当前位置: 仪器信息网 > 行业主题 > >

神经仪器

仪器信息网神经仪器专题为您提供2024年最新神经仪器价格报价、厂家品牌的相关信息, 包括神经仪器参数、型号等,不管是国产,还是进口品牌的神经仪器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经仪器相关的耗材配件、试剂标物,还有神经仪器相关的最新资讯、资料,以及神经仪器相关的解决方案。

神经仪器相关的资讯

  • 当超声“碰到”神经元,脑科学有了新工具——记国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器”
    项目组科研人员与同行专家交流合影。 研究团队供图中国科学院深圳先进技术研究院(以下简称深圳先进院)实验室里,一台高精尖仪器一排排控制灯交替闪烁。一万多个探头发出超声波形成的操控声场,如同“上帝之手”穿过实验动物的颅骨,直抵大脑深处,精准“触碰”一些神经元,产生仅仅几微米的细微形变,被磁共振仪敏锐捕捉到。“亮了!亮了!”深圳先进院研究员郑海荣看到,磁共振图像上黑漆漆的实验动物大脑中间出现白色的小亮点,犹如在脑科学的未知宇宙中点亮一颗新的星球。2019年初,郑海荣团队迎来里程碑式的一天,这也是他们在国家自然科学基金国家重大科研仪器研制项目支持下开发“基于超声辐射力的深部脑刺激与神经调控仪器”的第4年。如今项目顺利结题,这台原创的高端科研仪器已进入产业化阶段。“科研需要一股不服输的韧劲!”回首研发历程,郑海荣向《中国科学报》表示,“6年来,一步步攻克科学难题、一个个突破工程难关,离不开整个团队攀登科学高峰的坚定信念和持久韧劲。”解脑科学“刚需”之急近年来,帕金森病、阿尔茨海默氏症、抑郁症、癫痫等脑疾病得到越来越多的关注,患者数量剧增,脑疾病带来的经济负担和社会负担越发严重,已成为我国人口老龄化面临的重要社会问题之一。然而,从科学上看,脑疾病发病机制仍不清晰,其诊治仍然是重大医学难题。“国际上脑科学研究者已经认识到,帕金森病、抑郁症等疾病多与深部脑区核团病变有关,对核团及其所在环路的神经调控是疾病治疗和科学研究的基本途径之一。”郑海荣表示。多年来,科学家将电、磁、光等技术与神经科学相结合,产生了脑深部电刺激、磁刺激、光遗传学等神经刺激与调控技术。但是,由于各自物理属性的不同,如何实现无创、精准对大脑深部进行有效调控仍面临严峻挑战。因此,脑科学面临的“刚需”是开发出一种适用于灵长类动物和人类、可无创到达大脑深部的刺激与调控工具。2013年前后,从事物理医学成像研究的郑海荣开始思考,有没有可能利用超声波来操控神经元活动。这个想法并不是天方夜谭。据了解,超声是一种机械波,医学上利用超声波在人体组织中的波散射来成像,就是大家熟悉的B超。早在几十年前,科学家曾观察到,超声波能够通过“声辐射力”让声场中的微小颗粒产生移动。不过,从来没有人尝试过专门设计一台这样的仪器,用超声波辐射力实现对大脑中神经元的“隔空探物”。基于此前对超声辐射力的研究,郑海荣团队下决心对“基于超声辐射力的深部脑刺激与神经调控仪器”进行自主研发,经多轮严格论证,2015年获得国家自然科学基金国家重大科研仪器研制项目支持。啃原创仪器“硬骨头”“虽然我们之前做过体量小一些的成像仪器,但这个项目从科学验证到工程实践面临的挑战非常大,刚开始心里也不太有底。”郑海荣坦承。一开始,他们就做好了啃“硬骨头”的打算。这台仪器共有4个关键部件,包括超声面阵辐射力产生与发射部件、超声电子指向与时间反演控制部件、磁共振导航超声刺激定位部件和多模态刺激反应监测部件。其中,超声面阵辐射力产生与发射部件中包含16384个阵元的面阵列超声辐射力发生器。“我们做的是原创仪器,不仅仪器国际上没有,连其器件和部件在国际市场上也买不到现成的,只能利用基础材料、元器件和芯片,在深圳自主设计、自主加工、自主调试和验证。”郑海荣介绍。更大的困难还在科学和工程上。他们遇到的第一道难题便是如何让超声波安全“穿过”颅骨。在体外实验阶段,研究人员已经实现了用面阵列超声换能器发射的声辐射力“点亮”神经元。为模拟动物体内环境,仪器部件被置于水中,如果跨过颅骨能“击出”水花则代表超声辐射力发挥作用。“外边(超声)打得挺激烈,(颅骨)里边却没丝毫动静、一点水花都没有,超声波几乎完全被颅骨散射和吸收了。”在前期屡败屡战的实验中,大家互相鼓励坚持下去。郑海荣说:“就像在挖一条隧道,没挖通之前总是黑暗笼罩,谁也不知道已经挖了多少,但只要确定大概的方向,坚持下去,终究会看到光明。”为打通这条“隧道”,他们回到科学理论中,引入非均匀多层介质中的“时间反演”理论,对每一个声信号通道的时空传播特征进行模拟、计算、调控与调试,实现各通道间纳秒级高精度控制,最终成功让上万个超声通道协同工作,“齐心协力”安全地穿过颅骨,精准聚焦在预定靶点,而且不引起脑组织损伤。一个通俗的解释是,就像北京2022年冬奥会开幕式《雪花》节目中,从节目结束时每位小演员的站位开始,通过“倒放”的方式确认每位小演员的出发时间、地点和行走路径。第二道难题是如何用核磁共振成像灵敏地检测到超声辐射力给神经元带来的4~5微米的精细变化。这事关刺激的精准,但超声本身“看不到”颅内自己的轨迹。为此,在项目支持下,他们坚持不懈开展攻关,发挥磁/声兼容的优势,创造性地研制了“快速磁共振射频激发与梯度编码成像技术、磁共振声辐射力成像技术”,用于监测超声辐射力刺激引起的微形变,有效地提高磁共振成像的时空分辨率和灵敏度,实现磁共振对于声波轨迹和靶点的敏感捕捉和可视化。2019年初,项目进行到第4年,研究团队终于解决这个问题,在“隧道”中迎来一束光明。合作才能融通高端科研仪器的研制不仅需要开创前沿科学理论,也要挑战诸多工程技术极限,只有团队相互协作、密切配合,才能实现共同的目标。该项目汇集了来自多家科研机构、不同学科背景的多个团队,70多位研究人员在统一的目标下开展分工合作。据郑海荣介绍,由他带领的深圳先进院团队主要承担超声辐射力高密度面阵辐射力发生器、万通道电子控制系统及实时磁共振刺激定位成像部件等仪器主体部分研制。强梯度声场设计工作主要由中国科学院声学研究所团队承担,刺激效果对标与标定工作由清华大学团队承担,神经生物学基础机制工作由浙江大学等团队承担,刺激的应用效果工作由首都医科大学、苏州大学团队承担。几年实践下来,多学科交叉团队形成了一套行之有效的工作机制和组织模式。“我们整个大仪器团队划分为12个小组,每周召开一次小组会,每月召开一次大组会,会议纪要有厚厚的几大本。”郑海荣介绍。研究成员表示,这样的机制形成了不同学科背景研究人员之间相互交流和学习、围绕同一目标共同攻关的良好氛围,为高效解决问题奠定了基础。如今,这台由中国科学家独创的高端仪器已经成为脑科学研究领域的“抢手货”。团队核心成员之一、深圳先进院研究员牛丽丽告诉《中国科学报》,目前已经有超过40家国内外科研机构使用了超声刺激仪器,主要应用在有癫痫、帕金森病、抑郁症、成瘾等疾病的小动物和非人灵长类大动物实验中,其有效性和安全性得到了验证。面向未来,让更多科学家用上这种仪器、助力人类脑疾病诊疗,是团队成员共同的期待。
  • 仪器进行神经控制?这个国家重大科研项目最近有了新进展
    p  无论是最近上映的《超人总动员2》利用屏幕控制人行动还是令小编印象深刻的英剧《神秘博士》第7季某集中利用平板电脑控制人的能力意识,操控他人意识行动永远是影视剧乐此不疲的元素。现实生活中,通过仪器操控别人行动虽不现实,但有无数科学家付出毕生心血致力于通过外部作用刺激大脑神经进而调整人的行为,相关的科学进展也是不时出现。其中,就包括运用科学仪器进行相关研究,而这也是国家重大科研仪器研制项目,最近,它有了新进展。br//pp  近日,国家自然科学基金委员会(以下简称自然科学基金委)医学科学部在深圳组织召开国家重大科研仪器研制项目(部门推荐)“基于超声辐射力的深部脑刺激与神经调控仪器研制”中期检查会议。中期检查专家组由国家重大科研仪器研制项目专家委员会委员、管理工作组专家、财务专家及同行专家等13位专家组成。/pp  国家重大科研仪器研制项目负责人郑海荣研究员和各课题负责人分别向专家组汇报了超声神经调控仪器项目总体进展、仪器研制、科学研究及目标任务完成情况。专家组对设备研制现场、核心部件和技术应用研究进行考察,观看了万阵元面阵系统复杂序列调控和磁共振导航系统的技术演示。/pp  据悉,该项目由中国科学院深圳先进技术研究院主持承担,是广东省和深圳市首个承担的“国家重大科研仪器设备研制专项”(部委推荐类)重大项目。项目2016年启动,是基于超声波在特定声学条件下能控制神经元电活动的新原理,研制大规模万阵元面阵超声辐射力发生器等一系列核心部件组成的新型仪器系统,从而对大脑深部及脑内全空间神经开展无创精准的刺激与调控,旨在为脑疾病治疗及脑科学研究提供革新性新工具和新手段。/pp  经过质询和讨论,专家组认为该项目经过近三年的项目攻关,完成了计划任务书规定的前三年研制计划,达到了项目预定中期指标。/p
  • 深圳先进院跨尺度超声神经调控仪器研制取得新进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  日前,中国科学院深圳先进技术研究院在跨尺度超声神经调控仪器研制方面取得新进展。相关研究成果以emA Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation/em为题,发表在神经工程专业期刊emIEEE Transactions on Neural Systems and Rehabilitation Engineering/em (DOI:10.1109/TNSRE.2017.2765001)上。2017年11月9日《自然》杂志在“未来用于大脑的超声技术”综述文章中引用报道了这一由郑海荣团队研制的超声神经调控仪器,并称之为神经科学和脑疾病研究带来了新武器(emNature/em, vol. 551, pp. 257-9)。/pp  发展无创精准的新型神经调控技术一直是神经科学和脑疾病领域的迫切需求。超声波作为一种机械波,其力学效应控制神经元电活动新机制的发现,使无创地开展神经刺激成为可能。最新发现超声瞬态刺激在分子、细胞、动物和人脑水平的神经调控科学证据,证实了超声可以控制神经元的活动。超声还可以通过不同的强度、频率、脉冲重复频率、脉冲宽度、持续时间等参数,使刺激部位的中枢神经产生兴奋或抑制效应,从而使神经功能产生双向调节的可逆性变化。这些超声神经调控技术研究成果证实,超声对神经环路的调控机制和脑疾病的发病机理等基础科学问题的研究具有重要潜力,超声作为一种新型无创的神经刺激与调控技术,在脑科学研究和脑疾病干预方面展示出光明前景。/pp  深圳先进院超声技术团队针对跨尺度超声神经刺激所需要的各种需求,设计开发了神经刺激的专用超声辐射力发射探头及电子设备。超声物理参数包括超声辐射力大小、作用方式、频率、脉冲重复频率、强度和脉冲持续时间等都可以自由调整。同时,该仪器也设置了输出输入同步功能,可以和其他神经电生理设备同步工作以完成神经刺激和信号采集的同步获取。该新型超声神经刺激仪已经初步实现了小动物脑神经调控以及非人灵长类大动物的神经环路调控。/pp  此外,项目组同步开发了跨尺度、动态多焦点的超声神经调控装置,涵盖了细胞、小动物、灵长类大动物研究的多个仪器,并已经成功开发了2048通道的磁共振兼容超声神经调控系统,为多点动态深脑刺激研究提供了仪器基础。目前,微/小动物神经调控设备已经成功应用到了包括浙江大学、清华大学、上海交通大学、香港理工大学、美国南加州大学、中科院昆明动物研究所、上海生命科学研究院神经科学研究所和心理研究所等十多个国内外神经生物学与脑科学实验室,在超声神经调控及声感基因(声遗传)等关键技术研究中发挥关键作用。/pp  上述研究工作得到国家自然科学基金委国家重大科研仪器研制项目支持。/pp style="text-align:center "img alt="" oldsrc="W020171121603234843295.png" src="http://img1.17img.cn/17img/images/201711/uepic/4c4edba5-5fc1-400b-8f97-aa23e96d8d87.jpg" style="border-left-width: 0px border-right-width: 0px border-bottom-width: 0px border-top-width: 0px" uploadpic="W020171121603234843295.png"//pp style="text-align:center "(a-b)微尺度超声神经刺激芯片;(c)便携式单通道小动物超声神经刺激仪/pp style="text-align:center "img alt="" oldsrc="W020171121599227569946.png" src="http://img1.17img.cn/17img/images/201711/uepic/92bc7715-b146-4f49-8cc1-7fcb6aa38bf6.jpg"//pp style="text-align: center "千通道级别多点动态超声神经调控换能器及系统/p
  • “基于超声辐射力的深部脑刺激与神经调控仪器研制”项目交流会召开
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/c5d7fbe2-cabb-46af-9480-850fcfaf5d28.jpg" title="tpxw2017-10-30-01.jpg"//pp  国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器研制”年度交流会议于2017年10月24日在深圳召开。来自国内相关专业的7位同行专家、3位项目监理专家、中国科学院条件保障与财务局领导以及基金委医学科学部有关人员参加本次年度交流会议。/pp  专家组分别听取项目负责人郑海荣研究员以及子课题负责人的项目进展报告,并进行现场实地考察和认真讨论。专家组认为,该项目已完成阶段性目标,部分仪器已初步用于生物医学实验研究并获得较好成果,研究项目目前进展良好,同时针对项目实施中存在的问题给出意见和建议。国家重大科研仪器研制项目旨在鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,期望该研究能为医学科学研究提供新颖的手段和工具。/p
  • 京津共建神经免疫与感染疾病“国家队” 首批科研仪器设备投入达1.2亿元
    p  为深入贯彻落实国家创新驱动发展战略及京津冀协同发展战略,2018年2月25日,由首都医科大学附属北京天坛医院和天津医科大学总医院共同组建的京津神经免疫与感染疾病研究中心(以下简称京津神经免疫中心)在北京天坛医院新址正式成立。该中心由我校著名临床神经免疫学家、国家“千人计划”、“长江学者”特聘教授、国家重大科学研究计划(973)首席科学家施福东教授领衔,旨在为我国神经免疫和感染性疾病者的临床诊治、科学研究及人才培养搭建国家级平台。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/d32700e5-1dfc-46fa-b507-984a0ab5e676.jpg" title="u=2456930358,3340941993& fm=173& s=6EC2D81A1E0C70CE5849D5EB03009035& w=640& h=417& img.JPEG" width="600" height="391" border="0" hspace="0" vspace="0" style="width: 600px height: 391px "//pp/pp  在2017年度中国医院科技影响力排行榜中,北京天坛医院和天津医科大学总医院的神经病学排名分别居第1和第4位,京津神经免疫中心得以集两家医院之长联手,实属强强联合。成立仪式上,天津医科大学校长颜华和天津医科大学总医院院长张建宁分别就神经系统疾病京津一体化及全国联盟体系建立的意义、两院的渊源孕育协同发展发表了精彩演讲。北京天坛医院院长王拥军说明了对京津神经免疫中心的具体支持措施并提出殷切希望:“神经免疫事业的发展壮大是我们几代人的梦想,京津神经免疫中心由施福东教授整合天津和北京的力量组建。中心实行临床和科研一体化管理,不仅拥有国内一流的专家队伍,还有四硬件的强有力支撑,包括2400平方米中心实验室、国际顶尖科研专用7T核磁和小动物核磁、国家神经疾病中心共享技术平台和实验动物平台。首批科研仪器设备投入达1.2亿元人民币,中心的组建必将推动中国神经免疫事业的发展壮大。”/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/cd2b2cb8-ae77-441a-bd8b-ec59837ba04f.jpg" title="u=4033794001,437995655& fm=173& s=B1354F3015584FC80458785D0300C0B0& w=640& h=360& img.JPEG"//pp/pp  京津神经免疫中心的建成得到首都医科大学和天津医科大学的大力支持。首都医科大学校长尚永丰院士、天坛医院院长王拥军教授、天津医科大学党委书记姚智教授、校长颜华教授、总医院院长张建宁教授在北京就此合作进行了工作会谈,两校对京津共建国内首个神经免疫中心高度重视,一致认为京津神经免疫中心的建立顺应国家京津冀一体化战略趋势,是在神经病学领域的具体体现。两校将集中优势资源加大对京津神经免疫中心的支持力度,并对京津神经免疫中心的运行模式,高级人才运用的创新机制和科技成果共享机制等方面进行了建设性讨论。京津神经免疫中心的成立,为建立区域神经免疫和感染性疾病防治体系打下了坚实的战略基础,从而有利于实现资源共享、规范诊疗、人才联合培养、重大项目联合申报及承担。并借助京津冀一体化共享平台,促进临床研究成果转化,不断开辟神经免疫和感染性疾病防治领域的新天地。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/e3516863-330c-4d2c-8c5d-29abd22c4dba.jpg" title="u=449046876,3422302715& fm=173& s=7610788196DD0FCC2B1935F10300C092& w=640& h=426& img.JPEG"//pp/pp  京津神经免疫中心在成立后,迅速以自身为先导,依托国家神经系统疾病研究中心,联合北京、上海、广东等个16省市的28家医院,共同成立了国家神经免疫与感染疾病联盟,并于2月25日向首批24个国家分中心进行了授牌。联盟的成立明确了我国神经免疫病的当前和长期目标,标志着我国神经免疫病的研究事业进入了一个新的时代。/p
  • 1095万!杭州市质量计量科学研究院和北京市神经外科研究所仪器设备采购项目
    一、项目一(一)项目基本情况 1.项目编号:ZJ-2441296 项目名称:杭州市质量计量科学研究院液相色谱串联质谱仪项目 预算金额(元):3300000 最高限价(元):3300000 采购需求: 标项名称: 液相色谱串联质谱仪 中小企业政策: 不预留 数量: 1 预算金额(元): 3300000 简要规格描述或项目基本概况介绍、用途:液相色谱串联质谱仪设备1套。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注: 合同履约期限:标项 1,按照招标文件要求。 本项目(是)接受联合体投标。 2.项目编号:ZJ-2441295 项目名称:杭州市质量计量科学研究院2024年仪器设备采购(三) 预算金额(元):2850000 最高限价(元):2300000,550000 采购需求: 标项一 标项名称: 电感耦合等离子体串联质谱仪 中小企业政策: 不预留 数量: 1 预算金额(元): 2300000 简要规格描述或项目基本概况介绍、用途:电感耦合等离子体串联质谱仪设备1批。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注: 标项二 标项名称: 衡器检定能力提升 中小企业政策: 不预留 数量: 1 预算金额(元): 550000 简要规格描述或项目基本概况介绍、用途:衡器检定能力提升设备1批。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注: 合同履约期限:标项 1、2,按照招标文件要求。 本项目(是)接受联合体投标。(二)获取招标文件 时间:/至2024年06月13日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台线上获取 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 (三)对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:杭州市质量计量科学研究院 地 址:杭州市九环路50号 传 真: 项目联系人(询问):曾春柳 项目联系方式(询问):0571-81995009 质疑联系人:顾主任 质疑联系方式:杭州市九环路50号 (请通过以下路径在线提起质疑:政采云-项目采购-询问质疑投诉-质疑列表) 2.采购代理机构信息 名 称:浙江国际招投标有限公司 地 址:杭州市文三路90号东部软件园1号楼3楼 传 真:/ 项目联系人(询问):郑钢伟 项目联系方式(询问):0571-81061822 质疑联系人:赵娟 质疑联系方式:0571-81061819 (请通过以下路径在线提起质疑:政采云-项目采购-询问质疑投诉-质疑列表)       3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处、浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室(快递仅限ems或顺丰) 传 真: 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453二、项目二(一)项目基本情况项目编号:11000024210200085246-XM001项目名称:神外所高灵敏度单细胞免疫表型分析技术平台-4其他分析仪器采购项目预算金额:480 万元(人民币)采购需求:包号采购包预算金额(万元)品目号标的名称数量(台/套)简要技术需求或服务要求014801-1流式细胞仪1环境温度范围:15-28℃合同履行期限:按采购人要求本项目不接受联合体投标。(二)获取招标文件时间:2024-05-23 至 2024-05-30 ,每天上午08:30至12:00,下午12:00至16:30(北京时间,法定节假日除外)地点:北京市政府采购电子交易平台方式:供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。售价:¥0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京市神经外科研究所     地址:北京市丰台区南四环西路119号        联系方式:王老师,010-59976728      2.采购代理机构信息名 称:北京国际贸易有限公司            地 址:北京市朝阳区建国门外大街甲3号            联系方式:臧妍、梁潇,010-85343428、010-85343327            3.项目联系方式项目联系人:臧妍、梁潇电 话:  010-85343428、010-85343327
  • 遗传发育所揭示成体神经干细胞促进其子代新生神经元发育的调控机制
    p  1978年,Schofield首次提出干细胞的微环境定义,并发现局部微环境对造血干细胞干性的维持是必要的。从此,越来越多的研究定义了各种组织的干细胞微环境。然而,干细胞本身是否能作为微环境因素进而影响其子代细胞的发育尚未完全被揭示。在成体神经发生微环境中,成体神经干/前体细胞能够终生产生功能性神经元,参与学习记忆等。成体神经发生过程中,新生神经元能够释放反馈抑制信号来调控神经干细胞的增殖分化以及命运决定。然而,神经干细胞是否能够调控新生神经元的发育尚不清楚。/pp  中国科学院遗传与发育生物学研究所郭伟翔研究组,通过细胞清除,反转录病毒介导的单细胞标记以及信号通路调节等实验手段,发现神经干细胞可以持续提供Pleiotrophin (PTN) 配体促进其子代新生神经元发育。若没有此前馈作用,新生神经元树突会发育异常。进一步研究发现,PTN主要通过作用新生神经元上的ALK受体,从而激活AKT信号通路来促进海马新生神经元的发育。/pp  随着年龄的衰老,神经干细胞的数量逐渐减少,并且新生神经元也随之呈现出发育的异常。更为重要的是,该研究发现PTN的表达水平以及其介导的AKT信号通路的活性都随着年龄的增加而下降。然而,通过外援供给PTN或者激活AKT信号能够改善衰老所导致的新生神经元发育的缺陷。这一结果提示在成体神经发生微环境中,缺乏神经干细胞源性PTN因子可能是导致认知能力随着衰老的增长而衰退的原因之一。/pp  该成果于11月27日在线发表于神经科学期刊Neuron上。郭伟翔组博士研究生汤常永为该论文第一作者,郭伟翔为通讯作者。该研究得到遗传发育所研究员吴青峰在生物信息学分析以及实验设计上的帮助,军事医学科学院崔亚雄在脑组织切片染色上给予了很大帮助。该研究得到中科院先导、国家自然科学基金委和中组部青年千人计划的资助。/pp原文链接:/ppa title="https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub" href="https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub" target="_blank"https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub/a/pp style="text-align: center "img title="W020181127437669067284.jpg" alt="W020181127437669067284.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/3fff90be-98cf-4b57-8cc3-b274f31e0e42.jpg"//pp style="text-align: center "  神经干细胞分泌PTN促进其子代新生神经元发育/pp /p
  • 专家:天津港爆炸所谓“神经性毒气”属"重大误判"
    新华社天津8月19日电 两天来,一则关于天津港爆炸核心区检测出神经性毒气的新闻受到了广泛关注。正在天津爆炸现场执行救援指导任务的军事医学科学院化武专家组指出,爆炸现场根本不可能产生神经性毒气,所谓“神经性毒气”之说属“重大误判”。  17日晚,一则媒体报道称,天津港爆炸现场检测出神经性毒气,指标达到了最高值,甚至认为爆炸区内的多种危化品都可能产生这类物质。国家神性经毒剂中毒救治标准的起草者,国际同类标准的主要参与人员之一的军事医学科学院王永安研究员说,神经性毒气的标准说法应该是神经性毒剂,是毒性极强的化学物质,其毒性比氰化物高几十倍,合成极为复杂,而从爆炸现场探明化学原料,结合神经性毒剂的核心原料和生产条件来看,事故现场根本没有产生神经性毒剂的可能。  军事医学科学院专家、联合国禁止化学武器组织专家丁日高认同王永安的观点:“只要具备专业常识,就知道这绝不可能。”  同在现场执行任务的总参谋部防化指挥学院专家王宁也持同样观点:“我们看到这则报道时都很吃惊。”  “一般的测量仪器出现误报很常见。”王永安说,从电视来看,现场使用的仪器并非行业中认定的可以准确确定检测结果的“金标准”仪器。  军事科学院毒物药物研究所研究员聂志勇、全军中毒救治中心王汉斌主任医师同时介绍,到目前为止,专家组并没有听说有神经性毒剂中毒病例。王汉斌认为,危险化学品检测及判读应当依据科学程序来进行。“此次重大误判,源自于对仪器检测的结果没有进行常识性分析解读。”  王永安介绍,一般来说,对于这种容易发生误判的一般仪器检测出的结果,应当首先进行基于专业常识的分析判断,其次应与其他仪器检测出数据进行综合比对,如果仍有疑问,就应该用质谱等高级的“金标准”仪器进行确认,特别是神经性毒剂这种毒极性大、极易引发恐慌的化学品,尤其应该谨慎确认。  “现在民众的关注点多集中在大量危化品的危害上,应强化监测数据的实时发布,让公众能动态得知环境情况和数据。”王永安说,但监测数据必须准确可靠,建议媒体在采访时,应选择真正从事该领域研究的专家,避免因为不当解读而引发不必要的恐慌。
  • 新型“神经起搏器”可治疗抑郁症
    英国《自然医学》杂志4日刊发的一项最新研究显示,美国科研人员通过在一名长期重度抑郁症患者脑部植入一种类似于神经起搏器的电子装置,成功缓解了患者症状。  美国加利福尼亚大学旧金山分校科研人员首先通过颅内电生理学研究和对病灶的电刺激,识别出患者出现抑郁等负面情绪时特有的生物标记物,并定位到患者脑部通过电脉冲刺激可以改善症状的位置。然后,研究人员将脑感应和刺激装置植入到这名患者颅骨下。在识别到患者颅内出现抑郁情绪的生物标记物后,治疗就会被启动,通过发送微小电脉冲进行干预,重置该患者与负面情绪相关的大脑回路。  结果显示,该疗法使患者抑郁症得到快速和持续改善。  研究人员说,这项研究是通过精确定位电子设备治疗精神疾病过程中的一项“里程碑式成功”。  研究小组表示,未来需要研究该疗法是否适用于更广泛人群。此外,研究人员还希望找到可用于非侵入性治疗的非侵入性生物标记物。  深度脑部刺激近年来已被用于治疗癫痫和帕金森等疾病,但在对抗抑郁症方面效果有限。世界卫生组织公布的数据显示,全球2.8亿人受抑郁症困扰。
  • 新型传感器可诊断神经退行性疾病
    瑞士洛桑联邦理工学院(EPFL)研究人员在诊断帕金森病和阿尔茨海默病等神经退行性疾病(NDD)方面取得了重大进展。他们开发了一种名为“ImmunoSEIRA”的新型生物传感器,能够检测和识别与NDD相关的错误折叠的蛋白质生物标记物。  12日发表在《科学进展》杂志上的这项研究还利用了人工智能(AI)技术,使用神经网络来量化疾病的阶段和进展。为了创建这种先进的NDD生物标志物传感器,研究人员将蛋白质生物化学、光流变学、纳米技术和AI等多个学科和多种技术整合在一起。  ImmunoSEIRA传感器采用了表面增强红外吸收(SEIRA)光谱技术,使科学家能检测和分析与NDD相关的生物标志物的形式。该传感器配备了独特的免疫分析,就像分子探测器一样,能高精度地识别和捕获这些生物标志物。  ImmunoSEIRA的特点是采用金纳米棒阵列,带有可检测特定蛋白质的抗体,能够对极小样本中的目标生物标志物进行实时特异性捕获和结构分析。而AI算法的子集神经网络可识别特定错误折叠蛋白形式、寡聚体和纤维状聚集体的存在,可跟踪疾病的进展,实现了前所未有的检测精度。  研究进一步证明,ImmunoSEIRA可在生物体液等实际临床环境中使用,即使在人脑脊液这样的复杂液体中,该传感器的检测也同样准确。
  • 褚君浩:传感器,让我们的敏感神经更敏感
    褚君浩,中国科学院院士,红外物理学家、半导体物理和器件专家,中国科学院上海技术物理研究所研究员,东华大学理学院院长。他是我国培养的第一个红外物理博士,从20世纪70年代末开始,他就专注于红外探测器的研究,并与汤定元、徐世秋两位科学家研究了一种全新的半导体材料,创造性地提出了测算这种材料特性的公式,该公式最终以三位中国科学家的名字命名,被称为CXT公式,成为判断红外探测器新材料、新结构的参照标准。他的专著《窄禁带半导体物理学》,被国外20多个研究机构作为相关材料和器件研究的理论依据。  智能时代,传感器无处不在。传感器与计算机、通信被称为信息系统的三大支柱,成为衡量一个国家科技水平以及是否处在国际战略竞争制高点的一个重要标志。各种机器设备中的传感器就相当于人类的五官和神经系统,它们让机器能听、能闻、能看,从而更好地感知、学习和进化,为我们提供高精度、智能化的服务。传感器家族有哪些成员?它们能为我们提供怎样的服务?高性能传感器的市场长期被美国、日本、德国的企业占据,我国科学家如何才能在这一领域拼出一席之地?  简单来说,传感器就是用材料经过一定的设计,做成的一个器件,取代耳朵、鼻子、舌头、眼睛、皮肤的功能。它能够看得见、听得见,能够闻得出味道,能够感知到。它可以比人类的功能更强大,所以传感器要具有高性能。传感器具有的高性能,一般要超过人类的五官,能够听得到很远的声音,能够看得见红外光。  日常生活当中传感器非常多,最敏感的一个传感器大家可能没注意:你把手机靠近耳朵的时候,手机的屏幕就暗了,所以随便怎么碰耳朵,照样可以打电话,这就是手机传感器在起作用。手机里面传感器最多,而且都很小、很灵敏。现在传感器的发展趋势就是高精度、高灵敏、高速响应、高稳定性、高可靠性、微型化、柔性化、多功能集成化、数字化、智能化、无线通信化,另外还要绿色环保。  没有传感器就无法数字化  2019年,嫦娥四号探测器成功着陆在月球背面。嫦娥四号搭载了多种科学探测仪器,可以探测月球表面的地形地貌、月表物质的成分和月球表层的结构。嫦娥四号的着陆器上还安装了4个与月壤直接接触的温度计,可每900秒测量一次月壤的温度,这也是人类首次实现在月球背面对月壤温度进行原位测量。我们进入了一个智能化的时代,上至宇宙探索,下至日常生活,数字技术已经渗透到方方面面,农业测产、荒野探矿、太空探月都离不开传感器,传感器信息采集功能的重要性也因此越来越凸显。物联天下,传感先行,无论是“大数据”“人工智能”,还是“物联网”,其最重要的“基石”就是传感器技术。那么,传感器技术怎样进行数据的采集、存储、计算?  智能时代的最大特点就是智能化系统的运用。智能化系统有三大支柱:动态感知、智慧识别、自动反应控制。比如机器人能够把乒乓球打到,首先是动态感知,看到这个球怎么过来;其次要分析这个球会从哪里进来,这是智慧分析;然后它采取措施,打到这个球。智能化系统最后的出路就是推动人工智能、智慧地球、数字城市的建设。这个系统最大的核心就是数字化,因为只有数字化才能定量化、精准化、规律化、智慧化,最后促进数字经济的发展。  数字经济的“数字”从哪里来?就是靠传感器来的,所以传感器是大数据的源头。数据有两类:一类是文本大数据,另一类是物理大数据。物理大数据是靠传感器实时获得的,这类数据好多都是声、光等类型的,它们属于一个波动世界。这个波动世界里面的数据量特别大,一个波有振幅、有位相、有频率,还有偏振等等,再加上时间、空间等海量的大数据,就可以告诉我们好多信息,然后对这些信息进行分析。  传感器和物联网是智慧地球、智慧城市两个核心技术。智慧分析就是从大数据分析出一些我们所需要的信息。现在浙江省义乌市有一座大桥里面安装了好多传感器,通过传感器看它里面振动的应力波形,不同的车辆开过去波形都会有变化。如果有一天发现应力情况异常,就会报警。  传感器是支撑智能化最重要的“一条腿”。无线通信接收信号要靠传感器,通信卫星主要就是发射和接收,接收需要传感器,没有传感器,通信就中断了,后面的智能化更无法实现。可以说没有传感器,就没有智能时代;没有传感器,也没有信息化时代。  我国传感器技术与国外的差距及优势  一部智能手机中有20多个传感器,一部汽车更是有多达上百个各类传感器。无处不在的传感器,已经成为全世界最具发展潜力的高新技术产业。但是,目前全球2万多种传感器产品中,我国能生产的只有大约6000种,远远不能满足国内市场的需求。智能手机中,传感器几乎均为国外产品,每年我国各种中高端传感器进口占比高达80%,传感器芯片进口的占比甚至要达90%。我国传感器技术与国外的差距究竟在哪里?如何才能打开自己的一片天地?  传感器国内一般来说都能制造,在一般的应用上面也都适用,但是在高端应用、精细应用方面和国外有差距,这就要发扬工匠精神赶超世界一流。  我们也有自己的优势领域,有一本最有名的科学手册叫《LandoldtBoerstein》,这本科学手册,到现在已经有140年历史了,它每隔10年到15年要修订一次,我就是负责碲镉汞材料修订的作者负责人,因为在这个领域,我国科学家做的工作国际上认可,所以我们有这个资格来承担这项工作。  发展传感器,我国过去有一个弊端,就是买得到自己就不做了,但是红外探测器高端的买不到,就只能自己做,我们反而做出来了。其实在有些核心的关键领域还是要自立自强。我们现在好多企业,在红外传感器方面,水平不断地在提升。另外,要发展智能化,把芯片技术感受到的传感信息,智能化地分析处理,这就是当前传感器发展的趋势。  智能时代的“桥梁”  2019年4月15日,法国巴黎圣母院起火,考虑到空中投水可能造成建筑及文物损毁,法方派遣无人机捕获实时图像,为消防员实现精确定点扑救提供了重要支持。这其实得益于物联网技术的普及。互联网、物联网,一字之差,但两者截然不同。如果说,互联网是人们用来进行信息传播和共享的平台,那么,物联网就是“物物相连的互联网”,所不同的是,物联网是通过传感器、红外等各种感知设备,将信息传送到接收器,再通过互联网实现远程监视、自动报警、控制、诊断和维护。如今,物联网已经广泛应用在智慧城市、智慧医疗、智慧农业等众多领域,而传感器作为智能时代的“桥梁”,在各个领域智慧建设中已不可或缺。未来,传感器在智慧城市、智慧医疗、智慧农业等领域还能起到怎样的作用?  江苏无锡有一家公司,在公司每个区域里所有的转动部分都安装了传感器,这样在办公室里可以监控所有的电梯、马达是否正常。如果哪个地方不正常,控制室就亮黄灯了,马上就可以派人去修理。这就是智慧城市管理的一方面。  现在抑郁症很多,还有一些小孩患抑郁症,抑郁症当然有多种识别方法,也可以做成一个小的设备,定量分析患者的抑郁程度,这都是传感器信息获取分析的可能应用。如果我们人体里面都有传感器,比如口袋里放个心脏传感器,心电图随时可以拿到,如果一个人心脏有点不舒服了,跟医生打个电话,说我现在心脏不舒服,或者发条微信给他,这个是互联网技术的应用;但如果这个传感器的信号直接送到分析中心,分析中心就能够根据GPS定位知道人在什么位置,马上通知相关机构采取措施,这就是物联网技术应用。物联网技术在人类健康上面大有用处。  人类现在要进入智能时代,智能时代的最大特点就是智能化系统的运用,智能化系统非常重要的核心就是传感器,传感器就是我们的敏感神经。在智能时代的背景下,我们要努力打造敏感神经,通过科技创新手段不断提升信息传感水平,不断提升智慧分析水平,从而发展物联网、人工智能、智慧地球的事业,促进数字经济的发展和城市数字化转型,最终提升人们的生活水平。
  • 哈希水质分析仪器应用在首家采用先进深井曝气工艺的兴平污水处理厂
    4月10日,我国首家采用世界最先进的深井曝气工艺技术建设的污水处理厂&mdash 陕西兴平市污水处理厂建成并投入运营。项目采用具有在污水处理领域具有国际领先地位的双威深井曝气专利工艺技术,该工艺技术是国家环保局和国家发改委在我国推荐使用的技术之一,已被我国国家经贸委(国经贸资源【2002】880号)列为环境保护重大示范工程技术工艺之一。 兴平污水处理厂的建成是兴平市推进节能减排工作、促进城市经济可持续发展、全力构建生态和谐宜居城市的一项重要举措。该项目建成后可有效对兴平城市规划区13.8平方公里内所有的工业污水和生活污水的50%进行处理,每日可为社会提供4万吨中水,将对削减该市 &ldquo 十一五&rdquo 期间COD排放量起到决定性作用,同时也对城市未来经济可持续发展具有重大而深远的意义。 值得一提的是,在兴平污水处理厂水处理分析系统中,全部采用了哈希在线水质分析仪器,如P53 PH/ORP控制器,SOLITAX浊度/悬浮物分析仪,1720E低量程浊度分析仪,CODmax 分析仪、溶解氧分析仪等进行水质监测,测量重要参数浊度、溶解氧、COD、PH等。目前各类仪器运转正常,测量数据准确可靠,实现了无人职守自动运行。
  • 记中科院上海神经所所长蒲慕明:不著袈衣亦如来
    魂牵梦萦:还一个多年的心愿  [科学时报 郑千里 刘丹报道]蒲慕明是美籍华裔科学家,但他却有一颗纯正的中国心。这位美国科学院院士、中国科学院上海神经科学研究所的首任和现任所长,多年来一直兢兢业业、孜孜以求,对中国科学的发展,做了最真诚、最实质、也是最为具体的工作。  大陆出生,台湾长大,美国留学,又回到中国来,这是蒲慕明的特殊经历,他不管在什么地方,始终对中华民族的状况深深关切,而且如果能够做一点事情就尽量去做,在两岸三地用自己力量促进交流,加深彼此的理解。  “打从年轻时代起,我就有比较关心社会的倾向。我走到今天的这一步,也是自然而然的。”蒲慕明说。  蒲慕明1948年在南京出生。还在襁褓之中,他便随父母远渡台湾。  蒲慕明的父亲蒲良梢先生,1938年毕业于上海交大,是机械系航空工程组的第一届毕业生。那一届的毕业生全部投笔从戎,加入抗战成为空军后勤人员。后来国民党政府要造飞机,蒲良梢不久便被派往美国,学习螺旋桨发动机制造技术,他学成回国之后,成为南京发动机制造厂的第一批技术人员。  1949年,母亲带着蒲慕明和他的姐姐,从南京的下关乘船到武汉,然后到了广州,再从广州坐船到台湾。当时被母亲抱在怀中的蒲慕明还没有记忆。但蒲慕明在后来知道,中国航空工业的先驱们大多都是父亲的同学,而父亲的毕生志愿,就是想制造出一架中国自己的飞机。  蒲良梢先生60多岁时,任台湾航空工业发展中心主任,终于造出了“经国号”飞机。蒲良梢先生退休之后,在其事业的最后10年里再创辉煌,在逢甲大学创办了台湾最好的航空工程系。“父亲的人生经历对我的影响很大,他的一些好朋友都成为我的师长。”蒲慕明对本报记者回忆。  蒲慕明家中的墙上挂着一幅诗作:“忘却离乡今几年,水隔青山天外天,旧时欢笑浑为梦,新来思绪总难眠。海外飞传无限意,天涯相赠有诗篇,相知一世知何事,长留肝胆照人间。”这是蒲慕明的父亲与其同学、曾任铁道部总工程师的邹孝标的唱和之作。父亲作诗,由邹孝标书写,时空阻隔不了父辈归根的心愿。  1999年回到中国大陆, 年逾50岁的蒲慕明已经是世界知名科学家,他最重要的是还一个心愿。  因为蒲慕明决定到上海工作的缘故,蒲慕明的父亲也希望来上海常住,不幸的是,2000年的冬天老人家从浦东机场到市区路上遭到车祸,他所乘坐的出租车被一辆环保卡车冲撞,造成头部、肺部、眼睛多处挫伤,在医院住了两个多月。因为这次车祸,此后老人家一直伴有失眠、哮喘、失明、行动不便等,身体就此每况愈下。  蒲慕明父亲遭受的车祸,其实是开卡车的那位肇事环保工人的全责。  但老人家在住院治疗期间,当工人带着一串香蕉去看望他,老人家自己反而过意不去。因为手头没有现金支付,老人家就向来探视的王燕借了50元钱,感叹地对王燕说:这位工人给我送来了香蕉,冬天里的香蕉很贵,他的妻子已经下岗,小孩还在上学,他的家很穷困、真是很不容易呐!等那位工人下次再来医院看望,老人家当即就给了这位工人50元作为补偿。后来,老人家又给了那位工人100元钱。  2007年12月5日,接到父亲不幸在美国去世的噩秏,红着两眼的蒲慕明早上一走进办公室,就对王燕哽咽地说:我的父亲已过世了。王燕说:那您就赶紧回家料理丧事吧。蒲慕明却说:不用了,即便是我现在就回去,也已经见不到他的最后一面,还是把我在上海的工作忙完再说吧!  一个小时之后,处理好当日电子邮件的蒲慕明从办公室出来,又郑重其事地对王燕说:父亲逝世纯属我的私事,请你不要告诉任何人,更不要影响研究所的正常工作。  但是蒲慕明内心一直存有遗憾:当父亲去世时,自己不能守候陪伴在身边,给父亲以些许的慰藉。蒲慕明只记得自己小时候,有一次父亲送他去上学,而后在霞光中匆匆离去的背影。那正像是自己少时熟读过的、朱自清先生写他父亲的《背影》。  立志报国:  一份延续至今的浓情厚爱  蒲慕明从小接受的是中国的传统教育,中国的历史和地理他了然于胸。“我虽然学的是自然科学,但是我始终对文学历史很有兴趣。台湾毕竟地方很小,大家一窝蜂都认为理工科好,学理工有前途,台湾流行的理念是,出国一定要学理工。所以我在大学时学的是物理。但我对中国内地的关切是从小一直延续至今的。”蒲慕明说。  蒲慕明认为,上世纪70年代初期的“保钓”运动,是对在美国华裔留学生的一场教育。“教会了我们如何关心国家大事,学生不应该只关心自己的实验室工作。这个‘保钓’运动影响了很多学生,也影响了我的心态。”  “保钓”运动之后,许多台湾学者放弃了自己原有的专业,加入联合国等各种国际组织,从事社会公益事业活动。  1976年,蒲慕明在美国普渡大学完成了博士后研究之后,他申请的第一份工作,便是联合国科教文组织的一个职位。“我想为世界的科学文化教育作点贡献,但是很可惜,我连面试的机会都没有得到。”  蒲慕明申请的第二个职位,是回到他的母校——台湾清华大学。蒲慕明给徐贤修校长写了一封信,信中言辞恳切,希望回台教书。徐贤修校长用毛笔回信说,“年轻人立志报国是好事,此事交由沈君山院长办理。”尽管后来蒲慕明并没有能够如愿以偿回到台湾任教,但徐贤修校长的毛笔字他至今仍然清晰在目。  也许是命中注定的蒲慕明学术之路,最终,他申请的第三个职位,美国加州大学埃文分校助理教授被录用,从此开始了他真正的学术人生。  蒲慕明第一次回到中国大陆,是他在32年前在襁褓中离开故土之后的1981年。当时,北京医学院和美国加州大学埃文分校交流项目,合作开办了一个讲习班,加州大学派遣蒲慕明赴中国讲课。  蒲慕明对这次回国的情景依旧历历在目:“当时我住在北京医学院的外国学生宿舍,到晚间肚子饿了,想出去找点东西吃,但街上的饭馆基本上都已经关门,回来时连学校的大门都已经关闭,我只好爬门回宿舍。”这一年蒲慕明虽然才33岁,但已是加州大学埃文分校生理系副教授,第一次回到改革开放不久的中国内地,北京留给他的印象是“到处的灯光都很暗”。  尽管如此,蒲慕明对这片古老的土地并没有感到丝毫的陌生。他依然记得一次在长安街上的饭馆吃刀削面,与其同桌吃饭的一位老师傅问他:“老弟,你是从上海来吧?”老师傅不经意的一句话,蒲慕明竟永久性地记下了,“我听了这话很高兴。虽然我是从海外回来的,但这里的人们还是把我当成自家人。”  毕竟,中美两国关系的坚冰已经打破,毕竟,枯树已经开始绽放绿芽。当时,全国三十几个医学院都派教师来北京医学院学习,暑假一个月的时间,蒲慕明教授神经生理学与细胞生物学课程。每天的课程分上午两个小时、下午两个小时,上午授课,下午介绍在美国开展的科学研究。  “记得我在讲课时,下面听课的学生年纪都比我大,最大的都已经超过50岁了, 甚至有来自新疆医学院的老师,大老远赶来北京听课。”蒲慕明回忆,“两个班,每个班三四十人,每个学生尤其是那些高龄的学生,都在很认真地做笔记,他们虽然不太提问——当时还没有形成这种风气,但我依旧很感动。”  那是中国科学的春天,“大家重新捡起丢掉了十多年的东西,这种发奋努力的精神委实让我钦佩,肃然起敬。”说到这里,蒲慕明的目光依旧闪闪发亮。  “清华”情愫:  更是“亲我中华”情结  蒲慕明的名字,曾几度与“清华”二字相连。  蒲慕明1970年毕业于台湾清华大学物理系,14年后,1984年北京的清华大学复建生物系,时任美国加州大学埃文分校生理系教授的蒲慕明,冲破大洋的万里波涛阻隔,欣然受聘兼任该系的主任。  不知蒲慕明者,认为他此举是因为母校的缘故,才有解不开的“清华”情结 知蒲慕明者,便晓得让他真正魂牵梦萦的,是那终身的“亲我中华”情结。  起初,蒲慕明为清华大学生物系定名为“生物科学和技术系”,一直到最近,清华大学才将其改为了“生命科学院”。  蒲慕明不是“怀才不遇”,但在北京清华大学工作的那段时光,的确是荣光与艰辛的纠葛交织,梦想与现实的冲击碰撞。当时的中国教育科学界,教育科研等经费捉襟见肘,没有足够的能力支持基础研究 而对以基础研究为本的蒲慕明来说,当时刚打开“改革开放”门户的中国,也不具备他拳打脚踢施展才华的环境。  清华大学生物系尽管有着全国最为优秀的学生和教师,但经费支撑严重不足,仅有的一点经费几乎全部用于教学工作。更有甚者,补助生物系老师们工资的奖金,还要从蒲慕明这位外籍系主任的机票补贴中发出。而最令蒲慕明先生感到无奈的是,世界银行的贷款全部用于购买大型仪器,而会使用这些仪器的人员却少之又少。  “当时国内的大型仪器设备虽然多,而我们却没有生物系最常用的电子显微镜,形成了资源的极大浪费和耗散。”蒲先生回忆:“我在清华大学之所以没有继续做下去,原因在于,一是我当时还很年轻,显然力不从心,二是国内科研的大气候还没有形成,我也很无奈,无力更多地改变什么,所以我两年后只能选择了离开。”  虽然是在做一件正确的事情,但选择了在一个错误的时间做,蒲慕明此时应有的结局可想而知。  但这时的离开并不意味着遁逃。在清华生物系复系10周年时,蒲慕明专门从美国哥伦比亚大学发来了他的一篇感言,谓之:“1984年我以兼职身份参与了清华生物系复系初期的筹划工作,10年来看到了生物系步步茁壮成长,培育了许多优秀的本科生和研究生,为国内的生物科研和教育都作出了重要的贡献。对我个人来说,与清华生物系的联系是我学术生涯中极为珍贵的一段经历。”  清华大学生物系创建20周年时,当孙自荣老师邀请蒲慕明为此写几句话,最先映入蒲慕明眼帘的情景,是20年前在清华生物系草创初期,“南明兄提着他的黑皮包为复建生物系馆奔走的情景,和在简陋平房的小教室里,与清华大学第一届本科生一起上论文选读课的生动场面。”  由此,蒲慕明还说:“20年来随着中国经济蓬勃的发展、科研环境不断的改善,清华生物系取得了很好的成就,在国内已处于领先地位。但清华生物系作为国内一流学府清华大学的一个院系,还有更艰巨的路要走,使中国生物科学在国际上取得应有的地位。”  蒲慕明先生也曾为《自然》杂志撰文,现身说其感悟:“基于过去20年在中国参与建立一些科研机构的经历,我越来越认识到,中国研究机构在国际上取得卓越地位的障碍也许不是来自经济因素,而是文化因素。”  尽管命运多舛,最后在1986年蒲慕明不得不选择了离开清华大学,但在该校生物系重建的最初两年中,他还是为生物科学与技术学科的发展打下了坚实基础。基于他从最初创建清华大学生物系,到后来到领导上海神经科学研究所的工作,蒲慕明在2005年获得了“中华人民共和国国际科学技术合作奖”殊荣,他这段弥足珍贵而又特殊难忘的人生经历,无疑也是值得浓墨重彩抒写的重要一笔。  科学书香:  创新氛围浓郁的阅览室  2009年春节过后,由中科院武汉分院等研究院所发起,和武汉的高校举行了一个联合报告会,蒲慕明先生欣然应邀在会上作了演讲,讲“科学研究的ABC”,鼓励学生多阅读一些科学家的传记,多了解科学探索和发现的过程。  报告会即兴提问,许多学生请求蒲慕明先生推荐并开列出一个书单,蒲慕明当场就爽快地回答:只要谁对此有兴趣,回去后我完全可以把书单和书评用电子邮件寄出。  蒲慕明留下了自己的电子邮箱。过后,他收到许多学生的电子邮件,也如约给学生们发送了开列的书单和收集的书评,其中有许多书评就是他亲自为神经科学研究所的学生而写下的。  “我为武汉的学生们开列的12本书,其中的第一本,是《创世界的第八天》,讲的是分子生物学革命的历史故事,作者是一位美国的科学记者,名叫Judson,他在上个世纪的五六十年代,访问了近100位的科学家,写出了从1940至1960年代分子生物学革命性发展过程中,生物科学家的生动故事。”蒲慕明对本报记者说:“了解科学发现中所经历的过程,对研究人员掌握方法论无疑是至关重要的,如科学家要如何做实验、在实验出现问题时要如何寻找办法克服。”  “‘科学八股文’现在已成为写论文的标准模式,并没有真实反映科研工作的整个过程,需要花很多力气才能找出来龙去脉。”蒲慕明谈及要认真阅读科学家传记的初衷,甚至不无尖锐地说:“一些20世纪初期的科学论文不是这样。作者会诚实地告诉人们,他为什么做这个工作,原先可能希望得到其他结果,但是没有发现他想要的结果,可是在偶然之中得到了现在的发现,整个来龙去脉都讲得一清二楚。但为了简化或者修饰,现在的论文把真实的来龙去脉都修改了。”  《创世界的第八天》(The Eighth Day of Creation)是蒲慕明竭力向学生们推荐的第一本书。这本书刚出版的时候,他还只是美国加州大学的年轻教授,当时他就要求自己所有的学生都仔细读这本书。“想了解重要创新工作的来龙去脉,就要读科学史、科学家传记,要读科学家写的东西。20世纪生物界最重要的就是分子生物学革命,这是怎样发生的?是谁做的?他们为什么能做出这样的工作?”  蒲慕明常常说,了解分子生物学革命的历史,甚至远比上一门分子生物学课重要,比读100篇最新的分子生物学论文重要。在神经科学研究所的阅览室里,放了3本蒲慕明从美国带回来的The Eighth Day of Creation,他希望所有的学生有空都去读读,哪怕每天只读几页也可以,读多少是多少,总会有些许收益。大概是为了本报记者能在书香中潜移默化,更好地写出科学新闻,蒲慕明先生还赠送了记者一本《创世界的第八天》。  蒲慕明喜欢读,也常常介绍一些著名科学家的传记和科学家撰写的通俗文章。早在台湾清华大学读书期间,他就曾在老师李怡严的鼓励下,翻译了G.Gamow的《汤普金梦游记——近代物理探奇》,交由徐氏基金会出版。这本科普读物,一直到30年后还在台湾出版,版权页标明的是“1970年,清华大学物理系学士蒲慕明译,1993年再版”,而且在台湾许多书店的书架上都可以找到。  蒲慕明坦陈,过去在美国,凡是由他负责指导的研究生刚进到实验室时,若是学生问他需要看一些什么书、如何准备进入科学生涯,他首先不是指导学生看生物学方面的专业书籍,而是要他们看一些自然科学史方面的书籍,了解世界自然科学史上取得的一些重大成就。如推荐学生看有关卢瑞亚(S.Luria)的《吃角子老虎与破试管》,以及介绍沃森(J.Watson)的《双螺旋——DNA结构发现者的告白》,介绍克里克(F.Crick)的《狂热的追求》等等有很好看头的科学传记,“在熟读这些科学家传记书籍之后,学生方可了解科学大问题是如何得以解决”。  蒲慕明认为诺贝尔奖得主Peter Medawar所写Advice to a Young Scientist是一本很好的书。这本书有对年轻科学家的忠告,开卷有益,所以他在20年前自己动手还翻译了其中一章,交与国内的一家出版社,建议完成翻译后出版,但因种种原因终于搁浅。  “在我们的阅览室里,还有许多其它不同领域的类似的书,我希望无论是老师还是学生,都能抽出间隙的时间离开实验室,暂时抛开手头繁重的实验工作,花点时间到阅览室去读那些书。”  从某种程度上或也可以说,神经科学研究所这个阅览室的创建历史,就是蒲慕明上任所长之后,将科学方法与思想不断传播、渗透的一个缩影。该阅览室是一个自发组织的系统,主要由其使用者、在学研究生负责维护。在过去的近10年里,许多研究生对阅览室的管理做了很多工作。现在阅览室由学生管理员负责,由学生志愿者值周进行维护。有学生称,该阅览室是“一把通往未来的钥匙”。  自2000年阅览室建立以来,其中大部分的书籍,都是来自蒲慕明本人的慷慨捐赠。建立属于神经科学研究所自己的阅览室,其深层次的原因,自然也可以追溯到蒲慕明作为一名年轻学子,孜孜追求科学真理的时候。  “蒲先生认为,读那些由大科学家写成的书籍可以激发对科学的兴趣,知道如何分辨科学的问题,以及如何解决问题。更加重要的是,读一本好书,就相当于听一场来自大科学家的报告。因此蒲先生向阅览室捐赠了很多由一流科学家写就的书籍,希望神经科学研究所的学生能与他一起分享其中的故事。”阅览室的一位学生志愿者这样写到。而神经研究所的管理人员也给予阅览室人力物力的支持,使阅览室有一个舒适的阅读环境。  同行吃惊:  “Really? You can do it?”  如今,海内外科学界广泛认为,在中国科学院,蒲慕明领导的上海生命科学研究院神经科学研究所,是中国科学界一个令人瞩目的典范。  蒲慕明面对本报记者采访,回顾自己带领研究所走过的10年历程,和盘托出的问题之一是:我目前对神经科学研究所最大的担忧,就是对学生的教育不够扎实,如何教育他们踏实做事,不走所谓的“捷径”,不急功近利,培养优秀的品格。我现在常常与学生交谈的,就是严谨、诚信问题。  “在研究所初期的几年里,我们的人才招聘速度和进展都比较慢,主要精力用于扎实工作、出成果、出文章。我们作出一些成绩之后,国外同行吃惊的成分大于赞赏的成分。其实我内心里很明白,我们的工作没有比他们做得好多少,但是他们就是不相信我们能作出这样的成就。当然,他们也看到了中国的巨大潜力,看到了中国在未来科学发展之路上是个不可忽视的力量。”  “美国同行对我回国这10年的工作评价很高,也很羡慕我在中国开展的工作,最初往往还会吃惊地问我:‘Really? You can do it?’因为我除了能做出他们能做的科研工作,我还能做他们不太可能做得了的事情——架设东西方文化交流的桥梁,探索并推行科研机构的改革——这实在是件很有意义、很值得竭尽全力去认真做的大事。”蒲慕明笑道,“我非常幸运能有机会将我的部分‘才干’,投入自己科研工作以外的工作。我在上海的工作机会可以说是天时、地利、人和。如果不是发生在上海,也可能发生在台北或香港,这些地方都是我所熟悉的,我能更好发挥自己的潜力。”  蒲慕明鞭辟入里地分析:现在美国的科学界有两种观点。第一种观点认为,科学中心依然在美国,但他们对中国怀有浓厚的兴趣,他们看到中国学生的优秀潜质,他们认为中国有很好的学生,能出很好的成果。但是他们并不认为,中国也有能力引领一个学科或者领域的发展。现在年轻的中国科学家还没有达到这种层次。第二种观点认为,将来世界科学发展的重心有可能转移到亚洲,而中国又是亚洲的重心之一,所以,能与中国的科研机构早日合作,到中国的科研机构做事,实在是一件具备战略眼光的事情。  美国冷泉港实验室(Cold Spring Harbor Laboratory)的诺贝尔奖生理学或医学奖获得者沃森认为,将来的科学中心将会转移到亚洲,沃森走过了亚洲的中、日等几个国家后,最后决定在中国的苏州建立亚洲冷泉港会议中心,因为中国是亚洲的中心。  蒲慕明对本报记者披露:不久前,沃森又提出建议,希望冷泉港实验室与上海神经研究所建立姐妹关系,开展紧密科学合作。  面对神经研究所的崛起,蒲慕明的态度依旧谦虚而清醒。他对本报记者说,要想成为国际一流的科研所,必须具备3个条件:  “第一,要能在几个神经科学的重要领域持续地出一流的研究成果,并能引起国际同行的注意。”蒲慕明认为,神经科学所已初步具备了第一个条件。  “第二,多数研究组组长在他的研究领域具有一定的国际声誉。国际同行谈起这个领域的工作时,都能想到他这个人。”蒲慕明特别强调,是否能够由重要的国际会议邀请作报告是个重要的标志。仅提交会议论文并不能算是有国际影响,关键是国际最重要的会议能邀请你去作大会报告,这才表明你工作的重要性。  蒲慕明也承认,第二个条件现在神经研究所暂时还不具备。“在我们的二十几个研究组中,也就只有一、两个组长曾被国际重要学术会议邀请作报告。如果我们有1/3的研究组长能常常被重要的国际会议邀请,才算是具备了第二个条件。”  “第三,也是最难的一个条件,就是研究所要能在某些研究领域中,出现作出具有开创性工作的人物。他的工作不但是领域里做得最好的,而且还必须能开创出新的研究领域,或者有非常重大的突破性的发现。他也就是我们常说的大师级的人物,我们若能培养出像这样的领袖人物,就是真正成功了。”  飞人所长:  “我现在的工作是服务”  无论身在美国还是在中国,蒲慕明每周的工作都是7天,每天工作12~14个小时,基本上都没有休假。10年来,蒲慕明平均每月来国内工作一周,人称“飞人所长”。  即便是在美国的时间里,蒲慕明同样也牵挂着神经研究所。党委书记王燕介绍说,蒲先生通常是利用晚上的“时间差”,及时处理研究所事务和回复发给他的电子邮件,有时甚至工作到凌晨一两点。  蒲慕明对工作殚精竭虑,身体状况也就并非十分理想。2005年,王燕和神经研究所的几位同事凑了8000元钱,购置了一台跑步机,放在蒲慕明的办公室里,但几个月过去,却从来也不见蒲慕明使用。王燕着急了故意拿话激他:“蒲先生,您怎么就这么懒啊?跑步机都买了有这么一些日子,我们怎么也没见到您运动一下啊!”蒲慕明的回答是:“楼下就是电生理实验室,他们需要安静。”  后来,蒲慕明希望把跑步机送给学生会。但他的一位学生却对王燕说:“蒲先生的跑步机不能动,等我们的新大楼落成之后,一定要给他找个地方,专门放这台跑步机。”  神经研究所的很多业余活动,蒲慕明慷慨地掏自己腰包,而不用研究所的钱开销。仅以2009年神经所组织,包括上海生命科学院其他研究所学生参加的科学夏令营为例,组织了十几位学生去四川,蒲慕明用自己在美国领取的工资,支付了其中3万元学生的机票钱, 王燕则是负担了学生们的生活开销。迄今为止的10年里,尽管蒲慕明一身同时跨两边工作,领取的却只有美国加州大学伯克利分校的工资,而在神经研究所的工作,他只是领取旅差费和生活补贴。  神经研究所的许多学生说,虽然我们都很崇拜蒲先生,但我们却不会过像蒲先生那样的生活——在学生和大多数人看来,那的确是苦行僧一般的生活。  蒲慕明这样一位科学大家,每天的饮食生活却简单到了极点。  只要是身在上海,几乎是每一天的早晨,蒲慕明都会从岳阳路的一个小超市里出现,很快就买回两三个菜包子。  午饭要么是食堂里的盒饭,要么依旧是菜包子。在蒲慕明办公室的冰箱里,总是会冷藏好几个菜包子,饿了他就用微波炉热一热再吃。  蒲慕明的晚饭,一般是从6点半开始,最常见的“食谱”,是神经研究所附近快餐馆里的一碗面条。一个小时后,他准时回来继续上班。而如果他的太太刚好也在上海——这是一位在美国当生物学教授,但却同样在为神经研究所“做义工”的华裔——则会与蒲慕明相伴,出双入对地吃这一顿“正餐”。  “他们夫妻俩堪称是一对绝配,不仅对工作是同样的认真和投入,甚至他们俩的性格也十分相似。”有一位充满钦佩之情的知情者,这样描述、评价蒲慕明和他的太太。  “也许今后我会全时回来工作,但我认为,即便我‘全时’回国了,和现在的工作基本上也不会有太大差别。”蒲慕明对本报记者坦陈,“我还有许多国际科学界的事情要做。”  蒲慕明兼任很多国际科研单位的学术顾问,同时担任着许多学术刊物编委的职务,“现在我为国际科学界的服务工作,要远大于我自己实验室的科研。”的确,对蒲慕明而言,自己的科研工作已经不是重心,虽然他的实验室仍不断有论文发表。他到国内工作的时间越来越多。他最近每次回国的时间已达十余天,日程表里总都是排得满满当当。  3年前,蒲慕明在美国的学生(包括博士后)有20多人,现在只剩下5个人,“今年起我在美国已再没有研究生了。在美国这是很小的一个组”。  “我现在所做的工作就是服务。当然,这样的服务对我个人而言,不可能带来别的什么‘好处’,即便我做再多这样的服务,也不可能帮助我自己获得更大科学成果。”蒲慕明笑着说,“我只是希望真的能在中国创造一个环境,使许多中国神经科学的学者能在此做出世界一流的工作。”  2009年11月27日,神经科学研究所迎来了10岁的生日,但并没有举行任何庆祝仪式。在神经科学研究所的网站上,出现了不足300字的一段简洁文字:我们的宗旨,是建立一个现代化研究所的机制,提供一个有助于严谨科研工作,高效科研产出,良性科研合作的环境,实现以业绩为准的激励和资助评估系统,以及为研究生和博士后提供高质量的专业训练。  这段简洁的文字,显然是出自蒲慕明的手笔。就像是他在为神经科学研究所、也为本人作的一幅素描自画像。
  • 兰大二院神经内科获批国家神经免疫与感染疾病研究分中心
    p  近日,在北京举办的“国家神经系统疾病临床医学研究中心建设推进与战略研讨会”上,兰州大学第二医院神经内科成为全国首批29家“国家神经免疫与感染疾病研究分中心”之一,成为甘肃省唯一一家分中心单位。/pp  兰大二院神经内科成为全国首批“国家神经免疫与感染疾病研究分中心”,标志着兰大二院神经免疫感染性疾病的诊治及科研与国内高水平和国际水平接轨。中心将致力于建设并完善我国神经免疫与感染疾病医疗与临床科研体系,在全国范围内整合神经免疫专科力量,通过高层次对话与合作搭建专家与政府、医院之间以及医患之间的沟通桥梁,为甘肃省神经内科事业的发展做出新的贡献。/p
  • 金域检测持续关注神经免疫专科,以科技转化助其高质量发展
    7月20日,《柳叶刀-区域健康(西太平洋)》这一国际知名医学期刊发布了全球首个重症肌无力抗体诊断I级方法学推荐证据,证实了基于细胞的抗体检测新技术CBA在诊断可靠性方面优于放射免疫等传统诊断技术。这一突破性成果源自于“SCREAM”研究(NCT05219097),这项全国多中心、前瞻性和双盲试验由京津神免中心领导完成,得到金域医学和天海新域的诊断平台和试剂支持,为指导临床医生选择重症肌无力等神经免疫病的临床诊断提供了重要参考。重症肌无力(MG)是一种由自身抗体介导的神经免疫疾病,早期明确诊断对于患者的治疗和病情控制至关重要。MG患者血清中存在多种相关自身抗体,包括乙酰胆碱受体(AChR)抗体、肌肉特异性受体酪氨酸激酶(MuSK)抗体、连接素(titin)抗体、兰尼碱受体(RyR)抗体等,其中AChR和MuSK抗体是国内外MG诊治指南推荐的首选实验室诊断指标。MG自身抗体的检测方法包括放射免疫沉淀法(RIPA)、酶联免疫吸附测定法(ELISA)和细胞免疫荧光法(CBA)等多种,然而这些方法的特异度和敏感度存在差异,选择不同的检测技术可能会影响自身抗体检测结果的准确性。目前缺乏针对不同检测技术敏感性和特异性的大样本多中心研究证据,无法满足神经免疫病的诊治、患者转诊抗体检测结果互认以及全球药物临床试验认可的技术需求。为解决这一难题,由天津医科大学总医院/北京天坛医院施教授团队领导,全国多家神经免疫中心共同发起了“SCREAM”研究,得到了金域医学和天海新域的CBA诊断平台和试剂支持,完成了这项前瞻性双盲研究(The Specificity, Sensitivity and Clinical Correlation of CBA, RIPA and ELISA Assay in Detecting AChR and MuSK-IgG, NCT05219097 “SCREAM”研究),为AChR和MuSK抗体检测方法学选择提供了指导性建议,将进一步推动MG自身抗体诊断的规范化。“SCREAM”研究是迄今纳入样本量最多的MG抗体诊断方法学大型队列研究,也是首个前瞻性、双盲研究。由此产生的循证医学证据达到I级推荐标准,为临床医生选择最佳实验室诊断方法提供了关键依据,同时对其他神经免疫病抗体检测及临床试验也具有重要参考价值。神经免疫疾病是全球青壮年致残的首要原因,包括多发性硬化、视神经脊髓炎和重症肌无力等。目前,金域医学联合京津神免中心、天海新域建立了神经免疫病诊断技术的创新研发、产品标准化和应用的联动体系。CBA+TBA诊断体系涵盖常见的重症肌无力、中枢神经系统炎性脱髓鞘、自身免疫性脑炎等疾病近百个抗体检测项目。同时,金域医学与天海新域共同参与神经免疫病大样本数据研究,为“重症肌无力及中枢神经免疫病抗体检测专家共识2022”、诊断方法学I级推荐证据研究等提供支持。从金域医学此次新动态可知,双方还为临床医生提供诊疗决策支持工具,帮助实现患者管理、减缓免疫损伤和疾病进展,助力提升神经免疫专业临床医生诊治水平,为我国神经免疫专科的高质量发展贡献力量。
  • 中国科大研发单神经元快速质谱技术 探索大脑神经元代谢奥秘
    近日,中国科学技术大学化学与材料科学学院黄光明教授与生命科学学院熊伟教授开展紧密合作,基于自行开发的单细胞电生理与质谱联合检测平台,对小鼠大脑中单个神经元开展了多种化学成分的快速质谱检测,并且可以做到同步采集电生理信号,在单细胞层次上成功完成了对神经元功能、代谢物组成及其代谢通路的研究。相关研究成果以“Single-Neuron Identification Of Chemical Constituents,Physiological Changes, And Metabolism Using Mass Spectrometry”为题,于2月21日在线发表在国际权威综合学术期刊《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)上。  脑内神经细胞在细胞形态、突触连结、细胞结构、电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其化学分子组成、含量、代谢也都有着很大的差别。因此,对脑内单个神经元的化学成分进行分析,具有重要的生物学价值。质谱分析因为具有高灵敏度、大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析,并缺乏来自同一细胞的电生理信号,最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。近年来,中国科大黄光明教授实验室与熊伟教授实验室紧密合作,开发了能用于复杂样品的原位质谱分析方法,大大提高了分析速度,并于近期实现了针对细胞内蛋白质的直接分析(Angew. Chem. Int. Ed. 2011, 50:2503 Angew. Chem. Int. Ed. 2011, 50:9907 Anal. Chem. 2016,88:10860),同时通过电生理膜片钳技术开展了对小鼠脑内单个神经元的功能鉴定与解析(Nat. Chem. Biol., 2011 J. Exp. Med., 2012 Nat. Neurosci., 2014)。这些研究为实现单个神经细胞的高通量质谱分析、代谢物鉴定和代谢通路研究提供了重要的工作基础。膜片钳与单细胞质谱分析联用技术分析单个神经细胞示意图  该工作实现了单个神经元化学成分及代谢物的即时分析,该技术将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平,有望在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题,具有非常重要的应用前景。  中国科大生命学院与化学院联合培养博士后朱洪影、生命学院博士研究生邹桂昌、王宁为该文章的共同第一作者,黄光明教授和熊伟教授为共同通讯作者。该研究工作得到了科技部、国家自然科学基金委、中科院先导专项以及国家青年千人计划等资助,以及中国科大国家同步辐射实验室光电离质谱线站的仪器与技术支持。
  • 临床前神经科学
    &bull 采访布鲁克BioSpin的生物安全负责人MRI技术在临床前神经科学研究中的重要性神经科学研究如何帮助我们进一步了解脑机能我们可以使用核磁共振成像(MRI)提供大脑的二维或三维图像,用于研究其解剖构造、功能或分子机制……或这三者的结合。MRI的好处在于,研究人员可以选择把重点放在解剖兼功能层面或是分子层面。体内神经影像学能给我们提供关于大脑功能和代谢的哪些信息?使用一种称为扩散MRI的技术,我们能够以非侵入性和非破坏性的方式,追踪整个大脑的轴突方向,并创建大脑的连接图。在功能性方面,我们有多种选择。功能MRI(fMRI)使我们能够在大脑思考时观察它。这项技术属于临床标准,在过去十多年里,我们已经能够将其应用于包括大鼠和小鼠在内的动物。fMRI不需要造影剂。我们只需监测由于氧合血红蛋白和脱氧血红蛋白转换而产生的细微信号变化,即可清楚地检测大脑活动。此外,我们还能监测脑血流的变化,这是一个重要的标志。在中风研究中,我们可以看到受影响的大脑区域,其精确度可能比大多数其他非破坏性方法更高。活体波谱可以研究体内的代谢物。借此,我们可以获得大脑区域的化学“指纹”。这些区域的大小通常为几毫米立方,定域活体波谱使我们能够识别和量化其中的数十种代谢物,包括与大脑能量通路有关的主要神经递质和分子。并非所有生物学家都了解MRI技术,为什么?MRI通常不属于生物学课程范畴。医学博士会接受关于MRI的基本培训,如果最终成为放射科医生,还会接受进一步的相关训练。但对于生物学家而言,他们与MRI的接触始于将其用于解决生物学问题。我以前兼修生物学和化学课程,而关于NMR和MRI的所有基础知识,我是在化学课程中学到的。如果我只学习生物学,我将对MRI的巨大潜力一无所知。每个生物学家都会学习如何使用光学显微镜,但除非所在大学配备有临床前MRI扫描仪,他们很难对MRI技术有所了解。布鲁克的MRI应用专家已经将他们的知识融入到预先优化的协议中,即使用户对MRI不甚了解,也能快速解答生物学相关问题。请概述MRI和PET/MRI在基础神经科学研究中的应用和重要性。PET缺乏解剖学信息。一般来说,使用PET,您可以追踪示踪剂在体内的任何位置,而您最终看到的只是功能化示踪剂所在的区域。如果您单独使用PET,则无法确定这些活动区域在体内的位置,因为没有解剖学相关参照。而使用PET/MRI组合,通过在灰度高分辨率MRI图像上的彩色PET图像,您可以高精度地看到示踪剂的确切位置。PET和MRI结合的重要性和美妙之处在于,您可以同时执行这两种操作,并从MRI中获得出色的软组织对比。与其他方法相比,这些成像技术有什么优势?除了非破坏性之外,还有一个事实是,我们可以使用更少的动物获得更多的信息。您可以实现更大的统计相关性,因为您可以使用扫描仪在数周或数月内反复研究同一只动物。在每个研究时点后,动物不会被处置。相反,我们扫描整个队列,从所有动物那里获取全部信息。每只动物都作为自己的对照。这减少了许多临床前研究固有的生物散射问题。我认为这是一个经常被忽视的巨大优势。临床前研究的发现能完全转化为临床应用吗?临床前脑成像能做到临床上不可能做到的事情吗?是的,可以转化。对动物使用PET和MRI成像与在医院对患者使用临床仪器进行的操作相同。当然,临床前成像也有好处,比如在进入临床前测试新的疾病治疗方法。您还可以使用基因剔除模型来研究疾病进展的机制。请介绍用于临床前神经科学研究的布鲁克仪器吧:早在40多年前,我们就推出了一系列临床前MRI扫描仪,在市场上处于领先地位。布鲁克的临床前MRI扫描仪品牌称为BioSpecs,有各种不同的版本。您可以从一系列磁场中进行选择。磁场越强,通常成像效果越好。您还需要确定孔径,也就是磁体内部的小通道, 动物在检查时就躺在里面。小孔径扫描仪只能容纳一只小鼠,而其他较大孔径扫描仪可以容纳大鼠甚至更大的动物。我们的PET扫描仪也设有供大鼠和小鼠使用的小通道。我们还提供PET和MRI的组合。在其中一款PET/MR设计中,PET通道设在MRI通道的前面,所以这两台机器是相邻的。动物安置在一种类似单轨的轨道上,首先进入PET通道进行快速扫描。然后将其向前移动约20英寸,在 MRI扫描仪中定位,执行MRI扫描。在另一款PET/MR设计中,小型PET环直接安装在MRI通道中,使动物能够直接进入MRI扫描仪的中心,这也是PET扫描仪的中心,可以实现同时扫描。这种仪器已用于研究哪些临床前疾病模型?是否能够帮助确定任何潜在的治疗方法?嗯,应用非常广泛,从阿尔茨海默氏症和帕金森氏症模型到记忆、衰老和认知衰退模型等等。这种仪器也用于中风研究。通过在啮齿类动物中人为地诱发中风,我们可以对受影响的大脑区域进行量化,这可能比任何其他不涉及解剖大脑的方法都更有效。许多制药公司在药物研发中使用布鲁克扫描仪。
  • 2013年Eppendorf & Science 全球神经生物学奖申请启动
    Eppendorf & Science神经生物学奖Eppendorf & Science全球神经生物学奖是授予在神经生物学领域辛勤耕耘的青年科学家(35 岁以下),以表彰他们的非凡贡献。所有奖项的获得者都是由《Science》杂志高级编辑Peter Stern博士领衔的独立科学家所组成的委员会评出。获奖者不仅可获得25,000美元的高额奖金,其获奖论文能发表在《Science》杂志上,并得以全额资助参与美国神经科学协会年会和颁奖仪式,还将获邀参观Eppendorf 位于德国汉堡的总部。2012年度大奖被授予美国匹兹堡大学助理教授Marlene R. Cohen博士。申请时间即日起至2013年6月15日申请规则申请者必须是在过去10年内获得博士学位的神经生物学专家,并且年龄小于(含)35周岁。申请者的研究领域必须属于神经生物学领域并从事或涉及与论文中所描述的相关工作,展示的科研成果必须在过去三年内完成申请程序申请者所写的论文不超过1000个单词,并提交一份完整的申请表,以及由申请者的导师、主管或熟悉申请者工作的同事所写的一封推荐信,以上文档必须用英文撰写并在线提交评选程序由全球顶尖的神经生物学领域专家组成评委会会在6月至8月汇总和评选所有提交方案,9月选拔并通知获奖者,当年11月公布获奖名单并举行颁奖典礼 ,并在典礼上宣布获奖者和入围者名单填写申请表了解更多信息请访问 http://www.eppendorf.com/prizeEppendorf 官方微博:http://weibo.com/eppendorfchinaEppendorf 中文官网:http://www.eppendorf.cn关于艾本德 (Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA 扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年 Eppendorf 收购美国 New Brunswick Scientific (NBS) 公司,2012年 Eppendorf 收购德国 DASGIP 公司,拓展了其细胞培养领域的产品线。关于艾本德中国 (Eppendorf China Ltd.)2003年Eppendorf正式进入中国,分别在上海、北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 新型芯片复制神经肌肉接头有助于为神经肌病测试药物
    新型芯片复制神经肌肉接头有助于为神经肌病测试药物麻省理工学院(MIT)工程师们开发出一种复制神经肌肉接头(神经和肌肉之间至关重要的连接)的微流控设备(microfluidic device)。该设备约有25美分硬币大小,包含单个肌条和一小组运动神经元。研究人员能够在逼真(现实)的三维基质中影响和观察两者之间的相互作用。研究人员对该设备中的神经元进行基因改造,使其对光照做出反应。通过将光照之间投射到(这些)神经元上,他们能够精确刺激这些细胞,发送信号激发肌肉纤维。研究人员还测量了设备内肌肉在被激发后抽搐或收缩的力量。该研究结果2016年8月3日在线发表于《Science Advances》期刊,可能帮助科学家们理解并识别药物以治疗肌萎缩侧索硬化(ALS,即卢伽雷氏症)和其他神经肌肉相关疾病。“神经肌肉接头涉及许多失能性疾病,其中有些是残酷而致命的,还有很多尚未被发现”领导该研究的MIT机械工程系研究生Sebastien Uzel说,“我们希望能够在体外形成神经肌肉接头,从而帮助我们理解某些疾病活动”。Sebastien Uzel现在是哈佛大学Wyss研究所博士后。自1970年代以来,科学家们已经提出了大量方法在实验室中模拟神经肌肉接头。大部分这些实验涉及在培养皿或小玻璃基板上生长肌肉和神经细胞。但这样的环境与(动物)体内状态相去甚远,在动物体内,肌肉和神经细胞存活于复杂的三维环境中,并且通常距离较远。“想想长颈鹿”Uzel说,“脊髓神经元所发出的轴突需要跨越非常大的距离才能与腿部肌肉连接。”为了在体外重建更逼真的神经肌肉接头,Uzel和同事们构造了一种微流控设备,该设备具有两个重要特性:1. 三维环境;2. 隔离肌肉和神经的隔间,从而模拟两者在人体内的自然分离状态。研究人员将肌肉和神经元细胞悬浮于隔间中,然后充满凝胶以模拟三维环境。为了生长肌肉纤维,研究团队使用了获得自小鼠的肌肉前体细胞,随后将其分化成肌肉细胞。他们将细胞注入微流控隔间,细胞会在隔间内生长并融合形成单个肌条。同样的,他们从干细胞分化出运动神经元,然后将所获得的神经细胞聚合体放置在第二个隔间中。在分化两种细胞之前,研究人员使用光遗传学(optogenetics)技术对神经细胞进行了基因改造。该研究共同作者、MIT机械和生物工程Cecil and Ida Green特聘教授Roger Kamm说:光“能够让你精确控制你想要激活的细胞”。在这样的狭小空间里,电极无法实现这一点。最后,研究人员为该设备添加了另一个特性:力传感。为了测量肌肉收缩,他们在肌肉细胞隔间内构造了两个微小的弹性支柱,位于肌肉纤维周围并能够被生长的肌肉纤维所包裹。随着肌肉收缩,支柱会被挤压在一起,形成位移,研究人员能够测量这些位移并转换为机械力。在测试该设备的实验中,Uzel和同事们首次观察到神经元在三维区域内向肌肉纤维伸展轴突。在观察到轴突建立连接时,他们用微小的蓝光激射刺激神经元,并立即观察到肌肉收缩。“发射闪光,就能观察到抽搐”Kamm说道。根据这些实验,Kamm说,这种微流控设备可能作为神经肌病药物测试卓有成效的试验场,甚至可以根据个体患者进行定制。“你可能从ALS患者获得多能细胞,将它们分化成肌肉和神经细胞,并且为特定患者制造整个系统”Kamm说,“然后你能够根据需要多次复制,同时测试不同的药物或疗法的组合,查看哪种疗法能够最有效地改善神经和肌肉之间的连接。”另一方面,他说,该设备在“建模操作协议(modeling exercise protocols)”中可能是有用的。例如,通过以不同的频率刺激肌肉纤维,科学家们能够研究重复压力如何影响肌肉的性能。“现在,随着所有这些新型微流控方法的开发,你能够开始建立神经元和肌肉的更复杂的模型”Kamm说,“神经肌肉接头是另一个现在可以被纳入测试模式的单位”。
  • 新一代测序助力神经生物学研究
    p  了解大脑以及它在行为和疾病中的作用,这种探索可不是个小任务。在过去的十年中,杜克大学Nicholas Katsanis所在的实验室已经表明,遗传学和基因组学方法对于我们了解神经生物学非常有帮助。他在2015神经科学大会上组织了一个短期课程,以帮助研究人员更好地了解基因组学的应用。/pp  首先发言的是Shamil Sunyaev,他是哈佛大学医学院附属的布莱根妇女医院遗传学分部的一名计算基因组学研究人员。他通过一个关于简单和复杂表型的讨论来开始他题为“神经发育和神经退行性疾病基因组注释的计算方法”的演讲,,并介绍了过去的研究人员是如何在动物模型和人类中研究疾病状态的遗传的。他指出,技术的进步,特别是新一代测序(Next-Generation Sequencing, NGS)技术,让研究人员终于能确定多态性标记,定位这些标记,同时确定致病突变。Sunyaev认为,新发现是很重要的,但仍有许多未知的东西,应通过支持研究来加强探索。/pp  接着走上演讲台的是Benjamin Neale,他是Broad研究院一名侧重于心理生物学的遗传学研究人员。Neale演讲的题目是“充分利用精神疾病的基因组数据”,一开始就强调了群体统计数据的不断变化。他指出,对于精神分裂症或自闭症(或与此有关的任何复杂性状)这样的疾病,原因不可能只有一个。孟德尔遗传学可能很有吸引力,但它并不适合我们想要研究的大多数东西。他认为,“这就像身高,没有一个基因是对应5英尺10英寸的。你的身高并非受到单个遗传影响,而是多个,它们合在一起,形成了人群的正态分布。遗传可能性是一种计算,并非个体– 如果存在遗传影响,以及基因作用的生物学过程,它会带来我们在群体中所看到的变化。”/pp  若要在研究中采取不偏不倚的态度,探索疾病的遗传因素是一种方式。这些研究有助于确定新的线索,以便更好地了解精神疾病背后的生物学机理。他探讨了精神分裂症的遗传研究,从早期的全基因组关联研究到如今利用NGS技术的更先进的探索。研究联盟对于深入了解这种疾病是十分有价值的 通过增加样本量,研究人员已经发现了一些新线索。Neale博士提醒大家,目前仍有数千个影响尚未确定,而每个影响都是相当小的。 “以高通量的方式分析遗传变异,这很了不起,但我们需要研究生物学,弄清楚这里到底发生了什么,”他说。“通过这些研究,我们将发现新的神经生物学。我们需要分析并拷问这些新线索,才能真正了解发生的事情。”/pp  出于此,Neale博士表示十分看好千人基因组计划(1000 Genomes Project),他希望由此开启不同的模式和方法,以查看新出现的de novo突变。/pp  短期课程的第三位演讲者是哈佛大学医学院的遗传学家Steven McCarroll。在这个题为“MHC在精神分裂症中的作用”的演讲中,他介绍了一种称为Drop-Seq的技术,可研究如大脑这样复杂组织中的不同类型细胞之间的遗传改变。Drop-Seq的最终结果是来自于不同细胞类型的RNA文库,他的实验室已通过视网膜研究对此进行验证。/pp  利用Drop-Seq,McCarroll博士及其实验室揭示了有关精神分裂症的新的生物学观点。C4补体基因中的一个SNP已知与这种疾病相关联,但它并没有与已知的任何变异相对应。他及其合作者利用分子分析来检测不同的C4基因型,发现了这个家族中有四种常见的变异,然后测定了其在死后大脑样本中的表达情况。他们发现,C4A变异对应的精神分裂症风险明显提高。进一步的研究表明,这个蛋白是补体级联中的一部分,用于标记细胞和碎片以便清除。此证据表明,这个变异可能导致在“突触修剪”的关键时期蛋白质行为发生改变,导致疾病的发生。/pp  “当然,这只是其中一个故事。不过我希望它能鼓励人们,即使是那些复杂、多基因的疾病,这些技术也能为“(疾病过程)实际可能发生的事情”引入新的假说,”他说。“并提供新的治疗可能性。”/pp  加利福尼亚大学圣地亚哥分校基因组医学研究所的Albert La Spada分享了他自己的例子,细致的遗传变异机理研究如何引申出新的疗法。他在亨廷顿氏病上的研究将一种潜在疗法引入临床试验。这种KD3010药物经FDA批准可用于糖尿病和代谢疾病,可能有助于阻止病情恶化。La Spada博士强调了他的工作并没有完成,并强调了细致的表型分析是阻碍基因组学在大脑疾病领域上获得成功的一个巨大障碍。/pp  “如果你正在研究一个疾病过程,你真的需要着手去完成一名系统生物学家的任务。这将需要应用多种方法才能向前推进,”La Spada博士谈道。“其次,无论你是否意识到,遗传学将伴随你的每一步,让你定义一种疾病,重新定义它,然后解析它,这样你才有望开发出一种疗法。”/pp  Alison Goate是西奈山伊坎医学院的一名遗传学研究人员。她随后上台探讨了有关阿尔茨海默病的遗传学研究工作。与她之前的同事一样,她倡导一种系统方法,并指出这些方法已经在阿尔茨海默病领域取得了最佳的效果。到目前为止,遗传学研究支持& #946 -淀粉样蛋白的假说,即这种疾病的可怕症状是由大脑中累积的& #946 -淀粉样蛋白斑块引起的。不过新的研究表明,可能有不同类型的过程,不同类型的细胞,它们出了差错,导致斑块形成。新研究正在发现淀粉样前体基因和早老素1以外的基因,包括SPI1和TREM2。Goate认为,这其中一些基因最令人感兴趣的是,它们可能不是阿尔茨海默病特异的。/pp  “我们在深入了解时发现,这些基因可能从总体上影响了神经退行性疾病的风险– 它们与肌萎缩侧索硬化症(ALS)、额颞痴呆症和帕金森氏症相关联,”她说。“因此,我们了解到的是,它们的作用可能并不是专门清除& #946 -淀粉样蛋白,或许还与清除碎片有关。”/pp  Goate也为美国国家衰老研究所的阿尔茨海默病测序计划点赞。这个计划有望鉴定出与疾病相关的新基因,这包括潜在的致病基因,也可能是保护基因。“我们可以从保护因子上了解很多,”她说。“如果我们发现这些基因是保护性的,那么我们在设计药物时就可以模拟这种保护作用。”/pp  Nicholas Katsanis用一场有关神经精神疾病中的拷贝数变异的演讲作为这一天的结束。他提醒说,真正的遗传外显率有点像“独角兽”,而研究人员可能不知道如何测定它是否真的存在。他希望研究人员能花更多时间来研究保护性的等位基因,并强调需要再上一层,这样我们才能利用遗传发现来帮助治疗疾病。遗传学家和神经学家需要共同努力,以便真正了解不同等位基因对疾病表型的影响。“医学上的重测序是不够的。我们需要进行功能评估,”Katsanis博士指出。“这里可没有什么好人和坏人。等位基因以依赖相互作用的方式发挥它们的影响。因此,我们必须想办法弄明白这一切。”/p
  • 北大成功研制新一代微型显微镜 可实时记录神经元进行脑分析
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/d524002c-f06f-4221-a09b-ea5520ae7810.jpg" title="QQ截图20170531163243.png" width="600" height="424" border="0" hspace="0" vspace="0" style="width: 600px height: 424px "//pp 进入新千年,脑科学研究成为热点。工欲善其事,必先利其器。若要更好的探索人类大脑,就必须有更好的仪器与工具。目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。 其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整 体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  近日,自然杂志子刊 Nature Methods 发布了来自于中国在这方面的研究进展。该论文主要展示了《超高时空分辨微型化双光子在体显微成像系统》的研究成果——新一代高速高分辨微型化双光子荧光显微镜成功研制,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp  该研究成果源自于国家自然科学基金委员会计划局组织的国家重大科研仪器设备研制专项,当时共有9个项目入选。北京大学程和平院士主导的《超高时空分辨微型化双光子在体显微成像系统》就是其中之一,当时也获得了7200万元的经费支持。/pp  过去三年,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院,联合中国人民解放军军事医学科学院组成跨学科团队,完成了的这一研发工作。团对成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。研究论文2016年12月提交,2017年5月29日正式在自然杂志子刊 Nature Methods 发布。/pp  根据官方提供的信息,产品相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 0.65μm,成像质量可达商品化大型台式双光子荧光显微镜水平,并优于美国所研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达 40Hz(256*256 像 素),同时具备多区域随机扫描和每秒 1 万线的线扫描能力。/pp  此外, 采用自主设计可传导 920nm 飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动 的荧光探针(如 GCaMP6)的有效利用。/pp  同时采用柔性光纤束进行 荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而 受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能 成像的同时,精准地操控神经元和神经回路的活动。/pp  值得一提的是,该显微镜重仅 2.2 克,可在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号 在大型动物上,还有望实现多探头佩戴、多颅窗不同脑区的长时程观测。/pp  之所以说这一研究成果意义重大,主要是因为它为脑科学、人工智能学科的研究提供了重要的高端仪器。具体来说,微型双光子荧光显微成像技术改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、 睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  事实上,成像技术一直是推动生命科学进步的主要动力。历史上,X射线、全息照相法、CT计算机断层成像、电子显微镜、MRI核共振成像、超高分辨率显微成像技术都推动了科学技术的进步,也都获得了Nobel奖。/pp  在今天的发布会之前,该成果在 2016 年底美国神经科学年会、2017 年 5 月冷泉 港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的认可。冷泉港亚洲脑科学专题会议主席、 美国著名神经科学家加州大学洛杉矶分校的 Alcino J Silva 教授认为,“ 这款显微镜将改变我们在自由活动动物中观察细胞和亚细胞结构的方式??系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所 造就的大脑环路实现复杂行为的核心工程学原理。”/pp  这项技术研发成功的同时,团队也成立了一家叫做”超维景“的公司,并获得了来自协同创新基金、西科天使的融资,公司将会在符合北大政策的前提下,由北大支持进行商业化推广。团队接下来的重心仍是技术迭代、新产品研发。/ppbr//p
  • 测序揭示独一无二的神经系统
    2013 年,佛罗里达大学的研究团队曾经在《科学》(Science)杂志上发表文章,通过一种栉水母(Mnemiopsis leidyi)的基因组撼动了进化树的根基,那篇文章一经发表就引起了热议。现在,他们又在《自然》(Nature)杂志上发布了另一种栉水母的基因组草图,再次验证了自己的观点。论文资深作者、佛罗里达大学的神经科学家 Leonid Moroz 表示:“栉水母(ctenophore)就像是来到地球的外星人。”它们通过特殊的纤毛在海洋中游动,看起来就像是迪厅的球形灯。它们通过粘乎乎的触手捕获食物。Moroz 和他的团队对太平洋侧腕水母(Pleurobrachia bachei)进行了基因组测序,他们发现栉水母拥有独一无二的神经系统。其他动物共用许多与免疫、发育和神经功能有关的基因家族,但栉水母完全不具备这些基因。这不仅令栉水母更加神秘,也再次证实栉水母是独立演化出自己的神经系统。栉水母一直令分类学家们头疼不已。它们和水母看起来很相似,曾经被视为刺胞动物(包括水母)的姐妹群(Sister group)。也有人将栉水母放在缺乏神经系统的扁盘动物和海绵之后,因为栉水母具有能够检测光、感知猎物和移动肌肉组织的神经系统。Moroz 认为,栉水母与所有动物的共同祖先是近亲。他在 2013 年的《Science》论文中提出,神经系统出现了两次各自独立的演化,栉水母的神经系统演化与其他动物完全不同。现在,P. bachei 基因组分析为这一观点提供了有力的支持。研究显示,P. bachei 基因组不仅缺乏其他动物的共有基因,而且不具备调控基因表达的 microRNA。此外,栉水母的神经系统还缺乏普通神经系统中的标准组分。 其他动物的神经系统都使用同样的十种主要神经递质,而太平洋侧腕水母则只用了其中的一两个。 Moroz 推测,这种生物可能使用了其他未知分子来完善神经系统,例如特殊的蛋白激素等。栉水母的上述独特性质,让研究团队确信它的神经系统演化独立于其他动物,大约在五亿年前从进化树上分支开。Moroz 表示:“人们总认为复杂的神经系统不可能进化两次,但这一事件的确发生了。”神经系统在不同动物分支中演化两次的观点,一直令慕尼黑大学的进化生物学家 Gert W?rheide 着迷。不过他并不认同 Moroz 等人给栉水母安排的进化位置,他认为所有动物的共同祖先可能与栉水母没什么关系。P. bachei 的神经系统也可能是后来发生的某种适应性改变,他说。“我认为现在断言栉水母在进化树中的地位还为时过早。”
  • 神经显微镜2027年市场将达58.1亿美元 网上零售兴起促增长
    p style="text-indent: 2em "span style="text-indent: 2em "据近期一项报告和数据,到2027年,全球神经显微镜市场预计将达到58.1亿美元。神经学显微镜是一种专门设计的显微镜,用于神经外科、诊断、治疗、研究和康复影响与神经科学有关的神经系统的任何部分的疾病。神经显微镜提供的放大率提高了神经器官在显微镜下的视觉效果,使视野更详细。神经学显微镜能将视野放大近100倍以上,它能提供对任何神经组织或其他感觉感受器(如大脑、脊髓、脑血管系统、外周神经系统等)某个特定部位的清晰、详细的视野。网上零售渠道直接促进了市场的增长。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 262px " src="https://img1.17img.cn/17img/images/202003/uepic/411d2b7d-949b-4015-9bb0-d70707f5cd7b.jpg" title="1.jpg" alt="1.jpg" width="450" height="262" border="0" vspace="0"//pp style="text-indent: 2em "strong中国和印度市场增长最快/strong/pp style="text-indent: 2em "由于神经科学医院和研究中心对神经显微镜的大量需求,北美市场预计在2027年将产生20.5亿美元的最高收入。随着亚太地区医疗保健行业的快速增长,以及中国、印度和日本神经系统疾病病例的增加,亚太地区很可能会超过欧洲市场。中国和印度是一些增长最快的市场,而美国和德国拥有一些最著名的市场参与者。/pp style="text-indent: 2em "strong网上零售供应在中国和印度已成为潮流/strong/pp style="text-indent: 2em "神经学显微镜的网上零售供应在中国和印度等新兴国家已成为潮流。在线零售商可以提供比线下供应商更低的价格,因为经销商链在这个过程中没有参与。在预测期内,这个细分市场的年复合增长率预计为7.4%。/pp style="text-indent: 2em "strong教学研究细分市场在2018年市场份额为14.8%/strong/pp style="text-indent: 2em "神经病学教育机构包括与神经科学各方面相关的研究。这些研究所使用高端神经学显微镜,让他们的研究学者和其他学生学习和理解神经科学的核心见解。例如,印度本迪治里医学科学研究所的神经外科为他们的学生和教授提供蔡司的88型神经显微镜。该细分市场在2018年的市场份额为14.8%。/pp style="text-indent: 2em "神经科学光学显微镜是显微镜学的第一个分支,光学显微镜是最早发明的神经科学显微镜系统。光学神经学显微镜带有一个内置的取景器,而数字显微镜利用软件算法来放大物体,并带有一个独立的平视显示器,用于先进的清晰成像系统。另一方面,荧光显微镜利用荧光和磷光产生神经组织和其他细胞的图像。/pp style="text-indent: 2em "strong透射电镜市场份额预计2027年将达到24.1%/strong/pp style="text-indent: 2em "透射电子显微镜(TEM)不同于光学和荧光显微镜,它通过对神经细胞的各种标本进行高分辨率的观察,从而提高了观察图像的亚细胞精度。透射电子显微镜被纳入世界著名的神经科学研究所和医院。该细分市场预计到2027年将达到24.1%的市场份额。/pp style="text-indent: 2em "市场主要参与品牌包括卡尔· 蔡司、徕卡显微系统、Accu-Scope、Danaher、Optofine、Helmut Hund、日立高新、赛默飞、日本电子、牛津仪器、明治技术、Keyence等。/ppbr//p
  • 新一届Eppendorf & Science神经生物学奖开放申请
    祝贺来自美国普林斯顿神经学研究院的Dr. Michael Yartsev荣获2013年度Eppendorf & Science神经生物学奖!Dr. Yartse使用一种罕见的动物模型——蝙蝠来研究哺乳动物大脑中有关空间记忆和导航系统的神经机制。他的研究成果不仅支持了现有假说提出的对比研究,并且也对该领域长期存在的问题提出了新的见解。他的研究成果也为在神经科学研究中使用新的动物模型开辟了新的思路。每年一度的“Eppendorf & Science神经生物学奖”是授予像Dr. Yartse这样在神经生物学领域取得非凡成就的青年科学家。Dr. Yartse是这一国际性奖项的第12位获奖者,不仅会获得25,000美金的高额奖金,并将受邀出席在美国圣地亚哥举办的2013年度神经科学大会年会。你可能就是下一位获奖者!如果你的年龄不超过35岁(含),并正在进行神经生物学领域的研究,你可能会成为2014年度新的获奖者。下届奖项申请截止日期是2014年6月15日,详情登陆 http://www.eppendorf.com/prizeEppendorf发酵工艺官方微信:Eppendorf的E课堂Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf中文官网:http://www.eppendorf.cnEppendorf China十周年庆官网:http://tenyears.eppendorf.cnEppendorf发酵工艺网络研讨会:http://a.bioon.com.cn/eppendorf_lesson/关于艾本德(Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific(NBS)公司,2012年收购德国DASGIP公司,拓展了其细胞培养领域的产品线。关于艾本德中国(Eppendorf China Ltd.)2003年Eppendorf在中国注册了艾本德(上海)国际贸易有限公司和艾本德中国有限公司,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 时空多尺度神经环路活体成像技术
    成果名称时空多尺度神经环路活体成像技术单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:光学成像技术是研究系统神经生物学的一个极其重要的手段。其中,通过光学成像技术手段跟踪简单模式生物神经环路中的信息传递来指导研究高等动物神经系统的动力学机制,是破译大脑信息处理功能的最有效途径之一。但是,目前光学显微成像技术的最高时间分辨率处于几十毫秒量级,尚无法捕捉动作电位在神经环路中的快速精细运动。因此,对神经元、神经环路活体光学成像技术开展研究,同时实现高空间分辨率和高时间分辨率的显微成像十分必要。2012年,生命科学学院陶乐天研究员申请的&ldquo 时空多尺度神经环路活体成像技术&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的资助。在该基金的资助下,申请人课题组购置了关键配件,开展了相关实验,有力地推动了仪器的研制工作。课题组基于其成员在光学系统研制和成像技术领域的丰富经验,利用高性能sCMOS科学级相机和高速光学调制器件,采用图像分块、分时复用技术和自适应光学波前像差实时校正技术,成功研制了一套时间分辨率达到5毫秒、空间分辨率达到0.5微米的显微成像系统,并将该系统应用于模式生物(线虫)神经环路的活体成像实验研究中。应用前景:目前该项目已经顺利结题,相关成果正在神经科学基础研究中进行推广。这项技术在神经环路的结构、发育、形成、维护研究领域的应用,将为新一代神经精神疾病的诊断、治疗技术提供科学依据和新的思路。
  • 从光子CT到脑神经刺激器 多款全球高端医疗设备器械进博会首发
    多项全球首创技术亮相作为全球最大的高端医疗影像设备制造商,GE医疗CT和西门子医疗持续四年参加进博会。 GE医疗方面向第一财经记者介绍道,如何实现5G环境下医疗影像设备实时应用支持场景落地是行业近年来关注的热点。为此,GE医疗在今年的进博会上将展示精准医疗科技创新和5G多场景下智慧医疗解决方案,比如创新的5G磁共振远程应用指挥中心方案,能够突破磁共振机房射频环境复杂等难点。第一财经记者了解到,西门子医疗也将在今年的进博会上展示多款全球首创技术,包括一款近日刚刚获得美国FDA许可的光子计数CT技术。FDA评价称,这项技术标志着十多年来CT影像领域的重大突破,提供了全新的成像方式,通过对每一个射入X光子的直接读数而生成影像。西门子医疗还将进行一款超高端PET/CT影像设备的全球同步首发,并展示全球首台临床科研双模7T磁共振设备,该设备将配合中国“脑计划”等重大科学研究项目。此外,新飞龙 2.0血管造影系统也将迎来中国首发。这款设备拥有全自动介入手术流程管理,能将医生从繁琐的机器操作中解放出来。医疗器械巨头美敦力将展示全球首款可自动识别大脑疾病状态的脑深部神经刺激器,可以通过感知技术探测大脑深部网络信号,将深部神经刺激(DBS)带入数字化时代。这款产品同时可兼容1.5T和3.0T磁共振,能控制缓解特发性震颤、帕金森病、难治性癫痫等症状。瑞典放疗巨头医科达(Elekta)也是第四次参加进博会,该公司今年将发布一款全新医用直线加速器以及智慧放射治疗解决方案,软硬件协同,使治疗更加精准高效。视力保健和眼镜制造企业依视路陆逊梯卡集团也宣布将以合并后的全新身份参展第四届进博会,多款创新产品将于进博会首发。其中包括两款重磅儿童青少年近视控制产品,一款产品是与库博光学合作的全球首款获得美国FDA和中国国家药品监督管理局(NMPA)批准的减缓儿童眼轴长度变化的日抛型软性接触镜;另一款是计划明年在中国市场上市的延缓儿童青少年近视进展的镜片。在仪器方面,依视路陆逊梯卡将全球首发首次将生物学参数测量、角膜曲率测量和屈光度测量结合在一起的依视路自动验光生物测量仪。医疗器械设备本土化创新集采是本土化过程中一个绕不开的话题。参加进博会的外企高管普遍认为,政府集采行为符合逻辑,因为标准化的产品可以通过大批量的集中采购去除中间商的水分,使价格更加透明,同时也将迫使厂商不断通过创新提升服务。“以骨科行业为例,从长期的发展来看,人工关节带量采购有助于促进行业规范发展,产品降价可以促进人工关节置换手术在基层患者中渗透率提升。”全球骨科龙头企业捷迈邦美中国总裁李永明对第一财经记者表示。但集采导致的价格下降对于任何公司而言都是一个极大的挑战。骨科集采后,产品平均降价幅度超过80%。“这就要求企业在很多方面做出改变和调整,比如采用本土化的设计理念和技术,在考虑成本的情况下,设计出来适应于中国的产品,以应对价格的大幅度下降,并支撑未来业务的长期发展。”李永明对第一财经记者表示。危重症治疗领域顶尖企业德尔格集团也将在今年进博会上展示重症医学领域的最新技术,覆盖从手术室到重症监护室的全场景解决方案。德尔格大中华区CEO潘嘉博(Gabor Polivka)在进博会前接受第一财经记者采访时强调了该公司在中国实现本土化战略的重要性。潘嘉博表示,德尔格作为一家传统的德国家族医疗企业,始终坚持德国原厂制造,但唯独在中国市场例外,德尔格正在不断扩大中国的生产和本土供应链的布局,来应对这个全球最大的医疗市场快速增长的患者需求。“我们已经有了未来5-6年的中国本土化产品的战略规划,将覆盖低、中、高端所有产品线。”潘嘉博对第一财经记者说道,“新冠疫情以来,全球的供应链非常脆弱,但这也加速了德尔格本土化的进程,我们必须去响应这些挑战。”潘嘉博向第一财经记者介绍称,德尔格在中国生产呼吸机预计将于近期上市,麻醉机也计划于明年上市。此外,为了更好地配合中国医院信息化建设的需求,德尔格还将于明年发布云平台解决方案,向智慧医疗迈出重要一步。
  • 科研攻坚不停歇!华东师大袁小兵/潘逸萱课题组揭示先天恐高反应神经机制
    沃的研究所这是一档关注“生命科学行业变化”的专题栏目。我们将从合作伙伴入手,每一期研究和解读一家科研机构或科研课题组、实验室的背后故事、相关方法论、使用的工具等等,帮助科研从业者获得启发和思考。本期【沃的研究所】对话主人公:尚蔚,博士研究生,华东师范大学生命科学学院袁小兵/潘逸萱课题组重要成员,本篇论文第一作者。恐高,其实跟我们每个人都息息相关。恐高反应会发生在每一个人身上,而恐高症患者会表现出对高度的非理性恐惧,即使暴露在很低的高处或者仅联想到高处时都会表现出对高度的非理性恐惧,这可能会对日常工作及生活带来一定的影响。那恐高反应究竟是如何产生的?科学界是如何解释这一现象?又该如何克服呢?2024年5月3日,华东师范大学生命科学学院袁小兵/潘逸萱团队在国际权威学术期刊Nature Communications 发表题为 A non-image-forming visual circuit mediates the innate fear of heights in male mice 的研究论文,他们对先天恐高反应开展研究,意外发现小鼠大脑中的非成像视觉系统诱发了恐高反应。 本期【沃的研究所】,我们将对话文章的第一作者尚蔚博士,一起深入了解小鼠先天恐高反应背后的神经机制。 逐层攻破技术瓶颈为探索恐高神经机理寻找靶点 尚蔚博士所在的课题组选择了广泛存在的生理视觉高度失衡的恐高来开展,他们首先建立行为学范式,细致观察小鼠在高台上的表现。曾有心理物理学家提出过这样一个假说,认为当人在高处时,随着人体与最近的静止物体之间的距离不断地增加,此时视觉提供的平衡信息会与前庭和躯体感觉系统提供的信息发生冲突,个体就容易出现晕眩的感觉,同时此时身体摆动幅度的增大,个体也会更容易感受到坠落,而这种对坠落的害怕会诱发个体的恐高情绪。根据心理物理学家的假说,尚博所在的课题组对视觉前庭和躯体感觉系统的作用进行了探究,发现视觉在恐高反应中发挥了主导作用。小鼠在高台上会出现类似于人类的恐高反应 课题组又参考了与视觉相关的先天恐惧行为学范式,通过视觉刺激(Looming Visual Stimuli )来寻找可能参与调控恐高的核团。最后通过光纤记录和化学遗传等手段来调控目标核团和神经环路连接,观察小鼠在行为学实验中的表现是否会有所不同,进一步发现小鼠大脑中存在两条神经环路,在调控先天恐高反应中发挥相反的作用。这项研究成果的发表有利于帮助人们理解人类的恐高现象,并为后续恐高反应的神经机制研究提供了思路,也为后续药物开发提供了一些帮助。但由于目前神经科学领域对“恐高”的研究还十分有限,已有的研究主要集中在流行病学调查和影像学方面。尚博介绍道:“刚开始的时候我们完全不知道到底要怎么来研究恐高,以及如何建立一个比较可靠的行为学范式,而且提出评估恐高程度的指标也是经历了不断的修改,基本一切都是未知的;另一方面,我们组确实不是做行为和神经环路机制的,所以对技术和思路也不熟,包括研究过程中有一部分是需要去做前庭系统,我对前庭系统非常陌生。”为了观察小鼠的恐高表现,他们需要多次制作高台,尚博笑着说:“那段时间我们不是在买亚克力,就是在买亚克力的路上,淘宝的订单截图可以拉很长。”为了了解前庭系统,尚博甚至鼓起勇气联系了交大六院耳鼻喉科的师兄,后又经过导师的介绍,到上海交大交流学习了一段时间,才慢慢克服了这些技术难题。“在我看来,合作真的是非常重要,这项研究也是大家共同努力的结果!”尚博说。截至目前,这项研究还在继续。 无心插柳,顺应偶然性机遇蕴含在变化之中 谈及当时是怎么想到要研究这个课题,尚博笑言:“这还真的挺有趣的,确实是无心插柳柳成荫的故事。”说起来,尚博所在的课题组主要的研究方向其实是孤独症谱系障碍以及神经发育。尚博最开始加入团队的时候,主要对孤独症谱系障碍风险基因的神经机制展开研究。可是当时的课题进展并不顺利,实验结果也不稳定。但也正是在这一次次的挫败中,课题组偶然间发现,实验小鼠在旷场实验中的自发运动量和焦虑水平都没什么变化,在高架O迷宫中却表现得特别焦虑,对高度的刺激非常敏感。他们又开始查阅文献、探究基因突变小鼠异常恐高的原因……“确实没想到当初那个课题能发展到现在这样。”尚博说。一次偶然,课题组开始了对恐高症的研究;又一次机缘巧合,课题组开始了与瑞沃德的合作。“其实在第一轮投稿的时候,我们已经通过化学遗传的方法发现了腹侧外侧膝状核(vLGN),特别是其中的抑制性 GABA 能神经元,还有 vLGN 到下游中央导水管周围灰质(Periaqueductal gray, PAG)参与调控恐高。但因为化学遗传没能实时观察到神经元对高度刺激的响应,所以审稿人明确提出希望我们可以补充光纤记录的实验。”说来也巧,刚好在补实验阶段,实验室就有一台瑞沃德的光纤记录系统。尚博所在实验室里的瑞沃德光纤记录系统 “我们用瑞沃德光纤记录系统做了对照实验,发现确实取得了很好的结果。而且我们原来第一轮投出的内容,它使用到的技术其实比较单一,在后面补实验增加了光纤记录这样在神经环路领域比较常用的技术,得到了导师的认可,这也对于我们这一项成果的发表有很大的帮助。”尚博在交谈中也对瑞沃德光纤记录系统表达了认可:“瑞沃德的光纤系统操作简单,使用方法也比较容易学习,分析软件也十分方便,可以快速给出想要的图,同时还可以计算线下面积、叠加不同个体的数据,对我们的实验有很大的帮助。”“在我看来瑞沃德是国内做得很好的品牌了,我也很开心看到国产的仪器近年来做得越来越好了,大家就有更多的选择。”该研究使用光纤记录检测了腹侧外侧膝状核(vLGN)脑区GABA能神经元和外侧/腹外侧导水管周围灰质(l/vlPAG)脑区谷氨酸能神经元的钙信号变化 “其实我们还挺幸运的,文章只返修了一轮。”尚博感慨道。采访过程中,尚博不止一次说起:“我认为自己一直都是一个比较幸运的人。”在尚博的自述中,她说到,高考、考研都比较顺利,父母愿意支持自己的选择,师兄会手把手带着她做实验、交流科研思路,师妹们会鼎力支持课题的进展,导师们也会在大家做实验情绪爆炸的时候给予足够的鼓励……“所以我真的觉得自己是很幸运的人。”尚博课题组合照(从左到右依次为尚蔚、袁小兵教授、谢双翼、潘逸萱副研究员、冯文博) 发现了吗?伟大的成就,其实并没有所谓的可复制的成功脚本,它们往往没有经过周密的计划便诞生。不管是做实验,还是生活,我们不时地顺应偶然性,也不见得是坏事。就像尚博所说的:“意外真的常有发生,一切都在你的计划之内,是非常小概率的事件,所以你要时刻地根据实际情况来灵活调整自己的方案或者计划,多一些Plan B。”不管是“无心插柳”,还是“有心栽树”,幸运会不断出现在你努力的路上!我们也祝福尚蔚博士及团队在自己热爱的领域里勤耕不辍! 如果您想了解尚蔚博士课题组同款瑞沃德多通道光纤记录系统长按识别下方二维码进行预约我们将会有专业人员与您联系▽
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 天津爆炸现场测出神经性毒气 可致心脏骤停
    p  天津港“8· 12”瑞海公司危险品仓库特别重大火灾爆炸事故,已经发生5天了,救援救治、善后处置工作仍在紧张推进。人们关心的问题许多,仍待进一步解答。大家在关心伤员的救治和遇难者的善后处置,也在关心危险品的查找、处理。专业防化人员在现场都看到了什么?他们又采取了什么措施呢?/pp  北京消防总队的生化侦检队伍,配备了先进的检测设备,负责探测爆炸区域内的有毒有害气体。北京公安消防总队参谋吕峥介绍:“这个是我们北京总队核生化侦检车,这个车功能就是能进入现场边缘地带,能测定有毒有害的范围。”那它都能检测到什么物质呢?吕峥说:“检测到化学有害物或者生物的一些比如说病毒、病菌这些都可以。”/pp  爆炸发生后,事故区域的空气就处于严密的监测中,每天都会有多支小分队对空气进行监测。而8月16日上午,这些侦检队员们的任务是对爆炸核心区域的空气进行采样。为了保证安全,进入核心区域前,所有队员、包括记者在内都必须穿着防护服、佩戴空气呼吸器。由于空气呼吸器的供氧时间只有半个小时,侦检队员们必须迅速完成计划区域的检测工作。/pp  做好防护工作后,记者跟随侦检队员,来到了距离爆炸核心区500米的集结地。由于前方已经没有道路,所有人员必须在这里下车。而就在此时,车载监测系统和手持监测仪同时发出了警报声,提示空气中的有害气体已经超过了仪器能够测量的最高值。/pp  侦检队伍继续徒步向爆炸核心区方向前进。沿途记者看到,在爆炸核心区的外围,为了防止降雨后污水外溢,已经垒起了一道一米多高的防护堤。前进过程中,侦检队员手持的报警器依然在提示有害气体爆表。/pp  北京公安消防总队副参谋长李兴华介绍:“今天上午这趟去采集的结果,侦测的结果跟昨天几乎一样,还是氰化钠和神经性毒气这两种有毒的气体。这两项指标都达到最高值。”/pp  此前已经确定事故现场存放了大量氰化钠,而这次空气检测中也检测出了这种物质,那么氰化钠的毒性到底有多大?接触人体后,会有怎样的危害?记者来到了北京化工大学国家新危险化学品评估及事故鉴定实验室。/pp  北京化工大学国家新危险化学品评估及事故鉴定实验室博士门宝说:“氰化钠固体毒性非常大,只要碰到皮肤破伤处或者吸入或者误食大概有几十毫克可以致死。”/pp  门博士介绍,氰化钠是一种白色粉末状的剧毒物质。由于毒性很大,不方便用来试验,但可以用化学性质与之相似的无毒物质碳酸氢钠来演示它的一些特性。门博士将碳酸氢钠放入蒸馏水中,可以看到它能够很快溶解,并且没有气体产生,而与酸性液体接触后则迅速产生大量气泡。/pp  门博士告诉记者,氰化钠遇到酸性物质会产生大量剧毒的氢氰酸,但在碱性环境下比较稳定。现场如果有散落的量比较大的氰化钠应进行清理或者掩埋,对于空气中漂浮的和地面散落的氰化钠颗粒,可以通过喷洒低浓度的碱性双氧水来消除毒性。目前,事故现场已经开始了这项工作。如果处理及时,即便降雨,也不会造成太大影响。/pp  在对爆炸核心区的空气进行监测时,除了氰化钠,还发现了一种物质就是神经性毒气,门博士介绍,爆炸区域的多种危化品都可能产生这类物质。他说:“这些物质遇水或者遇碱能产生气体然后产生神经性毒气,比如氰化钠还有一些硫化碱,另外一些物质在高温爆炸过程中会发生化学反应,产生有毒性气体,比如二甲基二硫。神经性毒气一旦人吸入,可以与神经细胞作用,使酶失活,另外可以导致呼吸系统心脏等骤停进而导致人死亡。”/pp  门博士建议,如果神经性毒气密度较高,应尽快撤离,如果超标不严重,也应做好防护措施,避免与人体接触。事实上,本次爆炸现场的危险远不止这些。现场危化品的种类和数量,超乎想象。/pp  公安部消防局副局长牛跃光表示:“40多种危化品,目前了解到的情况有硝铵、硝酸钾这些硝类的应该是炸药类的,这个量是非常大的,像硝酸铵目前我们了解到可能在800吨左右,还有硝酸钾500吨,加上氰化钠这类物品,要超过2000吨。”/pp  牛跃光告诉记者,由于瑞海公司办公楼已经被毁,货物记录不清,所以爆炸现场具体的危化品数量有待最终确认,但现在能够确认的危化品数量在3000吨左右。/pp  瑞海公司仓库示意图显示,凡是能够堆放物品的地方,全部放满了危化品。牛跃光说:“我干消防40多年了,像此类的危险品仓库,这还是历经最复杂的一次灾害事故。”/pp  由于情况复杂,危化品的生产厂家,氰化钠所属的河北诚信有限责任公司相关人员也赶到现场,参与处置。河北诚信有限责任公司总经理智群申介绍,现场核实有700来吨氰化钠:“当地按照应急指挥中心,他们在当地有运输车辆,帮助我们把东西运回去。”/pp  核心区包装完好的氰化钠将运回企业,而爆炸发生时,还有氰化钠颗粒散落到外围。在今天上午的发布会中,天津市副市长何树山介绍说,对外围氰化钠的清理搜寻分成了三个区域,分别为离核心爆炸点一公里半径范围、两公里半径范围、三公里半径范围:“我们从13号开始这几天已经把一公里半径搜寻完了,两公里半径搜寻完了,今天傍晚可以把三公里半径搜集完。”/pp  除了危险化学品,爆炸事故中产生的污水也牵动着很多人的心。根据指挥部命令,北京卫戍区某防化团派出专业人员第一次进入到这次爆炸的爆点,采集核心爆点的水样、土样。/pp  为了取得水样,取样员只能趴在地上进行工作。2名取样员分别在不同地点采集水和土的样品各3份,整个作业时间持续了大概半个小时。在核心爆点,记者看到,不明成分的白色泡沫状物体漂浮在水面上,周边土壤已经发黑。取样后,相关部门将进行检测。爆炸点样品的检测结果还需要等待,而事实上,此前,爆炸区域下水管道的水体已被检出COD(化学需氧量)、氰化物超标,那么这些污水会如何处理呢?记者来到负责收集、处理爆炸事故区域。/pp  目前,污水处理厂的工人们正在检修设备,并且要把爆炸发生前存储的污水排空,以腾出空间容纳事故产生的污水。事实上,由于氰化物和COD超标,事故区污水在进入污水厂前,还要经过两道预处理。/pp  据环保专家介绍,事故中的污水,首先经过破氰的预处理,进入污水处理临时泵站,然后到一级物化预处理系统降低COD含量,然后才能进入污水厂,在污水厂内还要通过原生化处理系统进行处理,由活性炭进行过滤,最后再进行消毒,最终检测达标后才能排放。/pp  深入搜救、全力救援、悉心救治、积极安置。目前,考验还没有结束、战斗还在进行,前方救援队伍仍在全力以赴、坚持奋战,尽最大的努力,保护好人民群众的生命财产安全和环境安全。/pp/p
  • 2013年国际神经大会
    专 业:神经与精神病学会议类型:学术大会会议日期: 2013-09-21会议地点:奥地利--维也纳主办单位:N/A 推荐等级: 会议费用: 元 会议介绍首席医学会议频道(conference.shouxi.net)2012年10月22日报道,世界神经学联盟是一个由全球100多个国家和地区的神经专家组成的国际组织。世界神经学联盟是通过对整个神经系统疾病患者的治疗与预防以提高全球人类健康为宗旨的协会。预计本次会议将有5000多代表参加。会议详情  I am honoured to invite you personally to the twenty-first World Congress of Neurology, which will take place in September 2013 in Vienna and which I am sure will leave a lasting impression on us all.  The congress theme is &ldquo Neurology in the age of globalization&rdquo . We will discuss the major breakthroughs and developments in the field of neurology &ndash from clinical practice to research and technology. In addition to a top-rate scientific program, there will be many opportunities for hands-on learning and networking as well as exciting social events.  As the chairman of the Austrian Society of Neurology, I am happy that the EFNS - The European Federation of Neurological Societies and the World Federation of Neurology (WFN) - are our partners in this important event.  I look forward to welcoming you to Vienna, a majestic capital, filled with beautiful architecture and cultural attractions.  The Austrian capital city can be considered an ideal location for an international medical congress of this dimension. Vienna is a city rich in culture and boasts an impressive history in the medical sciences with all the modern amenities. Vienna is located in the heart of Europe and is easy to reach by plane, train, car or boat. The city offers excellent conference infrastructure and the highly professional services required for the organization of the World Congress of Neurology. Vienna has successfully hosted large congresses in the past, with up to 30,000 delegates.  Vienna and its environments offer an exceptional range of accommodation &ndash from luxury 5 star to moderately priced and inexpensive hotels. Vienna has always been a magnet for the &ldquo new&rdquo EU countries and its long established traditional medical contacts extend beyond Europe into all parts of the world. Hence, the congress will be held in close collaboration with our neighboring countries.  The Austrian capital is famous for its hospitality and culture. We are confident that the social events and leisure activities will contribute to the success of the congress.  本次会议的目标是:为参会者提供一次高质量、原创科学研究及临床实践的平台 促进临床、实践、科学信息及想法交流的平台 为所有对神经科学感兴趣的医生学者提供一次学习的机会 为参会者提供与同行建立网络联系的机会 通过不断努力来扩大及加强世界神经学联盟的影响力 令参会者跟上最新工业设备研究与发展的节奏。  会议的题目有:癫痫/运动障碍 中风/感染 肌肉骨骼/肌肉 头痛/神经眼科。  论文提交的栏目有:痴呆 自主神经疾患 行为神经学 脑血管病(中风与神经超声) 儿科神经学/发育神经学 临床神经生理学 重症护理/急诊/外伤 癫痫 伦理学、疼痛学与姑息医学护理 普通神经学/神经系统病 头痛与疼痛 神经学历史 成像 感染 运动障碍 MS与相关疾病 肌肉病/神经肌肉接点 神经康复 神经肿瘤 神经眼科/视觉神经 神经流行病学/健康服务 神经基因学与基因治疗 神经代谢异常/神经毒性 神经学的教学与科研 神经免疫 失眠问题。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制