当前位置: 仪器信息网 > 行业主题 > >

热工测量及仪

仪器信息网热工测量及仪专题为您提供2024年最新热工测量及仪价格报价、厂家品牌的相关信息, 包括热工测量及仪参数、型号等,不管是国产,还是进口品牌的热工测量及仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热工测量及仪相关的耗材配件、试剂标物,还有热工测量及仪相关的最新资讯、资料,以及热工测量及仪相关的解决方案。

热工测量及仪相关的论坛

  • 量热仪测量结果

    我想问一下做煤分析的量热仪,在用苯甲酸做标定时与标样的结果多大可以也就是说苯甲酸的标准值是26469我测量的结果是26513,这样的数据可以说是正常的吗?再有如果用用水量不是很准确,对测量结果到底有多大的影响。因为我们用的这种量热仪不是自动加水的是用天平称量的而且是二次称量,我想这样的误差就会更加的大,希望大家帮助我出一下好的主意好吗

  • 热工仪表校验

    请问,热工仪表校验仿真仪可用作热工仪表校验的标准设备吗?

  • 【讨论】热工仪表工的操作规程

    热工仪表工的操作规程   热工仪表工的操作规程: 1、热工仪表工应熟知仪表的性能及各类仪表的安装使用方法及维护技术。 2、热工仪表的安装应防止震动,注意避开大磁场、动力线,以防干扰。 3、在使用中应保证仪表的正常运行,保持仪表的清洁,记录要准确,划线盘要清晰,毫伏计应调至室温,接补导线外接电阻应保持成套使用。 4、热工仪表工在排除故障前应穿好绝缘鞋和其他防护用品,并应由两人共同工作。 5、仪表故障或指示不准、调整无效时应停止使用,不得强行安装。 6、各类热工仪表应定期检修、维护(包括一次热电偶),待鉴定合格后方可继续使用。

  • 采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    下图是ASTM D5470测试方法中的测试模型,采用ASTM D5470热阻测定仪或导热仪使用中测量精度的影响因素主要有以下几个方面:http://ng1.17img.cn/bbsfiles/images/2015/03/201503182256_538771_3384_3.png 1. 针对不同的热阻范围需要采用不同热流测量范围的热流计,这就需要采用不同材质来制作热流计,如分别采用不锈钢和铜等材料制成不同测量范围热流计。一般热流计金属棒上插入了多只温度传感器以及外围的隔热材料组件,在不同热流计测试过程中,这就使得操作人员不可能去更换对应的热流计,如此就必须配置和购买至少两套热阻测定仪或导热仪来覆盖尽可能宽泛的热阻和热导率测量范围。很多测试机构为了节省经费一般只购买一套设备来进行全量程的测试,这就使得在某一区间的热阻和导热系数测量存在巨大误差。 2. ASTM D5470方法中,是通过测量热流计金属棒轴向上的温度分布来计算获得流经试样的热流,而温度分布是通过间隔布置在金属棒上的多只温度传感器进行测量来获得。由于金属材料的导热系数很大,这就使得两两温度传感器之间的温度差很小,为了保证准确测量出热流计棒上相应位置处的温度,必须采用更高测量精度的铂电阻温度传感器,采用测量精度不高的热电偶往往会带来较大误差。 3. 上下两个热流计的尺寸完成一致,并要求压紧试样过程中上下两个热流计要完全对准,而且要求两个热流计的端面平行度和端面光洁度非常高,以免造成被测试样的厚度不均匀和热流计端面粗糙所带来的接触热阻,这就对热流计的上下移动机构和对准机构的精度要求非常高,这部分内容占了整个ASTM D5470热阻测定仪或导热仪的大部分费用。考核ASTM D5470热阻测定仪或导热仪测量精度的一种方法是空载测试,即不加载任何被测试样,只使得上下两个热流计金属棒直接对准接触,由此测量出此时的接触热阻,此接触热阻就是仪器的最小热阻分辨率,这个空载热阻测量值越小,说明导热仪的测量分辨率越高,测量试样时越是容易达到更高的测量准确度。 4. 热阻测量准确度除了与温度测量准确度有关外,还与试样上的加载压力测量准确度有关,因此压力传感器要具有一定的准确度才行。同时,金属棒热流计和被测试样在受热时会受热膨胀,在膨胀过程中势必会引起压力的改变,因此热阻或导热系数测量要在温度和压力都稳定的情况下测量,否则也会带来误差。 5. 引起热阻或导热系数测量误差的另外一个重要因素是热流计和试样的散热影响,尽管很多测试设备都在金属热流计和试样外部都采取了一定的隔热措施,如采用隔热材料进行包裹,但还是会有部分热量会从热流计和试样上流失。最有效的办法是采用等温绝热措施,即在热流计棒和试样外部增加绝热屏,绝热屏上的温度分布与热流计金属棒和试样上的温度分布相同,通过等温绝热来消除热损失的影响。但这势必会大幅度的增加测试设备的造价。 6. 由于试样导热系数等于试样厚度除以试样热阻,因此采用ASTM D5470方法测量导热系数时要求精确测量被测试样的厚度,但恰恰这是最困难的事情。对于刚性材料来说,被测试样可以比较厚并且不宜变形,可以在进行实验前进行测量。但对于柔性材料,如导热酯、导热硅胶、硅胶导热片等,试样的厚度在压力加载后会发生改变,这就需要配置在线厚度测量装置。另外,在柔性试样加载后,试样厚度往往会降低到几十至几百微米,这对在线厚度测量来说几乎不可能实现准确测量,因此,厚度测量的准确度是采用ASTM D5470方法时带来误差的最大因素。我们可以经常看到国外厂家导热材料的性能指标中只提供热阻数据而没有提供导热系数数据,就是因为厚度测量几乎无法实现。就算有厂家能提供出导热系数数据,哪这个数据也会存在巨大的误差。

  • 【分享】什么原因导致量热仪测量不准确

    量热仪是煤炭化验设备中使用最多,销量最好的化验设备,可用在煤炭、石油,电热公司,电力厂,焦化厂,造纸,石化,水泥,农牧,医药科研,教学,钢铁,饲料,造纸,化工,水泥,制砖等行业测量煤矸石、石油及其他固体和液体燃料等物质高低发热量的测定,量热仪的结构简单,性能可靠,抗干扰能力强。  有时候在使用量热仪时,会发现量热仪的测量数据忽高忽低,这是哪些原因导致的呢?  量热仪结果不准,忽高忽低的原因主要有以下几个:  1、氧弹漏气,会造成量热仪结果偏低。  2、机器里缺水,或者内同上水不够都会照成发热量高低不稳。  3、氧气压力不够,也会造成量热仪结果不准确。  4、煤样采取不均匀,也会造成结果不准确。

  • 广东计量仪器机构:热工计量仪器标准你了解吗?

    随着社会经济的迅速发展,计量检定行业得到了高度的重视,人们对于一些热工仪器仪表的使用变得越来越广泛化,然而由于热工仪器仪表计量检定过程具有复杂化特点,再加上大多数检定人员仍然采用以往传统的检定方法,进而给热工仪器仪表计量检定的准确性带来不利影响,下面华品小编为各位介绍今日主题热工计量仪器标准。[align=center][img]https://5b0988e595225.cdn.sohucs.com/images/20190806/3769366d79da4321b08608834f3413cb.png[/img][/align]所谓的热工计量自动检定即为热工计量仪自动化鉴定出来的参数,其参数能够直观的显示机电组是否处于正常运行状态,同时也能够保障企业机组运行调整工作可以及时开展。热工计量自动化检定技术的内容有电源、数字电压表,在实际的应用中电源存在可调性,而且也可以不在电源中设置电压,进而以保证输出电流的稳定性。通常情况下,在对热工仪器仪表进行计量检定工作时,相关检定人员一定要充分考虑到检定过程的复杂性和以往传统检定方法存在的缺陷,否则将无法保证计量检定工作的顺利展开,进而使热工仪器仪表计量检定准确性不高。以往传统检定方法相比较来说,热工仪器仪表计量的自动化检定技术完全突破了传统检定方法存在的局限性,制定了一系列的自动检定和维护系统,进而真正实现了计量检定和管理工作的有效统一,对热工仪器仪表计量检定的准确性提供了有效保障。华品计量在自动化检定中,EXCEL的热工仪器仪表自动化检定成效较好,因而得到了较为广泛的应用,其不但能最大限度降低计量检定存在的误差,还能针对整体数据信息展开系统的分析研究,进而做到科学合理化的判断,促进热工仪器仪表计量检定工作的高效进行

  • 量热仪测量发热量结果不准确

    煤炭发热量是煤炭计价、编制消耗定额和供应计划等方面的依据;是对设计炉膛负荷、选择磨煤机容量、计算物料平衡的重要参数;是锅炉热平衡、配煤燃烧及负荷调节的主要依据。测煤炭发热量使用量热仪。煤炭发热量测定仪-量热仪测量结果不准确怎么办?测量发热量的制样化验室应单独一个房间,室温尽可能恒定,室内无强烈的空气对流和能发热的热源,避免对试验造成干扰。一、煤炭化验过程中热容量标定值常常不准确。一般会带来系统误差,多是因为使用的苯甲酸不合格或计算热容量时忘记加硝酸形成热。(1)苯甲酸应选择经计量部门检定合格的二级基准计量标准热物质苯甲酸,并且保证计算正确。(2)量热仪内筒水量与热容量标定时的不完全一致,也会使标得的热容量值不适用于发热量测定试验。标定完热容量后应将内筒水的质量记下来,保证在以后所有的试验中内筒水量完全一致。二、量热仪的搅拌器故障或搅拌速度不均匀,会导致内筒水局部获得的热量不能及时均匀地散出,从而使测得的内筒温度变化为虚假的温度变化。用这种温升计算出的发热量必然是错误的结果。三、使用贝克曼温度计未进行或未能正确地进行毛细孔径和平均分度值的修正。使用贝克曼温度计测量内筒温度变化,若不能正确的进行毛细孔径值和平均分度值的修正,将会使测得的温升不准,从而导致发热量测定的误差。四、煤质分析仪器过程中量热仪内筒中的水量不能保持一致,内筒中水的量若不准确将会使仪器的热容量发生变化,从而导致发热量的测定误差。五、量热仪是在较长时间内内筒温度不能达到恒定,或是这次平衡出现了,下次又不出现了。遇到这种情况,操作者应该仔细检查和调定仪器的平衡点。

  • 热工仪表现场校准

    好东西,与大家分享![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34788]热工仪表现场校准[/url]

  • 一键式非接触光谱共焦测量仪

    一键式非接触光谱共焦测量仪

    如今三C行业,或者是精密仪器行业,都要求极高精度,我们人为是无法测量0.01以上的精度的,这个时候,问题就来了,我们要如何确保精度质量呢?针对这些需求,市面上推出了很多的测量仪器,有2次元,三次元这这些测量仪已经可以满足很多企业的需求了,但是有些企业的产品,他不仅仅是需要平面尺寸,他甚至还需要测量平整度。这次候就应运而生了一种五次远,这些仪器之间都有些什么区别呢?我们该如何选择适合自己的测量仪器呢?现在就将他们的区别来理一下,也给大家参考一下:现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。想要了解更多,可联系:15012834563,小周[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/12/201712291417_2603_3353984_3.jpg!w690x920.jpg[/img]

  • 坩埚对测量物质的热焓是否有影响

    坩埚对测量物质的热焓是否有影响

    我使用耐驰DSC204 测量不饱和树脂固化反应热焓,前段时间换了一批坩埚,测出的热焓变小了很多,再用原来的坩埚去测,结果跟之前的一致,想请教下大家坩埚对热焓有影响没[img=,750,564]http://ng1.17img.cn/bbsfiles/images/2017/10/201710091447_01_3240555_3.jpg[/img]

  • 【求购】求购锅炉热工测试仪器

    我们学校要采购锅炉(有机热载体锅炉、燃气锅炉、燃油锅炉、电锅炉)热工检测设备和一些常规的测试设备,这次投资较大,由于我不熟悉这块内容,求助大家帮忙,谢谢! 我的邮箱:wallywife@126.com

  • 测量设备--供参考

    测量设备--供参考[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=22323]测量设备[/url]

  • 高低温湿热试验箱之湿度与温度的测量

    露点与蒸汽压直接相关,并受到温度的影响,在不同温度条件下的露点温度是不同的。 在同一高低温湿热试验箱内的蒸汽压力通常是一致的。一般假设通过试验箱空气中的水蒸气保有量是恒定的。 当空气彻底地被扰动或受试样品通电加载时,高低温湿热试验箱内各位置间的温度存在差异,尽管蒸汽压力几乎是一致的,温度的不同还是会引起相对湿度的差异。 在日常试验中,湿度可能仅在一个地方测量。然而,无论在试验期间或高低温湿热试验箱运行的条件下,湿度至少应该有2个测量点,才能赋值,对均衡空气的蒸汽容量进行不确定度评估。 还有一些重要的因素会在相对湿度的测量和建立过程中产生作用,如测量器材、高低温湿热试验箱体和空间构成,以及受试样品和样品的支撑物等;诸如塑料和木材膨胀的物理特性、生物学的活跃性、电阻抗和腐蚀速率等有机材料的参数特性会发生变化,同时相对湿度也会受到这些变化的影响。

  • 生活饮用水中的汞的测量

    大家好,用原子荧光测生活饮用水重金属汞,用的北京宝德的仪器,仪器工程师给的方法是直接加酸上机测量,跟5750.6标准上的加溴化钾和盐酸烃胺,做出来数据差别大吗

  • 【原创大赛】热波法超低温下超高热导率测量的SimulationX热仿真模拟

    【原创大赛】热波法超低温下超高热导率测量的SimulationX热仿真模拟

    [color=#990000]摘要:针对超高导热材料的热波法热导率测试,本文采用SimulationX软件对热波法进行了建模,针对室温至超低温下纯铜和304不锈钢这两种材料的热导率测量进行了仿真计算,考核了热波法的有效性和准确性,确认了超低温下方波加热功率、脉冲宽度和样品尺寸等测试参数范围,确认了热波法非常适用于固态隔热材料(中密度)至超高导热材料热导率的直接测量。[/color][color=#990000]关键词:超低温,液氦,热导率,热波法,simulaitonx,仿真,模拟,测量[/color][align=center][color=#990000][img=,500,453]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051736498462_4892_3384_3.png!w690x626.jpg[/img][/color][/align][size=18px][color=#990000]1. 热仿真目的[/color][/size]  针对2K~5K超低温范围内热波法热导率测量方法,在热导率测量装置设计前期采用SimulationX软件开展热仿真模拟,拟达到以下几方面的目的:  (1)对超低温范围内热波法热导率测量的整个过程有较直观的认识。  (2)了解热导率1~1000W/mK范围内样品的尺寸、热波加热功率和温度响应之间的相互关系,确定样品尺寸、加热功率和温度测控等相关参数,以帮助加热器、温度传感器、仪器仪表和测量装置的设计和选型。[size=18px][color=#990000]2. 热波法热导率测量原理[/color][/size]  热波法基本原理是样品在非稳态条件下(样品温度单调缓慢上升或下降过程中),在样品热端施加周期方波热脉冲,如图2-1所示,通过测量加热功率、热脉冲宽度和温度响应来确定样品热导率。[align=center][color=#990000][img=,600,282]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051741393969_2322_3384_3.png!w690x325.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-1 热波法热导率测量原理[/color][/align]  热波法作为一种瞬态法,其主要特点如下:  (1)测量装置结构与稳态法相同,但在测试过程中无需像稳态法那样达到热平衡状态,可在样品整体温度处于单调上升(或下降)的非平衡状态下进行测量,测试周期较短。  (2)当热脉冲宽度为无限长时间时,tanh函数将趋于等于1,则样品将达到稳态条件,测试将转变为稳态法,上述测量公式将变为稳态法公式。即稳态法是脉冲法的一种极限情况,由此在一套测量装置中可分别进行热波法和稳态法测量,其中的稳态法可用来考核和校准脉冲法。  (3)在热波法测量装置中,可通过延长热波周期时间(或加热功率恒定),使热波法转换为稳态法进行测量,由此可覆盖宽泛的热导率测量,即采用热波法测量高热导率(10~1000W/mK),采用稳态法测量低热导率(0.1~10W/mK)。  (4)大多数测试高导热小样品材料的瞬态法,如闪光法、温度波法(ISO 22007-3)和Angstroem法等,这些方法只能测量热扩散率,无法直接获得热导率。这里的热波法相当于一种量热测试技术的变形,可直接测量热导率,而且非常适合高导热小样品(薄带和细条等)和高导热块体材料测量。[size=18px][color=#990000]3. 样品材料和热物理性能[/color][/size]  为了覆盖超低温下热导率1~2600W/mK范围的测量,样品材料选择304不锈钢和纯铜[1]。这两种材料有比较齐全的热物理性能参数(热导率、比热容和密度)随温度变化数据,便于热仿真计算中物性参数的准确设置,图3-1是超低温下的热物理性能数据,其中密度选择采用常温数据。[align=center][color=#990000][img=,600,235]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051741556618_1369_3384_3.png!w690x271.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 纯铜和不锈钢304样品材料超低温(10K以下)热物理性能数据[/color][/align]  根据上述两种材料的热物理性能数据,纯铜在4K时的热导率为1100W/mK,如图3-2所示;304不锈钢在4K时的热导率为0.27W/mK,如图3-3所示。由此可见采用这两种材料进行低温热导率测试,可以覆盖仪器热导率测试设计要求范围。[align=center][color=#990000][img=,500,254]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051740490758_7245_3384_3.png!w690x351.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2 纯铜10K以下热导率数据[/color][/align][align=center][img=,500,253]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051741047585_3222_3384_3.png!w690x350.jpg[/img][/align][align=center][color=#990000]图3-3 不锈钢304在30K以下的热导率数据[/color][/align][size=18px][color=#990000]4. 仿真模型[/color][/size]  SimulationX是一款多学科领域建模、仿真和分析的通用型CAE工具,具有强大标准元件库,非常适合瞬态和稳态热仿真计算。针对热波法所建立的SimulationX瞬态热仿真模型如图4-1所示。[align=center][color=#990000][img=,654,325]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051741164542_5819_3384_3.jpg!w654x325.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图4-1 热波法SimulationX瞬态热仿真模型[/color][/align][size=18px][color=#990000]5. 结果[/color][/size]  采用上述SimulationX模型,针对纯铜和304不锈钢两种材质样品,在不同温度和不同样品尺寸下进行仿真计算。[size=16px][color=#990000]5.1. 加热功率和样品尺寸的确定[/color][/size]  根据图2-1中的稳态法公式,针对不同样品的热导率可估算加热功率和样品尺寸。  对于极限情况,如热导率为2000W/mK的超高导热材料,样品长度(冷热端间距)制作为50mm,样品截面积为2mm×10mm,若想达到0.5K温差,则加热功率Q为:  Q=(λ×A×ΔT)/d=2000×20×10-6×0.5/0.05=0.4W。  对于另一种极限情况,如热导率为1W/mK的低导热材料,样品长度(冷热端间距)制作为5mm,样品截面积为10mm×10mm,若想达到0.5K温差,则加热功率Q为:  Q=(λ×A×ΔT)/d=1×100×10-6×0.5/0.005=0.01W。  总之,在仪器最大额定加热功率确定的情况下,可以通过改变样品尺寸和加热功率大小来达到最佳测试参数,如合理的温差和加热功率。[size=16px][color=#990000]5.2. 纯铜计算结果[/color][/size]  (1)室温300K时计算结果:仿真计算得到的样品热端温度波形如图5-1所示。[align=center][color=#990000][img=,600,347]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051742387652_3247_3384_3.png!w690x400.jpg[/img][/color][/align][align=center][color=#990000]图5-1 纯铜300K时的热端温度波形[/color][/align]  对于300K温度下的纯铜测试,其热导率理论值为401W/mK,样品长度选择25mm长,样品截面积为2mm×10mm。图5-1所示的仿真中选择的加热功率Q为0.15W,方波脉冲宽度为360s,由此得到的温差波峰值为0.471K,热导率计算结果为398.1W/mK,与理论值相比的相对误差为0.72%。  (2)超低温10K时计算结果:仿真计算得到的样品热端温度波形如图5-2所示。[align=center][color=#990000][img=,600,345]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051742229543_2309_3384_3.png!w690x397.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图5-2 纯铜10K时的热端温度波形[/color][/align]  对于10K温度下的纯铜测试,其热导率理论值为2600W/mK。因热导率超高,故增加样品长度为50mm,样品截面积缩小为2mm×5mm。图5-2所示的仿真中选择的加热功率Q为0.2W,方波脉冲宽度为10s,由此得到的温差波峰值为0.386K,热导率计算结果为2591W/mK,与理论值相比的相对误差为0.36%。  (3)超低温4K时计算结果:仿真计算得到的样品热端温度波形如图5-3所示。[align=center][color=#990000][img=,600,345]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051742511130_668_3384_3.png!w690x397.jpg[/img][/color][/align][align=center][color=#990000]图5-3 纯铜4K时的热端温度波形[/color][/align]  对于4K温度下的纯铜测试,其热导率理论值为1100W/mK。因热导率超高,样品长度保持为50mm,样品截面积恢复到2mm×10mm。图5-3所示的仿真中选择的加热功率Q为0.2W,方波脉冲宽度为5s,由此得到的温差波峰值为0.457K,热导率计算结果为1095W/mK,与理论值相比的相对误差为0.49%。[size=16px][color=#990000]5.3. 不锈钢计算结果[/color][/size]  (1)室温300K时计算结果:仿真计算得到的样品热端温度波形如图5-4所示。[align=center][color=#990000][img=,600,336]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051743040049_3250_3384_3.png!w690x387.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图5-4 不锈钢300K时的热端温度波形[/color][/align]  对于300K温度下的304不锈钢测试,其热导率理论值为14.9W/mK,样品长度选择5mm长,样品截面积为10mm×10mm。图5-4所示的仿真中选择的加热功率Q为0.1W,方波脉冲宽度为60s,由此得到的温差波峰值为0.335K,热导率计算结果为14.93W/mK,与理论值相比的相对误差为0.17%。  (2)室温4K时计算结果:仿真计算得到的样品热端温度波形如图5-5所示。[align=center][color=#990000][img=,600,336]https://ng1.17img.cn/bbsfiles/images/2021/11/202111051743153516_5735_3384_3.png!w690x387.jpg[/img][/color][/align][align=center][color=#990000]图5-5 不锈钢4K时的热端温度波形[/color][/align]  对于4K温度下的304不锈钢测试,其热导率理论值为0.27W/mK,样品长度选择5mm长,样品截面积为10mm×10mm。图5-4所示的仿真中选择的加热功率Q为0.002W,方波脉冲宽度为60s,由此得到的温差波峰值为0.370K,热导率计算结果为0.2703W/mK,与理论值相比的相对误差为0.1%。[size=18px][color=#990000]6. 总结[/color][/size]  通过上述SimulationX软件对热波法热导率测量的仿真模拟计算,达到了仿真目的,并得出以下结论:  (1)热波法无需达到热平衡状态也可以进行样品热导率的直接测量,这是样品温度单调缓慢变化过程中快速进行热导率测量的技术基础,也是热波法有别于其他测试方法的突出特点。  (2)热波法具有强大的超高热导率测试能力,这种能力除了可以在低温和超低温下测量评价超导材料外,更广泛的应用是对各种高导热电子材料热导率的准确测量,重要的是测量装置结构简单,样品尺寸小,样品加工和测量操作便利。  (3)通过选择合适的样品尺寸、脉冲宽度和加热功率,热波法可以覆盖隔热材料(中密度)至超高导热材料的热导率测量,非常便于中低温下各种固体材料和薄膜材料的热导率准确测量,而无需已知样品的热扩散率和比热容。  (4)热波法是一种相对测试方法,是量热法的一种变形,是以加热器作为量热计,因此必须准确已知作为加热器使用的量热计的热容。7. 参考文献[1] Ventura G, Perfetti M. Thermal properties of solids at room and cryogenic temperatures[M]. Berlin, Germany:: Springer, 2014.

  • 护热板法导热系数测定仪量热板上的螺纹孔是否带来空隙热阻影响测量?

    护热板法导热系数测定仪量热板上的螺纹孔是否带来空隙热阻影响测量?

    最近在德国耐驰公司的护热板法高温导热系数测定仪上进行隔热材料测试,在测试过程中发现耐驰公司的这个测试设备与ISO、ASTM和国标规定的护热板法标准有两处明显不同的地方,跟厂家联系也未获得满意答复,特此请教大伙帮忙参谋参谋。(1)在护热板法标准中规定护热板和量热板的表面要平整,在标准方法中对平整度给出过明确的要求。但在耐驰公司高温护热板法热导率测定仪中的护热板和量热板上面,均匀分布着很多螺纹孔。螺纹孔内已经安装了螺丝,但螺丝顶部与量热板表面至少还有1mm左右的空隙。在安装试样后,试样表面就会与量热板和护热板之间留有众多的空隙,这些空隙会不会给测试带来严重的接触热阻、同时还会影响试样表面的温度均匀分布和试样内部热流场的均匀分布呢?而且随着温度特别是随着策划四气压的不同,这些接触热阻会明显的发生变化,这是不是会对热导率测量带来影响呢?http://ng1.17img.cn/bbsfiles/images/2014/09/201409171610_514239_2937345_3.png(2)在各种标准测试方法中规定护热板和量热板之间的温度差应采用多只热电偶构成的热电堆来进行高分辨率的检测和温度控制,使得护热板温度和量热板之间的温度差尽可能的小以达到量热板的护热作用。但在耐驰的高温热导率测试设备中,并未采用这项技术,而是采用了热电阻测温,这就相当于护热板和量热板之间的温度差就是两只热电阻之间的温差。这是第一次遇到在护热板法导热系数测量中采用热电阻来代替热电堆进行护热保护的情形,这是不是会带来严重的侧向热损而使得测量误差较大呢?

  • 新能源汽车液冷电池包热工测试温度要求说明

    新能源汽车液冷电池包热工测试运行中需要注意一些配件的温度,无锡冠亚告诉大家因为一旦不注意,配件温度过高,就会影响新能源汽车液冷电池包热工测试的运行。  新能源汽车液冷电池包热工测试运行工况参数好坏,对其工作的经济型和安全性影响很大,其中在新能源汽车液冷电池包热工测试的系统中,新能源汽车液冷电池包热工测试的蒸发温度可通过装在压缩机吸气截止阀端的压力表所指示的蒸发压力而反映过来。蒸发温度和蒸发压力是根据新能源汽车液冷电池包热工测试系统的要求确定的,偏高不能满足新能源汽车液冷电池包热工测试降温需要,过低会使压缩机的制冷量减少,运行的经济性较差。  新能源汽车液冷电池包热工测试制冷剂的冷凝温度可根据冷凝器上压力表的读数球的,冷凝温度的确定与冷却剂的温度、流量和冷凝器的形式有关。  新能源汽车液冷电池包热工测试压缩机的吸气温度是指从压缩机吸气截止阀前面的温度计读出的制冷剂温度。为了保证新能源汽车液冷电池包热工测试心脏-压缩机的安全运转,防止产生液击现象,吸气温度要比蒸发温度高一点。在设回热器的制冷剂的新能源汽车液冷电池包热工测试,保持吸气温度是合适的。  新能源汽车液冷电池包热工测试压缩机排气温度可以从排气管路上的温度计读出。它与制冷剂的绝热指数、压缩比及吸气温度有关,吸气温度越高,压缩比越大,排气温度就越高,反之亦然。  新能源汽车液冷电池包热工测试节流前的液体过冷可以高制冷效果,过冷温度可以从节流阀前液体管道上的温度计测得,一般情况下它较过冷器冷却水的出水温度高出一点。  新能源汽车液冷电池包热工测试运行好坏都是对新能源汽车测试的影响很大的,所以要适当调整新能源汽车液冷电池包热工测试每个参数,保证在合理的情况下运行。

  • 【原创大赛】恒定湿热试验测量不确定度评定

    0 引言长期以来,误差和误差分析一直是计量学领域的一个重要组成部分。由于测量实验方法和实验设备的不完善,周围环境的影响,以及受人们认识能力所限等,测量和实验所得数据和被测量真值之间,不可避免地存在着差异,即误差。目前,人们普遍认为,即使对完全已知或猜测的误差因素进行补偿、修正后,所得结果依然只能是被测量的一个估计值,即对如何用测量结果更好地表示被测量的值仍有怀疑。这时,不确定度概念作为测量史上的一个新生事物出现了。只有伴随不确定度的定量陈述,测量结果才可以说是完整的。恒定湿热是环境试验中的一项内容,其检测方法的性质属于不给出数值型结果的定性检测,决定了其无法从计量学和统计学角度对测量不确定度进行有效而严格的评估,但可以通过分析方法,列出各主要的不确定度分量,并作出合理的评估。本文通过识别和具体分析恒定湿热试验中各测量不确定度的来源,对各种影响因素进行评价,分析人、机、料、法、环等各环节对测量结果的影响,给出影响恒定湿热测量结果的不确定度。1 试验方法1.1试验方法标准:GB/T2423.3-2016《电工电子产品环境试验第2部分 试验方法试验Cab:恒定湿热》。1.2试验方法描述:依据严酷等级(温度:60℃,相对湿度95%RH,持续时间240h),以小于1℃/min的温变速率达到60℃,在温度达到要求后使湿度在2h内达到95%RH,然后在此状态下保持240h。1.3样品型号为TL059FDMP01-00的LCD1.4 仪器设备1.4.1 KTHG-515TBS恒定湿热试验箱(以下简称“试验箱”)2数学模型T[sub]s[/sub]=T[sub]x[/sub] (1)H[sub]S[/sub]=H[sub]X [/sub](2)式(1)中,T[sub]s[/sub]为样品在试验箱中的实际温度,℃;T[sub]x[/sub]为试验箱相对应的读数,℃。式(2)中,H[sub]S[/sub]为样品在试验箱中的实际温度,%RH;H[sub]X[/sub]为试验箱相对应的读数,%RH。3不确定度的来源由于在试验箱内进行试验,因此环境温湿度对结果的影响较小,基本忽略。电源电压的波动通过稳压源控制电源电压参数的可变性,从而使得影响程度最小,可忽略。读数的延时,我们通过选择熟练操作人员的操作而减小其影响。人员的读数影响较小,忽略。根据本实验的实际情况,测量中没有进行重复测量,采用B 类评定方法,本试验不确定主要来源如下:3.1试验箱温度偏差引入的标准不确定度分量u[sub]T1 [/sub],试验箱湿度偏差引入的标准不确定度分量u[sub]H1[/sub];3.2试验箱内温度波动引入的标准不确定度分量u[sub]T2[/sub] ,试验箱内湿度波动引入的标准不确定度分量u[sub]H2[/sub];3.3 试验箱内温度均匀度引入的标准不确定分量u[sub]T3 [/sub],试验箱内湿度均匀度引入的标准不确定度分量u[sub]H3[/sub];3.4 试验箱测温用的PT100热电阻温度传感器引入的标准不确定度分量u[sub]T4[/sub],试验箱测湿用的干湿球温度计引入的标准不确定度分量u[sub]H4.[/sub]4 标准不确定度的评定4.1 u[sub]T1[/sub]、u[sub]H1[/sub]的计算根据试验箱的校准证书,给出60℃,95%RH的温度最大值为60.8℃,相对湿度最大值为92.8%RH,温度最小值为60.5℃,相对湿度最小值为92.3%RH,按均匀分布,取k=[img=,19,21]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img],则u[sub]T1[/sub]=(60.8-60.5)/(2√3)≈0.087℃;u[sub]H1[/sub]=(92.8-92.3)/(2√3)=0.144%RH;4.2 u[sub]T2[/sub]、u[sub]H2[/sub]的计算根据试验箱的校准证书,给出60℃,95%RH的温度波动度为±0.1℃,相对湿度波动度为±0.3%RH,按均匀分布,取k=√3,则u[sub]T2[/sub]=0.1/√3≈0.058℃;u[sub]H2[/sub]=0.3/√3≈0.173%RH;4.3 u[sub]T3[/sub]、u[sub]H3[/sub]的计算根据试验箱的校准证书,给出60℃,95%RH的温度均匀度为±0.5℃,相对湿度均匀度为±0.7%RH按均匀分布,取k=√3,则u[sub]T3[/sub]=0.5/√3≈0.289℃;u[sub]H3[/sub]=0.7/√3≈0.404%RH;4.4 u[sub]T4[/sub]、u[sub]H[/sub]的计算由PT100热电阻(按A级考虑)偏差公式为±(0.15+0.002|t|)可知, PT100热电阻在60℃时偏差为±0.27℃,查阅干湿球温度湿度换算表,湿球温度变化0.3℃,湿度最大变化1.5%RH,按均匀分布,k=√3,则u[sub]T4[/sub]=0.27/√3=0.156℃,u[sub]H4[/sub]=1.5/(2√3)=0.433℃4.5合成标准不确定度合成标准不确定度为:u[sub]Tx[/sub]=√(u_T1+u_T2+u_T3+u_T4 )=0.34℃;u[sub]Tx[/sub]=√(u_H1+u_H2+u_H3+u_H4 )=0.63%RH4.8 扩展不确定度取k=2,计算扩展不确定度U[sub]T[/sub]=k×u[sub]Tx[/sub]=2×0.34=0.68℃ ;U[sub]H[/sub]=k×u[sub]Hx[/sub]=2×0.63=1.26%RH5 结果报告恒定湿热试验的温度T=60℃±0.68℃,湿度H=95%RH±1.26%RH(包含因子k=2,对应约95%的置信概率)6 总结本文对恒定湿热试验进行了分析探讨及不确定度评定,给出了箱体显示温度值的评定过程,根据各标准不确定度分量,可知在此恒定湿热验过程中哪些是影响试验结果的主要因子。当然由于每个评定者的认知不同,也可能会导致同一被测结果作出不尽相同的不确定度评定,但可以通过对每个试验结果受影响的各种因素和细致分析,尽量更准确地确定其受影响的不确定度。

  • 【求助】请问冷汞和热汞有什么区别啊?

    单位买了台科创海光的原子荧光230E,但由于本人从未接触过这种仪器,单位里又找不到人请教,因此越用肚子里的问题就越多,在此先请教一个白痴点的问题,那就是冷汞是什么意思?而热汞就是指点火之后做的吗?原来曾听说冷汞是不点火的,但厂家装仪器时只教了我点火后怎么操作,有谁能告诉我冷汞如何做啊?

  • 关于Aotopore 9500压汞仪

    我最近使用了Autopore9500压汞仪进行了压汞测试分析,但是求解出来的煤样密度为2.8左右,但是普通煤样的密度应该在2.0以下,这是神马情况?还有就是报告上显示的平均孔直径为26.7nm,这个结果也忒大了,求高手解释~~

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制