当前位置: 仪器信息网 > 行业主题 > >

热膨胀监测仪

仪器信息网热膨胀监测仪专题为您提供2024年最新热膨胀监测仪价格报价、厂家品牌的相关信息, 包括热膨胀监测仪参数、型号等,不管是国产,还是进口品牌的热膨胀监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热膨胀监测仪相关的耗材配件、试剂标物,还有热膨胀监测仪相关的最新资讯、资料,以及热膨胀监测仪相关的解决方案。

热膨胀监测仪相关的资讯

  • TA 仪器推出三条全新热膨胀仪产品线
    美国特拉华州纽卡斯尔市。 2017 年 3 月 1 日 - TA 仪器隆重推出三条全新热膨胀仪产品线,性能卓越的 800 平台喜迎新成员:DIL 820、DIL 830 和 ODP 860。这三款系列仪器均采用 TA 的专属真实差分技术,与强劲的竞争对手的系统相比,测量精确度超出十倍,进一步巩固了 TA 作为全球热分析技术领导者的杰出地位。 这三条新热膨胀仪产品线均基于获得专利的光学传感器,能够以高达 1nm 的分辨率分析样品。每款系统均配备新型高速、无温度梯度加热炉,确保温度控制达到最佳状态,缩短不同测试之间的停机时间。 TA 热膨胀仪属于高精度系统,设计用于测量动态热力变化引发的样本尺寸变化。这些热膨胀仪广泛应用于材料科学、陶瓷制造以及金属加工等领域的众多应用。它们在研究环境和生产控制过程中表现出众。 谈及本次发布的这款新产品,TA 仪器的高温产品经理 Piero Scotto先生 表示:“这是行业领先的热膨胀仪产品。通过将崭新系统设计与差分技术(每款仪器的核心)完美相融,TA 已经成为这一产品领域的新晋市场领导者。TA 仪器提供品类齐全的热膨胀仪,其优异性能和优惠价格符合所有用户的不同需求。 这款新平台由以下部件组成:精确测量尺寸变化的 DIL 830 系列高分辨率卧式推杆热膨胀仪、适用于精密烧结研究的 DIL 820 系列创新型立式推杆热膨胀仪以及执行非接触式样品测试的 ODP 860 多模光学膨胀测量平台。TA 仪器是沃特世公司(纽约证交所:WAT)的子公司,是热分析、流变测量和微量热测量领域分析仪器的领先制造商。公司总部位于美国特拉华州纽卡斯尔市,于 24 个国家/地区设立了办事机构。联系人:-全球营销总监 Ed Moriarty电话:302-427-1033 emoriarty@tainstruments.com TA仪器中国市场主管 Vivian Wang 电话 021-34182128vwang@tainstruments.com
  • 我司自动快速热膨胀相变仪中标
    我司中标中科院金属研究所“全自动快速热膨胀相变仪”招标采购项目  我司北京销售部,在北京销售部经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中科院金属研究所的青睐,成功中标其“全自动快速热膨胀相变仪”招标采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 我司中标快速热导率仪、热膨胀仪项目
    2009年12月15日,我司北京销售经理以真诚的销售服务成功中标中国地震局地质研究所“快速热导率仪项目”。欢迎广大客户咨询本公司产品。  我司中标沈阳工业大学材料学院“热膨胀仪项目”
  • 反常热膨胀光学晶体研究获进展 有望提升精密光学仪器稳定性
    近日,中国科学院理化技术研究所研究员林哲帅、副研究员姜兴兴等提出实现晶体热膨胀的超各向异性,为光学晶体反常热膨胀性质的调控提供了全新的方法,对于光学晶体中轴向反常热膨胀性质的功能化具有重要意义。   在外界温度变化时,常规光学晶体因“热胀冷缩”效应,无法保持光信号传输的稳定性(如光程稳定性等),限制了其在复杂/极端环境中精密光学仪器的应用。探索晶体的反常热膨胀性质如零热膨胀,“对冲”外界温场对晶体结构的影响是解决这一问题的有效途径。   然而,通过晶格在温度场作用下的精巧平衡来实现零热膨胀颇为困难,一方面,热膨胀率严格等于零的晶体在自然界中不存在;另一方面,目前化学组分调控晶体热膨胀性质的方法,例如多相复合、元素掺杂、客体分子引入和缺陷生成等,影响晶体的透光性能,不利于光学应用。如何在严格化学配比的晶体材料中,利用其本征的热膨胀性能来实现大温度涨落下的光学稳定性,具有重要的科技意义。   该研究团队提出实现晶体热膨胀的超各向异性,即沿晶体结构的三个主轴方向分别具有零、正、负热膨胀性,来调控光学晶体反常热膨胀性质的新方法。研究通过数学推导严格证明了当沿着三个主轴方向分别具有零、正、负热膨胀时,晶体具有最大的热膨胀可调性,可实现热膨胀效应和热光效应的精巧“对冲”,获得完全不随温度变化的光程超级稳定性。   研究在具有高光学透过的硼酸盐材料中探索,系统分析了晶格动力学特征。在此基础上,研究在AEB2O4 (AE=Ca或Sr)中发现了首个沿着三个主轴方向零、正、负热膨胀共存的特性。原位变温X射线衍射实验证明AEB2O4晶体具有宽的零、正、负热膨胀共存的温区(13 K ~ 280 K)。   在相同温度区间内,光程的变化量比常规光学晶体(石英、金刚石、蓝宝石、氟化钙)低三个数量级以上。第一性原理结合变温拉曼光学揭示了AEB2O4这种新奇的热膨胀性质源自离子(AEO8)基团拉伸振动和共价(BO3)基团扭转振动之间热激发的“共振”效应。相关研究成果发表在Materials Horizons上。   近年来,该团队致力于光电功能晶体反常热学和反常力学性能的研究,发现了系列具有负热膨胀、零热膨胀、负压缩以及零压缩性能的光电功能晶体,有望为复杂/极端环境下光学器件的稳定性和灵敏度问题提供解决方案。
  • 北京大学引进德国巴赫BAEHR光学热膨胀仪
    德国巴赫(BAEHR)热分析公司DIL806光学热膨胀仪进入我国最高学府-北京大学DIL806光学膨胀仪是目前世界上唯一利用光学原理进行测量的热膨胀仪,技术上比传统热膨胀仪更胜一筹。具体表现在: 1、利用光学原理测量是绝对测量,无需对测量结果进行校正(传统热膨胀仪是相对测量,必须对测量结果进行校正); 2、测量系统无需与试样接触,没有附加的外力作用在试样上,测量更准确; 3、对试样的外形没有严格要求,外形不规则试样,薄试样,甚至发生固-液-固相转变过程的试样,均可进行完美地测试,极大地扩展了热膨胀仪的应用范围。 Disc furnace – 盘式加热炉 Sample – 被测试样 Sender – 激光发送器 Receiver – 激光接收器 北京仪尊科技有限公司是德国巴赫热分析公司在我国的唯一代理,如想更详细地了解该仪器,请登录我公司网站,或与我公司直接联系: 电话:010-84831960 84832051 邮箱:sales@esum.com.cn 网站:www.esum.com.cn
  • 我司中标沈阳工业大学材料学院“热膨胀仪项目”
    我司北京销售经理以真诚的销售服务成功中标沈阳工业大学材料学院“热膨胀仪项目”。欢迎广大客户咨询本公司产品。
  • 我司成功中标中国矿业大学热膨胀仪采购项目
    2010年1月14日,我司北京销售部,在北京销售经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中国矿业大学的青睐,成功中标其“热膨胀仪”采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 德国耐驰热膨胀仪 DIL 402 Expedis:突破量程与分辨率的局限
    对于传统的热膨胀仪,测试量程与分辨率这两个参数很难两全。如果分辨率上升,测量范围通常下降,反之亦然。德国耐驰公司热膨胀仪DIL 402 Expedis通过新型自反馈光电位移测量系统 NanoEye 克服了这一技术上的矛盾。Nanoeye是一种新型的自反馈光电位移测量系统,在过去尚不可能实现的测量范围内具有良好的线性度和最大的分辨率。这是市场上第一个支持调制力(振荡型载荷)的水平膨胀仪系列,藉此打破了膨胀测量和热机械分析(TMA)之间的鸿沟。  热膨胀仪DIL 402 Expedis分为:Classic,Select ,Supreme三个版本。后两个版本是专门为研发和复杂的工业应用而设计的:即全面的、配置齐全的Supreme版本和可升级的Select版本。       功能原理  在测试中,如果样品膨胀,图形中的所有绿色部分都会在线性导轨(蓝色)的引导下向后移动。光电解码器直接在适当的刻度上确定相应的长度变化。     识别功能与数据库  用于识别和解释DIL测量的包括几个耐驰的数据库,其中有来自陶瓷、无机、金属、合金和聚合物或有机领域的上百条数据。此外,还可以创建特定于用户的库。它们可以与计算机网络中的其他用户共享。  识别允许从测量曲线的绝对值、斜率或形状中识别未知样本。这也为比较已知的样品与未知样品、评价材料质量提供了可能性。所有测量值都可以存储在庞大的数据库中,并且始终可用于识别或质量评价。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch P130打印系统
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 德国耐驰60周年回顾系列(三):膨胀计到底能用来做什么?
    本文作者:Aileen Sammler 作为德国耐驰60周年纪念的宣传活动的一部分,本文将详细介绍膨胀计的不同应用领域。  耐驰获得专利的最新技术  德国耐驰拥有极佳的膨胀测量系统——测量单元的功能设置在许多国家获得专利,并具有许多优点,例如:  初始样品长度不限范围以及在更高分辨率下的长度变化  明确的低恒定接触力  力控制调节,推杆无冲击且可重复移动  初始样品长度的自动识别  图:DIL 402 Expedis Supreme代表了顶尖的膨胀计技术:自动测定样品长度、在非常广的测量范围内保持恒定的分辨率、测量系统极好的温度稳定性以及双吊炉扩展的温度范围。除此之外,测量系统还可以进行力调制,从而连接热机械分析(TMA)。图:DIL 402 HT Expedis–2800°C高温版本:无论在航空航天、发电、石油和天然气行业还是要求极严的研究项目中,最高温度可达2400°C或2800°C的石墨炉都能为金属、合金、陶瓷和复合材料的热膨胀测定提供了恰到好处的配置。图:手套箱版本的DIL 402 ExpedisSupreme,适用于对氧气或水分敏感的材料,以及用户必须避免接触样品的情况。膨胀计的外壳完全由不锈钢制成。因此,不存在与样品或环境相互作用的塑料零件。膨胀计可以测量各种材料如今,膨胀计可用于测量各种材料——从塑料、陶瓷、玻璃到建筑材料。玻璃成分的变化也可以通过测量热膨胀系数或测定玻璃化转变温度快速而容易地确定。此外,相变会影响建筑材料(如混凝土)的膨胀和收缩行为。这些对使用它们的系统的统计可靠性和使用寿命有重大影响。通过膨胀计,可以研究膨胀和收缩等尺寸变化,以及体积变化。几十年来,这些方法已成功地在工业和研究中心应用了数十年,如瑞士日内瓦附近的欧洲核子研究中心。耐驰期待着膨胀测量未来数十年依然可以“发光发热”。你知道吗?德国耐驰(NETZSCH-Gerätebau)不仅仅在高温领域表现极佳,在低温膨胀计领域也处于第一梯队,可以实现最低至-260°C的膨胀测量。例如,这些膨胀计用于磁悬浮列车的功能测试。图:DIL 402ED点击直达:热膨胀仪专场德国耐驰展位
  • 德国耐驰60周年回顾系列(一):最古老!陶瓷行业诞生的膨胀计
    本文作者:Aileen Sammler德国耐驰公司(NETZSCH-Gerätebau GmbH)将在2022年正式庆祝公司成立60周年的纪念日。为此,我们将关注耐驰仪器背后的故事——耐驰分析仪器及其在过去几十年中的发展。1月份,我们将从膨胀计开始,它是德国耐驰历史上最古老的仪器之一。1962年,德国耐驰公司(NETZSCH-Gerätebau GmbH,NGB)在塞尔布成立。在过去的60年里,德国耐驰已经成为世界领先的热分析制造商之一。我们为我们的员工感到自豪,他们以非凡的决心和毅力推动着耐驰前进。我们感谢与我们的客户和合作伙伴间彼此信任和富有成效的合作。我们共同倡导质量、专业、创新和可持续性,并将在未来几十年继续坚守。德国耐驰多年来一直由Thomas Denner博士和Jürgen Blumm博士成功地管理。Thomas Denner博士非常清晰地记得他在塞尔布的开始:“当我2004年开始在耐驰工作时,我对员工的积极特别印象深刻。从公司成立的第一天起,我还偶然结识了一些同事。一方面,我感觉到他们有着精明的头脑,另一方面非常愿意探索未知。他们对过去取得的成就的自豪感和可持续发展的追寻今天也能感受得到。这将使我们能够在未来几个月里向你们展示我们的许多不同的系统和设备,它们最初出现在热的材料表征,目前采用了当今最先进的技术延续至今。我们将从一个仪器开始,这个仪器在很多年前就已经是一篇博士论文的焦点,最近又在一篇论文的背景下得到了解决,并立即带来了专利技术。我自豪地期待着接下来的耐驰60年主题月。”耐驰历史回顾早在20世纪50年代,在Netzsch兄弟的管理下,就建立了完整的陶瓷产品生产线。在向精细陶瓷行业的客户提供完整的生产设备的过程中,这些客户还要求能够购买相关的测试或实验室设备。这就是决定开发和制造用于建立陶瓷实验室的专用仪器的原因。这种设备的开发最初是从小规模做起的:这些想法被纳入了前耐驰公司(Maschinenfabrik Gebrüder Netzsch)学徒车间的测试仪器中。为了加强“测试仪器”部门的开发、生产和销售活动,耐驰公司(NETZSCH-Gerätebau GmbH)于1962年6月27日成立,总部设在塞尔布。随后,最早陶瓷行业实验室仪器的研制成果之一是:通过热膨胀测量装置,促进陶瓷碎片和釉料膨胀系数的协调。为此,研制了膨胀计。膨胀计——过去和现在德国耐驰膨胀计(简称DIL)的发展可以追溯到瓷器行业,也可以追溯到耐驰的诞生地——德国上Upper Franconi的塞尔布。使用膨胀计的目的是能够准确了解瓷碟在烧制过程中可能发生的膨胀,以防止裂纹和断裂的形成,并确定最终产品的准确尺寸。如今,膨胀计是研究陶瓷、玻璃、金属、复合材料和聚合物以及其他建筑材料长度变化的首选方法。它用于获取有关热行为和工艺参数或烧结和交联动力学的信息。膨胀计用于质量保证、产品开发和基础研究。第一台膨胀计在塞尔布使用图:60年代最早使用的膨胀计之一,曾在Rosenthal使用,现在在塞尔布Porzellanikon德国陶瓷博物馆展出(Porzellanikon德国陶瓷博物馆,位于象征欧陆三百年瓷器发展的历史重镇—德国塞尔布市(Selb),由德国名瓷罗森塔(Rothantal)1866年创立的厂房改建,总占地11,000平方米。Porzellanikon不仅是德国首家陶瓷博物馆,更是全欧洲最大的陶瓷博物馆,其不同于一般博物馆,展示的不只是瓷器的过去,更是它的现在与未来,从艺术、历史、商业到尖端科技,勾勒出一个清晰完整的瓷器现代新风貌,更是承载着欧洲陶瓷历史与艺术的珍贵宝库。)塞尔布——世界瓷都。Rosenthal、Hutschenreuther或Villeroy&Boch等名字在国际上都很有名,与Upper Franconia的这座小城有着密切的联系。60多年前,这家瓷器厂的前所有者Philipp Rosenthal给Erich Netzsch打电话。“我们杯子的把手在烧制过程后会断裂。我们需要一些东西来确定瓷器的膨胀行为,以优化生产过程,”这次谈话可能就是一切的开始。这就是膨胀计的诞生!顺带一提,在Rosenthal工作了近30年后,第一台测量设备于1996年移交给了塞尔布Porzellanikon德国陶瓷博物馆,在那里仍然可以欣赏它。从X-Y绘图仪的打印输出到Digital Proteus评估图:Stefan Thumser(前排,左三)和服务部门的同事(1997年)Stefan Thumser于1984年开始他作为能源设备的机电和电子技术员的学徒生涯。作为德国耐驰客户服务部门的长期支柱,他负责耐驰设备的调试、故障排除和基础培训,目前拥有38年的经验和专业知识。几十年来,他积极参与了膨胀计的开发,今天,他随时报告膨胀计取得的进展。Stephan Thumser回忆道:“过去操作膨胀计是真正的手工工作。除了插入样本,许多设置都必须手动选择。这些有时就要花一个小时。如今,你不必再担心这个问题了。只需插入样本,然后通过软件控制开始测量。”图:1979年为陶瓷制造商 Rosenthal定制的膨胀计。这种膨胀计仍然可以在塞尔布的Rosenthal 直销中心看到。“在膨胀计的历史发展过程中,最显著的差异是在测量评估领域。这过去是通过记录仪器以模拟格式进行的,例如2通道记录仪、X-Y绘图仪或所谓的KBK-6彩色点阵打印机。获得的测量数据无法 1:1转换为测量结果,因为样品架和推杆的固有膨胀作为误差包含在记录中。而手动校正这些测量值很费力,通常需要数小时的详细工作。如今,只需点击鼠标和/或通过Proteus软件即可完成。在测量后的几秒钟内,自动校正后完整曲线出现在计算机上。一次测量的准备工作,包括设置测量范围和开始位置,以及通过质量流量控制器调节气体,现在只需按下一个按钮即可完成。”即使在早期,质量、创新和客户满意度也是耐驰的首要任务。因此,膨胀计多年来不断改进。Stefan Thumser接着说:“2015年,随着新的DIL 402 Expedis仪器系列的开发,在一台仪器上安装两个熔炉也成为可能,可以进行更快、更灵活的操作。”图:用于手动测量评估的旧KBK打印机(6色多通道打印机)点击下方链接直达:热膨胀仪专场德国耐驰展位
  • 德国耐驰60周年回顾系列(二):“纳米眼”带来膨胀计分辨率变革
    本文作者:Aileen Sammler 作为德国耐驰60年发展回顾的一部分,本文将介绍德国耐驰总经理Jürgen Blumm博士在其论文中对膨胀计的研究,以及已获专利的纳米眼测量系统是如何彻底改变膨胀计的。1995年,Jürgen Blumm在耐驰应用实验室开始了他的职业生涯。通过与维尔茨堡大学合作的烧结优化研究项目,他将他的论文专注于“烧结过程前后高性能陶瓷的热特性”这一主题。测量方法扩展并结合了他的博士论文,为烧结过程的分析提供了一种全新的方法。动力学模拟计算为陶瓷材料烧结过程的优化做出了开创性的贡献。Jürgen Blumm是最早利用膨胀计(DIL)研究多步烧结动力学的人之一。图:在2002年NGB成立40周年之际展示膨胀计——左起:Jürgen Blumm博士、Dagmar Schipanski教授、Hans Peter Friedrich博士和Wolf Dieter Emmerich博士(1974年至2005年任耐驰总经理)Jürgen Blumm博士论文节选:“在高性能陶瓷的生产中,在大多数情况下,粉末状的原材料会被添加剂(粘合剂、烧结添加剂)抵消。然后,粉末通过模压工艺(如压制)转化为坯体。”然后,通过烧结过程使材料凝固,凝固过程中粉末颗粒粘合在一起,孔隙率降低。烧结通常是热处理的一部分,在此过程中的温度控制对陶瓷的结构性能具有决定性影响。在当今许多工业领域,材料和部件都采用了计算机辅助建模和制造工艺优化的方法。例如,多年来,铸造技术中优化凝固过程的模拟程序得到了广泛应用。然而,在陶瓷元件的生产中,这些方法尚未建立。通过膨胀计测量长度变化,并随后对测量数据进行热动力学评估,可以深入了解烧结过程中的复杂过程和反应过程,而仅仅通过膨胀测量是无法实现的。此外,热动力学分析的使用还提供了通过计算机辅助模拟优化陶瓷材料致密化的可能。”获得专利的纳米眼测量系统:膨胀计的一场革命谁还记得?过去,长度变化是通过感应式位移传感器检测的。这种模拟测量原理表现出不便的非线性,必须反复手动校准。现在,德国耐驰的专利纳米眼测量系统具有100%的线性。由于校准是在测量系统的制造过程中进行的,因此不再需要校准。2015年,德国耐驰通过DIL Expedis系列引入了膨胀计测量系统的革命性新概念。当时新集成的纳米眼测量系统基于光电测量传感器和力的施加的相互作用,其在致动器的帮助下被精确控制。从那时起,无论样品的膨胀或收缩如何,都可以施加10mN到3N之间的恒定力。在此之前,不可能在保持相同分辨率的同时增加测量范围。纳米眼测量系统提供了以前无法实现的分辨率,在高达50 mm的整个测量范围内,分辨率高达0.1 nm,且具有完美的线性。耐驰(NETZSCH Gerätebau)机械开发负责人Fabian Wohlfahrt博士解释说:“已获专利的测量系统的其他重要技术特性包括无摩擦膨胀、力控制回路,以及通过自动样本长度测量提高测量范围,同时提高分辨率和减少操作员影响。”自2012年以来,Fabian Wohlfahrt博士一直在耐驰工作,他撰写了关于纳米眼膨胀计测量系统开发的博士论文。但耐驰不仅使膨胀行为的测定更加准确,还简化了在开始测量之前正确插入样品的过程。多点触控软件功能可帮助用户在插入样本后正确安装样本。此外,不再需要手动确定样本长度。如今,纳米眼膨胀计测量系统自动处理所有这些任务。照片:纳米眼测量单元示意图点击直达:热膨胀仪专场德国耐驰展位
  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • Cell:细胞如何避免过度膨胀?
    所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。数十年来,人们一直在寻找实现这一功能的蛋白,现在来自斯克里普斯研究所(Scripps Research Institute)的科学家们终于找到了它。这个称为 SWELL1 的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。论文资深作者、斯克里普斯研究所教授 Ardem Patapoutian 表示:&ldquo 认识这种蛋白及其编码基因,为人们开辟了新的研究方向。&rdquo 相关研究作为封面文章发表在近期的《细胞》(Cell)杂志上。 揭晓谜底水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。&ldquo 实际上水是跟着溶质走的,&rdquo 文章的第一作者 Zhaozhu Qiu 说。&ldquo 细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。&rdquo 几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为 VRAC (体积调控的阴离子通道)。当细胞膨胀时 VRAC 就会开启,允许氯离子和其他一些带负电的分子流出。这时水分子也会跟着流出,从而减轻细胞的膨胀。&ldquo 在过去三十年中,科学家们已经知道 VRAC 通道的存在,但对它并不了解,&rdquo Patapoutian 说。由于技术限制,人们一直未能找到组成 VRAC 的蛋白及其编码基因。现在,Qiu及其同事在这项新研究中进行了快速的高通量荧光筛选。他们改造人类细胞使其产生一种特殊的荧光蛋白,当细胞膨胀 VRAC 通道打开时,这种蛋白发出的光会淬灭。在诺华制药研究基金会基因组学研究所(Genomics Institute of the Novartis Research Foundation)的自动化筛选专家的帮助下,研究人员培养了大量供筛选的细胞,并通过RNA干扰分别在这些细胞中阻断不同基因的活性。他们主要寻找能持续发光的细胞,持续发光表明基因失活破坏了细胞的 VRAC 。研究团队经过几轮测试,最终找到了一个基因。2003年科学家曾发现过这个基因,并将其称为LRRC8,不过当时人们只知道它可能编码一个跨膜蛋白。现在,研究人员将它重新命名为 SWELL1 。涉及的疾病研究人员通过进一步实验发现, SWELL1 的确位于细胞膜上,而且该蛋白的特定突变能改变 VRAC 通道的性能。&ldquo 它至少是 VRAC 通道的一个主要部件,是细胞生物学家长期追寻的蛋白,&rdquo Patapoutian 说。下一步,研究团队将进一步研究 SWELL1 的功能。例如,在小鼠模型中观察不同细胞类型缺乏 SWELL1 所造成的影响。2003 年人们最初发现这个基因,是因为该基因突变会导致一种非常罕见的无丙种球蛋白血症(agammaglobulinemia)。这种疾病的患者缺乏生产抗体的B细胞,因此很容易受到感染。这也说明, SWELL1 是B细胞正常发育所需的蛋白。&ldquo 此前有研究指出,因为中风会导致脑组织肿胀,所以这种体积敏感性的离子通道与中风有关。另外,这种蛋白可能还涉及了胰腺细胞的胰岛素分泌。&rdquo Patapoutian 说。&ldquo 这样的线索有待我们一一解析。&rdquo
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 美薪酬膨胀助力生物医学发展
    根据传统观点,美国生物医学研究成本的提高比所有消费品和服务费用的上涨速度都快。在过去30年间,国立卫生研究院(NIH)发布的相关指数证实了这种不一致性,也给了游说者更好的“武器”恳请立法者批准NIH年度预算增速高过该国的通货膨胀速率。  这份NIH指数涵盖了诸如试剂、实验动物和科学仪器的费用等,有时它能高过一个更大范围的指数约3个百分点。但在2012年,一件奇怪的事发生了,而且,这件事挑战了传统观点。生物医学研发价格指数(BRDPI)低于了美国国内生产总值价格指数(GDP PI)——消费者物价指数的一个变化版本。  当时,该生物医学指数增长率为1.3%,不仅低于当年的GDP PI的1.9%的增速,也创了BRDPI的历史最低纪录。但这则消息在当时并未引起重视。  要找出该年度如此异常的原因,人们需要知道BRDPI包含哪些内容。NIH在接受《科学》杂志采访时表示,该信息并不适合公开,但根据《联邦信息自由法案》(FOIA)它能被获得。据悉,该指数不仅涉及设备和用品的成本,还包括来自拨款的薪酬和福利。实际上,全部人力成本占到该指数年度变化的2/3。  《科学》杂志曾公开了美国密歇根大学安纳伯分校一位微生物学家近几年的科研经费支出情况。4年内,他共获得约115万美元的基金,其中约43.8%为个人工资和福利,材料费约占 19.6%,另外1/3上缴至学校管理部门,剩下的为其他科研支出。由此可见,人力成本占了经费支出的一大部分。  而在2011年12月美国国会通过支出法案后,薪酬和福利对生物医学研究发展的巨大影响日益清晰。该法案将标准NIH拨款中研究者薪酬上限从19.97万美元减少到17.97万美元。立法者希望这能将钱省下来资助更多项目。而科学家则抱怨NIH的300亿美元经费根本不足以帮助他们实现自己的好点子。  这部2011年法案是NIH经费周期慢性繁荣与萧条的最新案例。虽然,作为帮助美国经济从2008年世界经济危机中复苏的一系列刺激计划的一部分,一个为期两年的100亿美元的预算削减最终结束,但资金仍非常紧张。  例如,NIH的2015财年预算比2014年的299亿美元预算增加了1.5亿美元,仅提升了0.5%,使明年NIH的财政预算仍低于2012年暂押5%前的预算。增加额未达到参议院支出委员会批准的增加6.06亿美元的目标,而且也低于白宫要求增加的2.11亿美元。而且,附加报告还要求NIH在申请者年龄上给予更多关注,目前,首次接受NIH资助的科研人员平均年龄为42岁。  而这个限制薪酬支出的决定让BRDPI陷入混乱,也使得其低于已经很低的GDP PI。2008年,该生物医学指数达到历史顶峰4.7%,是GDP PI的2.1%的两倍还多。到2010年,这一数值略微下降,达到3%,但仍然超过了GDP PI。2012年,BRDPI急剧下降,相反GDP PI增长到1.9%。  外部观察者认为,这一下降趋势是个好消息。毕竟,如果生物医学研究膨胀放缓,那么NIH就能进一步利用其有限的经费。  但NIH领导层并不希望出现这种趋势。NIH前院外研究项目负责人Sally Rockey习惯每年就BRDPI的价值撰写博文。她将其称为“衡量NIH经费购买力的重要方式,并能为下一财年作出预测”。但在2014年3月28日发表的博文中,Rockey只是简单地提及2012年的下降“主要是资深研究人员薪酬上限降低所致”。  另外,也没有部门备忘录显示,2012年BRDPI历史最低纪录引发任何正式反应。但相同备忘录包括了对2013年BRDPI的初步预测,结果显示它将再次超过GDP PI。备忘录作者表示,2013年的生物医学指数虽“但仍处于历史低谷,并将至少再次超过了GDP PI”。
  • ACS:膨胀显微法与STED结合新法,衍射极限分辨提高30倍
    p  strong仪器信息网讯 /strong在提高显微镜分辨率方面,两种方法结合往往比一种方法更好。近日,德国马克斯普朗克分子细胞生物学与遗传学研究所Helge Ewers博士及其同事发表论文(ACS Nano 2018, DOI:10.1021/acsnano.8b00776),文中介绍了一种新的提高显微镜分辨率的方法——ExSTED,即将受激发射损耗(STED)荧光显微术与膨胀显微镜法相结合的方法。STED显微术使用一个环形的激光束精确地控制在标记样本上的荧光团激活的位置。通常情况下,STED的分辨率可以将显微镜光学衍射极限提升10倍。膨胀显微镜法是将固定样品嵌入水凝胶中,将样品溶胀并拉伸至其原始尺寸的四倍,导致物理分辨率提高的方法。将这两种方法结合,Helge Ewers博士及其同事获得了比光学衍射极限提升30倍的效果。/pp style="text-align: center"img style="width: 450px height: 388px " src="http://img1.17img.cn/17img/images/201805/insimg/26d1f3ac-c39c-4d29-8d6b-f2cda2131146.jpg" title="01.jpg" height="388" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "ExSTED法观察细胞中微管的图像,色标表示三维空间中各种小管的深度(来自ACS Nano)/span/pp  文章中使用ExSTED方法对三维细胞的微管网络进行成像。 由于扩大样品扩散荧光标记,所有样品观察区域的信号都大大减少。 为了抵消信号减少,研究人员使用多种抗体来增加添加到微管中的荧光标记的数量。他们希望通过第二次扩展样本和寻找放大荧光信号的方法来进一步提高显微镜的分辨率。/p
  • 高铁检测仪器-梅特勒托利多 强强合作
    高铁检测仪器-梅特勒托利多强强合作,共同推进热分析仪器在材料行业的创新性应用。上海梅特勒总部,梅特勒热分析专家培训高铁工程师热分析技术和实际上机操作。梅特勒热分析家族-热重分析仪(TGA)使用热重分析仪(TGA)进行成分分析、残留检测和热稳定性分析微克级分辨率的微量和超微量天平,我们的TGA仪器可在整个测量范围内,提供值得信赖的结果。梅特勒热分析家族-同步热分析仪(TGA/DSC)TGA/DSC测得的重量变化和热流,可提供有关成分、相变和化学反应的更多信息梅特勒热分析家族-差示扫描量热仪(DSC)DSC采用配备120对热电偶的创新型DSC专利传感器,确保具有无与伦比的灵敏度。 梅特勒热分析家族-闪速差示扫描量热仪(Flash DSC)科研神器-超高升温与降温速率升温速率6~3000000/min梅特勒热分析家族-热机械分析仪(TMA)通过热机械分析仪,可对材料进行简便可靠的热膨胀系数测定梅特勒热分析家族-动态热机械分析仪(DMA)动态机械分析仪用于测量材料的机械性能和粘弹性能。
  • 176种食品检测仪器汇总(基本全了)
    pspan style="font-size: 14px "随着国家对食品安全的重视,食品需要检测的项目越来越繁多,而且对仪器的要求也越来越精密。/span/ppspan style="font-size: 14px "食品检测的项目包括:农残、兽药/抗生素、添加剂、重金属及有害物质、毒素微生物、常规理化、接触材料等。。/span/ppspan style="font-size: 14px "检测不同的项目需要不同的仪器。br//span/ppspan style="font-size: 14px "如下为食品检测实验室常用的176种仪器汇总,希望对您有所帮助哦。/span/ppbr//ppspan style="font-size: 14px "1.电子天平:食品检验用试剂、样品和标准品的称量;br/2.酸度计:食品检验过程中pH值的测定;br/3.冷冻离心机:食品检验过程中营养成分或者污染物等的提取分离;br/4.离心机:食品检验过程中营养成分或者污染物等的提取分离;br/5.超净工作台:食品检验过程中提供局部超净工作环境;br/6.生物安全柜:食品检验过程中提供洁净安全的操作环境;br/7.索氏提取器:食品检验过程中营养成分或者污染物的提取;br/8.超临界萃取仪:食品检验过程中营养成分或者污染物的提取;br/9.磁力搅拌器:食品检验过程中目的物质提取或反应过程中的搅拌混匀;br/10.微波消解仪(高压):食品检验过程中样品的消解;br/11.冷冻干燥机:食品检验过程中样品的冷冻干燥;br/12.碎花制冰机:食品检验用冰的制备;br/13.高压灭菌器:食品检验中灭菌试剂的制备;br/14 .冰箱:食品样品和试剂的存放;br/15.冷藏柜:食品样品和试剂的存放;br/16.立式超低温冰箱:食品样品和试剂的超低温保存;br/17.超声波清洗器:食品检验过程中样品的提取、脱气、混匀、细胞粉碎、实验器皿的清洗等;br/18.超声波提取器:提取食品营养成分或者污染物;br/19.超声波细胞破碎仪:食品检验过程中细胞的破碎;br/20.马弗炉:食品检验过程中食品的灰分测定及干法消解;br/21.电热恒温干燥箱:食品检验过程中样品的干燥;br/22.电热恒温培养箱:食品检验过程中微生物的培养;br/23.真空干燥箱:食品检验中对照品及样品干燥;br/24.恒温恒湿箱:为食品检验提供稳定的恒温恒湿环境;br/25.可控温振荡箱:食品检验中微生物的培养;br/26.恒温恒湿培养箱:食品检验中微生物的培养;br/27.霉菌培养箱:食品检验中霉菌的培养;br/28.厌氧培养箱:食品检验中微生物的厌氧培养;br/29.细胞培养箱:食品检验中细胞优化与培养;br/30.三气细胞培养箱:食品检验中微需氧菌的培养;br/31.超纯水系统:食品检验用超纯水的制备;br/32.匀浆器:食品检验过程中样品的粉碎、均质和乳化;br/33.组织匀浆器:食品检验过程中组织匀浆,以提取包括蛋白质、RNA和DNA在内的细胞内容物;br/34.恒温混匀器:食品检验过程中样品的均匀化处理;br/35.均质器:食品检验过程中样品的均一化处理;br/36.漩涡混合器:食品检验过程中试样的漩涡混匀;br/37.固相萃取装置:食品样品中目标物质的自动化提取;br/38.快速溶剂萃取仪:食品样品中目标物质的自动化提取;br/39.真空离心浓缩仪:食品检验过程中目标物质的浓缩;br/40.全自动核酸提取系统:食品检验过程中核酸的提取和纯化;br/41.氮吹仪:食品检验过程中目标物质的浓缩;br/42.除湿器:食品检验环境的湿度控制;br/43.超声粉碎机:食品样品的粉碎处理;br/44.旋转蒸发仪:食品检验过程中有机溶剂去除;br/45.鞋套机:保护无菌室的清洁环境;br/46.自动微生物快速检测分析系统:食品中微生物的快速鉴定分析;br/47.恒温摇床:食品检验过程中微生物的控温振荡培养;br/48.低温摇床:食品检验过程中微生物的低温振荡培养;br/49.恒温水浴:食品检验过程中样品前处理;br/50.恒温振荡水浴:食品检验过程中样品前处理;br/51.智能循环水浴:食品检验过程中样品前处理;br/52.显微镜(带成像系统):食品检验过程中细胞和微生物样本的观察;br/53.全自动微生物平板螺旋加样系统:食品中微生物污染程度的测定;br/54.液氮罐:食品样品、菌株和细胞株的低温保存;br/55.体视显微镜:食品样品的显微观察;br/56.实时荧光定量PCR检测系统:食品样品中致病微生物相关基因的快速、定量分析;br/57.定性PCR仪:食品中致病微生物相关基因的扩增分析;br/58.多点接种仪:食品检验过程中微生物的快速接种;br/59.红外接种环灭菌器:食品微生物检验过程中对接种环的快速灭菌;br/60.扫描电镜:食品中微生物与细胞的显微结构观察与分析;br/61.全自动微生物免疫荧光分析系统:食品中致病微生物的快速筛选;br/62.全自动食品微生物定量分析系统:食品中微生物污染水平的快速定量分析;br/63.全自动病原微生物检测系统:食品中致病微生物的快速检测;br/64.微生物鉴定系统—全细胞脂肪酸分析系统:食品中微生物的快速鉴定;br/65.微生物表型芯片分析系统:食品中微生物的快速分型分析;br/66.飞行时间质谱微生物鉴定系统:食品中微生物的快速鉴定;br/67.全自动微生物指纹图谱分析系统:食品中微生物的快速分型分析;br/68.全自动基因指纹分析仪:食品中微生物的快速分型分析;br/69.基因定量分析系统-焦磷酸测序:食品中微生物的快速鉴定与分型;br/70.全自动样本储存管理系统:食品检验过程中核酸、蛋白、抗体、微生物等样本的保存;br/71.基因芯片分析系统:食品检验过程中多种致病基因的快速分析;br/72.悬浮芯片分析系统:食品中微生物的快速检测分析;br/73.自动化革兰氏染色系统:食品微生物检测过程中快速革兰氏染色分析;br/74.快速致病菌免疫磁珠基因筛选系统:食品中致病微生物的快速检测分析;br/75.全自动致病菌酶标检测系统:食品中致病微生物的快速检测分析;br/76.全自动平板划线系统:食品中微生物的快速划线、分离;br/77.培养基自动制备分装仪:食品微生物检测过程中培养基的快速分装;br/78.商业无菌自动化检测系统:食品检验过程中商业化无菌检测;br/79.凝胶成像仪:食品检验过程中DNA样品的成像分析;br/80.倒置显微镜:食品检验过程中细胞和微生物样本的观察;br/81.抑菌圈测量仪:食品中抗菌成分的测定;br/82.核酸蛋白分析仪:食品中核酸和蛋白质的定量分析;br/83.二维电泳系统:食品中过敏原如蛋白质的差异分析;br/84.通用电泳仪:食品中核酸和蛋白质的分离检测;br/85.水平电泳槽:食品中核酸的分离检测;br/86.垂直电泳槽:食品中蛋白质的分离检测;br/87.核酸高压测序胶系统:食品中核酸序列分析、蛋白质等电点分析;br/88.脉冲场电泳系统:食品中致病微生物遗传物质差异分析;br/89.全自动毛细管电泳系统:食品中蛋白质、游离脂肪酸、食品添加剂、农药残留、生物毒素和抗生素检测;糖类、维生素分析;br/90.真空转印仪:食品检测过程中DNA与蛋白质的凝胶转膜实验;br/91.全凝胶洗脱仪:食品检测过程中DNA与蛋白质的纯化;br/92.微量过滤装置:食品检测过程中DNA与蛋白质的纯化;br/93.电穿孔仪:食品检测过程中基因的转化;br/94.遗传分析系统:食品中转基因成分及致病菌的鉴定;br/95.紫外交联仪:食品检测过程中DNA膜杂交分析;br/96.分子杂交炉:食品检测过程中核酸的杂交分析;br/97.射线计数仪:食品中同位素的定量分析;br/98.水分活度测定仪:食品中水分含量的测定;br/99.温湿度数据跟踪系统:食品采样与检测过程中温度、湿度数据的跟踪监测;br/100.全自动基因测序仪:食品中DNA序列的高通量分析;br/101.紫外可见分光光度计:食品检测过程中紫外可见分光光度法的测定;br/102.紫外透射率分析仪:食品检测过程中光谱透射率的测定;br/103.紫外分析仪:食品检测过程中蛋白质和核酸的紫外定性分析;br/104.多功能酶标仪:食品检测过程中酶联免疫法的分析;br/105.薄层色谱系统:食品检测过程中样品的薄层点样、展开及成像;br/106.激光共聚焦显微镜:食品样本中微生物观察及切片样本观察;组织结构的精确描绘、定位(二维和三维)和上述结构的动态变化;br/107.水分测定仪:食品中水分含量测定;br/108.酒精计: 食品样品中乙醇含量的测定;br/109.纤维测定仪:食品中纤维含量的测定;br/110.示波极谱仪:食品检验中元素的分析;br/111.测汞仪:食品中汞元素的分析;br/112.荧光分光光度计:食品中有害物质,如,3,4-苯并芘测定;br/113.氨基酸分析仪:食品中氨基酸含量的测定;br/114.基质辅助激光解吸电离-飞行时间质谱:食品中农兽药残留、违禁添加的化学药物及其他有机污染物的快速筛查检测;食品中真菌毒素的快速筛查检测;未知物的鉴定分析;br/115.自动电位滴定仪:食品中酸度、维生素C等的含量测定;br/116.阿贝折射仪:食品样品的折射率和相关物质的浓度测定;br/117.数显电导仪:食品样品电导率的测定;br/118.X射线荧光光谱仪:食品中有害元素的测定;br/119.凝胶渗透色谱:食品中农药残留、蛋白质和多糖多肽分子量测定以及样品前处理和净化;br/120.液相色谱:食品中营养成分或污染物等的分离测定;br/121.气相色谱:食品中挥发性营养成分或污染物等的分离测定;br/122.气相顶空进样器:食品中挥发性营养成分或污染物等的分离测定;br/123.拉曼光谱仪:食品中氨基酸、多肽、蛋白质、DNA、RNA和糖类分子的鉴定分析;br/124.全自动定氮仪:食品中蛋白质的定量分析;br/125.原子吸收光谱仪:食品中微量元素的测定;br/126.脂肪酸分析仪:食品中脂肪酸的测定;br/127.电感耦合等离子体质谱:食品中微量元素的测定;br/128.气相色谱-质谱联用仪:食品中挥发性成分或者污染物等的分离测定;br/129.三重串联四极杆气质联用仪:食品中挥发性成分或污染物等的分离测定;br/130.串联四级杆液质联用仪:食品中营养成分或污染物等的分离、测定;br/131.液相色谱-离子肼质谱仪:食品中营养成分或污染物等的分离、测定;br/132.全波段显微化学图像系统:食品中混合物、粒度、组分粒子的结块、多晶体、水合物及其他痕量污染物的分析;br/133.离子色谱:食品样品中阴离子与阳离子的测定;br/134.原子荧光光谱仪:食品样品中可形成氢化物微量元素的测定(重金属元素);br/135.电感耦合等离子体发射光谱仪:食品中微量元素的测定;br/136.锥入度测定仪:食品样品中黏稠度的测定;br/137.穿刺力测定仪:食品包装瓶塞穿刺力值的测定;br/138.热急变试验仪:食品包装玻璃制品冷热急变的合格性实验、递增性、破坏性实验分析;br/139.内压力试验仪:食品包装瓶内压力值的测定;br/140.内应力试验仪:食品包装玻璃瓶内应力值的测定;br/141.垂直轴偏差测试仪:食品包装轴偏差的测定;br/142.瓶底、壁厚测定仪:食品包装瓶底、壁厚度的测定;br/143.弧度测定仪:食品包装瓶弧度的测定;br/144.自动振筛仪:食品包装玻璃瓶中特定元素含量的分析;br/145.水平圆周转动振荡器:食品包装瓶与盖的密封性分析;br/146.落镖冲击试验机:用于厚度小于1mm的食品包装用塑料薄膜或薄片50%破损时的冲击质量和能量分析;br/147.耐破度仪:食品包装材料耐破度分析;br/148.涂层柔性和粘附力测试装置:食品包装材料涂层柔性和粘附力分析;br/149.内涂层连续性测试装置:食品包装材料的内涂层连续性分析;br/150.韧性实验装置:食品包装材料的韧性分析;br/151.氧化膜厚度测定仪:食品包装材料的氧化膜厚度分析;br/152.密度天平:食品包装材料的密度值分析;br/153.线热膨胀系数测定仪:食品包装材料平均线热膨胀系数分析;br/154.轧盖机:食品包装瓶与盖的密封性分析;br/155.折断力仪:食品包装瓶的折断力分析;br/156.扭矩仪:瓶装食品瓶盖锁紧、开启扭矩值大小的分析;br/157.平氏粘度计:液态食品样品的粘度分析;br/158.硬度计:食品包装材料的硬度值分析;br/159.落球冲击试验机:食品包装材料聚乙烯、聚氯乙烯等固体复合硬片耐冲击实验分析;br/160.陶瓷纤维马弗炉:食品包装材料的炽灼残渣分析;br/161.数字式紫外辐射照度计:食品检测无菌环境紫外辐射强度分析;br/162.万能材料试验机:食品包装材料的剥离强度、撕拉强度分析;br/163.湿透仪:食品包装材料的水蒸气透过率分析;br/164.气体透过仪:食品包装材料氧气透过率分析;br/165.热封仪:食品包装材料封口性能分析,与撕拉力测试仪合用;br/166.病理组织检查设备(包括:全自动脱水机、全自动组织包埋机、病理组织切片机、自动封片机、全自动冷冻切片机、输出仪、全自动显微图像分析系统):食品毒理实验中组织病理学检查;br/167.激光扫描共聚焦倒置显微镜:食品毒理实验中细胞结构改变的观察;br/168.全自动生化分析仪:食品毒理实验过程中动物生化指标的检测分析;br/169.实验动物生理检测系统:食品毒理实验过程中动物心电、脑电、体温和血压等生理参数分析;br/170.激光扫描细胞仪:食品毒理实验过程中细胞内物质的定量分析及组织扫描;br/171.流式细胞仪:食品毒理实验过程中细胞快速分类分析;br/172.全自动血细胞分析仪:食品毒理实验过程中动物血相的快速分析;br/173.活体生物成像系统:食品毒理实验过程中活体生物体内成像分析;br/174.小动物活体分子成像系统:食品毒理实验过程中活体生物体内监控基因的表达分析;br/175.活细胞工作站系统:食品毒理实验过程中细胞和组织的全方位观察和记录;br/176.血气分析仪:食品毒理实验过程中动物的血气分析;/span/ppspan style="font-size: 14px "(文章来源:网络)/spanbr//ppimg src="http://img1.17img.cn/17img/images/201710/insimg/69f503f0-97ed-4119-80e6-5407d7e140f7.jpg" title="二维码.webp.jpg" width="558" height="256" style="width: 558px height: 256px "//p
  • 176种食品检测仪器汇总
    p  1.电子天平:食品检验用试剂、样品和标准品的称量 /pp  2.酸度计:食品检验过程中pH值的测定 /pp  3.冷冻离心机:食品检验过程中营养成分或者污染物等的提取分离 /pp  4.离心机:食品检验过程中营养成分或者污染物等的提取分离 /pp  5.超净工作台:食品检验过程中提供局部超净工作环境 /pp  6.生物安全柜:食品检验过程中提供洁净安全的操作环境 /pp  7.索氏提取器:食品检验过程中营养成分或者污染物的提取 /pp  8.超临界萃取仪:食品检验过程中营养成分或者污染物的提取 /pp  9.磁力搅拌器:食品检验过程中目的物质提取或反应过程中的搅拌混匀 /pp  10.微波消解仪(高压):食品检验过程中样品的消解 /pp  11.冷冻干燥机:食品检验过程中样品的冷冻干燥 /pp  12.碎花制冰机:食品检验用冰的制备 /pp  13.高压灭菌器:食品检验中灭菌试剂的制备 /pp  14 .冰箱:食品样品和试剂的存放 /pp  15.冷藏柜:食品样品和试剂的存放 /pp  16.立式超低温冰箱:食品样品和试剂的超低温保存 /pp  17.超声波清洗器:食品检验过程中样品的提取、脱气、混匀、细胞粉碎、实验器皿的清洗等 /pp  18.超声波提取器:提取食品营养成分或者污染物 /pp  19.超声波细胞破碎仪:食品检验过程中细胞的破碎 /pp  20.马弗炉:食品检验过程中食品的灰分测定及干法消解 /pp  21.电热恒温干燥箱:食品检验过程中样品的干燥 /pp  22.电热恒温培养箱:食品检验过程中微生物的培养 /pp  23.真空干燥箱:食品检验中对照品及样品干燥 /pp  24.恒温恒湿箱:为食品检验提供稳定的恒温恒湿环境 /pp  25.可控温振荡箱:食品检验中微生物的培养 /pp  26.恒温恒湿培养箱:食品检验中微生物的培养 /pp  27.霉菌培养箱:食品检验中霉菌的培养 /pp  28.厌氧培养箱:食品检验中微生物的厌氧培养 /pp  29.细胞培养箱:食品检验中细胞优化与培养 /pp  30.三气细胞培养箱:食品检验中微需氧菌的培养 /pp  31.超纯水系统:食品检验用超纯水的制备 /pp  32.匀浆器:食品检验过程中样品的粉碎、均质和乳化 /pp  33.组织匀浆器:食品检验过程中组织匀浆,以提取包括蛋白质、RNA和DNA在内的细胞内容物 /pp  34.恒温混匀器:食品检验过程中样品的均匀化处理 /pp  35.均质器:食品检验过程中样品的均一化处理 /pp  36.漩涡混合器:食品检验过程中试样的漩涡混匀 /pp  37.固相萃取装置:食品样品中目标物质的自动化提取 /pp  38.快速溶剂萃取仪:食品样品中目标物质的自动化提取 /pp  39.真空离心浓缩仪:食品检验过程中目标物质的浓缩 /pp  40.全自动核酸提取系统:食品检验过程中核酸的提取和纯化 /pp  41.氮吹仪:食品检验过程中目标物质的浓缩 /pp  42.除湿器:食品检验环境的湿度控制 /pp  43.超声粉碎机:食品样品的粉碎处理 /pp  44.旋转蒸发仪:食品检验过程中有机溶剂去除 /pp  45.鞋套机:保护无菌室的清洁环境 /pp  46.自动微生物快速检测分析系统:食品中微生物的快速鉴定分析 /pp  47.恒温摇床:食品检验过程中微生物的控温振荡培养 /pp  48.低温摇床:食品检验过程中微生物的低温振荡培养 /pp  49.恒温水浴:食品检验过程中样品前处理 /pp  50.恒温振荡水浴:食品检验过程中样品前处理 /pp  51.智能循环水浴:食品检验过程中样品前处理 /pp  52.显微镜(带成像系统):食品检验过程中细胞和微生物样本的观察 /pp  53.全自动微生物平板螺旋加样系统:食品中微生物污染程度的测定 /pp  54.液氮罐:食品样品、菌株和细胞株的低温保存 /pp  55.体视显微镜:食品样品的显微观察 /pp  56.实时荧光定量PCR检测系统:食品样品中致病微生物相关基因的快速、定量分析 /pp  57.定性PCR仪:食品中致病微生物相关基因的扩增分析 /pp  58.多点接种仪:食品检验过程中微生物的快速接种 /pp  59.红外接种环灭菌器:食品微生物检验过程中对接种环的快速灭菌 /pp  60.扫描电镜:食品中微生物与细胞的显微结构观察与分析 /pp  61.全自动微生物免疫荧光分析系统:食品中致病微生物的快速筛选 /pp  62.全自动食品微生物定量分析系统:食品中微生物污染水平的快速定量分析 /pp  63.全自动病原微生物检测系统:食品中致病微生物的快速检测 /pp  64.微生物鉴定系统—全细胞脂肪酸分析系统:食品中微生物的快速鉴定 /pp  65.微生物表型芯片分析系统:食品中微生物的快速分型分析 /pp  66.飞行时间质谱微生物鉴定系统:食品中微生物的快速鉴定 /pp  67.全自动微生物指纹图谱分析系统:食品中微生物的快速分型分析 /pp  68.全自动基因指纹分析仪:食品中微生物的快速分型分析 /pp  69.基因定量分析系统-焦磷酸测序:食品中微生物的快速鉴定与分型 /pp  70.全自动样本储存管理系统:食品检验过程中核酸、蛋白、抗体、微生物等样本的保存 /pp  71.基因芯片分析系统:食品检验过程中多种致病基因的快速分析 /pp  72.悬浮芯片分析系统:食品中微生物的快速检测分析 /pp  73.自动化革兰氏染色系统:食品微生物检测过程中快速革兰氏染色分析 /pp  74.快速致病菌免疫磁珠基因筛选系统:食品中致病微生物的快速检测分析 /pp  75.全自动致病菌酶标检测系统:食品中致病微生物的快速检测分析 /pp  76.全自动平板划线系统:食品中微生物的快速划线、分离 /pp  77.培养基自动制备分装仪:食品微生物检测过程中培养基的快速分装 /pp  78.商业无菌自动化检测系统:食品检验过程中商业化无菌检测 /pp  79.凝胶成像仪:食品检验过程中DNA样品的成像分析 /pp  80.倒置显微镜:食品检验过程中细胞和微生物样本的观察 /pp  81.抑菌圈测量仪:食品中抗菌成分的测定 /pp  82.核酸蛋白分析仪:食品中核酸和蛋白质的定量分析 /pp  83.二维电泳系统:食品中过敏原如蛋白质的差异分析 /pp  84.通用电泳仪:食品中核酸和蛋白质的分离检测 /pp  85.水平电泳槽:食品中核酸的分离检测 /pp  86.垂直电泳槽:食品中蛋白质的分离检测 /pp  87.核酸高压测序胶系统:食品中核酸序列分析、蛋白质等电点分析 /pp  88.脉冲场电泳系统:食品中致病微生物遗传物质差异分析 /pp  89.全自动毛细管电泳系统:食品中蛋白质、游离脂肪酸、食品添加剂、农药残留、生物毒素和抗生素检测 糖类、维生素分析 /pp  90.真空转印仪:食品检测过程中DNA与蛋白质的凝胶转膜实验 /pp  91.全凝胶洗脱仪:食品检测过程中DNA与蛋白质的纯化 /pp  92.微量过滤装置:食品检测过程中DNA与蛋白质的纯化 /pp  93.电穿孔仪:食品检测过程中基因的转化 /pp  94.遗传分析系统:食品中转基因成分及致病菌的鉴定 /pp  95.紫外交联仪:食品检测过程中DNA膜杂交分析 /pp  96.分子杂交炉:食品检测过程中核酸的杂交分析 /pp  97.射线计数仪:食品中同位素的定量分析 /pp  98.水分活度测定仪:食品中水分含量的测定 /pp  99.温湿度数据跟踪系统:食品采样与检测过程中温度、湿度数据的跟踪监测 /pp  100.全自动基因测序仪:食品中DNA序列的高通量分析 /pp  101.紫外可见分光光度计:食品检测过程中紫外可见分光光度法的测定 /pp  102.紫外透射率分析仪:食品检测过程中光谱透射率的测定 /pp  103.紫外分析仪:食品检测过程中蛋白质和核酸的紫外定性分析 /pp  104.多功能酶标仪:食品检测过程中酶联免疫法的分析 /pp  105.薄层色谱系统:食品检测过程中样品的薄层点样、展开及成像 /pp  106.激光共聚焦显微镜:食品样本中微生物观察及切片样本观察 组织结构的精确描绘、定位(二维和三维)和上述结构的动态变化 /pp  107.水分测定仪:食品中水分含量测定 /pp  108.酒精计: 食品样品中乙醇含量的测定 /pp  109.纤维测定仪:食品中纤维含量的测定 /pp  110.示波极谱仪:食品检验中元素的分析 /pp  111.测汞仪:食品中汞元素的分析 /pp  112.荧光分光光度计:食品中有害物质,如,3,4-苯并芘测定 /pp  113.氨基酸分析仪:食品中氨基酸含量的测定 /pp  114.基质辅助激光解吸电离-飞行时间质谱:食品中农兽药残留、违禁添加的化学药物及其他有机污染物的快速筛查检测 食品中真菌毒素的快速筛查检测 未知物的鉴定分析 /pp  115.自动电位滴定仪:食品中酸度、维生素C等的含量测定 /pp  116.阿贝折射仪:食品样品的折射率和相关物质的浓度测定 /pp  117.数显电导仪:食品样品电导率的测定 /pp  118.X射线荧光光谱仪:食品中有害元素的测定 /pp  119.凝胶渗透色谱:食品中农药残留、蛋白质和多糖多肽分子量测定以及样品前处理和净化 /pp  120.液相色谱:食品中营养成分或污染物等的分离测定 /pp  121.气相色谱:食品中挥发性营养成分或污染物等的分离测定 /pp  122.气相顶空进样器:食品中挥发性营养成分或污染物等的分离测定 /pp  123.拉曼光谱仪:食品中氨基酸、多肽、蛋白质、DNA、RNA和糖类分子的鉴定分析 /pp  124.全自动定氮仪:食品中蛋白质的定量分析 /pp  125.原子吸收光谱仪:食品中微量元素的测定 /pp  126.脂肪酸分析仪:食品中脂肪酸的测定 /pp  127.电感耦合等离子体质谱:食品中微量元素的测定 /pp  128.气相色谱-质谱联用仪:食品中挥发性成分或者污染物等的分离测定 /pp  129.三重串联四极杆气质联用仪:食品中挥发性成分或污染物等的分离测定 /pp  130.串联四级杆液质联用仪:食品中营养成分或污染物等的分离、测定 /pp  131.液相色谱-离子肼质谱仪:食品中营养成分或污染物等的分离、测定 /pp  132.全波段显微化学图像系统:食品中混合物、粒度、组分粒子的结块、多晶体、水合物及其他痕量污染物的分析 /pp  133.离子色谱:食品样品中阴离子与阳离子的测定 /pp  134.原子荧光光谱仪:食品样品中可形成氢化物微量元素的测定(重金属元素) /pp  135.电感耦合等离子体发射光谱仪:食品中微量元素的测定 /pp  136.锥入度测定仪:食品样品中黏稠度的测定 /pp  137.穿刺力测定仪:食品包装瓶塞穿刺力值的测定 /pp  138.热急变试验仪:食品包装玻璃制品冷热急变的合格性实验、递增性、破坏性实验分析 /pp  139.内压力试验仪:食品包装瓶内压力值的测定 /pp  140.内应力试验仪:食品包装玻璃瓶内应力值的测定 /pp  141.垂直轴偏差测试仪:食品包装轴偏差的测定 /pp  142.瓶底、壁厚测定仪:食品包装瓶底、壁厚度的测定 /pp  143.弧度测定仪:食品包装瓶弧度的测定 /pp  144.自动振筛仪:食品包装玻璃瓶中特定元素含量的分析 /pp  145.水平圆周转动振荡器:食品包装瓶与盖的密封性分析 /pp  146.落镖冲击试验机:用于厚度小于1mm的食品包装用塑料薄膜或薄片50%破损时的冲击质量和能量分析 /pp  147.耐破度仪:食品包装材料耐破度分析 /pp  148.涂层柔性和粘附力测试装置:食品包装材料涂层柔性和粘附力分析 /pp  149.内涂层连续性测试装置:食品包装材料的内涂层连续性分析 /pp  150.韧性实验装置:食品包装材料的韧性分析 /pp  151.氧化膜厚度测定仪:食品包装材料的氧化膜厚度分析 /pp  152.密度天平:食品包装材料的密度值分析 /pp  153.线热膨胀系数测定仪:食品包装材料平均线热膨胀系数分析 /pp  154.轧盖机:食品包装瓶与盖的密封性分析 /pp  155.折断力仪:食品包装瓶的折断力分析 /pp  156.扭矩仪:瓶装食品瓶盖锁紧、开启扭矩值大小的分析 /pp  157.平氏粘度计:液态食品样品的粘度分析 /pp  158.硬度计:食品包装材料的硬度值分析 /pp  159.落球冲击试验机:食品包装材料聚乙烯、聚氯乙烯等固体复合硬片耐冲击实验分析 /pp  160.陶瓷纤维马弗炉:食品包装材料的炽灼残渣分析 /pp  161.数字式紫外辐射照度计:食品检测无菌环境紫外辐射强度分析 /pp  162.万能材料试验机:食品包装材料的剥离强度、撕拉强度分析 /pp  163.湿透仪:食品包装材料的水蒸气透过率分析 /pp  164.气体透过仪:食品包装材料氧气透过率分析 /pp  165.热封仪:食品包装材料封口性能分析,与撕拉力测试仪合用 /pp  166.病理组织检查设备(包括:全自动脱水机、全自动组织包埋机、病理组织切片机、自动封片机、全自动冷冻切片机、输出仪、全自动显微图像分析系统):食品毒理实验中组织病理学检查 /pp  167.激光扫描共聚焦倒置显微镜:食品毒理实验中细胞结构改变的观察 /pp  168.全自动生化分析仪:食品毒理实验过程中动物生化指标的检测分析 /pp  169.实验动物生理检测系统:食品毒理实验过程中动物心电、脑电、体温和血压等生理参数分析 /pp  170.激光扫描细胞仪:食品毒理实验过程中细胞内物质的定量分析及组织扫描 /pp  171.流式细胞仪:食品毒理实验过程中细胞快速分类分析 /pp  172.全自动血细胞分析仪:食品毒理实验过程中动物血相的快速分析 /pp  173.活体生物成像系统:食品毒理实验过程中活体生物体内成像分析 /pp  174.小动物活体分子成像系统:食品毒理实验过程中活体生物体内监控基因的表达分析 /pp  175.活细胞工作站系统:食品毒理实验过程中细胞和组织的全方位观察和记录 /pp  176.血气分析仪:食品毒理实验过程中动物的血气分析/ppbr//p
  • 应用案例 | 气体检测高精仪器用以农田环境气体排放监测
    项目内容:农田气体排放实验项目地点:宁波市鄞州区咸祥镇项目背景农业作为单一温室气体排放源,其排放的种类和量度对于全球气候变化的影响不容忽视。其中,氨和氧化亚氮作为农田排放的主要气体,它们对我国环境质量的影响深远。农业贡献了全球人为源氨排放的90%和氧化亚氮排放的60%。如果不合理控制氮肥的施用,将会加剧活性氮排放,引发诸多环境问题。如生物多样性丧失、富营养化和雾霾污染。因此,对农田气体排放进行实验研究,对于理解其排放机制、评估其环境影响以及制定相应的减排措施具有重要意义。为了更准确地进行测量,宁波海尔欣光电科技有限公司推出HT8700大气氨激光开路分析仪和HT8500大气氧化亚氮激光开路分析仪,为监测农田环境气体排放贡献力量。HT8700和HT8500的特点1.开放式光腔,超灵敏,响应快速① 中红外激光技术实现灵敏的大气氨本底浓度测量② 避免闭路仪器管道吸附问题造成的延迟,实现10Hz无损高频浓度输出③ 无需采样泵,无需采样管路及样品预处理,维护简单2.适应于各类现场部署的便携式设计① 强大的环境适应性和抗震性② 选用低热膨胀材料,减少结构形变和系统漂移③ 镜片加热设计,避免冷凝结露而导致信号丢失3.适合无电网区域和移动平台① 低功耗,能以太阳能电池板或蓄电池供电② 重量轻,便于在偏僻台站或小型车辆上部署和维护我们将对农田气体排放进行长期监测,收集大量数据,分析不同农田管理措施对气体排放的影响,助力我国实现碳中和目标,保护生态环境,促进可持续发展,为实现美丽中国和可持续发展目标奠定坚实基础。在科技创新的驱动下,我国环保事业将迈向新的高度。
  • 新闻资讯 | 合力并进 ——德国耐驰与长矿检测签署合作框架协议
    9月20日,德国耐驰与长矿检测在长沙签署合作框架协议。耐驰科学仪器商贸(上海) 有限公司(以下简称:德国耐驰)总经理张明华、长矿检测总经理杨林出席签约仪式。长矿检测党支部书记、副总经理肖露萍主持签约仪式。德国耐驰华东区域大区经理冯娜、华中区域负责人金鑫,长矿检测总分析师陈述及相关负责人参加活动。双方围绕如何进一步深化合作等话题进行深入交流,并达成广泛共识。“感谢德国耐驰长期以来对长矿检测事业发展的大力支持。德国耐驰是全球顶尖的热分析与热物性仪器生产企业,与长矿检测结缘已久、友谊深厚。此次签约,标志着双方的合作迈入了新阶段,期待以联合共建“热分析技术应用研究合作实验室”为契机,发挥各自优势、促进资源共享,实现“强强联合、互利共赢”的合作目标!”——杨林,长矿检测总经理“长矿检测精耕细作、开拓创新的发展精神非常值得学习。希望在此次签约的基础上,进一步深化技术创新、成果转化、人才培养等方面的务实合作,携手开创‘1+1>2’的高质量发展新局面。德国耐驰将继续发挥自身产品和技术优势,携手长矿检测为广大客户提供更好的服务和技术支持,共同开拓广阔的发展空间,成为值得信赖与依靠的合作伙伴!”——张明华,耐驰科学仪器商贸(上海)有限公司总经理在出席人员的共同见证下,杨林、张明华分别代表双方签署了合作框架协议,并为“热分析技术应用研究合作实验室”揭牌。该实验室拥有同步热分析仪(TG-DSC)双配置、耐负温差示扫描量热仪(DSC)、热膨胀仪(DIL)、闪射法导热系数仪(FLA)等热分析仪器设备,具有测定材料同步测量热重与差热信息、线膨胀与收缩、玻璃化转变、相转变、无损的导热系数及蓄热系数测量等方面的能力 ,可为塑料、陶瓷、玻璃、橡胶、塑胶聚合物、涂料、药品、催化剂、无机材料、金属材料、复合材料、液体材料、储氢材料及医药、环境、食品、建筑、航天等材料及领域的研究开发、工艺优化与质量监控提供综合技术服务,将打造为一个热分析检测和数据分析的综合服务平台。此次签约仪式的成功举行,为双方进一步开展多层次、多元化、多领域的合作,实现双方资源的有机结合和优化配置提供新的契机。今后双方携手并进,努力形成发展合力,期待取得更多丰硕成果。仪式之后,双方就行业发展趋势、融合发展模式等进行了深入探讨,并实地参观了长矿检测部分实验室。
  • 直播预告!第四届材料表征与分析检测技术网络会议之热性能分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/ 热性能主题专场会议日程:报告时间报告题目报告人专场四:热性能(12月15日下午)14:00--14:30高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周14:30--14:50锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖14:50--15:10高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚直播抽奖:Waters-TA定制三合一数据充电线10个15:10--15:40电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得15:40--16:10反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪16:10--16:50有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮直播抽奖:《2021年度科学仪器行业发展报告》5本嘉宾介绍:中国科学院物理研究所研究员 赵怀周中科院物理所研究员,课题组长。长期从事热电材料、热电输运新机制、热电器件与应用系统研究。在新型高性能近室温热电材料、热电器件和热电应用系统研究方面积累了丰富的经验,取得重要创新成果,在基于镁基新材料的下一代热电制冷模块研究方面形成了国际特色。先后在Joule、Nat. Comm、Sci. Adv 、JACS、ACS Nano、Nano Energy、和Adv. Funct. Mater等著名刊物发表第一或者通讯论文70余篇,申请及授权国际国内专利10余项,文章引用次数2000余次。主持及参与国家自然科学联合重点及面上基金、国家重点研发计划等重要课题10余项。在国内外大型学术会议担任分会场主持人和特邀报告人二十余次,担任第12届中国热电材料大会会议主席。第三届中国发明协会发明创业成果奖二等奖(排序第一位)。【摘要】 报告聚焦热电材料和技术在全固态制冷方面的原理、优势和广泛应用,介绍了物理所热电研究团队近年来在热电新材料、新器件与新型应用系统方面的创新性工作。主要包括: (1)制备出全尺度可服役的基于Mg3(Sb,Bi)2新材料的热电制冷器件,基于新材料在性能投入比方面的显著优势,其有望颠覆一直以来行业上基于碲化铋的传统热电半导体制冷材料体系。(2)助力解决热电领域卡脖子材料与设备问题,在碲化铋缩颈热挤压制造相关设备和工艺方面获得进展,对实现我国热电制冷微器件的国产化有帮助作用。申请及授权发明专利和实用新型专利多项。该技术近期已在广西见炬科技有限公司、河北东方电子有限公司等热电企业获得推广。 (3) 提出地热-热电协同空调系统的思路并制造出原理样机。该系统可以替代现有商业空调的功能,同时具备分立式管理、无震动噪音和零碳排放的优势,有望实现规模应用。沃特世科技-TA仪器部门高级热分析应用专家 林超颖浙江大学高分子材料硕士,现任美国TA仪器高级热分析应用专家。长期从事各类材料的热分析、力学性能表征及失效分析等工作。【摘要】 锂离子电池在使用过程中,一旦正极材料、负极材料、电解液等的分解,或隔膜熔断、破裂导致正负极材料直接接触,或由于热管理设计缺陷导致锂离子电池出现安全性能的问题,会严重危害生命和财产安全。TA仪器从锂离子电池的热性能和力学性能出发,全方位剖析锂离子电池的安全性能。沃特世科技-TA仪器部门服务工程师 陈刚2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有一定了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。【摘要】 磁悬浮天平的发明是重量法应用领域里具有革命意义的里程碑。大大拓宽了重量法的应用范围,并附带了独特的性能优势。磁悬浮天平也为储氢材料研究带来了积极的帮助。中国科学院宁波材料技术与工程研究所研究员 林正得林正得,博士,研究员,博士生导师。入选2014年中国科学院"百人计划"、2013年浙江省"千人计划"等人才项目。2008年博士毕业于台湾清华大学材料科系。2012–2014年于美国麻省理工学院(MIT)电子学实验室和机械系担任博士后,2014年6月加入中国科学院宁波材料所。自加入材料所以来,已发表了ACS Nano、Advanced Science、Biosensors & Bioelectronics等SCI论文149篇,全部文章的引用数高于10,000次。现担任Biosensors & Bioelectronics期刊副主编。团队目前围绕着石墨烯应用开展研究课题,包含:导热应用、热界面材料、以及生医传感器件。【摘要】 近年来,基于氮化镓等第三代半导体的高频率、大功率芯片得到了国家和产业的重点关注与广泛应用;为了提升内核效能,新一代芯片架构正朝向微缩化和3D互联方向发展,致使芯片的功率密度大幅提高,发热量随之迅猛增加。芯片的“热失效”成为了制约5G、航空航天等精密装备内功率器件发展的主要瓶颈之一。要解决目前电子封装的散热难题,需要对既有热管理材料进行升级迭代,并有效连接与统合这些部件,形成从芯片至散热器的最优传热路径。本团队针对电子封装中“芯片–衬底–均热板–热沉”热输运串联系统的关键零部件进行了攻关开发,克服了复合材料中二维材料填料的“定制调控排列取向”与“强化异质传热界面”两个共性难题,研发出“超低热阻碳基热界面材料”、“轻质高导热碳/铝散热器”、“柔性绝缘氮化硼导热膜”等系列新型热管理材料,从而提出面向新一代芯片架构的综合解决方案,实现拥有自主知识产权的创新技术与产品。北京航天航空大学教授 王聪北京航空航天大学集成电路科学与工程学院教授,博士生导师。在Adv. Mater.,Phys. Rev. 系列, Chem. Mater. Appl. Phys. Lett.,等刊物上发表论文超过240篇, SCI收录200篇以上,SCI他引超过3500次,H=33,2020-2021两年连续被国际机构爱思唯尔(Elsevier)评为“中国被高引学者”;授权国家发明专利14项。2012年获得教育部自然科学二等奖。中国物理学会理事,中国晶体学会理事。长期从事固体反常热膨胀行为、自旋电子学反铁磁材料及器件、光学薄膜领域的研究工作。【摘要】 反钙钛矿化合物Mn3XN系列材料由于“晶格-自旋-电荷”的强关联性,发现诸多具有应用价值的物理特性,如零/负膨胀、压磁、磁热、近零电阻温度系数、反常霍尔效应等。在NMn6八面体中, Mn-Mn直接交换作用和Mn-X-Mn间接磁交换作用共存,形成复杂的磁结构, 且其磁结构对成分、温度、压力、磁场等的变化非常敏感,因此在多场耦合下产生丰富的物理特性。我们利用变温X射线衍射,中子衍射技术,结合热膨胀仪、差热分析(DSC)、磁、电测量等解析了这类化合物随温度、压力变化的晶体结构和磁结构,热膨胀系数及其关联的磁、电输运行为等。本报告将重点探讨Mn3XN(X: Ga, Ni, Ag, Zn)系列化合物在温度和压力场下的磁结构演变规律,以及由其诱导的物性变化,如负(零)热膨胀、反常电输运、压磁、压热效应等。中国科学院深圳先进技术研究院研究员 曾小亮中国科学院深圳先进技术研究院研究员,工学博士,中国科学院青促会会员、深圳市“孔雀计划”海外高层次人才(C类),入选2022年“全球前2%顶尖科学家榜单”,Google学术总引用次数7276,h指数47,荣获国际知名学术期刊Composites Part A,2020年“Top 5优秀审稿人”、国际学术期刊《Nanomaterials》(JCR 一区,影响因子:5.076)和《Frontiers in Materials》(JCR 二区,影响因子:3.515)的客座主编。以第一作者或通讯作者在Advanced Functional Materials, ACS Nano, Chemistry of Materials, Small等国际期刊上发表SCI论文50多篇,申请专利30多项,合著书籍《聚合物基导热复合材料》。2010年以来,主持或参与国家自然科学基金项目、科技部重点研发专项、科技部重大科技计划“02专项”,广东省创新科研团队项目等项目。【摘要】 在现代电子元器件中,有相当一部分功率转化为热的形式,耗散生热严重威胁电子设备的运行可靠性。更令人担忧的是,随着后摩尔时代的到来,电子元器件的封装技术由传统的二维封装向2.5维或更高级的三维封装方向发展。三维封装技术虽然提高了电子元器件运行速度、实现了电子设备的小型化和多功能化,但是也导致器件所产生的热量进一步的集中,采用常规的热传导技术已经无法实现热量有效传导。“热管理”的问题已经成为阻碍现代电子元器件发展的首要问题之一。有机硅是制备热界面材料最为常用的基础树脂,本报告将围绕如下三个方面阐述有机硅在热界面材料应用研究现状: 1. 芯片热量来源及趋势 2. 有机硅热界面材料研究现状 3. 热界面材料用有机硅未来发展趋势会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 关于超低排放CEMS监测的存在的问题和解决的方案
    1、 低浓度排放SO2监测的难度 1.1 烟气预处理系统对SO2的吸收 传统直抽法系统中,包含冷凝器、蠕动泵、加热管线等。其中冷凝器部分对于SO2的吸收占到10%-20%以上。即按照15mg/m3浓度的SO2,经过冷凝器,SO2的损失在3-6mg。目前一些地方环保厅已经要求,在超低排放项目中预处理系统对于SO2的吸收需要低于8%。所以这将可能成为以后众多环保验收的要求。 解决办法: 1、采用naflon管除水,优点,能够很好的避免对SO2的吸收。缺点,价格贵,是耗材,需要定期更换。 2、采用稀释法。优点,无需冷凝器,无需除水,解决了对SO2的吸收,同时系统简单,维护量少,可长期使用无需更换。缺点,初期投资成本较高。 1.2 传统非分散红外分析仪量程的影响 传统的非分散红外分析仪最小量程为0-100PPm,接近300mg/m3.而精度为满量程的2%。所以系统误差在6mg/m3左右。如果对于未来15mg/m3 左右的SO2排放。影响超过40%。1、 低浓度排放SO2监测的难度 1.1 烟气预处理系统对SO2的吸收 传统直抽法系统中,包含冷凝器、蠕动泵、加热管线等。其中冷凝器部分对于SO2的吸收占到10%-20%以上。即按照15mg/m3浓度的SO2,经过冷凝器,SO2的损失在3-6mg。目前一些地方环保厅已经要求,在超低排放项目中预处理系统对于SO2的吸收需要低于8%。所以这将可能成为以后众多环保验收的要求。 解决办法: 1、采用naflon管除水,优点,能够很好的避免对SO2的吸收。缺点,价格贵,是耗材,需要定期更换。 2、采用稀释法。优点,无需冷凝器,无需除水,解决了对SO2的吸收,同时系统简单,维护量少,可长期使用无需更换。缺点,初期投资成本较高。 1.2 传统非分散红外分析仪量程的影响 传统的非分散红外分析仪最小量程为0-100PPm,接近300mg/m3.而精度为满量程的2%。所以系统误差在6mg/m3左右。如果对于未来15mg/m3 左右的SO2排放。影响超过40%。1、 低浓度排放SO2监测的难度1、低浓度排放SO2监测的难度1.1烟气预处理系统对SO2的吸收传统直抽法系统中,包含冷凝器、蠕动泵、加热管线等。其中冷凝器部分对于SO2的吸收占到10%-20%以上。即按照15mg/m3浓度的SO2,经过冷凝器,SO2的损失在3-6mg。目前一些地方环保厅已经要求,在超低排放项目中预处理系统对于SO2的吸收需要低于8%。所以这将可能成为以后众多环保验收的要求。解决办法:1、采用naflon管除水,优点,能够很好的避免对SO2的吸收。缺点,价格贵,是耗材,需要定期更。2、采用稀释法。优点,无需冷凝器,无需除水,解决了对SO2的吸收,同时系统简单,维护量少,可长期使用无需更换。缺点,初期投资成本较高。1.2传统非分散红外分析仪量程的影响传统的非分散红外分析仪最小量程为0-100PPm,接近00mg/m3.而精度为满量程的2%。所以系统误差在6mg/m3左右。如果对于未来15mg/m3 左右的SO2排放。影响超过40%。解决办法:1、采用单组份仪表,紫外荧光测量。优点,量程满足超低排放要求,最低量程0-0.1mg/m3,最大量程0-200 mg/m3。其中量程自动可选。最低检测限:0.001mg/m3。系统精度为读值的1%。即1mg的SO2的误差应该在0.01mg/m3。缺点,单组份仪表整套CEMS价格高于多组分仪表。2、另外对于NOx测量不能再仅仅依靠NO测量后通过公示来换算。而是可以通过NO2转化炉,将NO2转化为NO进行测量。目前山西省环保厅已经要求,SO2需采用紫外法测量,NOx采用化学发光或者紫外法测量。这也将成为众多超低排放监测项目的一种趋势。目前包括浙能,国华集团等都要求采用这种方法测量。1.3超低排放CEMS的全工况测量。当设备整体进入了超低排放。系统需要配置小量程分析仪表。这时以SO2采用紫外荧光分析仪的量程为例,最小量程为0-0.1mg/m3。最大量程为0-200mg/m3.。当系统正常投运时SO2排放15-35mg,在分析仪量程范围内。但是当机组启停初期和机组脱硫脱硝不能正常投运的情况下,SO2排放量要超过200 mg/m3,甚至到1000 mg/m3。这时小量程分析仪表不能满足测量要求。解决办法:1、采用稀释法系统。优点,稀释法CEMS系统将烟气稀释100倍。当烟气中SO2在10 mg/m3时,被稀释后的浓度为0.1 mg/m3,满足紫外表0.001 mg/m3的最低检测线和0-0.1 mg/m3的最小量程。而当烟气中SO2在1000 mg/m3时,被稀释后的浓度在10 mg/m3,也满足系统最大0-200 mg/m3的量程要求。所以采用稀释采样发技术可以达到系统的全工况测量。缺点,需要更换原有的直抽法全部系统。1.4探头的堵塞问题对于氨法脱硫及脱硝项目中,采样探头容易发生堵塞,磨损等问题。解决办法:采用稀释采样法技术。首先传统的直抽法系统烟气采集量为5L/min。而稀释法系统的烟气采集量为50ml/min。所以从烟气采集量上就大大降低了粉尘的堵塞问题。同时探头采样探头整体加热,系统设置定时反吹,保证探头不会发生堵塞的问题。1.4低浓度粉尘仪测量低浓度粉尘测量目前市面常规采用加热抽取前散射测量原理。优点,系统简单,重复性好,反应速度快。缺点,不能真实的反应质量浓度,受到颗粒物特性影响较大,比如颗粒物密度,外形等。同时不能区分是颗粒物还是水滴。同时当进行稍高粉尘测量时容易发生堵塞和激光光源污浊。解决办法:1、采用稀释加热抽取,将烟气稀释10-20倍,进入光散射器的颗粒物浓度降低,减少了对光源和接收器的污染。保证了测量的准确性也减少了系统的维护工作量。2、采用震荡天平或β射线进行校准,因为这两种方法更加接近于手工测量方法。所以能够很好的弥补激光前散射测量的不足。从而更好的通过每个季度环保部门的环保比对验收。1.5 脱硝氨逃逸测量脱硝出口氨逃逸测量安装在除尘器前,粉尘含量高。用激光法测量会遇到激光穿透不过去,热膨胀导致激光打偏,无法校准等问题。解决办法:采用抽取发氨逃逸测量,避免了粉尘和热膨胀的影响。同时也可以通过通入NO进行系统校准等。
  • “薄膜材料热特性测试技术及仪器”通过2018年度教育部科研优秀成果奖候选审查公示
    p  2018年8月31日,教育部公布了《关于2018年度高等学校科学研究优秀成果奖(科学技术)通用项目/候选人形式审查结果的公示》。推荐工作截止后,累计收到高校、专家推荐或提名的项目与候选人共计1266项,经审查合格的有1069项,《薄膜材料热特性测试技术及仪器》位列技术发明奖候选名单。/pp style="text-align: center "strong薄膜材料热特性测试技术及仪器/strong/pp  主要完成单位:span style="color: rgb(255, 0, 0) "strong华中科技大学,武汉嘉仪通科技有限公司/strong/span/pp  新材料是国家重点部署的五大颠覆性技术领域,颠覆性的新材料迫切需要颠覆性的测试技术,我国2万亿新材料产业的蓬勃发展催生了巨大的材料检测仪器需求。材料表征测试是决定产品质量的关键因素,是新材料研发不可或缺的重要手段,也是构建材料数据库和材料计算模型的基础,但是目前的材料测试技术尤其是热性能测试手段极其匮乏。此外,材料的薄膜化和小尺寸化是当前新材料产业的发展趋势,随着薄膜厚度逐渐减小到纳米尺度,传统的基于热量检测的热特性测试仪器由于热量检测灵敏度受限,对纳米尺度薄膜的热特性测试束手无策,且通常为破坏性的,并忽略薄膜材料本身显著的尺寸效应,因而带来极大的测试误差甚至完全不能反映薄膜材料的热性能。/pp  围绕上述技术难点,在国家863等项目支持下,经过7年攻关,本项目突破了传统热分析仪器对薄膜材料热特性检测的限制,(1)提出了一种基于材料反射率变化原理的薄膜材料相变温度的新测试方法,发明了薄膜材料相变温度测试的新技术,实现了厚度低至5 nm薄膜材料相变温度原位、高灵敏度检测,填补了薄膜材料相变温度测试仪器的国内外空白 (2)提出了一种基于单一光源分束干涉的薄膜材料热膨胀系数测试方法,将可测量厚度下限提升了625倍,通过设计光路引入切换挡板,研发出基于光干涉原理的薄膜材料热膨胀系数测试设备,实现了透光材料和非透光材料的光干涉检测 (3)发明了薄膜材料热导率和热电参数动态测试方法,有效降低了黑体辐射及常规单点或稳态测量引起的误差,并设计横向双电极结构实现了基于频域动态法的薄膜面内热导率测量,开发出薄膜热电参数测试系统,实现了薄膜材料塞贝克系数的测试。项目共获授权发明专利13项(其中美国专利1项)、实用新型专利8项、计算机软件著作权4项。项目技术已实现产业化,开发出的薄膜材料相变温度、热膨胀系数、热导率及赛贝克系数等一系列热性能测试仪器已销售百余台,并出口至美国加州大学伯克利分校、英国南安普敦大学等海外市场,成功实现了国产自主材料测试仪器在国际市场上的突破。仪器在武汉新芯、武汉天马、福耀集团、清华大学和中国计量院等三十多家单位实现了示范应用,应用单位武汉新芯使用薄膜热导率测试仪和热膨胀系数测试仪突破了硅片翘曲的瓶颈问题,显著提高了存储器产品良率。/pp  本项目近三年累计新增利润约1.1965亿元,新增税收1218.3万元。本项目开发的仪器已为包括3项国家“973”计划项目和30项国家自然科学基金在内的国家级项目提供了关键的测试数据,已有36篇SCI论文使用本项目仪器并标注了仪器型号。仪器荣获“湖北省十大科技事件”、“武汉地区最具影响力十大科技事件”等奖励,并被美国陶瓷学会主页报道,测试方法及结果被国际权威杂志Annu. Rev. Mater. Res.综述文章及权威学者Matthias Wuttig等多次引用。鉴定委员会认为该成果“创新突出,整体处于国际先进水平,在纳米级薄膜的相变温度测试以及薄膜面内热导率测试等方面达到国际领先水平”。/p
  • 民间私藏文物真不真 高科技仪器瞄一眼
    私藏文物是真是假?拿给高科技仪器检测一下便知真伪。6月19日,耗资数亿打造的成都华通博物馆新馆在成都高新区开馆。据文物专家透露,拥有环境扫描电镜、激光拉曼光谱仪、射线衍射仪、射线荧光能谱仪、射线荧光光谱仪、热膨胀同步热分析仪及热释光断代仪等国际一流文物检测仪器的成都华通博物馆是四川首家非国博建立的文化科研机构,“这些高科技仪器的亮相,将彻底改变四川民间文物只凭专家肉眼鉴别的尴尬局面。”  四川省文化厅厅长郑晓幸出席开馆仪式。  高科技鉴宝手段向社会开放  作为四川首家非国博建立的文化科研机构,华通博物馆拥有近千平方米的文物检测研究中心。中心仅仪器分析就有六名专职研究人员,仪器设备则借鉴北京故宫博物馆古陶瓷研究所的设备配置,购置有包括环境扫描电镜、激光拉曼光谱仪、射线衍射仪、射线荧光能谱仪、射线荧光光谱仪、热膨胀同步热分析仪及热释光断代仪等在内的各种高科技设备。中心还与故宫博物院古陶瓷检测研究中心结成了友好关系并共享数据库资料,故宫博物院古陶瓷专家将在这里长期进行文物研究工作。  博物馆方面表示,文物检测研究中心将面向社会接受市民的鉴宝需求,这对很多很多收藏爱好者无疑是个好消息。“虽然民间收藏越来越火,但很多人其实并不具备文物识别能力。专家鉴宝队伍则鱼龙混杂,藏家上当受骗的事情屡见报端。但在高科技设备的火眼金睛下,赝品文物将无处遁形。”一位文物专家表示,高科技仪器的应用,将彻底改变四川民间文物只凭专家肉眼鉴别的尴尬局面,从而让四川民间收藏变得更加清澈透明。  资料显示,截至去年底在四川省文物局备案的民办博物馆已达二十九家,占全省博物馆超过两成。其中,成都市区域内的民办博物馆数量已超过国有博物馆总和。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制