当前位置: 仪器信息网 > 行业主题 > >

热变形维卡仪

仪器信息网热变形维卡仪专题为您提供2024年最新热变形维卡仪价格报价、厂家品牌的相关信息, 包括热变形维卡仪参数、型号等,不管是国产,还是进口品牌的热变形维卡仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热变形维卡仪相关的耗材配件、试剂标物,还有热变形维卡仪相关的最新资讯、资料,以及热变形维卡仪相关的解决方案。

热变形维卡仪相关的资讯

  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 全自动热变形维卡软化点测试仪实机展示:让测试更加简单!
    【自动 连续 温控 安全 智能】全自动热变形维卡软化点测试仪实机展示:让测试更加简单! Easy!!”◆ 独特全自动机械手设计,可自动进行试样加载、自动测试、自动冷却、自动回收、自动更换样条,可连续测试多达120个样品,实现夜间无人化运行模式; ◆ 内置冷冻机,采用双管冷却系统,具有稳定的温升精度,可在30分钟内,由250℃快速冷却至23℃,便于快速开始下一个试验; ◆ 压力杆尖端可更换,系统可同时进行DTUL测试和VICAT测试,此外还可以专门进行球压测试。适配标准:GB/T1633,1634;ISO-75-1,306;ASTM-D648;JIS-K7191-1;K7206;D1525;IEC-335-1。
  • 高铁检测仪器发布高温维卡热变形温度试验机新品
    1 机台说明: 本试验机用于测定塑料试片加负荷(三点加荷下的弯曲应力)的变形温度(负荷变形温度的测定)和塑料样品在规定的受控测试条件下,发生规定的针穿透现象时的温度(塑料Vicat软化温度测试法),最高测试温度可达500℃。2 原理:? HDT热变形温度的测定法:标准试样在规定荷重下,平放位置(首选)或侧向位置,承受三点弯曲而产生曲折应力,在均匀升温速率(120℃/Hr),测试达规定变形量时温度;? 塑料Vicat软化温度测试法:使用一选定的均匀温度上升率(50℃或120℃/Hr)于一规定的负荷下,横截面积为1平方毫米的平头针穿透一热塑性样品时的温度.此测试方法在质量控制,发展和塑料材料的表现特性领域中有比较好的作用,可以用此测试方法取得的数据与热塑性材料的加热软化质量相比较。3 符合标准:本机器符合ASTM-D648,ASTM-D1525; ISO-75 / ISO-306;DIN 53461 / DIN53460相关标准要求制作。创新点:创新点:温度:常温~500℃,采用特殊的空气动力介质加热系统。目前国内外的维卡软化点试验机:常温~300℃,油浴加热。有如下优势:1.加热方式升级:避免了使用油介质,在升温速率较高的情况下,油会出现分解、冒烟、烧焦的现象,长期使用会出现杂质,影响油的传热,长期使用会出现趋势性数据偏离;2.数据稳定:传热介质的消耗量很小,不会因温度变化而分解,数据稳定;3.使用范围更广:可以测试航空航天用特种塑料,如PEK(聚醚酮)、PEEK(聚醚醚酮)、PI(聚酰亚胺)等,也可用于常规塑料。4.材料优势:有些高分子材料在油浴中会溶胀或者溶解,采用HV-5000则没有任何影响。高温维卡热变形温度试验机
  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 热变形磁体性能进一步提高
    图1. 热变形前后磁体的X射线衍射图谱图2. 热变形磁体的扫描电子显微镜照片当前使用的稀土永磁体其制备方法主要有粘接、烧结和热变形三种。粘接磁体的能量密度较低,烧结磁体虽然性能优异,但制备工艺相对比较复杂。相比之下,热变形磁体具有能量密度高、抗腐蚀性能好、工艺简单、生产效率高的优点。因此,热变形磁体的研究进展一直受到学术界和企业界的高度关注。目前,国内制备的热变形磁体的磁性能与国际上相比仍存在较大差距,这一差距首先体现在矫顽力和磁能积两个方面。而且对于热变形磁体而言,磁能积的提高通常会显著降低材料的矫顽力,这两个性能指标犹如鱼和熊掌一样不可兼得。这成为近几年来制约热变形磁体发展的主要因素之一。为了提高热变形磁体的磁性能,磁材事业部永磁团队热压小组群策群力,提出了多项措施方案,并积极开展尝试。目前他们已经成功制备了磁能积为47.3 MGOe、矫顽力达16.17 kOe的高性能热变形磁体以及矫顽力达22.7 kOe、磁能积为37.8 MGOe的高矫顽力热变形磁体。图1给出了热变形磁体变形前后的的X射线衍射图谱。从中我们可以清楚地看出,热变形之后,磁体的(004)、(006)和(008)三组同族晶面以及(105)晶面的强度大大增强,说明在热变形过程中这些晶面发生了明显的择优取向生长。图2给出了热压磁体轴向断面的扫描电子显微镜(SEM)照片。可以看出,热变形后磁体中存在大量规则排列的片状Nd-Fe-B纳米晶,其厚度约为80nm。这些纳米晶的片层面对应XRD图谱中衍射峰强度加强的晶面,即Nd-Fe-B晶粒中发生择优取向生长的晶面。由于工艺优化后磁体内片状晶的变形程度增大,取向更加一致,从而导致磁体的性能得到了大幅度提升。该研究的部分结果已发表在Journal of Magnetism and Magnetic Materials, Journal of Applied Physics等期刊上,当前最新工作进展的2篇论文也被第56届国际磁学与磁性材料大会接收。
  • Nature:形状变形的纳米磁性编码微型机器人
    磁性软体机器人已有多种应用,特别是在与人体密切相关的生物医学领域。如自折叠式“折纸”机器人可以在肠道中爬行、修补伤口、将吞下的物体取出来;胶囊状的机器人可以沿着胃的内表面滚动,进行活组织检查并运送药物。此外,科学家们还研制出了尺寸从几百微米到几厘米不等的更薄的线型机器人,它们有可能在大脑血管中穿行,以治疗中风或动脉瘤。磁性软体机器人的进一步小型化可能带来新的应用,如在小的血管中进行操作甚至操纵单个细胞,但制备这样的微型机器人并非易事[1]。 2019年11月,瑞士联邦理工学院的Cui Jizhai(现任职复旦大学) 、Huang Tian-Yun 及其同事在Nature发表了名为“Nanomagnetic encoding of shape-morphing micromachines”的文章[2],该工作使用电子束光刻技术,制造出了只有几微米大小的可磁重组机器人,通过对单个区域的纳米磁体进行设计,将形状变化指令通过编程的方式输入微型机器人,对纳米磁体施加特殊的磁场序列后,实现微型机器人的形状变化,如图一所示。图一 四片式变形微机械的设计 a.磁体磁态随尺寸增大的示意图:i.超顺磁性;ii.室温下稳定的单畴;iii.多畴态。b. 部,四个面板微机械,面板I上有520 nm×60 nm(I型)纳米磁体阵列,面板II上有398 nm×80 nm(II型)纳米磁体阵列;底部,纳米磁体阵列的相应SEM图像。c. 体积相同但长宽比不同的单畴纳米磁体的磁光克尔效应磁滞回线。d.根据矫顽力的不同选择两个磁场对微机械进行编码的示意图。e. 应用控制磁场B=15 mT时的磁性结构(I型和II型纳米磁体)和微机械折叠行为示意图,光学显微镜图像显示了所制造器件的四种不同结构。从左到右,上/下折叠的面板数为4/0、3/1、2/2(折叠方向不同的对面面板)和2/2(折叠方向相同的对面面板)。 这项工作构建了一个模块化单元的集合,这些模块化单元可以编程为字母表中的字母,此外还构建了一个微型的“鸟”,能够进行复杂的行为,包括“拍打”、“悬停”、“转弯”和“侧滑”,如图二所示。这为创造未来的智能微系统建立了一条路线,这些智能微系统可以重新配置和原位重新编程,可以适应复杂的情况。图二 折纸式的微型“鸟”与多种形状变形模式 文章中,作者使用了英国Durham Magneto Optics Ltd.公司的磁光克尔效应系统-NanoMOKE3对不同型的纳米磁体进行了磁滞回线测试,同时使用该设备的电磁铁产生的磁场对纳米磁体阵列进行了编程。NanoMOKE3可以进行微区的超高灵敏度测试,在本工作中,作者通过激光聚焦在不同的纳米磁体上获得对应的磁滞回线,如图一c所示,为微型机器人的磁学编码工作提供了帮助。图三 磁光克尔效应系统-NanoMOKE3 NanoMOKE3主要技术特点:超高灵敏度~10-12emu微区磁滞回线,激光光斑~2μm超快测试速度,1秒内可获得磁滞回线克尔角检测<0.5 mdeg纵向/横向/向克尔磁畴成像扩展无液氦低温MOKE图四 与Montana S50超精细多功能无液氦低温光学恒温器联用的低温MOKE 温度范围4.2K~350K磁场纵向>0.4T,向>0.3T 参考文献:[1] X H,zhao. et al. Nature 575, 58-59 (2019)[2] Cui, J. et al. Nature 575, 164–168 (2019).
  • 微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形
    北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArchS140 GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArchS140System
  • 微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形
    北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArchS140 GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArchS140System
  • 单智伟团队:在金属镁塑性变形行为和内在机制领域取得新进展
    镁是最轻的金属结构材料,在航空航天、交通运输,电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统金属材料,如钢铁和铝合金,镁的塑性变形加工较困难,工艺成本高,制约了其广泛应用。微观机制是决定宏观性能的内在因素,因此,研发高塑性镁合金需要精准认知其微观塑性变形机制,相关研究也一直是镁合金领域关注的重点和热点。众所周知,金属材料在塑性变形时一般会发生加工硬化现象,即随着变形量的增加,材料内部缺陷和损伤逐步累积,流变应力不断增加。当硬化到一定程度时,材料将不具备继续塑性变形的能力,最终发生断裂。对于金属镁而言,其沿晶体学轴压缩时加工硬化十分明显,塑性变形量一般仅在5%-10%左右。针对镁的塑性变形行为和内在机制,西安交通大学单智伟教授团队近年来开展了系统深入研究。研究发现,对于亚微米尺寸的镁单晶,当沿轴压缩时,首先发生由锥面位错滑移主导的塑性变形(详见Liu et al. Science, 365 (6448), 73-75, 2019)。令人意想不到的是,随着加工硬化的不断加剧,原本认为塑性已消耗殆尽的样品并没有断裂失效。当流变应力升高到1 GPa水平时,样品突然被压为扁平状,且没有裂纹产生。此外,被压扁的样品已不再是单晶,而是由多个具有共轴取向关系的小晶粒组成,小晶粒内部有大量的基面和非基面位错。图1 亚微米镁单晶柱在轴压缩下的变形过程。(a)初始样品;(b) 位错的形成和运动;(c) 在样品右下角形成的新晶粒(白色箭头);(d) 新晶粒中产生位错(白色箭头);(e)样品被压为扁平状;(f) 在扁平样品上采集的电子衍射。(g)应力-应变曲线显示出变形的三个阶段:弹性变形、塑性变形-加工硬化阶段、塑性变形-应变突跳阶段。通过系统的晶体学分析、显微学分析、原子尺度表征,并结合分子动力学模拟,该团队提出新晶粒是通过锥面-基面转变形成的。在新晶粒形成后,原本已消耗殆尽的塑性得到了再生,继续加载时样品仍可持续发生很大的塑性变形。该研究将这种由变形诱导的在基体晶粒中形成新晶粒的过程称为“deformation graining(形变转晶)”。该过程不必依赖扩散,可在室温下快速发生,所形成的新晶粒与基体晶粒具有特定的晶体学取向对应关系。在新形成的晶粒中,可以继续发生由位错和孪生协调的塑性变形,使得样品重新具有了塑性变形能力(可比拟为“返老还童”)。该研究丰富了对塑性变形机制的认识,为镁的变形加工提供了新的启发:在高应力或高应变速率下加工,可由高应力引发新的变形机制,进而提高镁的变形加工能力。图2 新晶粒在加载时长大,卸载时缩小,二次加载时再次长大,反映了晶界的高可动性图3 新晶粒及其晶界结构该成果以"金属镁塑性变形能力再生新机制"(Rejuvenation of plasticity via deformation graining in magnesium)为题发表于《自然通讯》(Nature Communications),西安交通大学刘博宇教授为本论文的第一作者,西安交通大学单智伟教授为第一通讯作者,合肥工业大学张真教授为共同第一作者和通讯作者,西安交通大学马恩教授和美国麻省理工学院李巨教授为共同通讯作者。参与该工作的还包括西安交通大学博士研究生刘飞和杨楠、内华达大学李斌教授、吉林大学陈鹏教授、中国科学技术大学王宇教授和江苏科技大学彭金华博士。西安交通大学金属强度国家重点实验室为第一通讯单位。该研究得到了国家自然科学基金委、111计划2.0、西安交大青年拔尖人才计划等项目的资助。近年来,单智伟研究团队依托西安交通大学材料学院、金属材料强度国家重点实验室、西安交通大学微纳中心和陕西省镁基新材料工程研究中心,开展了一系列富有成效的基础研究、技术攻关和成果转化。2014年,发现了镁中不同于位错和孪晶的室温变形新机制,成果发表于《自然通讯》,并荣获美国TMS学会镁分会年度最佳基础研究论文奖;系统研究了镁合金中析出相形貌对孪晶行为的影响,并进而发展了一种判断镁合金强塑性的简单判据,成果发表于《材料科学技术》(封面推荐,2018);发现通过活化二氧化碳,可以在室温下将镁表面的氧化层或腐蚀产物转变成一种致密的保护膜层,不仅可显著提升镁及其合金的抗腐蚀性和强韧性,而且大幅提高镁的抗氧化能力,从而发明了一种绿色、低成本镁合金涂层新技术,成果发表于《自然通讯》(2018),并获得国家发明专利授权;应用基于原位电镜的先进测试与表征技术,结合原子尺度成像和三维图像重构技术,揭示了镁中锥面位错的结构特征和滑移行为,首次实验证明其是镁中有效的塑性载体,指出通过促进锥面位错滑移(可通过提高应力和减小晶粒尺寸来实现)可以有效提高镁的塑性,成果发表于《科学》(2019)。针对原镁冶炼工艺落后、自动化程度低和环境污染严重的现状,提出并验证了原本需要在真空条件下进行的原镁冶炼可以在常压进行,并与华西能源公司联合攻关,开展了原镁常压生产的工业化装置的开发。针对原镁杂质元素种类多、含量高、波动大的痼疾,从原子机理出发,开发出全新的工艺流程,可在不显著增加成本的情况下,从料球直接生产出99.99%以上纯度的高纯镁,革新了此前领域内普遍认为皮江法(硅热还原法)不能直接生产高纯原镁的认知。上述成果的推广和应用,有望从整体上提升镁基产品的质量和性能。论文链接:https://www.nature.com/articles/s41467-022-28688-9
  • IKA 艾卡故事--氧弹量热仪之前世今生
    1770年,Josef Black (英国化学家、物理学家)首次提出“量热仪”一词,1780年,拉瓦锡(法国化学家)和拉普拉斯(法国天文学家、数学家)最早将量热仪技术用于物理和化学实验,他们将一只几内亚小鼠放到一个冰桶内,通入空气,小老鼠呼入空气中的氧气排出二氧化碳,其自身产生的热量将一部分冰融化成了水,通过测定下部烧杯中收集到的水可以推算出老鼠释放的热量。为了防止热量向外界散失,冰桶的外部包裹一层冰和水的混合物,由于冰及冰水混合物的温度均为摄氏零度,所以天然构成了一个绝热体系,现在后人也称拉瓦锡等设计的系统为冰量热仪或相变量热仪。氧弹量热仪是用于测量固体或液体样品在一个密闭的容器中(氧弹),充满氧气的环境里,燃烧所产生的热值。“氧弹量热仪”是经常使用的名称。测量的结果称燃烧值、热值、BUT值等。热值测量结果可帮助对产品相关要素进行总结,如得出品质、生理、物理、化学以及成本方面的结论。譬如说,煤炭的发热量是其定价的主要依据,饲料的能量是配方师在做配方设计时首先需要确定下来的重要指标。测定时将1g的固体或液体样品称量后放入坩锅中,将坩锅置于不锈钢的容器(氧弹)中。往燃烧容器/氧弹中充满30bar压力的氧气,氧气的纯度最好为99.95%,样品在氧弹内通过点火丝和绵线引燃,燃烧过程中坩锅的中心温度可达1200°C,同时氧弹内的压力上升。在此条件下,所有的有机物燃烧并氧化。氢生成水,碳生成二氧化碳,样品中的硫将氧化成SO2,SO3,并溶于水,释放出一定的热量(硫酸生成热),空气中的氮气在高压富氧的条件下,会有少量被氧化生产NO2,溶于水释放出一定热量(硝酸生成热)。氧弹量热仪的内筒使用的传热介质为水,氧弹浸没在水中,燃烧时产生的热量通过水扩散出去,为确保燃烧产生的热量不会从系统传到外界和外界的热量不会传进系统里,使用另一个充满水的容器(外桶OV)作为隔热的装置,依据不同的测定原理和外筒温度控制,氧弹量热仪可以分为绝热式量热仪和周边等温量热仪。绝热量热仪在实验中,外桶的温度(TOV)全程跟踪内桶温度(TIV)变化而变化。这种绝热几乎完全隔绝热传递。在保持空调环境温度恒定的条件下,测量几乎不受任何的外界影响。样品燃烧所释放出的热量都将聚集在内筒,并通过内筒的温度传感器进行测量。实验过程中没有热损失,无需像等温量热仪一样做修正计算其温升曲线的典型特征为:实验前期,实验末期可以很快达到“稳态”,即内、外筒的温度达到平衡,不会随着时间的推移而变化。 绝热模式的原理简单,测定结果可靠,但由于其结构复杂,内外桶均需要有独立的冷却加热控制系统,能实现内外桶温度的精准跟踪及控制,所需的技术难度较高,所以后人提出了一种理想化的模型,两个理想的牛顿流体在一端温度恒定时,另一端的温度发生渐进性变化时,两者间的热量交换符合牛顿冷却定律,可以通过瑞方公式、罗-李方程等公式对两者间的热量交换做出模拟计算,其结果就是我们常说的冷却校正系数。等温测量模式,实验过程中外桶的温度(TOV)需要保持恒定。保持外桶温度恒定不要求内外桶的完全绝热,内外桶有少量的热交换。在空调环境温度保持恒定的情况下,需要对内外桶间的少量热交换进行修正计算, 其温升曲线的典型特征是:实验前期,实验末期温度存在“拐点”,对温升终点的判断较为关键,为了准确判断温度变化的趋势,即严格按照瑞方公式进行测定时,所需的测试时间较长,通过“温升趋势”预断来缩短测定时间的方法中,即“快速模式”,温升趋势的预判往往成为实验成败的关键。早期的量热仪产品外筒没有独立的冷却加热系统,为了在实验的前期和末期之间尽量保持外筒水温的基本一致,外筒的水箱容量通常为内筒的的5-10倍,通常为10-20L,但由于外筒没有冷却设备,测定结束后内筒的水也循环进入外筒,所以经过数次测定后外筒温度容易出现缓慢升高的现象,影响了测定的准确性。现在的氧弹量热仪技术日新月异,从结构到功能上均发生了许多的变化,测定时间较早期的手工操作的量热仪而言已极大地缩短,测定精度对于一些进口品牌而言,其5次苯甲酸标定过程中的相对标准偏差已可以达到0.05%,如德国IKA公司,对于国产仪器而言,一些好的品牌其相对标准偏差也可以控制在0.1-0.15%之间。从结构而言,由于恒温水浴等技术的使用,量热仪已抛弃了传统的大肚子外筒,内筒的水量也控制在标准要求的下限,这样其热容量(水当量)将相应减少,温度的平衡时间也将缩短。氧弹的结构发生了明显的变化,充氧接口与放气接口合并,点火电极与氧弹弹体构成点火电路,其主要目的是尽量减少在氧弹上的开口,因为每一个开口对氧弹都意味着增加了额外安全隐患,都意味着需要额外增加密封圈等配件和更多的操作者维护,氧弹的外形设计也发生着明显的变化,氧弹一般由弹筒,弹盖和螺纹环三个部件组成,传统的氧弹其接口放在了上部,相互间用密封环密封,我们知道在点火燃烧时热量集中在中上部,并通过上部对外扩散,由于密封环的阻隔其导热速率将明显下降,德国IKA公司最新推出的C6000系列氧弹,采用了独特的倒扣式设计,接口放在了氧弹的下部,氧弹顶端是一体的圆形弧顶,实验过程中的热量将更易向内筒扩散,也更容易达到温度的平衡,而且在保证其最高330bar的耐压测试标准的同时,将氧弹重量降低了30%,这样实验末期的温度平衡时间将大大缩短,所以其绝热模式的测定时间从原来的15分钟降到了8分钟,周边等温模式的测定时间从22分钟降低到了12分钟。从功能而言,氧弹量热仪已经高度自动化,自动充水,自动排水,有独立的冷却循环水浴和加热系统构成了自动量热仪的水循环系统,自动充氧,自动排废气,可以根据不同标准的要求对氧弹数次充氧放气已完成氧弹内部空气的净化,氧弹自动识别,自动点火,像一些先进的仪器如德国IKA公司的C6000等,甚至可以每次测定点火的能量,自动扣除并自动计算热值,测定结果更为准确。如上所述,下一代的氧弹量热仪产品必将是在满足标准精密度,安全性等基础上,逐步趋向于小型化,自动化,快速测定等优化操作减少劳动量的设计,而且仪器的工作表现需要更为稳定。 关于 IKA ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板,恒温循环系统, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西, 韩国等国家都设有分公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1.Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 江门中微子实验的“变形金刚塔”建成
    作者:倪思洁 来源:中国科学报5月24日,记者从中国科学院高能物理研究所了解到,江门中微子实验的升降平台已安装完成,并顶升至38米,为下一步有机玻璃球安装工作做好了准备。江门中微子实验核心探测设备——中微子探测器位于地下实验大厅内44米深的水池中央。它由直径41米的不锈钢网壳、直径35.4米的有机玻璃球,以及2万吨液体闪烁体、2万只20英寸光电倍增管、2.5万只3英寸光电倍增管等关键部件组成。升降平台是完成有机玻璃球安装的重要辅助平台,其直径和高度逐层可变,可谓“变形金刚塔”。它将全程服役于有机玻璃球的安装。工程人员将在该平台上逐层完成有机玻璃的吊装就位、拼接聚合、固化、退火、打磨、清洗、贴膜等工序,最终完成有机玻璃球的整体安装。“变形金刚塔”——有机玻璃球安装升降平台(俯视图)中国科学院高能物理研究所供图“变形金刚塔”——有机玻璃球安装升降平台(仰视图)中国科学院高能物理研究所供图
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 北京首台淬火/变形相变仪将落户北京科技大学
    继2006年上海大学后,北京科技大学与北京仪尊时代科技有限公司正式签约,购买德国巴赫热分析公司生产的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)。成为该设备在中国的第二个使用者。目前,德国巴赫公司在该领域的欧美市场占有率几乎百分之百。近年来,很多中国的金属、尤其是钢铁方面研究人员对该设备表现出了浓厚的兴趣,显示出中国钢铁行业在特种钢和优质钢方面长足进步,也是缩小我们与欧美国家在钢铁领域差距的一个缩影。相信该设备将成为该校金属学研究的得力帮手。 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。screen.width-300)this.width=screen.width-300"
  • 寨卡肆虐催生疫苗研发热
    p style="text-align: center "img width="500" height="281" title="2016218534469110.jpg" style="width: 500px height: 281px " src="http://img1.17img.cn/17img/images/201602/noimg/c28011c8-6574-483e-baef-2a33db1ae19c.jpg" border="0" vspace="0" hspace="0"//pp  拿着盒子的巴西布坦坦研究所所长Jorge Kalil表示,他的团队希望通过模仿一种被用于对抗登革热病毒的策略制造寨卡疫苗。(图片来源:CAMILLA CARVALHO, BUTANTAN INSTITUTE)/pp  不到1年前,寨卡看上去是如此的微不足道,以至于任何人都不愿制定应对它的策略。这种蚊媒病毒一直徘徊在南半球国家,但在最坏的情况下,它似乎也只是引发轻微的发烧和皮疹。但如今已不再是这个样子:世界卫生组织(WHO)日前宣布,目前已同寨卡联系起来的小头畸形和其他神经系统并发症“非同寻常”的集中暴发,是必须“引发国际关注的公共卫生突发事件”。与此同时,大大小小的疫苗生产厂家发起了阻止寨卡的比赛。一些专家表示,这些厂家有很好的机会取得成功,但他们同时提醒说,疫苗研发需要数年测试。/pp  寨卡在1947年被分离出来,并在2015年5月首次引起严重关注。去年,该病毒到达南美,而关于怀孕期间的感染可能导致婴儿出现损伤大脑的小头畸形的怀疑也在不断增长。WHO总干事陈冯富珍强调,这种关联“受到强烈怀疑,尽管尚未获得科学证明”。随着病毒扩散日益增加,研发疫苗成为目前的首要任务。/pp  疫苗先驱、来自美国宾夕法尼亚大学的Stanley Plotkin预测了一种研发该疫苗的直截了当的途径。他介绍说,寨卡属于黄病毒属,而它的一些“亲戚”诸如登革热、黄热病和日本脑炎,都存在相应的疫苗。“我看不到任何技术问题,比如在研发对抗艾滋病病毒、结核病和很多其他致病因素时明显存在的问题。”为一些疫苗生产厂家提供咨询的Plotkin表示。/pp  不过,病毒学家Thomas Monath认为,“还是有很多困惑存在”。如今在马萨诸塞州纽琳基因公司担任首席科学家的Monath于上世纪70年代在尼日利亚研究了野生猴子体内的寨卡,并且帮助研制了一种颇有前途的埃博拉疫苗。对于寨卡来说,一个未知的问题在于感染是否会带来终身保护——这是针对黄热病等疾病的最有效疫苗的关键特征。另一个问题是天然或疫苗诱导的对抗其他相关病毒尤其是黄热病的免疫力,能否提供交叉保护。而目前,研究人员尚未建立急需的、能比较候选疫苗的猴子模型。/pp  各种方法竞相出现。研制出对抗若干种黄病毒疫苗的Monath表示,纽琳基因公司将追寻传统的策略,即用化学物质灭活或者杀死寨卡病毒,从而使其无法在体内复制。他认为,对于一种怀孕女性可能使用的产品来说,灭活疫苗最有可能获得监管部门审批。/pp  不过,在位于巴西圣保罗的非营利性机构布坦坦研究所,身为免疫学家的所长Jorge Kalil正在打赌一种令病毒弱化的活疫苗是安全的,并且可能比杀死病毒更加有效。他的团队计划利用一种美国国家过敏症和传染病研究所(NIAID)研究人员曾用来制造登革热疫苗的技术。为弱化登革热病毒,研究人员删除了基因,使其能自我复制但不会引发疾病。“或许,我们可以利用在相同位点删除基因的方法弱化寨卡病毒。”Kalil表示,布坦坦研究所可能和NIAID合作研发这种疫苗。该研究所拥有一个关键优势:不像开展疫苗研究的全球其他非营利性机构,它拥有工业规模的生产厂。去年,研究所生产了4000万剂流感疫苗。因此,它或许能无须大型制药公司的帮助而为巴西提供足够的疫苗产品。/pp  NIAID所长Anthony Fauci介绍说,NIAID在另一种不同的技术上抢得了先机。该技术曾被用于制造针对另一种黄病毒——西尼罗河病毒的试验性疫苗。生产过程从持有关键病毒基因的圆形DNA质粒开始。当它被插入细菌细胞时,后者会产生像病毒一样的微粒。这些微粒同灭活疫苗类似,因为它们无法自我复制。/pp  位于宾夕法尼亚州的Inovio制药公司则宣称,其已拥有一种试验性寨卡疫苗,该疫苗只含有由寨卡基因制成的质粒。在对皮肤进行电子辐射后,质粒直接进入人类细胞,随后产生刺激免疫系统的寨卡蛋白。公司首席执行官Joseph Kim表示,他的团队已在小鼠身上开始测试。/pp  不过,尽管研究人员能快速制造此类简单的DNA疫苗,但这些疫苗在过去20年间已失去了原本的魅力,因为它们并未触发针对其他疾病的强烈免疫反应。“在这个领域,很多知识渊博的人已不再相信这种技术。”Kim坦承,“但我想证明该技术是可行的,并且或许是应对此类疫情暴发的最好选择。”/p
  • 德国IKA/艾卡:世界上最小的氧弹量热仪--紧凑型、高度自动化、操作简单
    IKA 量热仪C1是新一代的紧凑、高端自动化、操作简单的燃烧量热仪的典型代表。实际上,它的尺寸仅有290 x 280 x 300mm,是世界上最小的量热仪。C1量热仪采用一个静态夹套,温度依据瑞方校正公式(Regnault-Pfaundler )对周边等温模式进行评估,测定结果的准确性可达0.15%.为了使用的简便性,IKA 研发人员使用了拔插式的燃烧容器来代替传统的固定螺纹氧弹。更为便捷的是提供了一个多功能控制和逻辑性极强的量热仪软件,C1的高度自动同时也体现在用户的操作时间大大节省了。它满足所有的通用标准,如DIN 51900和ISO 1928.C 1具有完善的内部管理控制系统,在每个实验的开始时进行检查,并提示任何的故障错误,如点火失败或不适宜的水温等,仪器可以满足任何特殊用户的要求和对PC端口,天平端口,打印机端口的需求,额外的测定数据管理的扩展和适配,LIMS系统软件可以通过IKA C 6040 Calwin量热仪软件进行适配。C1 产品详情:http://ika.cn/Products-Lab-Eq/Calorimeters-Oxygen-Bomb-calorimeter-csp-330/ 关于IKA ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 恒温循环器,量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 韩国,巴西等国家都设有子公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 创新突破!兼具高变形能力与强度的多晶氮化硼陶瓷诞生!
    【科学背景】随着对层状van der Waals(vdW)材料的研究日益深入,科学家们开始关注由扭曲堆积形成的莫尔纹超晶格。这种现象打破了晶体结构的对称性,引发了科研领域对新颖物理现象的兴趣。在这种超晶格中,层状晶体片之间存在轻微的相对旋转,即扭曲角,其引起的变化可能导致材料性质发生独特的变化。例如,魔角双层和多层石墨烯中观察到了超导性,而在两个略微扭曲的六角硼氮化物(hBN)薄晶片之间的界面上出现了铁电样区域。尽管这些扭曲堆积现象引起了广泛关注,但对于这些材料的力学性质了解还不充分。特别是在vdW陶瓷材料中,尚未有针对扭曲结构对变形性和强度的影响进行深入研究。针对这一问题,燕山大学赵智胜及田永君、陕西理工大学张洋博士合作提出了一种合成方法,通过常规的火花等离子烧结(SPS)和热压烧结制备了具有扭曲层结构的BN陶瓷材料。在制备过程中,他们使用了类似洋葱的BN纳米颗粒作为起始材料,并采取了特定的制备条件来实现所需的扭曲结构。该研究解决了对于vdW陶瓷材料的扭曲结构对变形性和强度的影响的认识不足的问题。通过合成具有三维相互锁定的BN纳米片的扭曲层陶瓷材料,科学家们成功地展示了这种材料具有超高的室温变形性和强度。这一突破为工程陶瓷领域提供了新的可能性,因为通常情况下工程陶瓷的变形性较差,几乎没有塑性。通过将扭曲层结构引入vdW陶瓷材料,研究人员改变了材料的内部结构,从而实现了材料力学性能的显著提高。【科学解读】为了研究洋葱状BN(oBN)前体向六角硼氮化物(hBN)陶瓷的相变过程,并深入了解形成的结构特征,研究者通过图1详细表征了实验结果。在图1a中,研究者通过X射线衍射(XRD)图谱展示了不同SPS条件下制备的块状陶瓷的结构演变。图中的XRD图谱表明,随着烧结温度的升高,oBN前体的宽峰逐渐变窄,同时出现了与hBN类似的衍射线,指示了oBN向hBN样式的层状结构的相变过程。在图1b中,展示了在1,600℃烧结5分钟的陶瓷的显微结构,显示了纳米片的随机取向。通过选择区域电子衍射(SAED)测量,揭示了1,600℃样品与标准hBN晶体学衍射图案存在差异,暗示了一些亚稳态结构的存在。在图1c和图1d中,通过差分相位对比图像和高角度透射电子显微镜(HAADF-STEM)图像,研究者观察到了具有扭曲不同BN纳米片的层状结构。而在图1e中,透射电子显微镜(TEM)图像呈现了莫尔纹超晶格的存在,通过傅里叶变换图案表明了两组衍射斑点之间的旋转角度为27.8°。这些实验结果揭示了在1,600℃条件下烧结的陶瓷中存在着扭曲层结构,与标准hBN相比存在差异,暗示了亚稳态结构的存在。图1. 通过SPS制备的块状陶瓷的XRD图谱和显微结构。图2展示了通过SPS制备的TS-BN陶瓷在室温下具有超高的变形性和强度。在图中研究者进行了工程应力-应变曲线表征,发现TS-BN-I陶瓷在1,600°C烧结5分钟后表现出非凡的工程应变(14%)和强度(626MPa),远远超过了普通hBN陶瓷。通过单个循环压缩试验和多个循环试验,研究者证明了TS-BN-I陶瓷具有持久的塑性变形能力,并且能够在多次载荷-卸载循环中保持完整,这表明了其出色的力学稳定性。耗散能量与单轴压缩应力的对数-对数图显示,TS-BN陶瓷具有非常高的能量耗散能力,在塑性变形阶段的能量耗散甚至超过了商业hBN陶瓷等其他工程陶瓷。这些结果突出了TS-BN陶瓷在室温下具有出色的弹塑性能,表明其在冲击吸收器等应用中的潜在应用前景。TS-BN陶瓷的制备和性能评价为工程陶瓷领域带来了新的突破,为设计和制造具有优异力学性能的陶瓷材料提供了重要参考。图2. 通过SPS制备的TS-BN陶瓷的超高室温变形性和强度。图3展示了TS-BN陶瓷超高变形性和强度的起源。a部分通过计算得出了假想的θ-tBN晶体的滑移能和解理能。结果表明,与hBN相比,引入了扭曲堆叠结构后,滑移能明显降低,而解理能保持不变。这表明了扭曲堆叠对材料变形性能的重要影响。b部分展示了假想θ-tBN晶体的固有变形性因子(Ξ),与hBN相比,θ-tBN晶体的Ξ值提高了两个数量级,甚至超过了已知具有超高室温变形性的其他材料,如Ag2S和InSe。这表明扭曲堆叠结构对材料的变形性能有显著的提升作用。c和d部分展示了在三轴压缩试验中得到的(001)和(100)晶格面的平均差异应力(即强度)。结果显示,TS-BN的强度明显高于hBN。这说明了扭曲堆叠结构在提高陶瓷材料强度方面的重要作用。图3. TS-BN陶瓷超高变形性和强度的起源。图4展示了TS-BN陶瓷的变形模式。a) 断裂表面显示了大量纳米片,这些片被弯曲形成了明显的弯曲结构(白色箭头)。这些弯曲的纳米片表明了在陶瓷断裂过程中发生的弯曲变形。b) DF-STEM图像展示了陶瓷中纳米片的弯曲(白色箭头)和剥离(橙色箭头)。通过剥离面,纳米片被“剥离”成多个片,这显示了纳米片之间的局部剥离现象。c) HAADF-STEM图像表征了弯曲边界的局部缺陷(红色圆圈),表明了陶瓷中存在的一些微观缺陷。d) TEM图像展示了基面原子层之间的ripplocation(箭头)和位错(⊥),这些位错和ripplocation是陶瓷中的变形机制之一。这些观察结果揭示了TS-BN陶瓷的变形机制,包括纳米片的弯曲、剥离以及基面原子层之间的位错和ripplocation。这些变形机制有助于陶瓷在受力过程中保持整体结构的完整性,从而提高了其机械性能和韧性(见图4)。图4. TS-BN陶瓷的变形模式。 【科学结论】本文展示了通过调控层状结构中的扭曲堆叠可以显著改变二维材料的物理和力学性质。研究者通过对氮化硼陶瓷的制备和调控,成功地实现了超高的变形能力和强度,这为工程陶瓷领域提供了全新的思路和方法。通过引入扭曲堆叠,陶瓷的变形因子得到显著提高,从而使其具有超出传统材料的变形能力和强度。这为设计和制备具有优异力学性能的新型陶瓷材料提供了新的思路和策略。此外,本文还揭示了纳米结构调控对材料性能的重要性,强调了在材料设计和工程中利用纳米尺度结构调控的潜力。原文详情:Wu, Y., Zhang, Y., Wang, X. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024). https://doi.org/10.1038/s41586-024-07036-5
  • 功能强大!科学家用CRISPR制造可变形智能材料
    p style="text-align: justify text-indent: 2em "还有什么是CRISPR不能做的吗?科学家已经使用这种基因编辑工具制造了大量基因改造生物,同时还用它来追踪动物发育、检测疾病以及控制害虫。/pp style="text-align: justify text-indent: 2em "如今,他们又发现了这种基因编辑工具的另一个应用——span style="color: rgb(0, 176, 240) "使用CRISPR创建智能材料,后者能够根据指令改变自己的形状。/span/pp style="text-align: justify text-indent: 2em "研究人员在日前出版的美国《科学》杂志上发表报告称,这种可变形的材料能够用来运送药物,并为几乎所有的生物信号“站岗放哨”。这项研究由剑桥市麻省理工学院生物工程师James Collins主持。/pp style="text-align: justify text-indent: 2em "Collins的团队研究的是由脱氧核糖核酸(DNA)链连接在一起的充满水的高分子聚合物(被称为DNA水凝胶)。为了改变这些材料的性质,Collins和他的团队采用了一种形式的CRISPR,后者使用一种叫做Cas12a的DNA剪切酶。(基因编辑器CRISPR-Cas9使用Cas9酶在需要的位置剪切DNA序列)/pp style="text-align: justify text-indent: 2em "Cas12a酶可以被编程来识别一种特定的DNA序列。这种酶会切断其目标的DNA链,然后切断附近的单链DNA。/pp style="text-align: justify text-indent: 2em "这一特性使得研究人员能够构建一系列由CRISPR控制的水凝胶,其中包含一个目标DNA序列以及单链DNA——当Cas12a识别出一个刺激物中的目标序列后,这些单链DNA就会断裂。/pp style="text-align: justify text-indent: 2em "单个DNA链的断裂触发水凝胶改变形状,或者在某些情况下完全溶解,进而释放有效载荷。/pp style="text-align: justify text-indent: 2em "例如,作为一项治疗的一部分,出于对刺激的响应,研究小组创造的这些水凝胶可以释放酶、药物甚至人类细胞。/pp style="text-align: justify text-indent: 2em "Collins希望这种水凝胶能被用来创建智能的治疗方法,例如在肿瘤存在时释放抗癌药物,或者在感染部位周围释放抗生素。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "研究人员还将CRISPR控制的水凝胶集成到电子电路中。/span/pp style="text-align: justify text-indent: 2em "在一项尝试中,他们把水凝胶放入一个名为微流体室的小芯片状的装置中,这个装置与一个电子电路相连。当检测到来自包括埃博拉病毒和耐甲氧西林金黄色葡萄球菌等在内的病原体的遗传物质时,作为响应,该电路将会被关闭。/pp style="text-align: justify text-indent: 2em "研究团队甚至利用水凝胶开发了一个诊断工具原型——当它在实验室样本中识别出埃博拉病毒的遗传物质时便会发送无线电信号。如果一名团队成员在背包里携带了无线电探测器,他只需简单地走近这些样本就能识别出其中的阳性样本。/pp style="text-align: justify text-indent: 2em "纽约州康奈尔大学伊萨卡分校生物工程师Dan Luo说,CRISPR水凝胶是对其他响应性水凝胶的一次改进,因为科学家可以很容易地确定是什么触发了材料的变化。过去创造智能水凝胶时所使用的酶要么不能切割特定的DNA 序列,要么只能切割少量特定的序列,进而限制了它们的适应性。/pp style="text-align: justify text-indent: 2em "“我们现在正处于CRISPR的时代。”Collins说,“它已经接管了生物学和生物技术。我们已经证明,它现在可以进入材料和生物材料领域。”/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "CRISPR又被称为基因剪刀,是生物科学领域的游戏规则改变者,这种突破性的技术通过Cas9酶发现、切除并取代DNA的特定部分。/span这种技术的影响极其深远,从改变老鼠皮毛的颜色到设计不传播疟疾的蚊子和抗虫害作物,再到修正镰状细胞性贫血等各类遗传疾病等等。该技术十分精准、廉价、易于使用,并且非常强大。/p
  • 2008 IKA量热仪中国地区用户培训班
    为加强IKA公司和广大用户的交流和联系,更好的服务广大用户,广州IKA公司于2008年5月22日举办了IKA量热仪中国地区培训班,具体安排如下:(一) 德国IKA量热仪简介(二)量热仪的原理(三)量热仪的应用以及应用技术和方法交流(四)量热仪的操作、日常维护和故障处理(五)量热仪常见问题解答下图为培训人员合影
  • 2009德国IKA量热仪研讨会在上海成功举行
    由广州仪科实验室技术有限公司(IKA Works Guangzhou) 举办的“ 2009德国IKA量热仪应用技术研讨会” 于2009年6月3日在上海神旺大酒店顺利举行,会议邀请了来自江浙地区的科研院所、电厂、商检质检、船厂及其它行业的近40位用户。本次研讨会由我司量热仪德国专家Mr. Linda主讲,内容涉及量热仪的原理及应用、安装调试及日常维护,并就用户实际运用过程中感兴趣或遇到的问题进行了讨论,现场氛围融洽,反应热烈。德国IKA集团成立于1910年,量热仪是本公司的最主要产品之一,近年来相继推出了C5000,C2000和C200等型号,成为世界上最具活力的分析仪器制造厂家。为加强公司与用户的联系,着眼于把分析仪器及其应用的最新发展动向及时地介绍给各位专家和技术人员,特举办此次分析技术交流会。 会议现场 操作实训 学术专家组
  • 激光变形镜将在莞量产 投产后年产值5亿
    东莞首个涉及高端光学元器件—变形镜制造的科技成果转化项目迈出重要一步。12月5日,中国工程院院士牛憨笨、清华大学深圳研究院院长嵇世山、清华大学精仪系副主任季林红教授等专家聚首东莞,对东莞市兰光光学科技有限公司(下称兰光光学)与清华大学共同承担的变形镜项目批量生产能力进行了论证和评估。评估组一致认为,兰光光学已经具备了该项目实现批量生产的基本条件。  东莞市科技局副调研员肖铮勇表示,该项目符合“科技东莞”的发展要求,对国家高科技产业、地方经济建设具有重大意义,企业要以本次评估为契机,尽快列入政府“一事一议”重大项目,争取更多的专项资金扶持,并不断完善项目,力争尽快产业化,并进一步将产学研合作做深做大。  据了解,变形镜批量生产中的关键技术能够直接运用于大量民用领域,对东莞产业发展具有较强的辐射能力,将带动东莞激光器产业整体发展水平迈上新的台阶。  变形镜是大型激光装置中的关键技术  昨日,评估组听取了清华大学关于《变形镜技术研制状态与对批量生产的要求》和兰光光学公司的《发展规划》及《为建设变形镜生产线所开展的工作》三项报告,并对变形镜生产车间进行了实地考察。  清华大学相关负责人介绍,变形镜制造技术是现代高精度大型激光装置中的关键技术,也是开发新型、洁净和可持续的民用清洁能源的关键技术。  项目从2002年开始研发,到2011年工程样机达到国际先进水平,目前已在设计、制造、集成调试、控制和检测等五大类技术中取得重要突破,全套制造工艺流程也已初步定型,下一步将面临批量生产。  事实上,兰光光学一直将该项目作为产业转型发展的突破口,在组织结构、厂房建设、设备购置、人才队伍等方面做了大量工作。前期已投入了大量资金,购置了¢600mm口径干涉仪等关键设备,初步形成了较为完善的产品质量控制体系。  同时,牛憨笨院士也指出,由于项目技术难度大、要求高,资金需求量大,兰光光学目前距离完整的生产线要求尚存差距,比如欠缺大口径镀膜机、磁流变抛光设备、多槽超声波清洗机等高精密大型设备,需要进一步投入。  评估组建议兰光光学公司应尽快建立健全、深化完善产学研结合的实践机制 清华大学应进一步加强技术指导、加快工艺转移、人才培养 校企双方应加强协同创新,以保证该项目批量化生产的顺利实施。  有望带动东莞整个激光器产业的升级  兰光光学成立于2011年,是一家专业从事光学器件及产品科研、生产、销售的高科技企业。其前身是一家生产天花板装饰材料的传统企业。在该公司董事长毛卫平看来,此次与清华大学合作,承接变形镜批量生产项目也是该公司从传统劳动密集型企业向高科技型企业转型的关键。  据了解,“变形镜”是集光机电为一体的高科技含量的产品。该项目是清华大学通过承担国家重大专项任务,形成了具有自主知识产权的科研成果,已具备进一步实现产业化的技术基础。兰光光学公司就该项目与清华大学进行产学研合作。  目前,兰光光学已投资2000多万元用于首条生产线的设备购置及体系建设,项目运行后年产值有望达到5亿元。  除此之外,该公司项目“工业用高功率固体紫外激光器”、紫外光学设备等也有巨大的市场潜力,而通过介入大型科研项目,也将加快企业向高端制造业转型的步伐。  据了解,变形镜每套价值高达100万美元以上,并且作为长期运行的易损耗产品,每年还需要10%的备件,市场潜力巨大。  此外,变形镜批量生产所需的关键技术,有望辐射和带动东莞整个激光器产业的升级。据介绍,变形镜批量生产中的关键技术能够直接用于大量民用领域,因此对当地产业发展具有较强的辐射能力。“目前华南地区的激光设备出厂台数占全国的70%以上。”专家指出,这一项目投产后也将带动东莞乃至华南地区工业激光器行业上一个台阶。
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • IKA氧弹量热仪应用技术研讨会在北京成功召开
    2011年9月7日,IKA携手国家煤炭质量监督检验中心,在北京艾维克酒店成功举办氧弹量热仪应用技术研讨会。 本次研讨会针对氧弹量热仪的工作原理,日常应用和维护等用户关注的热点,邀请了煤炭科学研究总院李英华教授,及IKA量热仪资深技术运用专家(ASTM成员)Kai-Oliver, Linda先生现场进行讲授,近50位业界代表参与了本次讨论,其中不乏IKA量热仪的老用户。他们分别来自量热仪广泛应用的行业:煤炭质检、能源电力、石油化工等。 IKA亚太区销售总监Michael Liu先生为研讨会致开幕词,在介绍IKA量热仪悠久的研发和销售历史的同时,更强调了对亚太区市场未来发展的信心与计划。研讨会结合理论讲授与现场互动,各参会代表在专家的指导下,现场进行量热仪的操作使用,其中C2000,C5000这两款量热仪受到广泛关注,简洁的人机界面,简易的操作,给现场体验者留下深刻印象。广大IKA新老用户借此机会,就使用过程中的疑难点与在场的专家进行探讨,并与其他用户交流使用心得,分享操作经验。 研讨于是日下午5点落下帷幕,各与会代表就研讨会及量热仪提出了宝贵意见,并对此次研讨会的召开给予了充分的肯定。 IKA工程师现场解答用户疑问,互相探讨使用心得 IKA量热仪销售团队与李英华教授合影 关于IKA( www.ika.com, www.ikaasia.com) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有分公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • IKA第四期量热仪用户技术交流会成功举办
    2012年3月30日,德国IKA艾卡公司在广州成功举办了第四期量热仪用户技术交流会,来自各研究院所,高校和检测结构等不同单位共36名用户出席了本次交流会。会上IKA亚太区销售总监刘宝健介绍了IKA公司的历史、量热仪技术发展、以及用户最关心的技术服务等等;IKA量热仪产品经理于瑞国则针对&ldquo IKA量热仪技术以及复杂样品燃烧性能改善&rdquo 为各位参会者进行了讲说,重点介绍了IKA量热仪稳定的工作性能和丰富的辅助燃烧配件,可以有效地帮助改善样品的燃烧性能。特邀专家广东省电力科学研究院张宏亮先生,为现场的各位来宾做了《煤的发热量的测定》和《生物质能的开发和利用》两个专题的报道。现场的来宾大部分是来自研究院所、高校,从事清洁能源、生物质能的研究,IKA量热仪可以为煤炭检测、生态研究、生物质能开发利用领域中样品热值的测定,提供准确、稳定的解决方案。IKA技术人员在现场积极解答用户的提问,专家与来宾之间的讨论热烈,整个研讨会获得圆满成功。关于 IKA ( www.ika.com, www.ikaasia.com ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有分公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 2010德国IKA量热仪中国区用户培训圆满结束
    2010年7月22至23日,德国IKA量热仪中国区用户培训会在广州裕通大酒店顺利举行, 来自国内各电厂、煤检中心、出入境检验检疫局、标准检验认证测试机构以及能源资源公司等近50位代表参加了本次培训,并成功荣获了IKA颁发的培训合格证书。 IKA本次培训会主要针对各单位量热仪技术主管及仪器操作的一线人员,旨在提升他们对IKA量热仪构造、运行原理的理解、产品性能以及实验准确性的把握;本次培训会主讲人来自IKA德国总部资深量热仪技术专家Mr. Kai-Linde, 他在量热仪分析技术领域有长达20多年的经验,他的到来为现场用户解决了诸多实际问题,来自广州出入境的王先生说,这是一次非常有价值的培训会,希望IKA每年都能为广大用户举办类似高品质的培训会。 值得一提的是,IKA C7000量热仪成为了本次会议的焦点。C7000以其作为在全球范围内测量时间最短的量热仪而闻名遐迩,受到不少高端用户追捧,来自山东煤炭工业的暴小姐更是有备而来,她针对C7000提了很多极具实践性和代表性的疑问,而且不少问题颇具技术含量,IKA德国专家十分欣赏,在现场一一作了解答和探讨。 IKA公司研发和生产量热仪始自1922年,至今已有近百年的历史,IKA量热仪广泛应用于各类物质分解过程中热值的测量,尤其是在煤炭热值的检测中更是必不可少的测量工具;IKA量热仪以其世界领先及独创技术、高端品质及精确测量为核心优势,在业内独树一帜。与会人员合影IKA德国量热仪专家KAI-LINDE在解答用户疑问
  • 2010 IKA量热仪中国区用户培训会邀请函
    尊敬的IKA 量热仪用户:  感谢您选择IKA 的产品和服务,我们定于2010 年7 月21-23 日在广州举行IKA 量热仪用户培训会,培训对象是技术主管及仪器操作维护等相关人员。请贵公司安排1-2 人参加此次培训。本次为免费培训,住宿、差旅自理。  届时我司量热仪技术团队将安排全面的量热仪产品培训,在培训结束后颁发相关证书。  主讲人:Linde Kai-oliver,德国资深量热仪技术专家  培训日期: 7 月22-23 日  培训地点:广州裕通大酒店  培训安排:  7 月21 日全天 签到并入住广州裕通大酒店  7 月22 日全天(9:00-5:30)  a) 量热仪的基本原理及应用常识  b) IKA 量热仪的操作规范化、日常维护和故障处理  c) 常见问题解答、分组讨论  d) 实际样机操作时间  7 月23 日 IKA 特别活动  上午:IKA 广州工厂参观  下午:赏品岭南特色荔枝园  交通指引:广州天河区华景新城公交站旁,火车站及机场均有直达该酒店的公交和机场大巴。  (乘地铁在岗顶站下,坐的士起步价到达酒店。)  请填妥以下信息并发送至jason.ou@ika.cn 或kenny.chen@ika.cn,或传真至020-82088373 转836   咨询请致电:13924120926 欧先生或13825048765 陈先生。单位名称: 姓名: 部门及职务: 联系电话:(办公及手机) 单位地址:
  • 徕卡法医学比对显微镜---助力得出科学的鉴定结论
    法医学比对显微镜介绍:徕卡FS C、FS M和FS CB系列法医学比对显微镜可用于检测弹道、工具痕迹、毛发、纤维和其他司法鉴定证据,并将提取的证据与所有物中发现的蛛丝马迹进行比对。徕卡FS系列法医学比对显微镜优点 一、便于记录配备高性能相机和软件应用,便于记录、测量、注释和存档精确测量样本,从不同角度观察,可以在案例报告上添加注释利用软件拼接功能,轻松记录超大视野利用高分辨率相机,记录微小的细节 二、多样化的比对方法利用多功能比对桥,支持多种高精度比对利用可调节分割线,轻松改变比对方法,协助您的鉴证工作;全部到左边,全部到右边,或者相互叠加以0.1%的放大精度比对右侧和左侧的图像,确保对结果充满信心。适应变形样本,+/- 4%的变焦放大调整(FS C,FS CB)三、可靠比对 利用高规格光学器件,得出可靠的比对结果对于远心目标,必须以正确角度观察通过物镜复消色差校正和单独虹膜控制,准确观察并记录证据精确的校准和测量,采用固定放大物镜和带编码的物镜转换器(适用于FS C以及搭配带编码显微镜的FS CB)四、采用多种人体工学组件 长时间工作依然舒适人体工学工作台,高度可电动调节,确保坐感舒适可调节观察角度,确保全天保持正确坐姿载物台、焦距和照明控制均触手可及,尽可能减少重复性手动操作。 五、提供多种照明选项,可清晰检测各种样本使用光纤光导、独立聚光,或多段环形光源,观察表面结构 利用同轴照明很容易观察到高反射表面利用透光分析半透明样本的内部结构 使用标准显微镜的所有对比技术,如荧光、相衬、偏振光、微分干涉对比(徕卡CFS CB比对桥可用于常规和高级显微镜平台)进行复杂结构的对比徕卡法医学比对显微镜应用介绍:法医学实验室将现场的弹壳与发射的进行比对分析破坏锁具的工具痕迹,并将其与所有物中发现的工具进行比对调查证件是否伪造将车祸中的毛发、纤维和油漆与“肇事逃逸"的车辆进行比对 凭借精确可靠的功能,助力得出科学的鉴定结论 :配备高性能相机和软件模块,便于记录、测量、注释和存档利用多功能比对桥,支持多种高精度比对利用高规格光学器件,得出可靠的比对结果采用多种人体工学组件,即使长时间工作也不会感到疲劳提供多种照明选项,可清晰检测各种样本。 堪称是取证实验室的理想选择 徕卡FS C / FS M / FS CB法医学比对显微镜的技术:特殊比对桥设计 采用特殊比对桥设计技术,确保可以持续观察利用比对桥中的颜色中性棱镜,精确重现色彩凭借比对桥的精密机械和光学结构,对左右视野进行精确比对。 相关产品:FS CFS MFS CB比对桥
  • 成像改进测量:视觉变形测量中的“成像魔法”
    数字图像相关方法(DIC)是实验力学领域最实用、最受欢迎和最具生命力的非接触全场变形光学测量技术,已在固体力学、材料科学、生物医学工程等不同科研领域以及材料力学性能测试、航空航天、土木交通等工程领域获得无数成功应用。2024年8月13日,由仪器信息网主办的第三届试验机与试验技术网络研讨会即将召开。期间,北京航空航天大学潘兵教授分享报告《成像改进测量:视觉变形测量中的“成像魔法”》,介绍近年如何通过成像系统和技术的创新来提升数字图像相关测量的实用性和精准性,包括:1)用于材料力学性能测试的高精度、超灵敏、超高温视频引伸计;2)从单相机三维变形测量,到单相机360O全景/双表面变形测量;3)从白光DIC到蓝光/紫外主动成像DIC,再到荧光DIC,以实现极高温和强抗干扰等极端情况下的变形测量。本次会议于线上同步直播,欢迎相关领域科研工作者、工程技术人员等参会交流!关于第三届试验机与试验技术网络研讨会为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网将于2024年8月13日举办第三届试验机与试验技术网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/testingmachine2024/
  • 国内首台淬火/变形相变仪将落户上海大学
    德国巴赫热分析公司的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)拥有世界上众多的金属研究的用户。由于价格昂贵,在中国一直没有此领域的使用者。日前,上海大学材料学院经过反复的调研论证,已经和巴赫公司的中国总代理-北京仪尊时代科技有限公司签署了购买合同。所以,上海大学将成为国内首台高级相变仪的使用者,希望它将成为该校金属学研究的得力帮手。同时,仪尊时代感谢上海大学的信任和支持,将继续为推动此产品的市场而做出努力!有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 北航冯林课题组《Journal of Applied Physics》:具有全方位自适应移动性的可变形磁流体微型机器人
    磁活性流体或铁流体在外部磁场作用下可以改变其形状和粘度。它可以在较高浓度的磁性粒子中获得高的磁驱动力。由于其独特的性能,铁流体在众多领域有较为广泛的应用。当铁流体的载体液体和环境液体不相容时,前者因其高度的自聚性并不会在小体积中迅速分散。这一特性可以有效地防止磁性纳米粒子扩散过快。同时,基于其流体特性,铁流体具有较高的可变形性,并能通过狭窄的通道和障碍物。此外,铁流体在磁场中也具有高输出力。然而控制铁流体机器人在三维空间的运动,并使用机器人进行药物输送仍有待研究。近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种四线圈梯度磁场控制系统,该系统可以实现磁流体微型机器人在三维空间中的运动控制。同时,使用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密),研究团队依据在药物递送的实际应用环境中可能出现的复杂环境进行设计并打印相关模型,并对磁流体微型机器人在药物递送相关领域的性质和优势展开了进一步的研究。相关成果以“Deformable Ferrofluid Microrobot with Omnidirectional Self-adaptive Mobility”为题发表在《Journal of Applied Physics》期刊上。图一 由电磁线圈系统控制在血管模型中移动的铁流体机器人的概念图及系统图。经过数值模拟和实际测量,该系统产生的磁场梯度可以达到4.14T/m,并可以实现对磁流体机器人的三维控制,最大的控制误差不超过0.3mm。最后,线圈系统控制铁流体液滴在最大内径为3毫米的三维血管模型中实现自主运动。控制效果的实现使得铁流体机器人在通过血管导航进行药物输送方面具有技术潜力。图二 (a) 磁流体机器人运动的示意图。(b)不同时刻的磁流体机器人的位置和状态。比例尺:5毫米。(复杂环境尺寸特征:长38mm宽22mm高5mm,其中折线和曲线通道直径为1.5mm,左下角圆柱阵列援助直径0.5mm,间距0.5mm。)通过对磁流体机器人的变形能力的研究,发现机器人可以通过比其直径小四倍的缝隙(图二)。同时 ,基于有限元模拟,磁流体机器人的变形可以使流场中的阻力减少43.75%,这使得磁流体机器人在人体血管高流速环境中运动成为可能。此外,利用3D打印的血管模型,对磁控系统控制微型机器人在三维血环境中运动能力进行了验证(图三)。图三 (a) 血管模型中磁流体运动的控制示意图。(b)三维血管模型中不同时刻铁流体机器人的真实位置和状态。比例尺:5毫米。该项研究成果获得国家重点研发计划(No. 2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持。 原文链接:https://doi.org/10.1063/5.0076653 作者: 纪易明
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制