领域分析仪器的领先制造商。公司总部位于美国特拉华州纽卡斯尔市,于 24 个国家/地区设立了办事机构。联系人:-全球营销总监 Ed Moriarty电话:302-427-1033 emoriarty@tainstruments.com TA仪器中国市场主管 Vivian Wang 电话 021-34182128vwang@tainstruments.com
  • 我司自动快速热膨胀相变仪中标
    我司中标中科院金属研究所“全自动快速热膨胀相变仪”招标采购项目  我司北京销售部,在北京销售部经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中科院金属研究所的青睐,成功中标其“全自动快速热膨胀相变仪”招标采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 我司中标快速热导率仪、热膨胀仪项目
    2009年12月15日,我司北京销售经理以真诚的销售服务成功中标中国地震局地质研究所“快速热导率仪项目”。欢迎广大客户咨询本公司产品。  我司中标沈阳工业大学材料学院“热膨胀仪项目”
  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch P130打印系统
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 反常热膨胀光学晶体研究获进展 有望提升精密光学仪器稳定性
    近日,中国科学院理化技术研究所研究员林哲帅、副研究员姜兴兴等提出实现晶体热膨胀的超各向异性,为光学晶体反常热膨胀性质的调控提供了全新的方法,对于光学晶体中轴向反常热膨胀性质的功能化具有重要意义。   在外界温度变化时,常规光学晶体因“热胀冷缩”效应,无法保持光信号传输的稳定性(如光程稳定性等),限制了其在复杂/极端环境中精密光学仪器的应用。探索晶体的反常热膨胀性质如零热膨胀,“对冲”外界温场对晶体结构的影响是解决这一问题的有效途径。   然而,通过晶格在温度场作用下的精巧平衡来实现零热膨胀颇为困难,一方面,热膨胀率严格等于零的晶体在自然界中不存在;另一方面,目前化学组分调控晶体热膨胀性质的方法,例如多相复合、元素掺杂、客体分子引入和缺陷生成等,影响晶体的透光性能,不利于光学应用。如何在严格化学配比的晶体材料中,利用其本征的热膨胀性能来实现大温度涨落下的光学稳定性,具有重要的科技意义。   该研究团队提出实现晶体热膨胀的超各向异性,即沿晶体结构的三个主轴方向分别具有零、正、负热膨胀性,来调控光学晶体反常热膨胀性质的新方法。研究通过数学推导严格证明了当沿着三个主轴方向分别具有零、正、负热膨胀时,晶体具有最大的热膨胀可调性,可实现热膨胀效应和热光效应的精巧“对冲”,获得完全不随温度变化的光程超级稳定性。   研究在具有高光学透过的硼酸盐材料中探索,系统分析了晶格动力学特征。在此基础上,研究在AEB2O4 (AE=Ca或Sr)中发现了首个沿着三个主轴方向零、正、负热膨胀共存的特性。原位变温X射线衍射实验证明AEB2O4晶体具有宽的零、正、负热膨胀共存的温区(13 K ~ 280 K)。   在相同温度区间内,光程的变化量比常规光学晶体(石英、金刚石、蓝宝石、氟化钙)低三个数量级以上。第一性原理结合变温拉曼光学揭示了AEB2O4这种新奇的热膨胀性质源自离子(AEO8)基团拉伸振动和共价(BO3)基团扭转振动之间热激发的“共振”效应。相关研究成果发表在Materials Horizons上。   近年来,该团队致力于光电功能晶体反常热学和反常力学性能的研究,发现了系列具有负热膨胀、零热膨胀、负压缩以及零压缩性能的光电功能晶体,有望为复杂/极端环境下光学器件的稳定性和灵敏度问题提供解决方案。
  • 德国耐驰60周年回顾系列(一):最古老!陶瓷行业诞生的膨胀计
    本文作者:Aileen Sammler德国耐驰公司(NETZSCH-Gerätebau GmbH)将在2022年正式庆祝公司成立60周年的纪念日。为此,我们将关注耐驰仪器背后的故事——耐驰分析仪器及其在过去几十年中的发展。1月份,我们将从膨胀计开始,它是德国耐驰历史上最古老的仪器之一。1962年,德国耐驰公司(NETZSCH-Gerätebau GmbH,NGB)在塞尔布成立。在过去的60年里,德国耐驰已经成为世界领先的热分析制造商之一。我们为我们的员工感到自豪,他们以非凡的决心和毅力推动着耐驰前进。我们感谢与我们的客户和合作伙伴间彼此信任和富有成效的合作。我们共同倡导质量、专业、创新和可持续性,并将在未来几十年继续坚守。德国耐驰多年来一直由Thomas Denner博士和Jürgen Blumm博士成功地管理。Thomas Denner博士非常清晰地记得他在塞尔布的开始:“当我2004年开始在耐驰工作时,我对员工的积极特别印象深刻。从公司成立的第一天起,我还偶然结识了一些同事。一方面,我感觉到他们有着精明的头脑,另一方面非常愿意探索未知。他们对过去取得的成就的自豪感和可持续发展的追寻今天也能感受得到。这将使我们能够在未来几个月里向你们展示我们的许多不同的系统和设备,它们最初出现在热的材料表征,目前采用了当今最先进的技术延续至今。我们将从一个仪器开始,这个仪器在很多年前就已经是一篇博士论文的焦点,最近又在一篇论文的背景下得到了解决,并立即带来了专利技术。我自豪地期待着接下来的耐驰60年主题月。”耐驰历史回顾早在20世纪50年代,在Netzsch兄弟的管理下,就建立了完整的陶瓷产品生产线。在向精细陶瓷行业的客户提供完整的生产设备的过程中,这些客户还要求能够购买相关的测试或实验室设备。这就是决定开发和制造用于建立陶瓷实验室的专用仪器的原因。这种设备的开发最初是从小规模做起的:这些想法被纳入了前耐驰公司(Maschinenfabrik Gebrüder Netzsch)学徒车间的测试仪器中。为了加强“测试仪器”部门的开发、生产和销售活动,耐驰公司(NETZSCH-Gerätebau GmbH)于1962年6月27日成立,总部设在塞尔布。随后,最早陶瓷行业实验室仪器的研制成果之一是:通过热膨胀测量装置,促进陶瓷碎片和釉料膨胀系数的协调。为此,研制了膨胀计。膨胀计——过去和现在德国耐驰膨胀计(简称DIL)的发展可以追溯到瓷器行业,也可以追溯到耐驰的诞生地——德国上Upper Franconi的塞尔布。使用膨胀计的目的是能够准确了解瓷碟在烧制过程中可能发生的膨胀,以防止裂纹和断裂的形成,并确定最终产品的准确尺寸。如今,膨胀计是研究陶瓷、玻璃、金属、复合材料和聚合物以及其他建筑材料长度变化的首选方法。它用于获取有关热行为和工艺参数或烧结和交联动力学的信息。膨胀计用于质量保证、产品开发和基础研究。第一台膨胀计在塞尔布使用图:60年代最早使用的膨胀计之一,曾在Rosenthal使用,现在在塞尔布Porzellanikon德国陶瓷博物馆展出(Porzellanikon德国陶瓷博物馆,位于象征欧陆三百年瓷器发展的历史重镇—德国塞尔布市(Selb),由德国名瓷罗森塔(Rothantal)1866年创立的厂房改建,总占地11,000平方米。Porzellanikon不仅是德国首家陶瓷博物馆,更是全欧洲最大的陶瓷博物馆,其不同于一般博物馆,展示的不只是瓷器的过去,更是它的现在与未来,从艺术、历史、商业到尖端科技,勾勒出一个清晰完整的瓷器现代新风貌,更是承载着欧洲陶瓷历史与艺术的珍贵宝库。)塞尔布——世界瓷都。Rosenthal、Hutschenreuther或Villeroy&Boch等名字在国际上都很有名,与Upper Franconia的这座小城有着密切的联系。60多年前,这家瓷器厂的前所有者Philipp Rosenthal给Erich Netzsch打电话。“我们杯子的把手在烧制过程后会断裂。我们需要一些东西来确定瓷器的膨胀行为,以优化生产过程,”这次谈话可能就是一切的开始。这就是膨胀计的诞生!顺带一提,在Rosenthal工作了近30年后,第一台测量设备于1996年移交给了塞尔布Porzellanikon德国陶瓷博物馆,在那里仍然可以欣赏它。从X-Y绘图仪的打印输出到Digital Proteus评估图:Stefan Thumser(前排,左三)和服务部门的同事(1997年)Stefan Thumser于1984年开始他作为能源设备的机电和电子技术员的学徒生涯。作为德国耐驰客户服务部门的长期支柱,他负责耐驰设备的调试、故障排除和基础培训,目前拥有38年的经验和专业知识。几十年来,他积极参与了膨胀计的开发,今天,他随时报告膨胀计取得的进展。Stephan Thumser回忆道:“过去操作膨胀计是真正的手工工作。除了插入样本,许多设置都必须手动选择。这些有时就要花一个小时。如今,你不必再担心这个问题了。只需插入样本,然后通过软件控制开始测量。”图:1979年为陶瓷制造商 Rosenthal定制的膨胀计。这种膨胀计仍然可以在塞尔布的Rosenthal 直销中心看到。“在膨胀计的历史发展过程中,最显著的差异是在测量评估领域。这过去是通过记录仪器以模拟格式进行的,例如2通道记录仪、X-Y绘图仪或所谓的KBK-6彩色点阵打印机。获得的测量数据无法 1:1转换为测量结果,因为样品架和推杆的固有膨胀作为误差包含在记录中。而手动校正这些测量值很费力,通常需要数小时的详细工作。如今,只需点击鼠标和/或通过Proteus软件即可完成。在测量后的几秒钟内,自动校正后完整曲线出现在计算机上。一次测量的准备工作,包括设置测量范围和开始位置,以及通过质量流量控制器调节气体,现在只需按下一个按钮即可完成。”即使在早期,质量、创新和客户满意度也是耐驰的首要任务。因此,膨胀计多年来不断改进。Stefan Thumser接着说:“2015年,随着新的DIL 402 Expedis仪器系列的开发,在一台仪器上安装两个熔炉也成为可能,可以进行更快、更灵活的操作。”图:用于手动测量评估的旧KBK打印机(6色多通道打印机)点击下方链接直达:热膨胀仪专场德国耐驰展位
  • 北京大学引进德国巴赫BAEHR光学热膨胀仪
    德国巴赫(BAEHR)热分析公司DIL806光学热膨胀仪进入我国最高学府-北京大学DIL806光学膨胀仪是目前世界上唯一利用光学原理进行测量的热膨胀仪,技术上比传统热膨胀仪更胜一筹。具体表现在: 1、利用光学原理测量是绝对测量,无需对测量结果进行校正(传统热膨胀仪是相对测量,必须对测量结果进行校正); 2、测量系统无需与试样接触,没有附加的外力作用在试样上,测量更准确; 3、对试样的外形没有严格要求,外形不规则试样,薄试样,甚至发生固-液-固相转变过程的试样,均可进行完美地测试,极大地扩展了热膨胀仪的应用范围。 Disc furnace – 盘式加热炉 Sample – 被测试样 Sender – 激光发送器 Receiver – 激光接收器 北京仪尊科技有限公司是德国巴赫热分析公司在我国的唯一代理,如想更详细地了解该仪器,请登录我公司网站,或与我公司直接联系: 电话:010-84831960 84832051 邮箱:sales@esum.com.cn 网站:www.esum.com.cn
  • 我司中标沈阳工业大学材料学院“热膨胀仪项目”
    我司北京销售经理以真诚的销售服务成功中标沈阳工业大学材料学院“热膨胀仪项目”。欢迎广大客户咨询本公司产品。
  • 我司成功中标中国矿业大学热膨胀仪采购项目
    2010年1月14日,我司北京销售部,在北京销售经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中国矿业大学的青睐,成功中标其“热膨胀仪”采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 美薪酬膨胀助力生物医学发展
    根据传统观点,美国生物医学研究成本的提高比所有消费品和服务费用的上涨速度都快。在过去30年间,国立卫生研究院(NIH)发布的相关指数证实了这种不一致性,也给了游说者更好的“武器”恳请立法者批准NIH年度预算增速高过该国的通货膨胀速率。  这份NIH指数涵盖了诸如试剂、实验动物和科学仪器的费用等,有时它能高过一个更大范围的指数约3个百分点。但在2012年,一件奇怪的事发生了,而且,这件事挑战了传统观点。生物医学研发价格指数(BRDPI)低于了美国国内生产总值价格指数(GDP PI)——消费者物价指数的一个变化版本。  当时,该生物医学指数增长率为1.3%,不仅低于当年的GDP PI的1.9%的增速,也创了BRDPI的历史最低纪录。但这则消息在当时并未引起重视。  要找出该年度如此异常的原因,人们需要知道BRDPI包含哪些内容。NIH在接受《科学》杂志采访时表示,该信息并不适合公开,但根据《联邦信息自由法案》(FOIA)它能被获得。据悉,该指数不仅涉及设备和用品的成本,还包括来自拨款的薪酬和福利。实际上,全部人力成本占到该指数年度变化的2/3。  《科学》杂志曾公开了美国密歇根大学安纳伯分校一位微生物学家近几年的科研经费支出情况。4年内,他共获得约115万美元的基金,其中约43.8%为个人工资和福利,材料费约占 19.6%,另外1/3上缴至学校管理部门,剩下的为其他科研支出。由此可见,人力成本占了经费支出的一大部分。  而在2011年12月美国国会通过支出法案后,薪酬和福利对生物医学研究发展的巨大影响日益清晰。该法案将标准NIH拨款中研究者薪酬上限从19.97万美元减少到17.97万美元。立法者希望这能将钱省下来资助更多项目。而科学家则抱怨NIH的300亿美元经费根本不足以帮助他们实现自己的好点子。  这部2011年法案是NIH经费周期慢性繁荣与萧条的最新案例。虽然,作为帮助美国经济从2008年世界经济危机中复苏的一系列刺激计划的一部分,一个为期两年的100亿美元的预算削减最终结束,但资金仍非常紧张。  例如,NIH的2015财年预算比2014年的299亿美元预算增加了1.5亿美元,仅提升了0.5%,使明年NIH的财政预算仍低于2012年暂押5%前的预算。增加额未达到参议院支出委员会批准的增加6.06亿美元的目标,而且也低于白宫要求增加的2.11亿美元。而且,附加报告还要求NIH在申请者年龄上给予更多关注,目前,首次接受NIH资助的科研人员平均年龄为42岁。  而这个限制薪酬支出的决定让BRDPI陷入混乱,也使得其低于已经很低的GDP PI。2008年,该生物医学指数达到历史顶峰4.7%,是GDP PI的2.1%的两倍还多。到2010年,这一数值略微下降,达到3%,但仍然超过了GDP PI。2012年,BRDPI急剧下降,相反GDP PI增长到1.9%。  外部观察者认为,这一下降趋势是个好消息。毕竟,如果生物医学研究膨胀放缓,那么NIH就能进一步利用其有限的经费。  但NIH领导层并不希望出现这种趋势。NIH前院外研究项目负责人Sally Rockey习惯每年就BRDPI的价值撰写博文。她将其称为“衡量NIH经费购买力的重要方式,并能为下一财年作出预测”。但在2014年3月28日发表的博文中,Rockey只是简单地提及2012年的下降“主要是资深研究人员薪酬上限降低所致”。  另外,也没有部门备忘录显示,2012年BRDPI历史最低纪录引发任何正式反应。但相同备忘录包括了对2013年BRDPI的初步预测,结果显示它将再次超过GDP PI。备忘录作者表示,2013年的生物医学指数虽“但仍处于历史低谷,并将至少再次超过了GDP PI”。
  • 德国耐驰60周年回顾系列(三):膨胀计到底能用来做什么?
    本文作者:Aileen Sammler 作为德国耐驰60周年纪念的宣传活动的一部分,本文将详细介绍膨胀计的不同应用领域。  耐驰获得专利的最新技术  德国耐驰拥有极佳的膨胀测量系统——测量单元的功能设置在许多国家获得专利,并具有许多优点,例如:  初始样品长度不限范围以及在更高分辨率下的长度变化  明确的低恒定接触力  力控制调节,推杆无冲击且可重复移动  初始样品长度的自动识别  图:DIL 402 Expedis Supreme代表了顶尖的膨胀计技术:自动测定样品长度、在非常广的测量范围内保持恒定的分辨率、测量系统极好的温度稳定性以及双吊炉扩展的温度范围。除此之外,测量系统还可以进行力调制,从而连接热机械分析(TMA)。图:DIL 402 HT Expedis–2800°C高温版本:无论在航空航天、发电、石油和天然气行业还是要求极严的研究项目中,最高温度可达2400°C或2800°C的石墨炉都能为金属、合金、陶瓷和复合材料的热膨胀测定提供了恰到好处的配置。图:手套箱版本的DIL 402 ExpedisSupreme,适用于对氧气或水分敏感的材料,以及用户必须避免接触样品的情况。膨胀计的外壳完全由不锈钢制成。因此,不存在与样品或环境相互作用的塑料零件。膨胀计可以测量各种材料如今,膨胀计可用于测量各种材料——从塑料、陶瓷、玻璃到建筑材料。玻璃成分的变化也可以通过测量热膨胀系数或测定玻璃化转变温度快速而容易地确定。此外,相变会影响建筑材料(如混凝土)的膨胀和收缩行为。这些对使用它们的系统的统计可靠性和使用寿命有重大影响。通过膨胀计,可以研究膨胀和收缩等尺寸变化,以及体积变化。几十年来,这些方法已成功地在工业和研究中心应用了数十年,如瑞士日内瓦附近的欧洲核子研究中心。耐驰期待着膨胀测量未来数十年依然可以“发光发热”。你知道吗?德国耐驰(NETZSCH-Gerätebau)不仅仅在高温领域表现极佳,在低温膨胀计领域也处于第一梯队,可以实现最低至-260°C的膨胀测量。例如,这些膨胀计用于磁悬浮列车的功能测试。图:DIL 402ED点击直达:热膨胀仪专场德国耐驰展位
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 德国耐驰60周年回顾系列(二):“纳米眼”带来膨胀计分辨率变革
    本文作者:Aileen Sammler 作为德国耐驰60年发展回顾的一部分,本文将介绍德国耐驰总经理Jürgen Blumm博士在其论文中对膨胀计的研究,以及已获专利的纳米眼测量系统是如何彻底改变膨胀计的。1995年,Jürgen Blumm在耐驰应用实验室开始了他的职业生涯。通过与维尔茨堡大学合作的烧结优化研究项目,他将他的论文专注于“烧结过程前后高性能陶瓷的热特性”这一主题。测量方法扩展并结合了他的博士论文,为烧结过程的分析提供了一种全新的方法。动力学模拟计算为陶瓷材料烧结过程的优化做出了开创性的贡献。Jürgen Blumm是最早利用膨胀计(DIL)研究多步烧结动力学的人之一。图:在2002年NGB成立40周年之际展示膨胀计——左起:Jürgen Blumm博士、Dagmar Schipanski教授、Hans Peter Friedrich博士和Wolf Dieter Emmerich博士(1974年至2005年任耐驰总经理)Jürgen Blumm博士论文节选:“在高性能陶瓷的生产中,在大多数情况下,粉末状的原材料会被添加剂(粘合剂、烧结添加剂)抵消。然后,粉末通过模压工艺(如压制)转化为坯体。”然后,通过烧结过程使材料凝固,凝固过程中粉末颗粒粘合在一起,孔隙率降低。烧结通常是热处理的一部分,在此过程中的温度控制对陶瓷的结构性能具有决定性影响。在当今许多工业领域,材料和部件都采用了计算机辅助建模和制造工艺优化的方法。例如,多年来,铸造技术中优化凝固过程的模拟程序得到了广泛应用。然而,在陶瓷元件的生产中,这些方法尚未建立。通过膨胀计测量长度变化,并随后对测量数据进行热动力学评估,可以深入了解烧结过程中的复杂过程和反应过程,而仅仅通过膨胀测量是无法实现的。此外,热动力学分析的使用还提供了通过计算机辅助模拟优化陶瓷材料致密化的可能。”获得专利的纳米眼测量系统:膨胀计的一场革命谁还记得?过去,长度变化是通过感应式位移传感器检测的。这种模拟测量原理表现出不便的非线性,必须反复手动校准。现在,德国耐驰的专利纳米眼测量系统具有100%的线性。由于校准是在测量系统的制造过程中进行的,因此不再需要校准。2015年,德国耐驰通过DIL Expedis系列引入了膨胀计测量系统的革命性新概念。当时新集成的纳米眼测量系统基于光电测量传感器和力的施加的相互作用,其在致动器的帮助下被精确控制。从那时起,无论样品的膨胀或收缩如何,都可以施加10mN到3N之间的恒定力。在此之前,不可能在保持相同分辨率的同时增加测量范围。纳米眼测量系统提供了以前无法实现的分辨率,在高达50 mm的整个测量范围内,分辨率高达0.1 nm,且具有完美的线性。耐驰(NETZSCH Gerätebau)机械开发负责人Fabian Wohlfahrt博士解释说:“已获专利的测量系统的其他重要技术特性包括无摩擦膨胀、力控制回路,以及通过自动样本长度测量提高测量范围,同时提高分辨率和减少操作员影响。”自2012年以来,Fabian Wohlfahrt博士一直在耐驰工作,他撰写了关于纳米眼膨胀计测量系统开发的博士论文。但耐驰不仅使膨胀行为的测定更加准确,还简化了在开始测量之前正确插入样品的过程。多点触控软件功能可帮助用户在插入样本后正确安装样本。此外,不再需要手动确定样本长度。如今,纳米眼膨胀计测量系统自动处理所有这些任务。照片:纳米眼测量单元示意图点击直达:热膨胀仪专场德国耐驰展位
  • 德国耐驰热膨胀仪 DIL 402 Expedis:突破量程与分辨率的局限
    对于传统的热膨胀仪,测试量程与分辨率这两个参数很难两全。如果分辨率上升,测量范围通常下降,反之亦然。德国耐驰公司热膨胀仪DIL 402 Expedis通过新型自反馈光电位移测量系统 NanoEye 克服了这一技术上的矛盾。Nanoeye是一种新型的自反馈光电位移测量系统,在过去尚不可能实现的测量范围内具有良好的线性度和最大的分辨率。这是市场上第一个支持调制力(振荡型载荷)的水平膨胀仪系列,藉此打破了膨胀测量和热机械分析(TMA)之间的鸿沟。  热膨胀仪DIL 402 Expedis分为:Classic,Select ,Supreme三个版本。后两个版本是专门为研发和复杂的工业应用而设计的:即全面的、配置齐全的Supreme版本和可升级的Select版本。       功能原理  在测试中,如果样品膨胀,图形中的所有绿色部分都会在线性导轨(蓝色)的引导下向后移动。光电解码器直接在适当的刻度上确定相应的长度变化。     识别功能与数据库  用于识别和解释DIL测量的包括几个耐驰的数据库,其中有来自陶瓷、无机、金属、合金和聚合物或有机领域的上百条数据。此外,还可以创建特定于用户的库。它们可以与计算机网络中的其他用户共享。  识别允许从测量曲线的绝对值、斜率或形状中识别未知样本。这也为比较已知的样品与未知样品、评价材料质量提供了可能性。所有测量值都可以存储在庞大的数据库中,并且始终可用于识别或质量评价。
  • ACS:膨胀显微法与STED结合新法,衍射极限分辨提高30倍
    p  strong仪器信息网讯 /strong在提高显微镜分辨率方面,两种方法结合往往比一种方法更好。近日,德国马克斯普朗克分子细胞生物学与遗传学研究所Helge Ewers博士及其同事发表论文(ACS Nano 2018, DOI:10.1021/acsnano.8b00776),文中介绍了一种新的提高显微镜分辨率的方法——ExSTED,即将受激发射损耗(STED)荧光显微术与膨胀显微镜法相结合的方法。STED显微术使用一个环形的激光束精确地控制在标记样本上的荧光团激活的位置。通常情况下,STED的分辨率可以将显微镜光学衍射极限提升10倍。膨胀显微镜法是将固定样品嵌入水凝胶中,将样品溶胀并拉伸至其原始尺寸的四倍,导致物理分辨率提高的方法。将这两种方法结合,Helge Ewers博士及其同事获得了比光学衍射极限提升30倍的效果。/pp style="text-align: center"img style="width: 450px height: 388px " src="http://img1.17img.cn/17img/images/201805/insimg/26d1f3ac-c39c-4d29-8d6b-f2cda2131146.jpg" title="01.jpg" height="388" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "ExSTED法观察细胞中微管的图像,色标表示三维空间中各种小管的深度(来自ACS Nano)/span/pp  文章中使用ExSTED方法对三维细胞的微管网络进行成像。 由于扩大样品扩散荧光标记,所有样品观察区域的信号都大大减少。 为了抵消信号减少,研究人员使用多种抗体来增加添加到微管中的荧光标记的数量。他们希望通过第二次扩展样本和寻找放大荧光信号的方法来进一步提高显微镜的分辨率。/p
  • 民政部:已有棉帐篷47482顶帐篷运抵玉树
    人民网北京4月22日 记者今日从民政部获悉,截至4月22日16时,已有棉帐篷47482顶帐篷运抵玉树。  民政部、发展改革委、教育部、住房城乡建设部、农业部、商务部、青海省各级安排,以及非灾区省份、中国红十字会总会和部队支援共向玉树地震灾区调运棉帐篷53728顶、棉大衣164700件、棉被198970床、野战食品100000份、取暖煤炉7000台、方便食品和矿泉水1813.5吨、大米920吨、青稞5000吨、面粉3680吨、食用油16吨、机械设备629台、消毒剂10吨、喷雾器217台、防护服4200件、消毒液机50台、课桌椅1000套、黑板讲台75个、书包文具1000套、吸污车3台、垃圾运输车2台、垃圾箱100个、活动板房400套、折叠床20000张、简易厕所650套、应急灯200盏、行军床50张、毛毯50条。  目前包括各种捐赠物资在内已有棉帐篷47482顶(含500顶36㎡大帐篷)、棉大衣117027件、棉被207959床、野战食品100000份、取暖煤炉10000台、方便食品和矿泉水共1670吨、大米358吨、青稞5000吨、面粉1443吨、食用油216吨、活动板房97套、简易厕所932套、应急灯200盏、行军床50张、毛毯50条、担架500副、燃料320吨运抵玉树。
  • 真空冷冻干燥机制冷系统常见的故障及排除方法
    真空冷冻干燥机制冷系统常见的故障及排除方法 真空冷冻干燥机广泛用于医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-18N系列立式冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。   真空冷冻干燥机制冷系统常见的故障及排除方法:   1)高压报警。出现高压报警的主要原因有:   ①冷却水水温过高或冷却水量不足。   ②冷凝器内部结垢,导致换热效率降低。   ③压缩机工作时,低压管道发生泄漏,从而导致外界空气进入制冷系统。   ④制冷管道存在未开足阀门或因管道被堵而造成排气不畅的情况。   解决办法:   ①降低冷却水温度或增加水流量。   ②清洗冷凝器的冷却水管路。   ③对制冷管道进行检漏,如果在工作中无法实现该项操作,可将水冷凝器上方的截止阀打开,使存在于冷凝器中的空气排放出一部分。   ④将压缩机管道.上的阀门开启到最大。   2)水压报警。水压报警的主要原因有:   ①冷却水供水压力不足或供水泵不运转。   ②水压力控制器故障。   解决办法:   ①增大外部供水压力或检修供水泵。   ②检查压力控制器的触头是否能正常工作或检查在其线路.上是否存在其他问题。   3)压缩机吸气温度异常。吸气温度异常的主要原因是膨胀阀调节不当,开启度过小或过大,导致回气量过小或过大。其解决办法是对膨阀进行调节,如回气量过大,应关小开启度,如回气量过小,应开大开启度,调节过程中以微调为主,多观察压缩机的回霜情况。   4)膨胀阀堵塞。堵塞分泌物物堵塞(脏堵)和冰堵塞两种。   ①杂物堵塞。在堵塞不严重时,可用扳手轻轻敲打阀体,经振动使阀体疏通。若不奏效或膨胀阀很快又重新堵塞,则说明堵塞严重,应拆卸膨胀阀,对膨胀阀滤网进行清洗,清洗完后重新装上即可。   ②冰堵。出现冰堵,应更换冷凝器出液端过滤器。   5)载冷剂泄漏   可用肉眼观察,查找板层,软管上的泄漏点。若发现可疑漏点,应放空板层或软管内的载冷剂,对泄漏点进行充压确认,确认后放气补好泄漏点,重新加入载冷剂并排出板层和软管内气体。
  • 15国正式签署RCEP,区域内多类仪器贸易将实现零关税!
    2020年11月15日,《区域全面经济伙伴关系协定》(RCEP)第四次领导人会议通过视频方式举行。会上,在15国(中、日、韩、澳、新西兰及东盟十国)领导人共同见证下,各国贸易部长签署了RCEP协定。当前世界上人口最多、经贸规模最大、最具发展潜力的自由贸易区正式启航!商务部国际司负责同志对《区域全面经济伙伴关系协定》(RCEP)进行了解读。提到:RCEP使成员国间货物、服务、投资等领域市场准入进一步放宽,原产地规则、海关程序、检验检疫、技术标准等逐步统一,将促进域内经济要素自由流动,强化成员间生产分工合作,拉动区域内消费市场扩容升级,推动区域内产业链、供应链和价值链进一步发展。15方之间采用双边两两出价的方式对货物贸易自由化作出安排,协定生效后区域内90%以上的货物贸易将最终实现零关税,且主要是立刻降税到零和10年内降税到零,使RCEP自贸区有望在较短时间兑现所有货物贸易自由化承诺。可以预见,随着原产地规则、海关程序、检验检疫、技术标准等统一规则落地,取消关税和非关税壁垒效应的叠加将逐步释放RCEP的贸易创造效应,显著降低区域内贸易成本和产品价格,提升本地区产品竞争力,惠及各方企业和消费者。《区域全面经济伙伴关系协定》(RCEP)协定附件:中国对东盟成员国关税承诺表.pdf中国对澳大利亚关税承诺表.pdf中国对日本关税承诺表.pdf中国对韩国关税承诺表.pdf中国对新西兰关税承诺表.pdf各国关税承诺表中,涉及仪器类货物有:实验室用炉及烘箱,包括焚烧炉;电气或非电气的冷藏箱、冷冻箱及其他制冷设备;利用温度变化处理材料的机器、装置及类似的实验室设备,例如,加热、蒸馏、精馏、消毒、灭菌、汽蒸、干燥、蒸发、气化、冷凝、冷却的机器设备;加热、烹煮、烘炒、蒸馏、精馏、消毒、灭菌、汽蒸、干燥、蒸发、气化、冷凝、冷却的机器设备;离心机,包括离心干燥机;液体或气体的过滤、净化机器及装置;衡器(感量为50毫克或更精密的天平除外),包括计数或检验用的衡器 衡器用的各种砝码、秤砣;分类、筛选、分离、洗涤、破碎、磨粉、混合或搅拌机器;专用于或主要用于制造半导体单晶柱或晶圆、半导体器件、集成电路或平板显示器的机器及装置;工业或实验室用电炉及电烘箱;工业或实验室用其他通过感应或介质损耗对材料进行热处理的设备;光学显微镜;显微镜,但光学显微镜除外;衍射设备;感量为50毫克或更精密的天平,不论是否带有砝码;X射线或α射线、β射线、γ射线的应用设备;示波器、频谱分析仪及其他用于电量测量或检验的仪器和装置;硬度、强度、压缩性、弹性或其他机械性能的试验机器及器具;理化分析仪器及装置(例如,气相色谱仪、液相色谱仪、分光仪);测量或检验粘性、多孔性、膨胀性、表面张力及类似性能的仪器及装置;测量或检验热量、声量或光量的仪器及装置(包括曝光表);检镜切片机;、、、、、、等等。中国对东盟成员国关税承诺表(仪器类部分截取)HS税目产品描述基准税率第1年第2年第3年第4年第5年8417非电热的工业或实验室用炉及烘箱,包括焚烧炉:8417.10.00-矿砂、黄铁矿或金属的焙烧、熔化或其他热处理用炉及烘箱10.0%9.0%8.0%7.0%6.0%5.0%8417.80.10炼焦炉10.0%0.0%0.0%0.0%0.0%0.0%8417.80.20放射性废物焚烧炉5.0%0.0%0.0%0.0%0.0%0.0%8417.90.90其他7.0%0.0%0.0%0.0%0.0%0.0%8418电气或非电气的冷藏箱、冷冻箱及其他制冷设备:热泵,但税号84.15的空气调节器除外:8418.1冷藏—冷冻组合机,各自装有单独外门的:8418.10.10容积超过500升10.0%9.0%8.0%7.0%6.0%5.0%8418.10.20容积超过200升,但不超过500升15.0%13.5%12.0%10.5%9.0%7.5%8418.10.30容积不超过200升15.0%8.0%8.0%8.0%8.0%8.0%8418.21压缩式:8418.21.10容积超过150升10.0%0.0%0.0%0.0%0.0%0.0%8418.21.20容积超过50升,但不超过150升10.0%0.0%0.0%0.0%0.0%0.0%8418.21.30容积不超过50升10.0%0.0%0.0%0.0%0.0%0.0%8418.29其他:8418.29.10半导体制冷式30.0%5.0%5.0%5.0%5.0%5.0%8418.29.20电气吸收式15.0%0.0%0.0%0.0%0.0%0.0%8418.4立式冷冻箱,容积不超过900升:8418.40.10制冷温度在-40℃及以下9.0%5.0%5.0%5.0%5.0%5.0%8418.40.2制冷温度在-40℃以上:8418.40.21容积超过500升15.0%5.0%5.0%5.0%5.0%5.0%8418.40.29其他30.0%8.0%8.0%8.0%8.0%8.0%8418.50.00装有冷藏或冷冻装置的其他设备(柜、箱、展示台、陈列箱及类似品),用于存储及展示10.0%0.0%0.0%0.0%0.0%0.0%8419利用温度变化处理材料的机器、装置及类似的实验室设备,例如,加热、烹煮、烘炒、蒸馏、精馏、消毒、灭菌、汽蒸、干燥、蒸发、气化、冷凝、冷却的机器设备,不论是否电热的(不包括税目8514的炉、烘箱及其他设备),但家用的除外;非电热的快速热水器或贮备式热水器:8419.20.00医用或实验室用消毒器具4.0%0.0%0.0%0.0%0.0%0.0%8419.3干燥器:8419.31.00农产品干燥用8.0%0.0%0.0%0.0%0.0%0.0%8419.32.00木材、纸浆、纸或纸板干燥用9.0%0.0%0.0%0.0%0.0%0.0%8419.39其他:8419.39.10微空气流动陶瓷坯件干燥器9.0%0.0%0.0%0.0%0.0%0.0%8419.4蒸馏或精馏设备:8419.40.10提净塔10.0%0.0%0.0%0.0%0.0%0.0%8419.40.20精馏塔10.0%0.0%0.0%0.0%0.0%0.0%8419.50.00热交换装置10.0%0.0%0.0%0.0%0.0%0.0%8474泥土、石料、矿石或其他固体(包括粉状、浆状)矿物质的分类、筛选、分离、洗涤、破碎、磨粉、混合或搅拌机器 固体矿物燃料、陶瓷坯泥、未硬化水泥、石膏材料或其他粉状、浆状矿产品的粘聚或成形机器;铸造用砂模的成形机器:8474.10.00分类、筛选、分离或洗涤机器5.0%4.5%4.0%3.5%3.0%2.5%8474.2破碎或磨粉机器:8474.20.10齿辊式5.0%0.0%0.0%0.0%0.0%0.0%8474.20.20球磨式5.0%4.5%4.0%3.5%3.0%2.5%8474.20.90其他5.0%0.0%0.0%0.0%0.0%0.0%8486专用于或主要用于制造半导体单晶柱或晶圆、半导体器件、集成电路或平板显示器的机器及装置;本章注释九(三)规定的机器及装置;零件及附件:8486.1制造单晶柱或晶圆用的机器及装置:8486.10.10利用温度变化处理单晶硅的机器及装置0.0%0.0%0.0%0.0%0.0%0.0%8486.10.20研磨设备0.0%0.0%0.0%0.0%0.0%0.0%8486.10.30切割设备0.0%0.0%0.0%0.0%0.0%0.0%8486.10.40化学机械抛光设备(CMP)0.0%0.0%0.0%0.0%0.0%0.0%8514工业或实验室用电炉及电烘箱(包括通过感应或介质损耗工作的);工业或实验室用其他通过感应或介质损耗对材料进行热处理的设备:8514.1电阻加热的炉及烘箱:8514.10.10可控气氛热处理炉0.0%0.0%0.0%0.0%0.0%0.0%8514.20.00通过感应或介质损耗工作的炉及烘箱0.0%0.0%0.0%0.0%0.0%0.0%8514.30.00其他炉及烘箱0.0%0.0%0.0%0.0%0.0%0.0%8514.40.00其他通过感应或介质损耗对材料进行热处理的设备10.0%9.0%8.0%7.0%6.0%5.0%9011复式光学显微镜,包括用于缩微照相、显微电影摄影及显微投影的:9011.10.00立体显微镜0.0%0.0%0.0%0.0%0.0%0.0%9011.20.00缩微照相、显微电影摄影及显微投影用的其他显微镜0.0%0.0%0.0%0.0%0.0%0.0%9011.80.00其他显微镜7.0%6.3%5.6%4.9%4.2%3.5%9022X射线或α射线、β射线、γ射线的应用设备,不论是否用于医疗、外科、牙科或兽医,包括射线照相及射线治疗设备,X射线管及其他X射线发生器、高压发生器、控制板及控制台、荧光屏、检查或治疗用的桌、椅及类似品:9022.12.00X射线断层检查仪4.0%0.0%0.0%0.0%0.0%0.0%9022.19.10低剂量X射线安全检查设备4.0%0.0%0.0%0.0%0.0%0.0%9022.19.20X射线无损探伤检测仪4.0%0.0%0.0%0.0%0.0%0.0%9022.29.10γ射线无损探伤检测仪6.0%0.0%0.0%0.0%0.0%0.0%9024各种材料(例如,金属、木材、纺织材料、纸张、塑料)的硬度、强度、压缩性、弹性或其他机械性能的试验机器及器具:9024.10.10电子万能试验机7.0%0.0%0.0%0.0%0.0%0.0%9024.10.20硬度计7.0%0.0%0.0%0.0%0.0%0.0%9027理化分析仪器及装置(例如,偏振仪、折光仪、分光仪、气体或烟雾分析仪);测量或检验粘性、多孔性、膨胀性、表面张力及类似性能的仪器及装置 测量或检验热量、声量或光量的仪器及装置(包括曝光表);检镜切片机:9027.10.00气体或烟雾分析仪7.0%0.0%0.0%0.0%0.0%0.0%9027.20.11气相色谱仪0.0%0.0%0.0%0.0%0.0%0.0%9027.20.12液相色谱仪0.0%0.0%0.0%0.0%0.0%0.0%9027.20.20电泳仪0.0%0.0%0.0%0.0%0.0%0.0%9027.30.00使用光学射线(紫外线、可见光、红外线)的分光仪、分光光度计及摄谱仪0.0%0.0%0.0%0.0%0.0%0.0%9027.50.00使用光学射线(紫外线、可见光、红外线)的其他仪器及装置0.0%0.0%0.0%0.0%0.0%0.0%9027.80.12质谱联用仪0.0%0.0%0.0%0.0%0.0%0.0%中国对日本关税承诺表(仪器类部分截取)(与中国对东盟成员国关税承诺表的不同处标红)HS税目产品描述基准税率第1年第2年第3年第4年第5年8417非电热的工业或实验室用炉及烘箱,包括焚烧炉:8417.10.00-矿砂、黄铁矿或金属的焙烧、熔化或其他热处理用炉及烘箱10.0%9.1%8.2%7.3%6.4%5.5%8417.80.10炼焦炉10.0%9.1%8.2%7.3%6.4%5.5%8417.80.20放射性废物焚烧炉5.0%0.0%0.0%0.0%0.0%0.0%8417.90.90其他10.0%9.5%9.0%8.6%8.1%7.6%8418电气或非电气的冷藏箱、冷冻箱及其他制冷设备:热泵,但税号84.15的空气调节器除外:8418.1冷藏—冷冻组合机,各自装有单独外门的:8418.10.10容积超过500升10.0%9.1%8.2%7.3%6.4%5.5%8418.10.20容积超过200升,但不超过500升15.0%13.6%12.3%10.9%9.5%8.2%8418.10.30容积不超过200升10.0%9.1%8.2%7.3%6.4%5.5%8418.21压缩式:8418.21.10容积超过150升10.0%9.1%8.2%7.3%6.4%5.5%8418.21.20容积超过50升,但不超过150升10.0%9.1%8.2%7.3%6.4%5.5%8418.21.30容积不超过50升10.0%9.1%8.2%7.3%6.4%5.5%8418.29其他:8418.29.10半导体制冷式30.0%UUUUU8418.29.20电气吸收式15.0%13.6%12.3%10.9%9.5%8.2%8418.4立式冷冻箱,容积不超过900升:8418.40.10制冷温度在-40℃及以下9.0%UUUUU8418.40.2制冷温度在-40℃以上:8418.40.21容积超过500升23.0%0%0%0%0%0%8418.40.29其他30.0%UUUUU8418.50.00装有冷藏或冷冻装置的其他设备(柜、箱、展示台、陈列箱及类似品),用于存储及展示10.0%9.1%8.2%7.3%6.4%5.5%8419利用温度变化处理材料的机器、装置及类似的实验室设备,例如,加热、烹煮、烘炒、蒸馏、精馏、消毒、灭菌、汽蒸、干燥、蒸发、气化、冷凝、冷却的机器设备,不论是否电热的(不包括税目8514的炉、烘箱及其他设备),但家用的除外;非电热的快速热水器或贮备式热水器:8419.20.00医用或实验室用消毒器具4.0%0.0%0.0%0.0%0.0%0.0%8419.3干燥器:8419.31.00农产品干燥用干燥器4.0%0.0%0.0%0.0%0.0%0.0%8419.32.00木材、纸浆、纸或纸板干燥用9.0%8.2%7.4%6.5%5.7%4.9%8419.39其他:8419.39.10微空气流动陶瓷坯件干燥器9.0%8.2%7.4%6.5%5.7%4.9%8419.4蒸馏或精馏设备:8419.40.10提净塔10.0%9.1%8.2%7.3%6.4%5.5%8419.40.20精馏塔10.0%9.1%8.2%7.3%6.4%5.5%8419.50.00热交换装置10.0%9.4%8.8%8.1%7.5%6.9%8474泥土、石料、矿石或其他固体(包括粉状、浆状)矿物质的分类、筛选、分离、洗涤、破碎、磨粉、混合或搅拌机器 固体矿物燃料、陶瓷坯泥、未硬化水泥、石膏材料或其他粉状、浆状矿产品的粘聚或成形机器;铸造用砂模的成形机器:8474.10.00分类、筛选、分离或洗涤机器5.0%4.5%4.1%3.6%3.2%2.7%8474.2破碎或磨粉机器:8474.20.10齿辊式5.0%4.5%4.1%3.6%3.2%2.7%8474.20.20球磨式5.0%4.7%4.4%4.1%3.8%3.4%8474.20.90其他5.0%4.5%4.1%3.6%3.2%2.7%8486专用于或主要用于制造半导体单晶柱或晶圆、半导体器件、集成电路或平板显示器的机器及装置;本章注释九(三)规定的机器及装置;零件及附件:8486.1制造单晶柱或晶圆用的机器及装置:8486.10.10利用温度变化处理单晶硅的机器及装置0.0%0.0%0.0%0.0%0.0%0.0%8486.10.20研磨设备0.0%0.0%0.0%0.0%0.0%0.0%8486.10.30切割设备0.0%0.0%0.0%0.0%0.0%0.0%8486.10.40化学机械抛光设备(CMP)0.0%0.0%0.0%0.0%0.0%0.0%8514工业或实验室用电炉及电烘箱(包括通过感应或介质损耗工作的);工业或实验室用其他通过感应或介质损耗对材料进行热处理的设备:8514.1电阻加热的炉及烘箱:8514.10.10可控气氛热处理炉0.0%0.0%0.0%0.0%0.0%0.0%8514.20.00通过感应或介质损耗工作的炉及烘箱0.0%0.0%0.0%0.0%0.0%0.0%8514.30.00其他炉及烘箱0.0%0.0%0.0%0.0%0.0%0.0%8514.40.00其他通过感应或介质损耗对材料进行热处理的设备10.0%9.1%8.2%7.3%6.4%5.5%9011复式光学显微镜,包括用于缩微照相、显微电影摄影及显微投影的:9011.10.00立体显微镜0.0%0.0%0.0%0.0%0.0%0.0%9011.20.00缩微照相、显微电影摄影及显微投影用的其他显微镜0.0%0.0%0.0%0.0%0.0%0.0%9011.80.00其他显微镜7.0%6.4%5.7%5.1%4.5%3.8%9022X射线或α射线、β射线、γ射线的应用设备,不论是否用于医疗、外科、牙科或兽医,包括射线照相及射线治疗设备,X射线管及其他X射线发生器、高压发生器、控制板及控制台、荧光屏、检查或治疗用的桌、椅及类似品:9022.12.00X射线断层检查仪4.0%3.6%3.3%2.9%2.5%2.2%9022.19.10低剂量X射线安全检查设备4.0%3.6%3.3%2.9%2.5%2.2%9022.19.20X射线无损探伤检测仪4.0%3.6%3.3%2.9%2.5%2.2%9022.29.10γ射线无损探伤检测仪6.0%0.0%0.0%0.0%0.0%0.0%9024各种材料(例如,金属、木材、纺织材料、纸张、塑料)的硬度、强度、压缩性、弹性或其他机械性能的试验机器及器具:9024.10.10电子万能试验机7.0%6.4%5.7%5.1%4.5%3.8%9024.10.20硬度计7.0%6.4%5.7%5.1%4.5%3.8%9027理化分析仪器及装置(例如,偏振仪、折光仪、分光仪、气体或烟雾分析仪);测量或检验粘性、多孔性、膨胀性、表面张力及类似性能的仪器及装置 测量或检验热量、声量或光量的仪器及装置(包括曝光表);检镜切片机:9027.10.00气体或烟雾分析仪7.0%6.4%5.7%5.1%4.5%3.8%9027.20.11气相色谱仪0.0%0.0%0.0%0.0%0.0%0.0%9027.20.12液相色谱仪0.0%0.0%0.0%0.0%0.0%0.0%9027.20.20电泳仪0.0%0.0%0.0%0.0%0.0%0.0%9027.30.00使用光学射线(紫外线、可见光、红外线)的分光仪、分光光度计及摄谱仪0.0%0.0%0.0%0.0%0.0%0.0%9027.50.00使用光学射线(紫外线、可见光、红外线)的其他仪器及装置0.0%0.0%0.0%0.0%0.0%0.0%9027.80.12质谱联用仪0.0%0.0%0.0%0.0%0.0%0.0%
  • 收缩水凝胶扩展纳米制造
    美国卡内基梅隆大学和中国香港中文大学的研究人员开发了一种能利用各种材料创建超高分辨率、复杂3D纳米结构的策略。研究成果近日发表在《科学》杂志上。研究团队此次开发的新技术,为微加工领域的长期挑战找到新的解决方案:一种将可印刷纳米设备的尺寸减小到几十纳米长、几个原子厚的方法。他们的方案与传统的被称为膨胀显微镜的方式相反,他们在水凝胶中创建材料的3D图案,并将其缩小以获得纳米级分辨率。一般3D纳米级打印机聚焦激光点以连续处理材料并需要很长时间才能完成设计,而研究人员开发的飞秒投影双光子光刻技术,能改变激光脉冲的宽度以形成图案化的光片,从而使包含数十万个像素的整个图像在不影响轴向分辨率的情况下立即打印。该方法比以前的纳米打印技术快1000倍,并可能导致具有成本效益的大规模纳米打印用于生物技术、光子学或纳米设备。研究人员引导飞秒双光子激光修改水凝胶的网络结构和孔径,为水分散性材料创建边界,然后将水凝胶浸入含有金属、合金、金刚石、分子晶体、聚合物或钢笔墨水等纳米颗粒的水中。纳米材料被自动吸引到水凝胶中的印刷图案上并完美组装。随着凝胶收缩和脱水,材料变得更加密集并相互连接。如果将打印的水凝胶放入银纳米颗粒溶液中,银纳米颗粒会沿着激光打印的图案自组装到凝胶中。随着凝胶变干,它可收缩到原来大小的1/13,使银密度足以形成纳米银线并导电。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 费业泰:用“微米”丈量人生的密度 留下精密仪器领域“费家军”
    2007年,费业泰被授予国际测量与仪器委员会“终身贡献奖” 神舟浴火腾飞升空,蛟龙耐寒深潜入海,高度精密的仪器在热胀冷缩时会产生什么变化?如何才能保证它们正常运转?我国高新技术领域的每一项重大突破,都离不开精密仪器学科的支撑。  在我国精密仪器领域,很多知名专家自称“费家军”,因为他们有着共同的导师——我国现代精度理论及工程应用的奠基人、合肥工业大学教授费业泰。在把60年人生奉献给精密仪器事业后,今年2月26日,费业泰教授在合肥逝世,享年82岁。  60年努力,奠基我国现代精度理论及工程应用  “精度”与“误差”这对反义词,是人类科学研究中不可回避的问题。而费业泰一辈子的工作,正是不断消除误差,追求越来越高的精度。  1955年,费业泰在合肥工业大学留校任教,同年6月加入中国共产党,1959年来到新开办的精密仪器专业。那时,新中国工业建设刚刚起步,我国对精度与误差的研究几近空白,机械工业总是难逃噪音大、震动大、能耗大的“傻大粗”模式。  现在精度测量以微米为标准,而当时的标准是毫米甚至厘米,相差千倍、万倍,为了改变这一切,费业泰养成了没日没夜工作的习惯。由于精密仪器特别敏感,为了确保实验质量,多年来,费业泰在忙碌一天后,晚上仍会趁夜深人静继续待在实验室。  经过长期的研究,费业泰提出了精度误差理论,半个多世纪来,这一理论在我国社会主义现代化建设的各个领域中得到了广泛应用,并成为我国精度评定的基本方法以及精密仪器学科的理论基础。  航天器在太空中飞行,向阳与背阳的两面温度相差数百摄氏度,由于膨胀系数标准有误,用什么材料才能确保卫星正常使用,一直长期困扰我国航空业的发展。九十年代末,时任我国某型卫星研制部门负责同志找到了费业泰。  在大量实验的基础上,费业泰发现原有的检测方法和计算标准存在较大误区,于是创新膨胀系数的检测和制定方法,不仅成功解决了精密仪器的稳定问题,还依此提出了全新的热误差理论体系。  在我国精密机械领域,曾一度陷入加工设备每个部件都要高精度的误区。这不仅大大提高了成本,而效果也并不稳定。针对这一情况,费业泰在我国率先提出“最好的部件在一起不一定能有最好的性能”这一理念,找到了误差传递的规律,并利用这一规律提出了新的方法,不再要求每个部件均为高精度,而是通过不同部件之间的最优组合,保证机械设备的高精度。这一方法成为我国最新精度理论的重要内容。  60年来,费业泰承担并完成了40余项高水平科研项目,发表过320余篇论文,获得9项省部级奖励,是安徽省五一劳动奖章获得者,为我国重点科研项目解决了大量实践难题,被称为我国精度理论的开拓者。2007年,费业泰被国际测量与仪器委员会(ICMI)授予终身贡献奖。  2010年,费业泰入选“感动工大十大人物”  潜心钻研,淡泊名利拒绝美国抛出的“橄榄枝”  《误差理论与数据处理》是费业泰的9本专著之一,他的学生、合肥工业大学仪器科学与光电工程学院院长于连栋教授介绍,该书1981年被列为国家重点教材,成为我国精密仪器学科理论的开拓之作。30多年来,该书再版7次,被全国200余所高校采用,很多年轻一代的杰出青年、长江学者,都是读着它迈进了精密仪器科学的殿堂。  “做科研不能带有一点功利心。”合肥工业大学仪器科学与光电工程学院苗恩铭教授至今牢记着费业泰的教导。  其实热误差理论,费业泰早在1980年代就已经发现并进行总结,但很长一段时间内,热误差的研究一直是领域内的“冷门”,甚至其理论的科学性也受到质疑。  如今苗恩铭率领的热误差研究团队,在全国已处于领头羊的位置,但最初这个研究之“冷”,曾让他想到放弃。  “科研不能追名逐利,什么方向热门做什么,你在科学的路上走不远。”费业泰的一再告诫,让苗恩铭坚持了下来。如今,热误差理论,已经成为精密仪器学科典型的三个学科方向之一。而热误差理论研究团队,也不断在我国重大项目中建功立业。  费业泰的老伴郭子顺还记得,1989年费业泰在美国西雅图华盛顿大学做客座教授时,他所负责的波音公司一项科研项目原计划要做9个月,但在他的努力下仅用时6个月。费业泰的出色表现引起了美国方面的兴趣,向他抛出橄榄枝,表示如果他愿意留下,就可以拿到绿卡。但费业泰毫不犹豫地拒绝了,甚至放弃了应得的3个月优厚报酬,毅然提前回国。  虽然淡薄名利,但费业泰对国内相关产业的发展一直十分关注。  “中国数控机床的落后,让老先生一直耿耿于怀。”苗恩铭说,费业泰在1980年代发现热误差后,研究了国际上近30年来数控机床精度的发展,预测未来机床如果要提高精度,必须利用其材料结构的热特性来设计。  当时费业泰找了很多国内大型企业,建议企业进行相关研发提高产品精度,但当时普通数控机床很好卖,他的建议被一一拒绝。1990年代中期,费业泰受邀到日本作学术报告,他的理论引起现场日本、德国专家的注意,并特意向他请教。2005年,日本企业生产了第一台热亲和数控机床,现在这种机床已经成为全世界最著名的数控机床之一。  “现在很多国内企业产品卖不出去,又去模仿,但只能模仿个外形,其实它的核心思想是我们这边出来的,但是当年国内却没有人相信。”苗恩铭说。  2013年,80岁的费业泰仍坚持工作  教书育人,言传身教关注每个学生前行  为了保证人才培养质量,费业泰不但对学生因材施教,还始终坚持在科研一线,用自己的言行给学生们做好榜样。  “费老师知道每个学生的特点,哪怕我们毕业了,他还会一直关注着。” 于连栋说,费老师去世后,有同学在微信群里晒出老师以前寄来的信,老人家对这位学生从专业方向到人生道路,都给出了言辞真切的建议,让人十分感动。  费业泰一生严谨,今年48岁、早已是博士生导师的胡鹏浩教授回忆起恩师的严谨时说:“怕挨训、被训怕了,但总是被训得心服口服。”  2003年的暑假期间,时任学院副院长的胡鹏浩去找费业泰汇报工作,因穿着随意让老师很不高兴。  最初胡鹏浩不以为然,他觉得不是工作日,也不在正式场合,穿着随便一些无所谓,但老师的反问让他意识到自己的不足:“老师说,如果现在学院有急事,需要你立即送一份材料到教育主管部门,你觉得你现在的穿着合适吗?这就是费老师的做事风格。”  “我参加工作后,学校安排我授课,但费老师坚持让我再等一年,用一年的时间备课。” 费业泰的学生、合肥工业大学仪器科学与光电工程学院副院长夏豪杰副教授说,费老师认为“照本宣科是没有质量的授课”,只有精心准备,才能真正传授给学生知识。  除了专业知识和严谨的科研态度,费业泰带给学生的,还有做人的道理。  2004年,胡鹏浩评上了教授,但费业泰却说其实不希望他这么早获评,随后老先生的一席话让胡鹏浩非常感动。  “他说虽然我评上教授,但知识的宽度和广度沉淀不够,可能会碍于面子,到哪都端着架子,不懂的也不好意思问,时间一长,就会越来越空。”胡鹏浩说,从那时起,他不管到哪,遇到不懂的就会直接问,  2011年夏天,77岁高龄的费业泰在北京进行完一项国家专项答辩后,急着赶回合肥,由于北京暴雨,等到23点仍然不能起飞,临时也买不到火车票。  “下着大雨,他跑到火车站,没有票又回到机场,这么大年纪,我看着很心疼,就劝他住一晚明天再走,他却坚持要当天回去。”当时随行的夏豪杰说,当天老人家等到凌晨4点,才得到登机的通知。  早上7点,费业泰带着一身疲惫抵达合肥,随后立即赶到办公室时,这时夏豪杰才发现,费业泰坚持赶回来的原因,只是答应给一位研究生修改论文。  “费教授辛勤工作60年,精于专业,一心教书育人,忠诚于人民的教育事业,是一位有理想信念、有道德情操、有扎实知识、有仁爱之心的好老师。”合肥工业大学党委副书记周军说。  2013年,80岁的费业泰仍坚持工作  2013年,费业泰与学生们在桃李园合影
  • 兵马俑在守护谁?试问水吸附分析仪
    世人称之为“世界第八大奇迹”的秦始皇兵马俑是为“千古一帝”秦始皇陪葬,这本已是众所周知。可是,随着最近《芈月传》的播出,许多民间研究者又提出异议,认为兵马俑是为秦宣太后陪葬的。最近央视一个节目中,建筑学学者陈景元先生就认为兵马俑陪葬的不是秦始皇,而是秦始皇的祖母秦宣太后(芈月)。在电视节目中,陈景元提出了一个又一个论据,被誉为“秦俑之父”的袁仲一先生则进行了针锋相对的批驳,双方你来我往,唇枪舌战,似乎说得都有道理。那么,真相到底如何? 文史圈儿的事儿,按说科技圈儿不好多嘴,毕竟隔行如隔山。只是,正因为隔行如隔山,可能两位学者对于接下来要提到的这款设备,或许也不是那么了解,虽然,它可能对于评判甚至解决这个争议,的确能扮演非常重要的角色。事实上,在2009年,英国曼彻斯特大学和爱丁堡大学的研究者就已经利用这款仪器,开发出了一项新技术,用于对上千年的古代陶瓷和砖瓦进行年代确定——它就是美国康塔仪器公司的全自动双站水吸附分析仪Aquadyne DVS。当然,我们并不是说国外的招儿在国内也一定有用,但他山之石或许可以攻玉,聊作参考也未为不可。 目前,英国这项基于美国康塔仪器公司水吸附分析仪开发的技术已经成为与碳14断代方法的并行方法,这款水吸附分析仪可以通过精确控制温度和湿度的条件,能将样品质量测量至0.1微克。这项技术不仅使对考古学断代和高度仿真的赝品测年成为可能,也可以通过研究已知年代的标本,为调查气候变化提供帮助。这项研究报告- ' Dating fired-clay ceramics using long-term power law rehydration kinetics' - 已经发表在英国皇家协会会刊(Proceedings of the Royal Society A) 这项断代技术的关键是基于以下事实:烧制粘土类终生都自始至终地从大气环境中吸附水汽,其吸附速率与周边平均温度和粘土性质有关。已经确认,少量样品(通常3-5g)被加热到105°C后,其毛细管中的水即被去除,从而得到“初始接收”质量,然后加热到500°C四小时,即可除去样品一生累积吸附的所有水分。这个“初始接收”质量和最终质量的差值代表了样品终生吸附的水汽。 其次,在样品冷却后,对样品质量在所控温度和相对湿度条件下进行吸湿性监测,能够获得样品重新结合水后的动力学增长曲线。相对湿度通常保持在30.0±0.1% RH,而温度设定为在样品发现地的长期平均温度(经验值)。 对水汽的吸附,这里术语叫做再羟基化(rehydroxylation,RHX),符合1/4幂次方规律。质量数据采集由美国康塔仪器公司Aquadyne DVS 全自动双站水吸附分析仪执行,每30秒采集一次质量数据,一个测量周期一般为2到5天。从图上,我们能够推断出“初始接收”质量,因此我们能测定出样品的年代。当伦敦博物馆提供了一个来自于查尔斯二世在格林威治的建筑中的未知样品时,研究者测定出其原始煅烧年代为1691± 22年。事实上,该建筑建造于1664-1669,新的断代技术所确定的年代与十七世纪九十年代的变化是相符的。其他2000年以前的样品也已成功地进行了分析,研究人员相信,该技术对上万年的样品同样有效。 好吧,根据英国这边的实验表明,利用康塔仪器水吸附分析仪这项技术,断代误差在30年以内(上文写的是22年)。那么,秦始皇和秦宣太后差了大概有55年(具体的,以文史专家给出的数字为准)?如果是这样,其实答案就简单了,一测便知真假。当然,或许事情并不只是这么简单。毕竟如上所说隔行如隔山,对于另一个领域,我们应保佑起码的尊敬,真相以专家结论为准。我们所能解决的,终归只是技术层面的问题,下面要讲到的,就是较为纯粹的技术了,兴趣不大的,可以绕行。Aquedyne DVS 非常适合这个应用有多种原因。 显然,长期稳定地测量质量精确到0.1ug的能力是至关重要的,但严格控制样品室的温度和相对湿度也是重要因素。此外,美国康塔仪器公司的完整的微天平具有双称量盘,这意味着可以同时进行两个样品的平行分析,并提高了生产率。曼彻斯特大学机械、航天和土木工程学院的莫伊拉威尔逊博士(Dr Moira Wilson)认为:比起其它技术,Aquadyne DVS产生的数据要好得多。"起初我们想用传统的顶装盘,但结果表现出太多散点。当我们试用Aquadyne DVS的微天平头,所产生的清晰的图形曲线给我们留下深刻印象。” 虽然Aquadyne DVS不是市场上唯一的水吸附分析仪,威尔逊博士还是没有任何犹豫地选择了它:“我的一位同事以前曾经使用过康塔仪器微天平系统,并认为它是非常优秀的。并且,他在英国布里斯托尔大学的同事也对这种微量天平给出一致好评。实验表明,Aquadyne DVS可以满足我们的所有要求,并且具有明显优势。” 此外,当威尔逊博士和她的团队开发新的断代技术时,他们得到制造商的持续服务和支持,为此受到广泛赞赏。人们很早就知道,陶瓷吸收水分,但测量非常小的应变(扩展)结果是极其困难的。改成基于质量的测量方法不仅创造了为古代陶瓷断代的机会,它也使现代陶瓷中与吸湿性有关的问题-- 如釉料开裂--更容易地调查原因。 新的测年技术之所以出色,原因之一是它仅需的装置是一个小型高温炉炉和水吸附分析仪,用于测量“初始接收”质量和再羟基化之前的最终质量。这使得该技术更简单,更快,比现有的陶瓷断代技术花费低,如热释光方法。 威尔逊博士继成功开发烧制粘土的测年技术后,现在准备进一步用Aquadyne DVS开展工作,如测量胶结材料的水化率和碳化率,调查粒径对粉末陶瓷吸附动力学的影响。 技术介绍 再羟基化(RHX)的测年方法完全是在研究烧制粘土砖水分膨胀的可逆性时获得的意外收获。RHX的过程是由粘土烧制陶瓷对大气水分的化学吸附,这个过程是通过超慢的纳米级固态运输(一维扩散,SFD)进入粘土体内的。这项工作导致发现了一个新的动力学定律:水分膨胀的超慢反应动力学(以及质量增加)服从(时间)?幂律[1]。简单地说,对t?的时间依赖性意味着相等的质量将以1,16,81,256等增加(对应14,24,34,44等)。这些时间单位可以是秒,分,天或年。 因为再羟基化的过程是一个化学反应,其进程主要取决于温度。已证明[2],可根据出土样品的地点对“有效寿命温度”(ELT)进行估计,它是从执行分析到所能看到的近乎样品的终生的可靠温度。 在英国曼彻斯特大学的研究已经率先使用的微重量测量,使用Aquadyne DVS重量法水吸附分析仪(康塔仪器)进行RHX测年[3]。它的有效寿命温度(ELT)主要取决于获取样品的地点,在样品的有效生命周期内,提供一个适合的温度环境使其能顺利的分析样品。图1:这个图表显示了原始实验数据m2,证明了RHX测量方法的精确性。它的成功需要维持持续恒温以及空气中的相对湿度。 根据曼彻斯特大学的研究分析,运用全自动双站水吸附分析仪可以做微重量RHX数据分析。 在原理,RHX测年法的核心就是简单明了;然而,想要成功测出一片烧制陶器的年代还是有些困难的,所以我们尝试用RHX测量超慢速度质量的增加,一般地,每3天增加6mg. 在持续恒温和相对湿度的条件下测量样品(大约0.1ug);全自动动态水吸附分析仪可以做到这点,请看图1. 实验方法 Wilson已经详细说明了RHX测年法的过程。首先,m1样品需要在105摄氏度下脱气,直到达到一个恒定的质量。在这点上所有的物理吸附水分用T0表示,化学吸附脱气可能会超出样品能承受的脱气温度。然后把样品放在天平室,温度控制在ELT,(一般8到11摄氏度),相对湿度需要仔细的控制在可以提供水分子表面的层面。在这些条件下,样品可以保持平衡。当样品达到平衡点,会测量出原始样品质量m2. 在这些温度和湿度的条件下,通过RHX测年法测出陶土的原始质量以及水吸附值。 接着,将样品加热至500摄氏度直到脱尽样品中的所有水分,包括物理吸附和化学吸附(T0,T1,T2)的水。监测m1的质量损失,直到达到恒定质量m3. 然后把样品放置在与之前相同的温度和湿度条件下,得到数据m2。获得原始质量数据后,重新加热到500摄氏度,Savage等【5】描述了特征性的质量增加时的两个阶段过程。 第I阶段是样品从500℃冷却并在未来的环境条件下的平衡。第II阶段的质量增益,只是由于再羟基化过程(T2)。质量增加的这个部分只是来自于M4,从M4可以推断出M2并用于年代测定。 图2:该图显示了原始实验数据。红色划线部分是用来计算RHX速率常数(阶段II)。在这之前看到的质量增加是因为几个过程同时存在(阶段I)。虚线与Y轴相交点就是m4. [4] 样品的再羟基化所引起的归一化质量改变(ya)与样品寿命时间的1/4幂次方成正比:Yα=α(T)t1/4 比例常数α(T)是在温度T所获得的数据,以质量的线性部分相对t?作图时的斜率,如图2所示。Yα=(m2-m4)/m4样品的年代(tα)计算可用公式:tα=(yα/α)4这些关系示于图3。这里可以清楚地看到的三种不同类型的水的质量贡献。图3:再加热到500摄氏度后,质量增加量对时间?的关系。(a) 特征性的二个阶段的质量增加。这是所有3种类型的水分T0+T1+T2(~27,000数据点) 结合。这些成分的结合所贡献的总质量值也可以被分割成(b)和(c),如图所示。(b) 只有T0+T1会影响质量值,并且当样品与周围的环境达成平衡时,质量值就会停止变化。这个质量值的变化可以用于跟踪环境温度和相对湿度的改变。(c) 因T2再羟基化而产生的质量增加。 结论 Aquadyne DVS全自动双站水吸附分析仪可以精确的控制相对湿度和温度,并且超级灵敏的微天平可以使其测出上百年甚至是几千年前的陶瓷、陶器和粘土文物的年代。 袁仲一先生西北大学、西安交通大学教授,秦始皇兵马俑博物馆馆长。现任中国考古学会理事,陕西考古学会副会长,陕西省司马迁研究会会长,秦始皇兵马俑博物馆名誉馆长,陕西省秦俑学研究会会长和秦文化研究会副会长。1998年10月被陕西省人民政府聘任为省文史研究馆馆员。被尊称为“秦俑之父”。(介绍来自百度百科) 陈景元先生毕业于西安建筑工程学院建筑系,后长期在江苏省国土厅工作的建筑学家陈景元1961年曾参与秦始皇陵的保护规划,1984年他发表文章质疑兵马俑的真正主人是否秦始皇,未得到重视。今年,他又在《中国科学探险》杂志(第2期)发表了《兵马俑的主人根本不是秦始皇》一文,遭到学界反驳。为此,陈景元上月到河北至咸阳的崤函故道进行实地考察,确信殁于河北邢台的秦始皇不可能被运回陕西安葬,因而,非但兵马俑不是秦始皇的陪葬,就连陕西骊山脚下的秦始皇陵也值得质疑……(介绍来自百度)
  • 从源头抓儿童帐篷质量
    儿童帐篷关乎孩子的舒适与健康,生产企业要充分重视产品质量。检验检疫部门在对儿童帐篷产品日常检验监管过程中,总结以下几点内容,建议生产企业予以关注。   一是非织造布面料的各种印花油墨的铅、镉、汞、铬、硒、锑、砷、钡等8大重金属元素的限量要求。此要求须通过国家认监委认可的权威第三方检测机构的实验室检测合格后方可投入生产。众所周知,超标的不合格印花油墨将给儿童构成健康危害。如铅是神经毒害物,是脑细胞杀手,过量的铅易造成儿童智力低下,对婴儿、儿童的健康构成极大的威胁。因此,需要面料提供方提供第三方检测机构检测合格报告及产品符合性声明,进而从源头上控制产品的质量安全。  二是帐篷必须具备关闭件的通风要求。一般来说,大多数儿童帐篷都是敞开式的,儿童在玩耍过程中不必担心通风不好而引起呼吸困难,但如果加了关闭件或者在设计时就是全封闭式的,那么就要在帐篷主体或关闭件中配置足够的通风口,以确保儿童正常的呼吸安全。  三是非织造布面料要有阻燃性能,安全标识、制造商标记要齐全。儿童帐篷中非织造布面料的易燃性能要求与普通毛绒玩具面料要求一样,在靠近火焰时不应发生表面闪烁反应。儿童帐篷的安全标识要求不容忽视,企业应根据所生产的各款儿童帐篷产品的特点,在产品或使用说明书中,告诉消费者在安装、使用过程中的注意事项。制造商标记是标明生产制造厂商的名称、地址、联系方式等,以利于产品追溯。  四是确保构成儿童帐篷架构的各连接部位平滑,无伤害。对于儿童帐篷架构的钢丝连接口,如果使用时松脱,将会形成尖端、毛刺,而从帐篷面料突出,对儿童造成伤害。为此,产品接口从最初只用一个铆钉铆接,到目前要求用三个铆钉铆接,同时在接头处包上塑料套,确保接头处牢固铆接并避免产生毛边,确保该工序安全有效。  五是儿童帐篷成品中的非织造布材料不允许出现残针。在构成儿童帐篷的非织造布的缝纫工序,缝纫用针及剪刀是该工序的基础工具,工具虽简单,但它在整个儿童帐篷生产中起到举足轻重的作用,如管理不好,最终生产出来的儿童帐篷极易给儿童造成伤害。为了消除这一事故隐患,企业必须从源头上控制用针和锐器,根据企业实际情况制定适宜的用针及锐器管理程序,建立用针及锐器领、发、换记录,专人保管发放,生产场所根据需要采取定额换针,确保整个生产过程用针及锐器处于受控状态。  目前,儿童帐篷产品大都是在室内使用,帐篷中所用的非织造布面料不具备室外使用要求,如果需要室外使用,则需要到符合相关要求的供应商采购特殊面料,该面料必须具备防水和防辐射双重功能,以满足室外环境的需要。
  • 室内空气污染:一个亟待重视的研究领域 ——访清华大学张彭义教授
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "strong前言:/strong谈到空气污染,大家通常关注的是室外大气污染。事实上,室内环境对人们健康的影响远比室外要大得多。调查显示,成年人有70-80%的时间在室内度过,老年人和婴幼儿待在室内的时间超过90%。世界卫生组织WHO发布的《室内空气污染与健康》指出,目前室内空气污染的程度已经高出室外污染5-10倍,全球4%的疾病与室内空气质量相关,每年大约有200多万人因室内空气污染所致疾病而过早死亡,室内空气污染已成为人类健康十大威胁之一。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  与大气污染相比,室内空气污染物种类众多,成分复杂,使用的建筑材料、装饰材料、办公设施、生活用品,以及室内的通风状况和人类自身活动等均可能对污染物种类和浓度产生影响,从而使相应的监测和控制工作变得极具挑战性。为更好地了解室内空气污染现状及研究进展,仪器信息网的工作人员(以下简称Instrument)特别采访了清华大学环境学院张彭义教授,请他就室内空气污染物的主要来源、危害、最新的净化技术手段、相应的检测方法和仪器、以及所面临的难题和挑战等大家所关心的话题进行了深入阐述。/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 600px " src="https://img1.17img.cn/17img/images/201908/uepic/90163c22-06eb-4cd7-bf05-cb3818debf89.jpg" title="图片 1.png" alt="图片 1.png" width="400" height="600" border="0" vspace="0"//pp style="text-align: center "strong清华大学 张彭义教授/strong/pp  span style="color: rgb(255, 0, 0) font-size: 18px "strong室内空气污染:研究对象多,研究投入不足/strong/span/pp  span style="color: rgb(0, 112, 192) "strongInstrument:我国室内空气污染的来源主要有哪些?会对人体造成哪些危害?/strong/span/pp  strong张彭义:/strong室内空气污染主要有两大来源,室外源和室内源。室外源包含来源于室外的颗粒物、臭氧和工业点源污染等。当前最受关注的是细颗粒(PM2.5)污染,世界卫生组织规定的空气质量准则值中PM2.5的年均值为10μg/m3,而中国很多城市的PM2.5年均值仍在50μg/m3以上。除颗粒物之外,臭氧污染也应当引起广泛重视。室内源主要分为室内装修装饰材料所引起的污染,如甲醛、VOCs、放射性污染物等,以及人体本身活动所排放出来的污染物,如二氧化碳、水蒸气和VOCs等。人体污染一般不被提起,但实际上新风系统就是为了解决人体污染物释放而发展的。/pp  室内空气污染物种类很多,主要可分为颗粒物(以悬浮颗粒物为主)、气态污染物(如甲醛、VOCs、臭氧等)、微生物、及放射性物质(如氡)等。这些污染物无论在种类或数量上的增加,都会引起人的一系列不适症状的现象,被统称为“病态建筑物综合症“,症状包含头晕、头疼、咳嗽、打喷嚏、眼睛流泪、精神不振等,严重的还会引起癌症,如高浓度甲醛、苯可能会导致白血病。/pp  span style="color: rgb(0, 112, 192) "strongInstrument:现阶段室内空气污染研究包含哪些方面?我国在这一领域的研究进展从全球来看处于一个什么样的位置?亟待解决的问题有哪些?/strong/span/pp strong 张彭义:/strong室内空气污染研究主要包含污染状况、健康影响、检测方法、污染控制四个方面。具体来说,污染状况是要了解可能的污染物种类、污染水平、释放规律以及二次反应、迁移等。健康影响则是要搞清楚这些污染物单独、复合暴露对人体健康的影响,作用的机制等。检测方法,就是对各种室内微痕量污染物的检测分析手段。污染控制包括从源头上削减、末端的净化手段等。/pp  室内空气污染研究的研究内容从污染物的角度来看,从最开始的室外大气污染所带来的二氧化硫、颗粒物、以及氡、环境烟气等,扩展到现在的挥发性有机物(VOCs)、半挥发性有机物(SVOCs)、PM2.5、臭氧、二氧化碳等。从需要解决问题的角度来看,一是解决室外大气带来的颗粒物、臭氧污染等,二是解决室内装修污染,三是解决建筑节能换风次数降低背景下人体及室内材料的污染问题,这三个问题分别是不同层次的需求。当前,发达国家更多的是面临第三个问题,而我国则主要还是需要解决前面两个问题。/pp  随着我国城市化进程的加速,近二十多年来相继出现装修污染、颗粒物污染等问题,我们国家在这两个方面的研究相对较为活跃,也有不少研究人员在国际上有较大的影响力,已经从学习跟跑阶段提升到并跑阶段甚至领跑,但是在新问题的发现能力、新研究方向的开拓能力方面还有待提高。/pp  室内空气污染是一个交叉性的研究领域,这个领域现有的主要力量来自建筑暖通学科,很少一部分来自环境学科。全球范围内这个领域的研究人员不多,科研经费投入也少,没有得到其应有的重视,与室内空气对人体健康有直接影响的重要性不匹配,很多问题也没有得到深入的研究,譬如不明的有害物质,痕量臭氧、自由基的反应,微量甲醛/VOCs的快速检测,室内新兴污染物的健康风险及其作用机制,嗅味物质的致嗅机制,各种污染物尤其是VOCs和气味物质的有效去除手段等。/pp  span style="color: rgb(255, 0, 0) font-size: 18px "strong室内空气净化技术:不断探索,从挑战走向成功!/strong/span/pp span style="color: rgb(0, 112, 192) "strong Instrument:针对一些主要的室内空气污染物,如甲醛、VOCs、臭氧等,当前的控制和净化技术有哪些?效果分别如何?/strong/span/pp  strong张彭义:/strong针对室内空气污染物控制的三大原则为:源头控制、通风和末端净化处理。源头控制是通过原材料控制、制造流程优化、热处理(加速释放,降低后期释放速率)和喷剂(反应、渗入/覆盖,延缓释放)等方式,达到减少源头污染物的种类及降低污染物的释放速率的目的。通风则是通过自然通风、机械通风和新风净化的方式稀释室内污染物。而末端的净化处理手段主要包括:吸附(物理吸附和化学吸附)、化学反应(氧化:臭氧和二氧化氯)、催化氧化(光催化、等离子体催化、热催化和室温催化)三种方式。/pp  从污染物角度分析,针对甲醛的去除手段研究较多,目前比较有效的手段主要有三种:一是化学吸附,譬如对活性炭表面的官能团进行改性或接氨基官能团,利用氨基和甲醛发生配位吸附;二是室温热催化分解甲醛,一类采用贵金属,如铂、金等,价格昂贵,另一类就是我们课题组近几年来研究比较多的活性锰,采用二氧化锰分解片分解甲醛为二氧化碳;三是利用反应性的喷剂,譬如含氨基或胺基的化学试剂。其他还有采用气态试剂来去除甲醛的,譬如氧化性的二氧化氯、氯气、臭氧,以及氨气等,但这些气体本身也是有毒气体,所以并不提倡。/pp  臭氧的去除主要采用室温催化分解手段,基础的催化剂是锰氧化物。臭氧去除面临最大的挑战是空气里的水分对催化剂催化性能的影响,这方面我们研究了近十年,近两年获得了两个比较好的催化剂,可以在相对湿度较高的情况下依然保持较好的催化性能。这些材料的性能虽然能够满足实际应用需求,但由于大众对臭氧污染的危害性认识不足,目前这些产品还没有得到大规模应用。/pp  室内VOCs种类多、浓度低、释放速率变化大,除传统的活性炭吸附外,尚需开发更经济有效的技术和材料。/pp  span style="color: rgb(0, 112, 192) "strongInstrument:室内空气净化技术当前面临的困难和挑战主要有哪些?未来的发展方向如何?/strong/span/pp strong 张彭义:/strong当前面临的挑战主要有装修材料VOCs和人体污染物的有效去除。装修材料所释放的VOCs种类繁多,浓度较低,且不少类别污染物化学性质比较稳定,在室温下快速分解在理论上几乎行不通;同时,室内空间有限,净化装置的体积不能太大,而室内空气的总体积大,这就使得单次通过净化装置的时间在毫秒量级,在这样的短时间内要使污染物高效去除,采用分解的手段几乎不可能。人体污染物的种类也很多,包含各种VOC、氨气、硫化氢、一氧化碳,以及大量的二氧化碳和水蒸气,传统上这些污染物是通过输入室外空气换气/稀释解决的。但现在建筑物密闭性增加,要求进一步节能,降低新风量,这样既带来了挑战也带来了机遇。有没有可能开发新的技术、新的材料来解决低换气次数条件下的人体污染问题,而且新技术、新材料的使用成本/能耗不能高于建筑物所节省的能耗。/pp  对于以上挑战,我们团队经过多年的实践和思考,提出的技术发展方向如下:开发易低温热再生的吸附材料和高效的低温催化分解材料,并在此基础上发展灵巧的净化设备。易低温热再生吸附材料在室温下快速吸附污染物,再在室温稍高的温度(如50-60℃)下能快速脱附完全,用较低的能耗实现污染物的持续、安全去除。高效的低温催化分解材料是在比室温稍高的温度下对脱附出来的有机污染物有着持续、高效的催化分解能力。/pp span style="font-size: 18px " span style="color: rgb(255, 0, 0) "strong科研与产业化同行/strong/span/span/pp span style="color: rgb(0, 112, 192) "strong Instrument:您从何时开始关注室内空气污染这一问题?对此做了哪些方面的研究?取得的研究成果主要有哪些?/strong/span/pp  strong张彭义:/strong我在1998年底博士毕业时就开始关注室内空气污染这一问题,2000年得到了国家自然科学基金资助,开展室内挥发性有机物(VOCs)的吸附光催化降解研究,后面陆续得到清华大学基础研究基金、国家自然科学基金、国家863计划、973计划等的资助,并陆续开展了室内VOCs、甲醛、臭氧催化分解方面的研究,研究的方法主要有光催化、臭氧辅助光催化、185nm紫外光催化、活性锰甲醛分解材料、锰氧化物臭氧分解材料等。/pp  我们的研究成果中比较成功的是室温分解甲醛的活性锰材料,可以将甲醛在室温条件下催化分解为二氧化碳,单位质量的材料对甲醛的去除能力超过600mg/g,对于室内浓度水平的甲醛的去除能力是改性活性炭化学吸附容量的20倍以上,在长达1700多小时的长时间试验中保持活性稳定。基于此材料先后开发出甲醛分解毡、活性锰折叠滤芯和空气净化器等产品。通过多次技术改进,从2016年起实现了规模化的销售,累计销售产品20多万套。近年来,我们还开发了去除甲醛的喷剂,从2019年开始销售,已实现销售近万套。/pp  除此之外,我们所研究的室温臭氧分解材料在性能方面得到了很大的提升,能够进行小批量的催化剂生产,基本完成了在多种基材上的涂覆试验,并且开展了几个月的寿命试验,已经能够满足室内外源低浓度臭氧的长期连续去除要求。同时,适合入住前室内装修污染净化处理用的185nm紫外光催化净化器已经完成了小风量样机的实测工作,目前正在开展600m3/h风量净化机的研制工作。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 297px " src="https://img1.17img.cn/17img/images/201908/uepic/1336dec1-87a4-4724-ac51-994d56eabfd1.jpg" title="2.png" alt="2.png" width="600" height="297" border="0" vspace="0"//pp style="text-align: center "strong图左:甲醛分解毡、图中:活性锰折叠滤芯、图右:带有活性锰去除甲醛滤芯的空气净化器/strong/pp  span style="color: rgb(0, 112, 192) "strongInstrument:请问您的研究成果的产业化是如何顺利实现的?是否有和相关企业开展一些合作?/strong/span/pp  strong张彭义:/strong首先,这些产品的研发和关键材料的生产基本都是我们团队自己做的。在“南京领军型科技创业人才“的支持下,我们在2013年成立了南京宇杰环境科技公司并开始产品的批量化生产。一开始也没什么公司感兴趣,我们只好自己尝试做销售推广,但效果不好;后来慢慢有了一些知名度,不少公司跟我们来洽谈,我们就开始跟其他公司合作,将市场推广和销售交给他们,很快实现了规模化的销售。像甲醛分解毡、活性锰分解滤芯和甲醛去除喷剂等小型产品都是团队自主生产,而像空气净化器这种生产成本比较高的产品,我们将机壳和外部结构交给专业公司来做。/pp  为了更好地进行产品测试,弥补校内实验室空间的不足,我们今年开始在浙江建设实验室,这样就有条件更好的开展产品的研发工作,譬如在模拟室内环境条件下对产品性能进行长时间的测试,以得到更可靠的数据来支持我们的产品。可以说,销售推广都是合作伙伴在做,我们只负责做产品和技术支持。我们的课题组是“两条腿走路“,一个是由研究生、博士后组成的研究小组,主要做应用基础研究,就新材料开发、材料性能机理及材料表征等展开研究;另一个是由科研助理等技术人员组成的研究小组,主要任务是进一步完善前期的研究成果,以及针对产品销售过程中出现的问题进行改进。/pp  strongspan style="color: rgb(0, 112, 192) "Instrument:您的课题组目前正在进行的相关项目有哪些?下一步的研究计划是什么?/span/strong/pp  strong张彭义:/strong目前正在开展的研究主要有甲醛和臭氧的室温催化材料、VOCs的吸附材料,这些研究得到了苏州-清华创新引领行动专项、国家自然科学基金的资助。下一步的研究重点是VOCs易热再生吸附材料、低温催化氧化材料,还将开始布局开展人体污染物的释放和去除研究。/pp  span style="color: rgb(255, 0, 0) font-size: 18px "strong“治检产品”的身影在室内空气污染领域随处闪现/strong/span/pp span style="color: rgb(0, 112, 192) "strong Instrument:在您的研究中主要会用到哪些仪器设备?从您的实践看,相关仪器还有哪些方面需要提高和改进?/strong/span/pp strong 张彭义:/strong在我们的研究中会用到很多仪器设备,主要可分为两类,一是用于气态污染物的检测分析,例如臭氧分析仪、气相色谱、热脱附-气相色谱质谱仪、颗粒物检测仪等;二是用于材料的表征,例如物理吸附仪、化学吸附仪、XRD、SEM、HRTEM、球差电镜、XPS、顺磁共振等。/pp  在气态污染物检测方面主要是检测限的问题,室内空气污染物的浓度很低,通常在ppb级别,我们希望能够测定到ppb级别的二氧化碳,同时也能实时地测定ppb级别的VOCs。而在材料表征方面主要对高分辨的球差电镜、STM有需求,可以帮助我们更加深入地了解催化剂的结构、形貌以及污染物的降解机制。/pp span style="color: rgb(0, 112, 192) "strong Instrument:目前市场上有很多针对室内空气质量检测及室内装修污染治理的产品,如何进行快速分辨?/strong/span/pp  strong张彭义:/strong总体来说,现有的室内装修污染治理的产品仍不能很好地满足实际需求。目前的产品形式主要有喷剂、被动式产品、净化器三类。喷剂主要有光触媒、生物酶等类型,其原理一般是掩盖/封闭或反应,对快速去除空气中的甲醛有较好的效果,也可以在一定期限内起到降低污染物释放量的作用,但是效果不持久,污染物以后还会不时地释放出来。被动式产品包括活性炭包、甲醛分解片等,在小空间内比较有效,应该组合使用,但还是缺少较好的除味产品。净化器具有快速去除大空间污染物的优点,但是要匹配适当风量的净化器,比如一个十几平米的卧室,一般选择风量至少在300m3/h以上的净化器,风量越大效果越好,同时还要考虑滤网的配置,应该选用配置有活性炭、活性锰滤网的净化器,并且要经常更换活性炭滤网。如果是着重于防止室外颗粒物污染,那么应该选用HEPA滤网。/pp  在室内空气检测产品方面,有众多的便携式甲醛、TVOC检测器,这些设备的可靠性较差,不建议选购几百元的检测仪,可以找专业的检测机构,甲醛检测盒作为参考。便携式颗粒物检测仪可靠性相对较好。 /pp span style="font-family: 楷体, 楷体_GB2312, SimKai " strong后记:/strong张彭义教授认为,环境学科是一门应用型学科,对应用型学科的人来说,所追逐的梦想不应该只是发表高影响力的论文,也要做一些真正实用的产品出来。张教授在采访过程中也强调,一种新材料或新试剂研发出来,除了考虑技术指标之外,还要考虑制备成本的经济性、制作过程的环保性等一些实际情况,否则一个技术即使成功卖给企业了,企业也不一定能做出合格的产品,勉强做出来可能也没法用。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  在和张彭义教授的交谈中,让笔者深刻感受到,做产品有时候可能需要比搞科研更加全面的考虑。一个成功的产品也许要为之付出更多的汗水和努力!/span/pp style="text-align: right "采访编辑:李学雷/pp style="text-align: right "撰稿编辑:陈星羽/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制