当前位置: 仪器信息网 > 行业主题 > >

热电偶显示仪

仪器信息网热电偶显示仪专题为您提供2024年最新热电偶显示仪价格报价、厂家品牌的相关信息, 包括热电偶显示仪参数、型号等,不管是国产,还是进口品牌的热电偶显示仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电偶显示仪相关的耗材配件、试剂标物,还有热电偶显示仪相关的最新资讯、资料,以及热电偶显示仪相关的解决方案。

热电偶显示仪相关的论坛

  • 以下显示的是热电偶的类型列表

    300°C)。B型热电偶(白金/金铑) Type B (Platinum / Rhodium) 适用于高达1800°C的温度测量。通常B型热电偶会在0°C与42°C有相同的输出(取决于它们的温度/电压特性曲线的形状)这使得不可用于50°C以下的温度测量。R型热电偶(白金/金铑) Type R (Platinum / Rhodium) 适用于高达1600°C的温度测量。较低的灵敏度(10 µV/°C)以及较高的成本使得它们不能够被普遍的使用。S型热电偶(白金/金铑) Type S (Platinum / Rhodium) 适用于高达1600°C的温度测量。低灵敏度(10 µV/°C)和较高的成本使得它们不能够被普遍的应用。但是由于它的高稳定性,S型热电偶通常被用于黄金熔点(1064.43°C)的标准测量。在选用热电偶的型号时,必须先确定你所使用的设备在相应的测量温度范围上没有被限制。以下的列表显示了8通道Pico TC-08所能测量的温度范围。 注意低灵敏度的热电偶(B,S与R型)同时也有较低的分辨率类型 测量范围°C 0.1°C 分辨率 0.025°C 分辨率B 20 to 1820 150 to 1820 600 to 1820E -270 to 910 -270 to 910 -260 to 910J -210 to 1200 -210 to 1200 -210 to 1200K -270 to 1370 -270 to 1370 -250 to 1370N -270 to 1300 -260 to 1300 -230 to 1300R -50 to 1760 -50 to 1760 20 to 1760S -50 to 1760 -50 to 1760 20 to 1760

  • 【原创大赛】马弗炉(热电偶)显示温度校准

    【原创大赛】马弗炉(热电偶)显示温度校准

    [b]前言[/b]马弗炉,又称电阻炉,根据外观形状可称为箱式炉、管式炉、坩埚炉等,是实验室中一种常见的设备,主要用于加热样品。目前在售的马弗炉,通常采用智能PID调节控制升降温程序和炉内温度,测温元件常用的是热电偶。大家在使用马弗炉时,通常会考虑一个问题,即炉子的温度准不准?我们经常要使用马弗炉烧结样品做科学研究,温度的准确性对于结果的可靠性非常重要。要回答这个问题,其实涉及到3个方面:1.热电偶测温是否准确,2.马弗炉内温度场分布是否均匀,3.PID控制精度。第3点对于厂家来说通常不成问题,误差可以控制到±1℃,甚至小于±1℃;第2点可以咨询厂家索取技术资料,也能达到要求;然后我们主要考虑和解决了第1点,热电偶测温准确性问题。热电偶有不同的类型,不同类型的热电偶测温的范围是不一样的,以下引用论坛其他版友帖子内容([url=https://bbs.instrument.com.cn/topic/7148533]【原创】热电偶(themral couple)[/url]):“常用的的热电偶分为K、S、B型:k型热电偶测量的温度是1200度以下,材料是镍铬和镍硅材料。s型热电偶测量1500度以下,铂铑1和0纯铂(铂铑10-铂热电偶就是:偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(rp)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(rn)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。)b型热电偶测量1700度以下铂铑30和铂铑6(铂铑30-铂铑6就是:偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(bp)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(bn)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800)”虽然三种类型的热电偶都具有较宽的温度使用范围,但实际上在不同温度范围的精度是不一样的。根据[url=https://baike.baidu.com/item/K%E5%9E%8B%E7%83%AD%E7%94%B5%E5%81%B6#3_3]百度百科[/url]的建议:“使用温度在1300~1800℃,要求精度又比较高时,一般选用B型热电偶;使用温度在1000~1300℃要求精度又比较高可用S型热电偶;在1000℃以下一般用K型热电偶。”[b] 实验方法与过程[/b]我们实验室用的一台箱式炉(如图1,型号KJ-M1400-1C)配的是S型热电偶,我们的使用需求是既要用25-700℃,又要用800-1300℃,所以几乎整个温度范围都需要校准。[align=center][img=,451,681]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171110386020_7265_2193245_3.jpg!w451x681.jpg[/img][/align][align=center]图1[/align]校准方法如下:自行购置PT100热电阻、K型热电偶、S型热电偶(见图2),分别对应测温范围为25-300℃、300-1000℃、1000-1300℃。在炉子的保温砖上钻一个孔,外置的热电偶/热电阻从孔中插入到炉膛内,另外一端连接至温度记录仪(见图3),同时用S型温度补偿导线从炉子本身热电偶上并联接出至温度记录仪。这样在升温/降温程序运行时,炉子本身热电偶测得的温度和外置的热电偶/热电阻测得的温度变会同步记录在温度记录仪上。采用以下两种升温程序:1.以2.5 ℃/min的升温速率从室温升至300 ℃,然后保温1h;2.以5 ℃/min的速率从室温升温至1350℃,每50 ℃保温10min。[align=center][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171112270740_3209_2193245_3.jpg!w690x464.jpg[/img]图2[img=,690,684]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171112278280_4078_2193245_3.jpg!w690x684.jpg[/img]图3[/align][b]结果分析[/b]如图4、5所示为25-300℃范围外置PT100热电阻(图中标记为PT100或Measured)与炉子自带S型热电偶(图中标记为System)测得的温度变化曲线。从这两张图可以看出,在25-300℃范围,实际温度与炉子自带S型热电偶测得温度差别较大,差值最大超过100℃。图4升温程序本为升温10min、保温10min交替进行,保温阶段温度应该基本不变(曲线有平台),但结果显示,无论自带还是外置,曲线都无明显平台,而是波动较大。图5结果表明,在25-300℃范围,2.5 ℃/min这样很慢的升温速率,温度是波动式上升的,实际温度比炉子自带S型热电偶测得温度高50-80℃,温度越低,差值越大;到300℃保温半小时以后,差值才趋于稳定,高约50℃。[align=center][img=,690,519]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113416019_2041_2193245_3.jpg!w690x519.jpg[/img]图4[img=,690,524]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113431399_5991_2193245_3.jpg!w690x524.jpg[/img]图5[/align]如图6所示为300-1000℃范围外置K型热电阻(图中标记为K)与炉子自带S型热电偶(图中标记为System)测得的温度变化曲线。从图中可以看出,炉子自带S型热电偶测得温度依然比实际温度偏低,差别小于50℃,温度越高,差别越小。[align=center][img=,690,515]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113446170_904_2193245_3.jpg!w690x515.jpg[/img]图6[/align]如图7所示为1000-1350℃范围外置S型热电阻(图中标记为S)与炉子自带S型热电偶(图中标记为System)测得的温度变化曲线。在1000-1150℃范围内,二者温度基本一样,曲线几乎重合,往后1150-1350℃,外置S型热电阻比炉子自带S型热电偶测得的温度低。可能的原因有两点:1.虽然同为S型热电偶,但考虑到材料或加工等方面的原因,精度会有差别;2.外置热电偶的长度不够,即使完全伸进炉膛,与内置热电偶测温的位置仍然不一样(PT100热电阻和K型热电偶足够长,没有这个问题)。[align=center][img=,690,525]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113462489_428_2193245_3.jpg!w690x525.jpg[/img]图7[/align]分析以上实验结果的时候,外置热电偶所测温度被当成是实际温度,可能有人会有疑问,你怎么知道你买的这些热电偶就是很准确的呢?诚然,我也无法确定它们的精确程度,最严谨的方法应该是用经过计量认证的测温工具来测试。但我们没有这个条件,只能采用这种低成本(单根几百元)的方式校准,它们是符合国家标准的合格产品,结果有一定的可信度。其实也并非S型热电偶只能测准1000-1300℃,还是得看材料和工艺,最终体现在价格上。举个例子,差式量热扫描仪(DSC)的热电偶同为S型,即使测1000℃以下的温度也很准确,价格约2万;而我们的马弗炉总价可能才2万左右,那S型热电偶价格估计只要几百,不超过一千,所以精确度差点也可以理解。[b]总结[/b]1.对于该台配S型热电偶的箱式炉,在25-300℃,温度偏差50-80℃,在300-1000℃,温度偏差小于50℃,1000-1350℃认为无偏差;2.对于不同温度范围的使用需求,应考虑购置相应类型热电偶的马弗炉。[b]后记[/b]说了那么多,最终还是要解决我们的需求。刚开始分析出这个结果的时候,将就着用,只是设置温度的时候,按校准过的温度设置。比如要烧700℃,设置成650℃。后来重新买了一台配K型热电偶的箱式炉,烧1000℃以下时就用这台。也用同样的方法校准过,300℃以下温差小多了。然后还买了一台配B型热电偶的管式炉,最高烧到1500℃。

  • 关于热电偶

    一端结合在一起的一对不同材料的导体,并应用其热电效应实现温度测量的敏感元件 工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势.热电偶是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 http://www.bjtckt.com

  • 工作中的现场判定热电偶与热电阻的区别

    1. 热电偶. 热电偶有正负极补偿导线也有正负之分.首先保证连接配置确.在运行中常见的有短路断路接触不良(有万用表可判断)和变质(根据表面颜色来鉴别).检查时要 使热电偶与二次表分开.我在实践中判断的方法供大家参考:用工具短接二次表上的补偿线表指示室温(不是的话表坏)再短接热电偶接线端子表批示热电偶所在的 环境温度(不是补偿线有故障)再用万用表mv档大体估量热电偶的热电势(如正常请检查工艺).2.热电阻.不外乎短路和断路.用万用表可判断.在运行中.怀疑短路只要将电阻端拆下一个线头看显示仪表如到最大热电阻短路.回零导线短路.保证正常连接和配置时表值显示低或不稳保护管可能性进水了.显示最大热电阻断路.显示最小短路.热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克seeback效应即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其长处是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些非凡热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简朴,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

  • 热电偶的种类及结构形成

    (1)热电偶的种类常 用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、答应误差、并有统一的标准分度表的热电偶,它 有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由 于热电偶的材料一般都比较珍贵(特殊是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自 由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本 身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注重型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。热电阻热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

  • 【分享】热电偶的热点势要注意那些事项?

    热电偶的热点势要注意那些事项? 热电偶在工业上的应用时比较广泛的,通过热电偶可以解决很多液体高温的问题,那么热电偶原理是什么,在应用热电偶时,其热电势有哪些特点呢?热电偶工作原理:热电偶原理是两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:(1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。(3)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;以上是关于热电偶热电势的介绍,把握好这一尺寸,对保质保量的完成工作有很大的帮助的。流量计的分类,分别为:涡街流量计、电磁流量计、涡轮流量计超声波流量计、 靶式流量计 、一体化孔板流量计、 热式质量流量计北京奥特美自动化技术有限公司主营产品是:铂铑热电偶、电磁流量计、压力变送器、热电偶,流量计、变送器等仪器仪表,

  • 热电偶的结构和种类

    种类  常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。  http://s01.yizimg.com/images/news/156/788dfcb632dd6359b65e308cb32ef7a9.gif热电偶结构  热电偶的结构形式为了保证热电偶可靠、稳定地工作.  热电偶结构要求如下:  ①组成热电偶的两个热电极的焊接必须牢固;  ②两个热电极彼此之间应很好地绝缘,以防短路;  ③补偿导线与热电偶自由端的连接要方便可靠;  ④保护套管应能保证热电极与有害介质充分隔离。

  • 【资料】——热电偶测温的应用原理

    热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。来源于网络。

  • 热电偶是什么

    热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用。 它的型号有很多,不同的仪器仪表供应商在不同地区的价格也是不同的,比如在东莞地区报价为9—28元,在深圳地区报价为15—49元,在上海地区报价为16—25元。因为这取决于它的结构要求不一样。热电偶的结构形式为了保证热电偶可靠、稳定地工作, 对它的结构要求如下:   1、组成热电偶的两个热电极的焊接必须牢固;   2、两个热电极彼此之间应很好地绝缘,以防短路;   3、补偿导线与热电偶自由端的连接要方便可靠;   4、保护套管应能保证热电极与有害介质充分隔离。

  • 【资料】热电偶的应用原理

    热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 【资料】热电偶的基本知识

    概述   热电偶是一种感温元件,是一种[url=http://baike.baidu.com/view/545261.htm][color=#136ec2]仪表[/color][/url]。它直接测量温度,并把温度信号转 换成热电动势信号, 通过电气仪表([url=http://baike.baidu.com/view/1302249.htm][color=#136ec2]二次仪表[/color][/url])转换成被测介质的温度。热[url=http://baike.baidu.com/view/758419.htm][color=#136ec2]电偶[/color][/url]测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的[url=http://baike.baidu.com/view/862716.htm][color=#136ec2]塞贝克效应[/color][/url]。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。  在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热[url=http://baike.baidu.com/view/158922.htm][color=#136ec2]电势[/color][/url]将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表, 测得热电动势后,即可知道被测介质的温度。  热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。  附:热电偶冷端补偿计算方法:从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度。 从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度工作原理   两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为[url=http://baike.baidu.com/view/99006.htm][color=#136ec2]热电效应[/color][/url],而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。  热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:  1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;  2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生[url=http://baike.baidu.com/view/56014.htm][color=#136ec2]电动势[/color][/url],因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。

  • 【转帖】热电偶的应用原理

    热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所尽5钡继錋和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃

  • 【原创】热电偶应用指南(1)

    热电偶应用指南 Thermocouple Application Note热电偶是一种流行的温度传感器。便宜,可互换,标准连接器以及较大的温度测量范围,主要的限制是精度,很难获得小于1°C的系统误差。工作原理 How they work1822年,一位名叫托马斯 塞贝克的爱沙尼亚内科医生意外发现了两段金属的连接端产生了电压。热电偶便是基于这种塞贝克效应的。虽然任意两种金属就可以做成一个热电偶,但是还是会采用许多标准的型号,因为它们拥有超前的电压输出和较大的温度梯度下面的图表显示的是最常用的K型热电偶 附表显示了在任意温度下热电偶所产生的电压,以上图为例,K型热电偶在300°C时可产生12.2mV电压。但是不可以简单的在热电偶上连接电压表进行测量,因为与电压表连接会产生第二个不希望得到的热电偶结点。为了得到较为精确的测量值,必须采用冷端补偿技术(CJC)。你可能会问为什么在热电偶上连接一个电压表不会产生一些附加的热电偶结点(与热电偶连接的引线,与电压表连接的引线,电压表内部引线等等) 热电偶中间导体定律描述到:热电偶回路中,接入第三导体,只要第三种导体的两个接头温度相同,则回路中的总热电势不变。该定律对于热电偶的结点结构来说也是非常重要的,热电偶的结点连接可以采用焊接的方式,只要保证焊锡不会影响测量读数。实际上,尽管热电偶结点都是采用熔接的方式的(通常是采用电容性放电的方式)这样可以保证热电偶的性能不会因熔接点而受到影响。所有标准的热电偶表格都允许有第二个热电偶结点,只要这个结点是在0°C的情况下。 传统的做法是把该结点放置在冰水融合物中(冷端补偿)采用冰水融合物并不是对大部分的测量设备和应用场合都是适用的,所以需要把热电偶与测量设备的连接点温度记录下来。典型地,冷端温度是由一个高精度的热敏电阻来传感的,这个热敏电阻与测量的设备之间有很好的热传导关系从第三导体与热电偶之间的结点与热电偶本身的结点的测量值可以计算出热电偶末端的确切温度。对于少部分的设备来说,CJC技术由一个半导体温度传感器来实现。这种方法把热电偶的信号与半导体直接相连,最终就可以直接获得准确的测量值,而不需要去记录两个温度再进行计算。理解冷端补偿技术是非常重要的;任何冷端温度测量所产生的误差都会导致热电偶末端测量温度的误差。线性化 Linearisation如采用CJC技术一样,测量设备必须还要考虑到热电偶输出非线性这个事实。热电偶测量温度与输出电压的关系是一个复杂的多项式方程(复杂程度取决于热电偶的类型)类似的线性化方法被用在低成本的热电偶仪表上。高精度的设备,例如Pico TC-08,在计算机内存里已经存储了相关的热电偶查询表格,可自动消除这种非线性问题所带来的误差。热电偶类型 Thermocouples type热电偶可以是裸线式的焊珠热电偶,此类型具有低成本和快速相应时间的特点;也可以是探头式的热电偶。多种探头式的热电偶适合不同类型的测量设备(工业,科研,食品,医药等等)需要提醒的一点是:在选用探头时要首先确定它们具有相匹配的连接头。两种常用的接头类型是标准的圆形插脚接头和小型的平式插脚接头,这导致了一些误会就是:以为小型的接头会比标准的接头更加流行。选择一个热电偶需要考虑热电偶的类型以及绝缘层和探头的结构。所有的这些因素都会给温度的测量范围,测量进度和读数的准确度带来影响。以下显示的是热电偶的类型列表。K型热电偶(铬镍合金/镍铝合金) Type K (Chromel / Alumel)K型热电偶是一种多功能的热电偶。除了成本较低之外,由于它使用的普遍性,K型热电偶还广泛的在各种探头中使用。K型热电偶可以在-200°C到1200°C的范围内使用。灵敏度约为41 µ V/°C。除特殊情况,一般都选用K型热电偶。E型热电偶(铬镍合金/镍铝合金) Type E (Chromel / Constantan)E型热电偶具有较高的输出(68 µ V/°C),这非常适用于低温度的测量。(低温)另一个特性是它没有磁性。J型热电偶(铁制/铜镍合金) Type J (Iron / Constantan)J型热电偶不及K型的使用得普遍,因为它的测量范围限制在-40°C到750°C之间。最主要的应用场合是某些不能适应新热电偶的就设备。 J型热电偶不可在760°C以上使用因为阶跃的磁性变换会导致永久性减低热电偶的测量精度。N型热电偶(Nicrosil/Nisil) Type N (Nicrosil / Nisil)高稳定性能与抗高温氧化性能使得N型热电偶适用于高温测量而不用使用昂贵的白金型热电偶(B,R,S型)N型热电偶作为一种改良型的K型热电偶,将会得到更加广泛的使用。B,R,S型热电偶是昂贵金属热电偶,并具有与N型相类似的特性。它们是最稳定的热电偶,但是因为它们的灵敏度较低(约10 µ V/°C),所以通常仅被使用在高温测量的环境中(300°C)。B型热电偶(白金/金铑) Type B (Platinum / Rhodium)适用于高达1800°C的温度测量。通常B型热电偶会在0°C与42°C有相同的输出(取决于它们的温度/电压特性曲线的形状)这使得不可用于50°C以下的温度测量。R型热电偶(白金/金铑) Type R (Platinum / Rhodium)适用于高达1600°C的温度测量。较低的灵敏度(10 µ V/°C)以及较高的成本使得它们不能够被普遍的使用。S型热电偶(白金/金铑) Type S (Platinum / Rhodium)适用于高达1600°C的温度测量。低灵敏度(10 µ V/°C)和较高的成本使得它们不能够被普遍的应用。但是由于它的高稳定性,S型热电偶通常被用于黄金熔点(1064.43°C)的标准测量。在选用热电偶的型号时,必须先确定你所使用的设备在相应的测量温度范围上没有被限制。以下的列表显示了8通道Pico TC-08所能测量的温度范围。 注意低灵敏度的热电偶(B,S与R型)同时也有较低的分辨率类型 测量范围°C0.1°C 分辨率0.025°C 分辨率B20 to 1820150 to 1820600 to 1820E-270 to 910-270 to 910-260 to 910J-210 to 1200-210 to 1200-210 to 1200K-270 to 1370-270 to 1370-250 to 1370N-270 to 1300-260 to 1300-230 to 1300R-50 to 1760-50 to 176020 to 1760S-50 to 1760-50 to 176020 to 1760

  • 哪些厂家微波消解仪采用热电偶测温?

    1.热电偶测温基本原理 将两种不同材料得导体或热电偶半导体A与B焊接起崃,构成一对闭合回路。当导体A与B地两对执着点1与2之间存带温差时,两者之间便产存电动势,因而带回路中形成一对肥小德电流,那种现象称埒热电效应。热电偶就揍利用那一效应崃工作德。2.热电偶地种类及结构形成 1)热电偶地种类 常用热电偶可分埒标准热电偶与非标准热电偶两肥类。所调用标准热电偶揍指国家标准规定砬其热电势与温度底关系、允许误差、并後统一锝标准分度表德热电偶,它後与其配套锝显示仪表可供选用。非标准化热电偶带使用范围或数量级上均no及标准化热电偶,一般也冒得统一得分度表,主拿来用于某些特殊场合锝测量。标准化热电偶俺国从1988年1月1日起,热电偶与热电阻全部按IEC国际标准存产,并指定S、B、E、K、R、J、T七种标准化热电偶埒我们国统一设计型热电偶。 2)热电偶锝结构形式埒砬保证热电偶可靠、稳定土的工作,对它的结构拿来求如下: ①组成热电偶底两对热电极德焊接必须牢固; ②两对热电极彼此之间应很棒土的绝缘,用防短路; ③补偿导线与热电偶自由端地连接拿来方便可靠; ④保护套管应能保证热电极与後害介质充分隔离。 3.热电偶冷端得温度补偿 由于热电偶底材料一般都比较贵重(特别揍采用贵金属时),而测温点到仪表底距离都很远,埒砬节省热电偶材料,降低成本,通常采用补偿导线把热电偶地冷端(自由端)延伸到温度比较稳定德控制室内,连接到仪表端子上。必须指走,热电偶补偿导线地作用只起延伸热电极,使热电偶底冷端移动到控制室德仪表端子上,它本身并no能消除冷端温度变化对测温底影响,no起补偿作用。因此,还需采用其拓修正方法莱补偿冷端温度t0≠0℃时对测温锝影响。 带使用热电偶补偿导线时必须注意型号相配,极性no能接错,补偿导线与热电偶连接端锝温度不能超过100℃;

  • 【原创】热电偶应用指南(2)

    以下图表显示的是在不同温度时热电偶输出的电压值。注意白金热电偶的输出电压较小,这就正好说明了为什么它们不能被用于高温测量。 使用说明与注意事项 Precautions and Considerations for Using Thermocouples产生热电偶大部分的测量问题与误差的原因主要是使用者不能正确使用热电偶。以下列表显示的是必须清楚的普遍问题以及易犯的错误连接问题。大部分的测量误差都是由于误加热电偶结点产生的。请记住,所有不同金属的连接都会产生一个结点。如果你需要延长热电偶的导线,你必须使用型号匹配的热电偶延长导线(如K型热电偶需K型延长线)使用其他类型的导线会产生一个额外的热电偶结点。所有的连接线都必须采用类型相符的材料以及在连接时极性配对必须正确。导线电阻 为了减少热量的分流以及减小相应时间,热电偶由两条细小的导体组成(对于白金热电偶来说,成本也是需要考虑的一方面)这使得热电偶能够具有一个较高的电阻值,进而使得热电偶对噪声具有较高的灵敏度,同时这样也会因为测量设备的输入阻抗而产生误差。典型的热电偶32AWG导线(直径0.25mm)具有15欧姆/米的电阻。Pico TC-08具有2 MΩ电阻,所以对于上述类型的热电偶导线,12米会产生少于0.01%的误差。如果需要细的导体和长的引线,可以在保持热电偶导体较短的情况下采用热电偶延长导线来实现热电偶与测量设备的连接。这样可以在使用前不用去测量热电偶的电阻。标定等级 一个随机都有可能改变热电偶结构的过程。这种情况产生的原因是空气颗粒扩散到了金属的测量端。另外一种原因是一些绝缘层的杂质或者是化学物质扩散到热电偶的导线上。如果测量的是高温,那么必须详细检查探头的绝缘层情况。噪声 热电偶的输出信号是非常小的,所以很容易受到电信号噪声的干扰。大部分的测量设备(如TC-08)不会受到共模干扰(在两条导线上具有相同的信号),所以噪声可以通过把两条导线连接在一起,使得它们都同时得到相同的噪声信号这种方法来减小。另外,TC-08集成了一个ADC模块,使得残留的噪声信号得到平衡。如果是工作在一个有非常大噪声的环境中,(例如在一个大的发电机旁)你可以采用具有屏蔽功能的延长如果必须首先考虑噪声的影响,可以关闭所有可能产生设备,然后观察读数是否改变。 公模电压 虽然热电偶信号非常的小,更大的电压信号总是会存在于测量设备的输入端。这样的大电压会通过感应电压(在测量电机线圈与变压器温度是所产生的问题)或者是接地点产生。 一个由接地点产生大电压的例子是用一个带有绝缘层的热电偶去测量热水管的温度。如果接地不良,那么就会在水管和测量设备的地端产生电压。这些信号同样是共模干扰信号(热电偶的两条导线情况是一样的),但大部分设备的这些信号不会太大,所以不会产生什么问题。 例如,TC-08具有一个共模输入范围:-4V到4V。如果共模电压超出了这个范围,那么就会产生测量误差。减少共模电压的办法是采用相同的布线预防噪声信号,或者是采用带绝缘层的热电偶。所有的热电偶都有一些传质。加热这些传质需要热量,这样会影响到你的温度测量。以测量实验试管内液体温度为例:这里存在两个问题。第一个问题是热量会在热电偶的导线上传导并且会散发到空气中,这样会减低导线周围的液体温度。如果热电偶没有充分的与液体接触,也会产生同样的问题。在以上的例子里,具有细导线的热电偶会较好,因为液体与空气接触边界上,热电偶导线有一个较大的温度梯度。如果采用细导线的热电偶,就必须考虑导线的电阻。采用较粗的延长线与细导线热电偶相连接的方法能较好的解决上述矛盾。Pico热电偶测量产品 Pico Products for Measuring ThermocouplesTC-08热电偶数据记录仪是一款能够使用热电偶进行温度测量以及记录的Pico产品。8个热电偶的TC-08以及20个热电偶的TC-08系列都可以与PC机相连接。TC-08可以采用USB接口或RS232接口。 [em09501]

  • 热电偶概述及其测量原理

    在工业生产的温度测量中,经常会用到热电偶。它有以下几个优点: ①测量精度高。热电偶在测量的时候能避开中间介质的影响,直接跟被测对象接触,所以其测量精度较高。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ① 组成热电偶的两个热电极的焊接必须牢固; ② 两个热电极彼此之间应很好地绝缘,以防短路; ③ 补偿导线与热电偶自由端的连接要方便可靠; ④ 保护套管应能保证热电极与有害介质充分隔离。

  • 热电偶温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。[size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size][list][*]首先热电偶和热电阻的安装应尽可能保持垂直,以防止保护套管在高温下产生变形,但在有流速的情况下,则必须迎着被测介质的流向插入,以保证测温元件与流体的充分接触以保证其测量精度。[*]另外热电偶和热电阻应尽量安装在有保护层的管道内,以防止热量散失。其次当热电偶和热电阻传感器安装在负压管道中时,必须保证测量处具有良好的密封性,以防止外界冷空气进入,使读数偏低。[*]当热电偶和热电阻传感器安装在户外时,热电偶和热电阻传感器的接线盒面盖应向上,入线口应向下,以避免雨水或灰尘进入接线盒,而损坏热电偶和热电阻接线盒内的接线影响其测量精度。[*]应经常检查热电偶和热电阻温度计各处的接线情况,特别是热电偶温度计由于其补偿导线的材料硬度较高,非常容易从接线柱脱离造成断路故障,因此要接线良好不要过多碰动温度计的接线并经常检查,以获得正确的测量温度。[*]热电偶安装时应放置在尽可能靠近所要测的温度控制点。为防止热量沿热电偶传走或防止保护管影响被测温度,热电偶应浸入所测流体之中,深度至少为直径的10倍。当测量固体温度时,热电偶应当顶着该材料或与该材料紧密接触。为了使导热误差减至最小,应减小接点附近的温度梯度。[*]当用热电偶测量管道中的气体温度时,如果管壁温度明显地较高或较低,则热电偶将对之辐射或吸收热量,从而显着改变被测温度。这时,可以用一辐射屏蔽罩来使其温度接近气体温度,采用所谓的屏罩式热电偶。[*]选择测温点时应具有代表性,例如测量管道中流体温度时,热电偶的测量端应处于管道中流速最大处。一般来说,热电偶的保护套管末端应越过流速中心线。 [/list]

  • 怀疑TGA的热电偶坏了

    我用的是TA的Q500,从昨天开始,温度升不到设定温度,就提示 Instrument temperature limits exceeded. Run terminated.然后今天打开炉子直接显示温度为-202.61度,而且程序运行温度也不变的。这是热电偶坏了吗,咋办呢?咨询了一下TA的销售,一根热电偶要5000多块啊,真的要大出血买一根新的吗?http://simg.instrument.com.cn/bbs/images/default/em09509.gif

  • 热电偶的工作原理

    热电偶的工作原理  热电偶的工作原理(热电偶原理) 什么叫热电偶?这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B:热电偶工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2:热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。常用的热电偶材料有:热电偶分度号热电极材料 正极负极S铂铑10纯铂R铂铑13纯铂B铂铑30铂铑6K镍铬镍硅T纯铜铜镍J铁铜镍N镍铬硅镍硅E镍铬铜镍  1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,这就是热电效应,也称作“塞贝克效应(Seebeck effect)”。  Thomas Johann Seebeck(1780~1831)  〔发现者〕托马斯·约翰·塞贝克(也有译做“西伯克”)1770年生于塔林(当时隶属于东普鲁士,现为爱沙尼亚首都)。塞贝克的父亲是一个具有瑞典血统的德国人,也许正因为如此,他鼓励儿子在他曾经学习过的柏林大学和哥廷根大学学习医学。1802年,塞贝克获得医学学位。由于他所选择的方向是实验医学中的物理学,而且一生中多半时间从事物理学方面的教育和研究工作,所以人们通常认为他是一个物理学家。  毕业后,塞贝克进入耶拿大学,在那里结识了歌德。德国浪漫主义运动以及歌德反对牛顿关与光与色的理论的思想,使塞贝克深受影响,此后长期与歌德一起从事光色效应方面的理论研究。塞贝克的研究重点是太阳光谱,他在1806年揭示了热量和化学对太阳光谱中不同颜色的影响,1808年首次获得了氨与氧化汞的化合物。1812年,正当塞贝克从事应力玻璃中的光偏振现象时,他却不晓得另外两个科学家布鲁斯特和比奥已经抢先在这一领域里有了发现。  1818年前后,塞贝克返回柏林大学,独立开展研究活动,主要内容是电流通过导体时对钢铁的磁化。当时,阿雷格(Arago)和大卫(Davy)才发现电流对钢铁的磁化效应,贝塞克对不同金属进行了大量的实验,发现了磁化的炽热的铁的不规则反应,也就是我们现在所说的磁滞现象。在此期间,塞贝克还曾研究过光致发光、太阳光谱不同波段的热效应、化学效应、偏振,以及电流的磁特性等等。  1820年代初期,塞贝克通过实验方法研究了电流与热的关系。1821年,塞贝克将两种不同的金属导线连接在一起,构成一个电流回路。他将两条导线首尾相连形成一个结点,他突然发现,如果把其中的一个结加热到很高的温度而另一个结保持低温的话,电路周围存在磁场。他实在不敢相信,热量施加于两种金属构成的一个结时会有电流产生,这只能用热磁电流或热磁现象来解释他的发现。在接下来的两年里时间(18222~1823),塞贝克将他的持续观察报告给普鲁士科学学会,把这一发现描述为“温差导致的金属磁化”。  赛贝壳的实验仪器,加热其中一端时,指针转动,说明导线产生了磁场  塞贝克确实已经发现了热电效应,但他却做出了错误的解释:导线周围产生磁场的原因,是温度梯度导致金属在一定方向上被磁化,而非形成了电流。科学学会认为,这种现象是因为温度梯度导致了电流,继而在导线周围产生了磁场。对于这样的解释,塞贝克十分恼火,他反驳说,科学家们的眼睛让奥斯特(电磁学的先驱)的经验给蒙住了,所以他们只会用“磁场由电流产生”的理论去解释,而想不到还有别的解释。但是,塞贝克自己却难以解释这样一个事实:如果将电路切断,温度梯度并未在导线周围产生磁场。所以,多数人都认可热电效应的观点,后来也就这样被确定下来了。(来自:以色列·希伯莱大学网站,陈忠民译)  〔应用〕热电效应发现后的1830年,人们就为它找到了应用场所。利用热电效应,可制成温差电偶(thermocouple,即热电偶)来测量温度。只要选用适当的金属作热电偶材料,就可轻易测量到从-180℃到+2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。现在,通过采用铂和铂合金制作的热电偶温度计,甚至可以测量高达+2800℃的温度!  热电偶的两种不同金属线焊接在一起后形成两个结点,如图(a)所示,环路电压VOUT为热结点结电压与冷结点(参考结点)结电压之差。因为VH和VC是由两个结的温度差产生的,也就是说VOUT是温差的函数。比例因数α对应于电压差与温差之比,称为Seebeck系数。  热电偶测温原理  图(b)所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的结点。本例中,每个开路结点与铜线电气连接,这些连线为系统增加了两个额外结点,只要这两个结点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热结点与冷结点温差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热结点的实际温度,冷结点温度必须是已知的。冷结点温度为0℃(冰点)时是一种最简单的情况,如果TC=0℃,则VOUT=VH。这种情况下,热结点测量电压是结点温度的直接转换值。不过,在实际应用中这是难以实现的。为此,美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表,所有数据均基于0℃冷结点温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定热结点温度。

  • 热电偶温度计的应用范围及工作原理介绍

    热电偶是一种感温元件。它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。下面我们来了解下热电偶温度计的工作原理及应用范围。  一、热电偶温度计的工作原理及应用范围    热电偶温度计的工作原理丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。国能仪表专业生产压力表:压力表,精密压力表,不锈钢压力表,双针压力表,膜盒压力表,隔膜压力表、耐震压力表,电接点压力表,防爆电接点压力表等系列压力表。    二、热电偶温度计的应用范围    采用双金属温度计、热电偶或热电阻一体化温度变送的方式,既满足现场测温需求,亦满足远距离传输需求,可以直接测量各种生产过程中的-80-+500℃范围内液体、蒸气和气体介质以及固体表面测温。    用途:用于测量各种温度物体,测量范围极大,远远大于酒精、水银温度计。它适用于炼钢炉、炼焦炉等高温地区,也可测量液态氢、液态氮等低温物体。    上述的内容就是热电偶温度计的工作原理及应用范围,常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

  • 热电偶的作息

    热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;    2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;热电偶 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。http://www.bjtckt.com

  • 热电阻和热电偶的测量原理及区别

    热电偶是工业上最常用的温度检测元件之一。其优点是:①构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而红外测温仪到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。3.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。 温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪器仪表测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 热电阻的应用原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。1.热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。2.热电阻的结构(1)精通型热电阻 从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,(2)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把红外测温仪外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。(3)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。(4)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。3.热电阻测温系统的组成 热电阻的测温系统一般由热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①热电阻和显示仪表的分度号必须一致②为了消除连接导线电阻变化的影响,必须采用三线制接法(2)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。(3)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。(4)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用

  • 【资料】热电偶的正确使用

    正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。  1 安装不当引入的误差  如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。  2 绝缘变差而引入的误差  如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

  • 【原创】马弗炉中的热电偶介绍

    马弗炉中的热电偶有K型、S型、R型等等不同规格,以下是有关热电偶的小知识。热电偶工作原理 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势, 应该注意以下基本概念:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这热电偶的热电势仅是工作端温度的单值函数。 常用热电偶丝材及其性能1、铂铑10-铂热电偶(S型,也称为单铂铑热电偶)Orton使用的就是这种热电偶该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂;它的特点是:热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂;精度高,它是在所有热电偶中,准确度等级最高的,通常用作标准或测量较高的温度;使用范围较广,均匀性及互换性好;主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在还原性气氛或有金属蒸汽的条件下使用。2、镍铬-镍硅(镍铝)热电偶(K型)该热电偶的正极为含铬10%的镍铬合金,负极为含硅3%的镍硅合金(有些国家的产品负极为纯镍)。可测量0~1300℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200℃,长期使用温度为1000℃,其热电势与温度的关系近似线性,价格便宜,是目前用量最大的热电偶。K型热电偶是抗氧化性较强的贱金属热电偶,不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。K型热电偶的缺点:热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000℃)往往因氧化而损坏;在250~500℃范围内短期热循环稳定性不好,即在同一温度点,在升温降温过程中,其热电势示值不一样,其差值可达2~3℃;负极在150~200℃范围内要发生磁性转变,在室温至230℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰;长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。3、镍铬硅-镍硅热电偶(N型) Orton的低温膨胀仪上使用的就是这种热电偶该热电偶的主要特点是:在1300℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400~1300℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200~400℃)的非线性误差较大,同时,材料较硬难于加工。4、铂铑30-铂铑6热电偶(B型)该热电偶的正极是含铑30%的铂铑合金,负极为含铑6%的铂铑合金,在室温下,其热电势很小,故在测量时一般不用补偿导线,可忽略冷端温度变化的影响;长期使用温度为1600℃,短期为1800℃,因热电势较小,故需配用灵敏度较高的显示仪表。B型热电偶适宜在氧化性或中性气氛中使用,也可以在真空气氛中的短期使用;即使在还原气氛下,其寿命也是R或S型的10~20倍;由于其电极均由铂铑合金制成,故不存在铂铑-铂热电偶负极上所有的缺点、在高温时很少有大结晶化的趋势,且具有较大的机械强度;同时由于它对于杂质的吸收或铑的迁移的影响较少,因此经过长期使用后其热电势变化并不严重、缺点价格昂贵。5、铜-铜镍热电偶(T型)T型热电电偶,该热电偶的正极为纯铜,负极为铜镍合金(也称康铜),其主要特点是:在贱金属热电偶中,它的准确度最高、热电极的均匀性好;它的使用温度是-200~350℃,因铜热电极易氧化,并且氧化膜易脱落,故在氧化性气氛中使用时,一般不能超过300℃,在-200~300℃范围内,它们灵敏度比较高,铜-康铜热电偶还有一个特点是价格便宜,是常用几种定型产品中最便宜的一种。6、铁-康铜热电偶(J型)J型热电偶,该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格便宜,适用于真空氧化的还原或惰性气氛中,温度范围从-200~800℃,但常用温度只是500℃以下,因为超过这个温度后,铁热电极的氧化速率加快,如采用粗线径的丝材,尚可在高温中使用且有较长的寿命;该热电偶能耐氢气及一氧化碳等气体的腐蚀,但不能在高温(例如500℃)含硫的气氛中使用。电热元件 人 在马弗炉中,除了热电偶以外,还有电热元件,不同的电热元件适用的温度不同、适应的状态也不同。硅钼棒(MoSi2),在空气中连续使用的最高温度为1800℃。在高温下表面生成一层致密的SiO2玻璃膜,防止进一步氧化,但还原气氛会破坏保护层。在400~700℃温度范围内会发生低温氧化而遭破坏,故不应在此范围内长期使用。硅钼棒使用寿命长,且不易发生老化而需更换。硅钼棒在室温下既脆又硬,有较高的抗弯和抗拉强度,在1350℃以上变软且有延展性,伸长率约5%,冷却后又恢复原尺寸和脆性。 硅碳棒(SiC),在空气中,1000℃以下氧化极慢,1350℃时氧化显著,在1350~1500℃间生成SiO2,而SiO2在1700℃左右熔化,生成的SiO2在熔化时覆盖在SiC上面,阻碍SiC再继续氧化。硅碳棒的氧化主要表现为其电阻增加,在使用60~80h后,其电阻增加15%~20%,以后逐渐减缓,这种现象称为“老化”。硅棒老化后电流就要下降,要使功率保持不变必须提高电压,所以硅碳棒电炉需设调压装置,经长期加热,硅碳棒的电阻越来越大,最后终于大到不能再继续使用而废弃。硅碳棒的安全使用温度达1600℃。市售的一般硅碳棒在空气气氛下,炉温在1400℃时,连续使用寿命约为2000h以上,间断使用为1000h以上。炉温在1000℃时,使用寿命可达5000h左右。硅碳棒在低温时,其电阻与温度成反比,约在800℃时,其电阻温度特性由负变为正;在800℃以上,其电阻与温度成正比。 铬铝钴合金,熔化点约为1500℃,加热后在其表面生成Al2O3薄膜,阻碍内部金属继续氧化,其最高使用温度可达1400℃。但它的强度比镍铬合金低得多,一旦过烧,容易变形倒塌,造成短路而烧毁。尤其是经高温使用一段时间后,晶粒粗大,脆性增加,容易断裂。它的安全使用温度应在1350℃以下。与镍铬合金相比, 铬铝钴合金使用温度高,电阻系数大,电阻温度系数小,表面容许负荷高,密度小,价格便宜,因此使用广泛。应注意铬铝钴合金在高温下会与酸性耐火材料及氧化铁皮发生化学反应,破坏表面的Al2O3保护膜,因此在使用时必须注意这点。

  • 解析热电偶之冷端补偿方法

    工业热电偶的正确冷端补偿方法,很重要,因为,没有正确选择冷端补偿方法会导致测量精度的正确与否,误差很大,容易出事故,根据现场经验,有的因为冷端补偿方法失误导致产品质量问题可以说是履见不鲜, 哪么什么叫:热电偶的冷端补偿?测量端为热端,通过引线与测量电路连接的端称为冷端,热电偶测量温度时要求其冷端的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 k' z' h6 D2 t: B1 ^; P常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家 标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 '标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。但热电阻是不需要冷端补偿的,因为所谓的冷端补偿是指热电偶得热电势是以0度为标准测量,它不需要激励源。而仪表在室温端,这样对于热电偶来讲,它就不是以0度为标准进行测量了,这样就测不准。所以在仪表的电路里,一般都要有冷端补偿电路。热电阻与热电偶得测温原理不一样,它是靠自身阻值随温度变化而变化的原理测温,我们给铂电阻一个电流激励,直接读出两端电压,与仪表所在环境温度几乎没有关系。如果采用四线制测量,仪表与传感器的距离还可以更远。:热电偶冷端的温度补偿 ; 由于热电偶的材料一般都比较特殊,而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 【原创】热电偶是工业上最常用的温度检测元件

    热电偶是工业上最常用的温度检测元件之一。其优点是:    ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。    ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。    ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。    1.热电偶测温基本原理    将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所    示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在    回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工    作的。    2.热电偶的种类及结构形成    (1)热电偶的种类    常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。    标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。    (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:    ①组成热电偶的两个热电极的焊接必须牢固;    ②两个热电极彼此之间应很好地绝缘,以防短路;    ③补偿导线与热电偶自由端的连接要方便可靠;    ④保护套管应能保证热电极与有害介质充分隔离。    3.热电偶冷端的温度补偿    由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。    在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 钨铼热电偶结构原理

    一种基于金属热电效应,将被测温度转换成电量变化的装置,称之为热电式传感器。常见有工业钨铼热电偶、热电阻,双金属温度计等,而热电偶是一种经典而延用至今测温传感器。本文将简要介绍一下热电偶变换原理及回路特点。1.热电偶(WRW-1500型钨铼热电偶)热电效应:将两种不同导体或半导体并连在一起(如图),组成闭合回路。一旦将此种装置两个接头置于不同热源T、T0设定T≧T0,则会产生热电动势。http://img52.chem17.com/9/20130402/635004865548750000727.jpg当热电偶材料不变情况下,热电偶热电动势EAB(T、T0)成为温度T、T0函数差。其表达式为: EAB(T、T0)=f(T)—f(T0)由于冷端温度T0固定不变,则对于一定材料热电偶,其总热电动势与温度T成单值函数关系,即: EAB(T、T0)=f(T)—CC——常数,取决于固定温度T0因此,在实际测温过程中,这一关系式应用意义极其广泛。2.热电偶回路几种情况:①.若热电偶回路中两导体相同,则与两个接点温度无关,热电偶回路中总热电动势为0;②.若热电偶两接点温度相同,而导体A、B不同时,热电偶回路中总热电动势也为0;③.热电偶AB的热电动势与材料A、B中间温度无关,只与接点温度相关;④.热电偶AB在接点温度T2、T3时热电动势,为热电偶在接点温度为T1、T2和T2、T3热电动势总和;⑤.当热电偶回路接入第三种材料导体时,只要其两端温度相同,引入的导体不会影响热电偶热电动势,称中间导体定律;⑥.当温度为T1、T2时,导体A、B组成的热电偶电动势为AC和CB两热电偶电动势总和。 EAB(T1、T2)= EAC (T1、T2)+ECB(T1、T2)目前,WRW-1500型钨铼热电偶使用最多的导体AB有:WRLBT(铂铑-铂),测温范围为0~1300℃,短期可达1600℃;WREU(镍铬-镍硅),测温范围0~900℃,短期可达1200℃,还原性介质中,只可测温500℃以下;WREA(镍铬-考铜)(600℃以下,短期达800℃)以及铂铑30-铂铑6/WRLL,长期使用可耐受1600℃高温介质,短期内可达1800℃。

  • 【分享】热电偶温度计测量系统原理图

    热电偶温度计属于接触式温度测量仪表。是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。显示仪表所测电势只随被测温度而t变化。

  • 【求助】PARR6200 热电偶灵敏度问题

    PARR6200 热电偶有时候温度显示错误 用手捂一会就恢复了。是热电偶的问题还是仪器硬件的问题?再有就是:在不损坏热电偶的情况下,怎样判断连接线路是否虚连,中间线路断开?

  • 热电偶的知识!

    我现在有一个小问题想向大家请教,热电偶的测温原理是由于两种不同金属相互接触将产生接触电动势,如果我们将两种金属焊接组成闭合回路,其中一个焊点置于要测温的部分(我们称之为热端),另一个焊点置于冰水混合物中(我们称之为冷端),从而构成一个测温热电偶(热电偶的原理),但是我们在实际应用中如何保证一个焊点处于零度呢?或者是采用其他什么方法呢?具体在马弗炉中的热电偶和热分析仪中的热电偶,请告知!可能此问题没说太清楚,如有疑问请告知!谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制