当前位置: 仪器信息网 > 行业主题 > >

远距离抛投器

仪器信息网远距离抛投器专题为您提供2024年最新远距离抛投器价格报价、厂家品牌的相关信息, 包括远距离抛投器参数、型号等,不管是国产,还是进口品牌的远距离抛投器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合远距离抛投器相关的耗材配件、试剂标物,还有远距离抛投器相关的最新资讯、资料,以及远距离抛投器相关的解决方案。

远距离抛投器相关的论坛

  • 【线上讲座247期】LIBS的现在与将来 (五)——LIBS远距离遥测分析 火热上线...至4月12日

    欢迎大家前来与chauchylan老师一起就LIBS光谱技术的相关问题进行探讨~!活动时间:2015年03月31日——2015年04月12日 【线上讲座247期】LIBS的现在与将来 (五) Part 5 主讲人:chauchylan 专家 活动时间:2015年03月31日——2015年04月12日 我们热烈欢迎chauchylan老师光临直读光谱版面进行讲座!http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif引言:激光诱导击穿光谱技术(laser induced breakdown spectroscopy)简称LIBS,是一种光谱探测技术。基于高功率密度的激光作用在样品表面,产生激光诱导等离子体,通过探测激光诱导等离子体中的原子和离子谱线,来确定样品的成分组成的一种光谱分析工具。我们荣幸邀请chauchylan老师详细介绍LIBS的过去、现在与将来。由于LIBS知识的相关内容比较多,本讲座拟定分五期完成。第一期为LIBS的过去http://bbs.instrument.com.cn/shtml/20130717/4856165/,第二期至第五期为LIBS的现在与将来:Part1 http://bbs.instrument.com.cn/shtml/20140923/5469496/;http://bbs.instrument.com.cn/shtml/20141022/5503467/;http://bbs.instrument.com.cn/shtml/20141124/5548303/;http://bbs.instrument.com.cn/shtml/20141223/5584639/。http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif提要一、LIBS远距离遥测分析二、化学计量学在LIBS中的应用三、 LIBS将来及其展望http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif欢迎大家前来与chauchylan老师一起就LIBS放电光谱法的知识探讨进行交流~!以上为chauchylan老师所著,未经chauchylan老师和仪器信息网同意任何个人和单位禁止转载!!! 提问时间:2015年03月31日--2015年04月12日答疑时间: 2015年03月31日--2015年04月12日特邀佳宾:直读光谱版面的版主、专家以及从事此行业的同行们参与人员:仪器论坛全体注册用户活动细则:1、请大家就LIBS知识的相关问题进行提问,直接回复本帖子即可,自即日起提问截至日期2015年04月12日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :chauchylan老师您好!我有以下问题想请教,请问:……http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归chauchylan和仪器信息网所有。本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif

  • 奥地利实现143公里量子远距传输打破中国纪录

    2012年09月07日 08:21 新浪科技 http://i0.sinaimg.cn/IT/2012/0907/U5385P2DT20120907081946.jpg奥地利物理学家凭借143公里的成绩打破量子远距传输的最远距离纪录  新浪科技讯 北京时间9月7日消息,据美国物理学家组织网6日报道,维也纳大学和奥地利科学院的物理学家凭借143公里的成绩打破量子远距传输的最远距离纪录。这项成就是在朝着基于卫星的量子通讯道路上向前迈出的重要一步。研究成果刊登在《自然》杂志上。  实验中,奥地利物理学家安东-泽林格领导的一支国际小组成功在加那利群岛的两个岛屿——拉帕尔玛岛和特纳利夫岛间实现量子态传输,距离达到143公里。此前的纪录由中国研究人员在几个月前创造,成绩为97公里。  打破传输距离并不是科学家的首要目标。这项实验为一个全球性信息网络打下了基础,在这个网络,量子机械效应能够大幅提高信息交换的安全性,进行确定计算的效率也要远远超过传统技术。在这样一个未来的“量子互联网”,量子远距传输将成为量子计算机之间信息传送的一个关键协议。  在量子远距传输实验中,两点之间的量子态交换理论上可以在相当远的距离内实现,即使接收者的位置未知也是如此。量子态交换可以用于信息传输或者作为未来量子计算机的一种操作。在这些应用中,量子态编码的光子必须能够传输相当长距离,同时不破坏脆弱的量子态。奥地利物理学家进行的实验让量子远距传输的距离超过100公里,开辟了一个新疆界。  参与这项实验的马小松(Xiao-song Ma,音译)表示:“让量子远距传输的距离达到143公里是一项巨大的技术挑战。”传输过程中,光子必须直接穿过两座岛屿之间的湍流大气。由于两岛之间的距离达到143公里,会严重削弱信号,使用光纤显然不适合量子远距传输实验。  为了实现这个目标,科学家必须进行一系列技术革新。德国加尔兴马克斯-普朗克量子光学研究所的一个理论组以及加拿大沃特卢大学的一个实验组为这项实验提供了支持。马小松表示:“借助于一项被称之为‘主动前馈’的技术,我们成功完成了远距传输,这是一项巨大突破。主动前馈用于传输距离如此远的实验还是第一次。它帮助我们将传输速度提高一倍。”在主动前馈协议中,常规数据连同量子信息一同传输,允许接收者以更高的效率破译传输的信号。  泽林格表示:“我们的实验展示了当前量子技术的成熟程度以及拥有怎样的实际用途。第一个目标是基于卫星的量子远距传输,实现全球范围内的量子通讯。我们在这条道路上向前迈出了重要一步。我们将在一项国际合作中运用我们掌握的技术,中国科学院的同行也会参与这项合作。我们的目标是实施一项量子卫星任务。”  2002年以来就与泽林格进行量子远距传输实验的鲁珀特-乌尔森指出:“我们的实验取得了令人鼓舞的成果,为未来地球与卫星之间或者卫星之间的信号传输实验奠定良好基础。”处在低地球轨道的卫星距地面200到1200公里。(国际空间站距地面大约400公里)乌尔森说:“在从拉帕尔玛岛传输到特纳利夫岛,穿过两岛间大气过程中,我们的信号减弱了大约1000倍。不过,我们还是成功完成了这项量子远距传输实验。在基于卫星的实验中,传输数据更远,但信号穿过的大气也更少。我们为这种实验奠定了一个很好的基础。”(孝文)

  • 帮忙下载一篇文献“单颗LED实现远距离均匀照明系统设计”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2847c512718e2b7f8c%29%20author%3A%28%E8%B0%A2%E6%B4%AA%E6%B3%A2%29%20]谢洪波[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28aec09b8e7f23f3ca%29%20author%3A%28%E6%B1%9F%E6%95%8F%29%20]江敏[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2891f02131476ef763%29%20author%3A%28%E6%9D%A8%E7%A3%8A%29%20]杨磊[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2848cb5b4fac3e267f%29%20author%3A%28%E5%AD%9F%E5%BA%86%E6%96%8C%29%20]孟庆斌[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%284fba1075ad171ca2%29%20author%3A%28%E6%96%B9%E6%98%A5%E4%BC%A6%29%20]方春伦[/url][/color][/size][/font][b][b][/b][/b][/b][font=&]【题名】:[/font][b][b][url=http://www.eope.net/EN/abstract/abstract17664.shtml][b][b]单颗LED实现远距离均匀照明系统设计[/b][/b][/url][/b][/b][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=44d548ceda7647026248a7152eb966fc&site=xueshu_se&hitarticle=1][font=&][size=13px][color=#0066cc]谢洪波[/color][/size][/font][/url][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28aec09b8e7f23f3ca%29%20author%3A%28%E6%B1%9F%E6%95%8F%29%20]江敏[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2891f02131476ef763%29%20author%3A%28%E6%9D%A8%E7%A3%8A%29%20]杨磊[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2848cb5b4fac3e267f%29%20author%3A%28%E5%AD%9F%E5%BA%86%E6%96%8C%29%20]孟庆斌[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%284fba1075ad171ca2%29%20author%3A%28%E6%96%B9%E6%98%A5%E4%BC%A6%29%20]方春伦[/url][/color][/size][/font][url=https://xueshu.baidu.com/usercenter/paper/show?paperid=de039de3a67788dad45ff8e511b0ebcf&site=xueshu_se]单颗LED实现远距离均匀照明系统设计 - 百度学术 (baidu.com)[/url][/b][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2847c512718e2b7f8c%29%20author%3A%28%E8%B0%A2%E6%B4%AA%E6%B3%A2%29%20]谢洪波[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28aec09b8e7f23f3ca%29%20author%3A%28%E6%B1%9F%E6%95%8F%29%20]江敏[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2891f02131476ef763%29%20author%3A%28%E6%9D%A8%E7%A3%8A%29%20]杨磊[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2848cb5b4fac3e267f%29%20author%3A%28%E5%AD%9F%E5%BA%86%E6%96%8C%29%20]孟庆斌[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%284fba1075ad171ca2%29%20author%3A%28%E6%96%B9%E6%98%A5%E4%BC%A6%29%20]方春伦[/url][/color][/size][/font]

  • 请问液相和气相/气相质谱仪放在一个房间的至少距离是多少?

    请问液相和气相/气相质谱仪放在一个房间的至少距离是多少?因无法给液相单独的实验室,现只能和GC/GCMS放在同一房间,近50平方,有两台GCMS,一台GC和一台GPC等。房子中间是试验台,周围有样品处理的小设备。液相有DAD和RI检测器,DAD还好,就是怕RI受GCMS的降温升温的影响,应该至少和GCMS保持多远距离?有什么办法或措施来减少影响呢?谢谢!

  • 【求助】柱头距离 + 玻璃衬管

    我用的varian 1177进样口师兄告诉我螺帽到柱头的距离3.7cm, 论坛里有篇帖子也提到是3.7cm,可是我拆下量的却是2.7cm, 如果调整成3.7cm,螺帽根本拧不上,这是为什么?另外,我对[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的维护不怎么会,想请教大家:玻璃衬管经浸泡、超声洗涤后还是有明显污迹,是不是要更换新的?varian1177配套的玻璃衬管和玻璃棉,大家都从什么地方买啊?

  • A14/A11气体检测分析仪

    美国ATI公司生产的[b]A14/A11气体检测分析仪[/b]由传感器/变送器单元、接收显示报警单元及电源单元组成,为探头式模块式结构,可组成多探头方式,可编程。控制器和探头的最长距离可达300米。探头变送器安装于被测气体现场。  ATI公司生产的控制器模块A14具有如下特点:  Ø 浓度显示:位LED数字显示被测体浓度,单位为PPM,PPB,%  Ø 模拟输出:隔离4-20mA DC,阻抗1000W,用于外部记录仪或计算机输入。  Ø 两点报警:两个报警点浓度已由工厂调试成标准数值,也可在5%—100%量程范围内调节设定。  Ø 三个报警继电器:单刀双掷输出继电器用于启动外部信号装置,控制单元或用于远距离测量与报警。每个继电器都可设定报警点,还可设定为常开或常闭运行。  Ø 故障报警继电器:探关/变送器输入情号丢失时,前面板上LED故障闪烁,与其相连的继电器将启动。如果探头带有自动校准功能,当探头对检测气体不响应时,也会启动故障报警。  Ø 设定:前面板上A/R键具有多种功能。当报警发生后,按此键将关闭与控制器相连的蜂鸣器并使报警灯光稳定。报警过后,通过该键重新设置报警开关。A/R键还可用来进行电气测试,报警触点,启动探头自动校准功能。  Ø 远距离设置:接线板上设有远距离接线钮,时用于遥控报警或遥控设置。  Ø 插入式接线板:外部电气连接为插头式,如果模块需要维护,几分钟内即可完成。  探头/变送器特点  Ø ATI公司采用电化学探头,电化学专家和探头设计师研制的气体泄漏探头能连续工作而维护量极小。探头能在室内、户外-25℃—+50℃环境温度下工作,良好的零点稳定性和高灵敏度及多种配套选择,使ATI探头成为同类产品的佼佼者。  Ø 探头与变送器装于一体,具有良好的抗干扰性,可由无屏蔽电缆进行远距离信号传输。探头/变送器由控制器模块供电,采用独一无二的电流脉冲调制技术向控制器输送信号。控制器与探头/变送器问采用无极性双线连接,避免接线极性错误带来的影响,探头与控制器问距离最远可达300m。  Ø 探头/变送器置于NEMA 4x外壳中,适用于各种恶劣环境,达到真正的防护安全标准,另外有一种防爆型变送器外壳可供选用。  ** 可测量的气体种类:[align=center][img=,436,260]http://www.bjstrong.com.cn/uppic/201956102922vVXsSRidtwbjcAyHIlEz.jpg[/img][/align][align=center][img=,400,265]http://www.bjstrong.com.cn/uppic/201956102935xDnuNUKcCTBm9zachsTa.jpg[/img][/align][align=center][img=,418,262]http://www.bjstrong.com.cn/uppic/201956102943vz9wNKNleT92bfF2PA13.jpg[/img][/align]

  • 薄层板跑板距离太短是什么原因?

    薄层板跑板距离太短是什么原因?

    我们的薄层色谱板,点样后,样品能分开,但是只能往上跑很短的距离,到不了板子的中间位置,这是为什么?[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907031130145984_9192_1825519_3.png!w690x920.jpg[/img]

  • 【讨论】近红外光谱仪光纤探头的测试距离

    很多近红外光谱仪都配置了光纤,但光纤和测试对象的距离、角度没有很好规范,测试的原理不清楚。在采集近红外漫反射光谱时,因光纤较细,光有效入射角较小,是不是光纤探头离测试对象距离较近才行呢?

  • 光纤的有效传输距离有多长?

    [font=宋体][font=宋体]一般用于透射式探头或流通池的光纤为单根,其有效传输距离在[/font][font=Times New Roman]2[/font][/font][font='Times New Roman']00m[/font][font=宋体][font=宋体]以上。而漫反射式探头由于信号衰减较为严重,一般采用光纤束以增加光通量,通常其传输距离较短,一般在[/font][font=Times New Roman]1[/font][/font][font='Times New Roman']0m[/font][font=宋体]以下,并且价格也比较昂贵。[/font]

  • 关于OptoTemp 2000产品及其应用的潜力问题

    在某网友帮助下,俺找到了海洋光纤测温仪表:OptoTemp 2000 !我昨天扫视了一遍,初看还以为是近距离的,后来看看,好像是光纤的,那就可能远距离测温度了。不知道应用到哪些地方了,望海洋提点一下!

  • 压片质量不正常原因分析

    a. 由KBr粉末引起的:现象 1. 透过片子看远距离物体透光性差,有光散射 2. 不规则疙瘩斑 原因 1. KBr不纯,至少混有第二种碱金属卤化物2. KBr受潮或结块纠正办法1. 选用纯的KBr2. 干燥 b. 由试样引起的:现象1. 片子出现许多白色斑点,其余部分清晰透明 2. 不规则疙瘩或全部呈云雾状混浊 3. 呈半透明或云雾状混浊 原因1. 研磨不均,有少量粗粒2. 样品受潮 3. 样品本身性质之故纠正办法1. 重新研磨2. 干燥或抽真空时间长些3. 选用其他制样方法c. 由压片技术引起的:现象1. 整个片子不透明 2. 刚压好片子很透明,1分钟后出现不规则云雾状混浊 3. 片子中心出现云雾状 原因1. 压力不够,加上分散不好2. 抽真空不够3. 砧空或压舌面不平整纠正方法1. 重新研磨2. 检查真空度,延长抽真空时间3. 调换新的或重抛

  • 【分享】------红外分析压片质量不正常原因分析

    红外分析压片质量不正常原因分析a. 由KBr粉末引起的:现象 1. 透过片子看远距离物体透光性差,有光散射 2. 不规则疙瘩斑 原因 1. KBr不纯,至少混有第二种碱金属卤化物2. KBr受潮或结块纠正办法1. 选用纯的KBr2. 干燥 b. 由试样引起的:现象1. 片子出现许多白色斑点,其余部分清晰透明 2. 不规则疙瘩或全部呈云雾状混浊 3. 呈半透明或云雾状混浊 原因1. 研磨不均,有少量粗粒2. 样品受潮 3. 样品本身性质之故纠正办法1. 重新研磨2. 干燥或抽真空时间长些3. 选用其他制样方法c. 由压片技术引起的:现象1. 整个片子不透明 2. 刚压好片子很透明,1分钟后出现不规则云雾状混浊 3. 片子中心出现云雾状 原因1. 压力不够,加上分散不好2. 抽真空不够3. 砧空或压舌面不平整纠正方法1. 重新研磨2. 检查真空度,延长抽真空时间3. 调换新的或重抛

  • 目前最精准的测距仪

    激光测距仪,是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。具体功能:1.面积体积的计算功能;2.运用勾股定理间接测量;3.加减功能;4.连续测量功能;5.最大与最小距离跟踪;6.照明显示与多行显示;7.蜂鸣提示;8.精度±1.5mm;9.外观小巧,双注塑防滑软胶超舒适手感。 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。  若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。

  • 最近北京空气中还有辐射性物质吗?

    核辐射测试仪1 可以按照国际标准,将设备固定在距离地面1米的三角架子上,测试2 在测试的时候,人体可以距离该设备80米的距离,实施远距离检测和读取3 重量轻,体积小巧,仅重1.88公斤,移动和携带方便,支持隐蔽测试,可以放在任意材质做成的提包,袋子和箱子中,或者建筑物后(里)面,不影响测量效果。放在被测物体附近,远距离从PDA上读出测试数据

  • 《望远镜式测距仪校准规范》发布

    近日,浙江省计量科学研究院作为第一起草单位编制的国家规程《望远镜式测距仪校准规范》,经国家市场监管总局批准正式实施。本规范为国内首次发布。  望远镜式测距仪是一种将望远镜光学瞄准与激光脉冲测距技术相结合来测定空间远距离的测量仪器。最远测距达3000米。主要应用于地质勘测、近海航行、电力电信部门测量、工程规划、气象研究、消防系统、高尔夫球场等众多民用领域。  规范的发布实施将有效指导望远镜式测距仪校准工作,为该类仪器的日常校准提供技术依据,为相关领域行政监管、社会发展提供有效的计量基础支撑。

  • 哪些微波消解仪采用光纤温度传感器?

    荧光光纤温度传感器传感探头采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,而且测温探头尺寸小,柔韧性好,耐高温,可实现探头直径0.2mm~3mm,弯曲半径最小到5mm以下,使得荧光光纤测量技术可以应用在不同工作的情况下,尤其微小功能系统中和电磁干扰下的测量;测温探头可以互换,测温探头替换后不需要校正。 荧光光纤温度传感器既可以采用接触式的测量方式,也可以采用非接触式的测量方式,并可远距离传输,使传感器的光电器件脱离测温现场,避开了恶劣的环境。由于采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,荧光光纤温度传感器不仅限于物体表面的定向测量,其探头还可以插入固体物质中、浸入液体中或导入设备中,到达特定区域。 传感器温度探头被安放在光纤的顶端内部。使用时将光纤传感器探头直接永久安装在变压器需要测量温度的位置。传感器光纤具有高抗电流击穿和抗化学腐蚀的特性,还具有非常强的机械特性。 荧光光纤温度传感器传感探头&光纤定制考虑因素:1)测温范围;2)测温精度;3)距离(长短);4)芯径;5)光纤及探头类型

  • 问长工作距离透镜有关事宜

    我现在用长工作距离物镜调光路时遇到了问题,所以想借贵宝地问一下有关它的工作原理之类的事宜。长工作距离的工作距离WD和它的焦距是否等长?它的焦平面和波长有关吗?能给出它的光路图吗?如果用它来聚成很小(几个微米)的光斑的话,是怎么样的光路??

  • 【转帖】几种串行通信接口标准

    在数据通信、计算机网络以及分布式工业控制系统中,经常采用串行通信来交换数据和信息。1969年,美国电子工业协会(EIA)公布了RS-232C作为串行通信接口的电气标准,该标准定义了数据终端设备(DTE)和数据通信设备(DCE)间按位串行传输的接口信息,合理安排了接口的电气信号和机械要求,在世界范围内得到了广泛的应用。但它采用单端驱动非差分接收电路,因而存在着传输距离不太远(最大传输距离15m)和传送速率不太高(最大位速率为20Kb/s)的问题。远距离串行通信必须使用Modem,增加了成本。在分布式控制系统和工业局部网络中,传输距离常介于近距离(<20m)和远距离(>2km)之间的情况,这时RS-232C(25脚连接器)不能采用,用Modem又不经济,因而需要制定新的串行通信接口标准。   1977年EIA制定了RS-449。它除了保留与RS-232C兼容的特点外,还在提高传输速率,增加传输距离及改进电气特性等方面作了很大努力,并增加了10个控制信号。与RS-449同时推出的还有RS-422和RS-423,它们是RS-449的标准子集。另外,还有RS-485,它是RS-422的变形。RS-422、RS-423是全双工的,而RS-485是半双工的。   RS-422标准规定采用平衡驱动差分接收电路,提高了数据传输速率(最大位速率为10Mb/s),增加了传输距离(最大传输距离1200m)。   RS-423标准规定采用单端驱动差分接收电路,其电气性能与RS-232C几乎相同,并设计成可连接RS-232C和RS-422。它一端可与RS-422连接,另一端则可与RS-232C连接,提供了一种从旧技术到新技术过渡的手段。同时又提高位速率(最大为300Kb/s)和传输距离(最大为600m)。   因RS-485为半双工的,当用于多站互连时可节省信号线,便于高速、远距离传送。许多智能仪器设备均配有RS-485总线接口,将它们联网也十分方便。   串行通信由于接线少、成本低,在数据采集和控制系统中得到了广泛的应用,产品也多种多样

  • 高压线和变压器周围多少距离安全?

    高压线和变压器都会有辐射,不知道这种辐射在多大距离之外算是安全的呢??最近看新闻说是有些新小区有变压器或者是高压线通过,不知道会有什么影响?这种辐射在多远的距离之外是安全的呢?

  • 电镜观察时如何设置工作距离working distance

    电镜观察时如何设置工作距离working distance

    工作距离指物镜极靴下表面与试样表面之间的距离(在电镜电脑屏幕上通常以WD+数字显示)。需要注意的是1.真实的WD是需要将电子束聚焦到样品表面之后,显示的WD才准确。(直白翻译:Focus调清楚之后,显示的WD才是真实的)但工作距离与电子束是否聚焦无关,即调不调清楚WD该是多少还是多少。2.即使电镜的BSE探头在极靴下面,其工作距离仍然是极靴下表面到试样表面。而通常BSE探头厚度2mm左右,因此实际的工作距离是电镜显示的WD-2mm左右。(电镜操作中,如果BSE探头在极靴下,请注意调整Z高度时为其留位,否则会撞坏BSE探头)做图像观察时,工作距离越小图像分辨率越高。目前越来越多的电镜支持用极小的工作距离来观察nm级的样品。而对断口分析时,为了避免表面不平而导致高的尖端撞击极靴,往往采用大工作距离。做EDS能谱时,通常具有最佳的工作距离。使尽可能多的x-ray沿探测器轴向进入探测器,从而获得最高计数率。低于或高于此最佳工作距离都会降低x-ray的计数甚至检测不到信号。而如何了解自己的能谱仪的最佳工作距离呢?1,自然是工程师安装之后会建议您在xx工作距离下做能谱。该距离通常就是本设备的最佳值。2如果是INCA系统,我们还可以在软件上发现该最佳距离。路径:INCA-选项-电镜控制。点开电镜控制可以在最下面一行看到:建议的工作距离(毫米)后面的数字是多少,那就请在此距离下做能谱,就可以使能谱在最佳效率下工作。另外,还需要补充的是,因为多数电镜的样品室较大,允许同时放入多个样品检测。如果也同时需要做能谱分析时,我们建议:1将高度不同的样品垫高至几乎同高,这样做低样品时,调整到需要的工作距离后,也不需要担心高样品会撞到极靴。2能谱探头毕竟装在电镜一侧,做低样品时,将其水平旋转,避免高样品阻挡其信号。http://ng1.17img.cn/bbsfiles/images/2012/07/201207271808_380312_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207271809_380313_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207271809_380315_1622447_3.jpg

  • 我国实现量子信息百公里隐形传输

    2012年08月14日 来源: 新华网 作者: 徐海涛 我国科学家潘建伟等人近期在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定技术基础。国际权威学术期刊《自然》杂志8月9日重点介绍了该成果。 量子信息因其传输高效和绝对安全等特点,被认为可能是下一代IT技术的支撑性研究,并成为全球物理学研究的前沿与焦点领域。基于我国近10年来在量子纠缠态、纠错、存储等核心领域的系列前沿性突破,中科院于2011年启动了空间科学战略性先导科技专项,力争在2015年左右发射全球首颗“量子通讯卫星”。 中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。实验证明,无论是从地面指向卫星的上行量子隐形传态,还是卫星指向两个地面站的下行双通道量子纠缠分发均可行,为基于卫星的广域量子通信和大尺度量子力学原理检验奠定了技术基础。 “在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将能达到1000公里以上,基本上解决了量子通讯卫星的远距离信息传输问题。”研究组成员彭承志介绍说,量子通讯卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。 8月9日,国际权威学术期刊《自然》杂志重点介绍了这一成果,代表其获得了国际学术界的普遍认可。《自然》杂志称其“有望成为远距离量子通信的里程碑”、“通向全球化量子网络”,欧洲物理学会网站、美国《科学新闻》杂志等也进行了专题报道。

  • 超声波探伤仪应用的领域有哪些

    超声波探伤仪能够快速便捷、无损伤、准确地进行工件内部多种缺陷如裂纹、焊缝、气孔、砂眼、夹杂、折叠等的检测、定位、评估及诊断,广泛应用于电力、石化、锅炉压力容器、钢结构、航空航天、铁路交通、汽车、机械等领域。  主要功能  高精良定量、定位,适合较近和较远距离探伤的要求   近场盲区小,适合小管径、薄壁管探伤的要求   自动校准:一键式自动校准,操作便捷,自动测试探头的“零点”、“K值”、“前沿”及材料的“声速”   自动显示缺陷回波位置(深度d、水平p、距离s、波幅、当量dB、孔径ф值)   自由切换三种标尺(深度d、水平p、距离s)   自动增益、回波包络、峰值记忆功能提高了探伤效率   φ值计算:直探头锻件探伤,找准缺陷最高波自动换算孔径ф值,大平底自动计算   100个单独探伤通道(可扩展),可自由输入并存储任意行业的探伤标准,现场探伤无需携带试块   可自由存储、回放500幅A扫波形及数据   DAC、AVG自动生成并可以分段制作,取样点不受限制,并可进行修正与补偿   13个内置探伤标准可调出   可以自由输入任意行业标准   发射脉冲宽度和强度可调   与计算机通讯,实现计算机数据管理,并可导出Excel格式、A4纸张的探伤报告   IP65标准铝镁合金外壳,坚固磨损低,防水防尘,抗干扰能力好   26万色真彩屏超高亮显示,亮度可调,适合强光、弱光的工作环境   性能安全环保锂电池供电,可连续工作10小时。  实时时钟记录:实时探伤日期、时间的跟踪记录,并存储   掉电保护,存储数据不丢失   探伤参数可自动测试或预置   数字抑制,不影响增益和线性   增益补偿:对表面粗糙度、曲面、厚工件远距离探伤等因素造成的Db衰减可进行修正。  真正的三防设计,可以保障用户在复杂的现场和野外不受雨水、油污、粉尘等的侵蚀,让探伤仪的使用寿命大大延长

  • 【分享】距离的美

    距离本身不能产生美,只是有了距离你就不那么容易发现缺点,因而也就觉得美了,短期的距离产生美,长期的距离产生遗忘!如果你想在你和她之间产生美,就短时间离开她;如果你想让你们之间互相遗忘,就长时间离开她。 其实距离不是问题。关键是两人之间的感觉!如果两人感情都很好,那距离就能够产生美。因为你们会觉得互相牵挂,互相思念,这种感觉也是非常甜美的。但如果两个人之间感情不好,就只有距离,美就会越来越少!有人说距离产生美,可我认为美不是由距离产生的,而是由思恋产生,时间一长,距离就会发挥其本质的作用--疏远;又有人说,距离有了,那就谈一场精神恋爱呗!纯粹精神上的爱太超凡脱俗了,但把握好距离的尺度却真是一门高超的艺术。我们要明白距离是一种美,不善于把握好适当的距离很难产生真正的爱情,最终的结局,大家都心知肚明,但分开的原因也很简单,就是有句话说的"也许爱情就是这样,不是天长地久,就是曾经拥有。

  • 【原创大赛】【第五届原创】光纤传感器在直读光谱中的应用(2012.8)

    【原创大赛】【第五届原创】光纤传感器在直读光谱中的应用(2012.8)

    光纤传感器在直读光谱中的应用一、概述 光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期发展起来的一种基于光导纤维的新型传感器,经过30多年的历程,目前已进入研究与应用并重阶段。它是光纤和光通信技术迅速发展的产物,它与以电为基础的传感器有本质区别。光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质。因此,它同时具有光纤及光学测量的特点。 二、光纤传感器的优点1.电绝缘性能好。 2.抗电磁干扰能力强。 3.非侵入性。 4.高灵敏度。5.容易实现对被测信号的远距离监控。6.具有灵活的可桡性。7.可实现不带电的全光型探头。8.频带宽动态范围大。 光纤传感器可测量位移、速度、加速度、液位、应变、压力、流量、振动、温度、电流、电压、磁场等物理量。http://ng1.17img.cn/bbsfiles/images/2012/08/201208291337_387010_1841897_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制