当前位置: 仪器信息网 > 行业主题 > >

热瞬态测试仪

仪器信息网热瞬态测试仪专题为您提供2024年最新热瞬态测试仪价格报价、厂家品牌的相关信息, 包括热瞬态测试仪参数、型号等,不管是国产,还是进口品牌的热瞬态测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热瞬态测试仪相关的耗材配件、试剂标物,还有热瞬态测试仪相关的最新资讯、资料,以及热瞬态测试仪相关的解决方案。

热瞬态测试仪相关的仪器

  • 本系统主要是针对光电器件的动力学分析,利用周期性的脉冲单色光源,产生光电流或者光电压的信号。 并对此信号进行时域或者频域的分析,得到光生电的响应时间,如上升 / 下降时间,瞬态光电流与 瞬态光电压曲线 , 从而可以分析器件内部的动力学过程,如载流子的迁移率、载流子的寿命、 载流子的扩散长度等。产品特点:■ 支持多路激光器■ 系统采用显微光路,多种物镜可以切换■ 样品台三维可移动,方便光斑与样品重合■ 支持探针台结构■ 支持高稳定性高亮度可程控LED光源支持高速频闪,响应时间低于100ns, 频闪响应时间低至10μszolix瞬态光电性能测试系统DSR800适用范围:■ 钙钛矿太阳能电池,有机太阳能电池,有机无机杂化太阳能电池,薄膜太阳能电池,燃料敏化太阳能电池■ 金属半导体异质结器件■ 光电传感器件测量模式:■ 稳态IV测试(Steady State Current-Voltage Characterization)■ 瞬态光电压/光电流测试(Transient Photovoltage/Transient Photocurrent)■ 开路光电压衰减/电荷抽取(Open-Circuit Voltage Decay/Time-Resolved Charge Extraction)■ 电压调制瞬态光电压/光电流(Electrical Modulated Transient Photovoltage/Transient Photocurrent)■ 自定义测量模式(Customized Measurement)配置参数:更多配置说明咨询销售激光光源a纳秒激光器:可选波长:375nm-1310nm范围内多种波长可选,具体咨询销售半导体激光器:可选波长:266nm-2200nm范围内多种波长可选,具体咨询销售高稳定性高亮度可程控LED光源支持高速频闪,响应时间低于100ns, 频闪响应时间低至10μs 显微镜模块4个显微镜安装孔,支持多个显微物镜切换内置LED照明模块 多个显微物镜:10x ,20X ,50X等 数据采集模块时间分辨率:4ns/2ns/1.14ns/800ps/400ps可选通道:2/4通道可选 采样率:2.5 GS/s 记录长度:10M 输入阻抗:1MΩ,50Ω 样品台探针台适正面电极或者异面电极的样品3M夹子样品台适用于:间距为2.54mm的背电极样品 支持定制样品台,适用多种器件结构IPCE测试(扩展功能)波长范围300-1100nm,可以扩展到1700nm功能:光谱响应度,量子效率,单色光IV特性a,根据不同寿命测试需要选择不同类型的,如测试上升或者下降沿需求为μs量级,选择纳秒激光器。zolix瞬态光电性能测试系统DSR800 应用测量结果■ 光电器件表征上图为使用ps 激光器测试的不同类型的探测器的瞬态光电流曲线,点线是实测曲线,实线为拟合曲线。样品1 硅基探测器,样品感光面积10mm×10mm,下降时间2.99μs ;样品2 氮化镓,样品感光面积1mm2,下降时间82ns ;样品3,氮化镓器件,样品感光面积0.04mm2,下降时间6ns。■ 光伏器件表征大功率LED 光源作为白光偏光光源,也可以选择不同波长LED 光源。对于瞬态测试,532nm 纳秒脉冲激光作为脉冲光源。硅基太阳能电池在无偏置光情况下瞬态光电压信号随脉冲光强的变化硅基太阳能电池瞬态光电压信号随偏置光强的变化硅基太阳能电池瞬态光电流信号随偏置光强的变化硅基太阳能电池器件微分电容和偏置光电压的关系曲线硅基太阳能电池器件电荷量和偏置光电压的关系曲线
    留言咨询
  • OmniFluo990稳态瞬态光谱仪 OmniFluo900系列荧光光谱仪拥有稳态荧光和瞬态荧光光谱仪两大系列产品。本系统以高性能Omni-λ 系列单色/光谱仪、高亮度复色光源及多波长单色光源、高灵敏度单光子探测器和大容量样品室为主要核心部件,配合精心优化的激发与发射光路设计,显著地提高了荧光信号探测的灵敏度,纯水拉曼信噪比可达10,000:1 以上。OmniFluo900系列以模块化设计为原则,以我公司 15 年丰富的光谱系统设计、制造及品控经验为基础,搭配时间分辨率达到皮秒量级多通道扫描单光子计数器,可方便地实现荧光(PL)光谱、激光诱导荧光(LIF)光谱、电致发光(EL)光谱及荧光量子产率(QY)等多种稳态、瞬态测试功能。本系列荧光光谱仪,还可搭配牛津仪器(Oxford Instruments)公司的温控单元及滨松(Hamamatsu)公司的各类高灵敏度探测器,便捷地在不同波段范围内获取荧光信号的温度扫描光谱,从而有效地从根本上消除传统荧光分光光度计波长测量范围有限及光谱测试种类不足等各类缺陷。在红外波段测试的稳态和瞬态数据,以及时间分辨的光谱OmniFluo990稳态瞬态光谱仪参数指标型号OmniFluo990主要功能稳态、瞬态寿命测试水拉曼信噪比?≥10000:1寿命时间范围≥500ps-ns- -10s稳态测试激发光源Gloria75X-75W光谱仪发射光谱仪 Omni-λ3027i焦距(mm)320杂散光1*10-5光谱分辨率(nm)?0.08波长准确度(nm)?±0.2波长重复性(nm)?±0.1光栅配置1200g/mm BLZ@500nm600g/mm BLZ@750nm300g/mm BLZ@1250nm通用样品室SAC-FLS样品架③标配比色皿样品架、粉末、固体样品架遮光板配有自动遮光板,防止更换样品时探测器曝光探测器带制冷的红敏光电倍增管 CR131光谱范围④185-900nm暗计数≤100CPS(制冷至 -10℃)数据采集器DCS900PC主要性能指标计数率:100Mcps分辨率:16ps/128ps-1.024ns/2.048ns--33.55us;通道数:65535时间扫描:1.05us@64ps 2.2s@33.55输入信号:±触发沿,高阻/50Ω 阈值±2V可调控制软件新版ZolixScan控制、数据采集、分析软件稳态测试功能:激发扫描,发射扫描,同步扫描,三维扫描可选功能:偏置测试,温度控制扫描瞬态测试功能:动力学扫描,寿命扫描,时间分辨光谱扫描数据处理功能:量子产率计算,TRES Slicing,光谱校正标配计算机Intel i3 双核CPU、4G内存、显示器1920*1080分辨率标配操作系统Windows 10 Home Edition注? 水拉曼测试条件:激发波长350nm,扫描范围370-450nm,狭缝带宽5nm,积分时间1s注? 测试条件:1200g/mm 500nm闪耀光栅,435.84nm,狭缝高4mm,宽10注③ 可选旋转、磁搅拌、水浴样品架注④ 可选R928(200-900nm),R13456(185-980nm),H10330C-75(950-1700nm), R5509-73(300-1700nm)
    留言咨询
  • 产品简介: FLS1000是一款测量光致发光的模块化光谱仪,专注于稳态及时间分辨光谱测试。系统具有超高的灵敏度,可以根据需要从紫外可见到中红外光谱范围进行灵活配置,寿命测试的时间范围覆盖从皮秒到秒的12个数量级。 产品特点:模块化搭建,配置灵活,升级功能强大高灵敏度35,000:1 (均方根方法)深紫外到中红外覆盖的光谱范围 (185nm-5,500nm)无与伦比的单色器性能,配备即插即用的三光栅塔轮,且标配自动滤光片轮,单色器焦长可达325mm,带来优异的杂散光抑制率多种可选光源及检测器,可选单光栅及双光栅单色器全新Fluoracle® 软件实现稳态瞬态数据获取以及标准分析模式和高级寿命分析选项 应用领域:材料科学生命科学环境科学法医科学与安全地质学
    留言咨询
  • 产品概要:瞬态热阻测试仪是一种用于材料科学领域的仪器。基本信息:技术优势:1、温控设备参数:冷媒:硅油;温度范围:-20°C ~ 150°C;温度误差:≤0.1°C;显示分辨率:0.01°C;支持所有工位同时测量2、标定控制:自动温度稳定判断;自动样品电压稳定判断;支持用户设定稳定容判据;支持迟滞消除;支持用户设定标定点数;支持所有测量通道同时标定3、历史数据保存:保存标定过程数据&bull 设定温度VS时间&bull 实际温度VS时间&bull 样品电压VS时间;通过历史数据记录可4、输出结果: K系数标定数据(电压VS温度);包括NTC/PTC的拟合结果;支持多种数据拟合方式;各个K系数拟合度R2值;支持多个K系数曲线对比5、支持全测量通道同步温度系数标定:可对样品芯片电压温度特性进行标定;可对样品模块中的NTC/PTC进行标定;完整记录测试过程中所有采集参数应用方向:主要应用于半导体器件、LED光电器件等热学分析、测试,具体包括:测试该器件的热阻、结温、同一封装器件不同封装材料的热阻(积分、微分曲线结构函数等)。
    留言咨询
  • 光电流、开路电压的瞬态特性、载流子迁移率、载流子寿命、载流子动力学过程等是表征新型太阳电池器件的重要参数。由于新型太阳电池器件存在面积小、光电流小等特性,非常难以准确测量出光电流随时间的变化,我们可以利用光焱科技TPC/TPV钙钛矿太阳能电池瞬态光电流光电压测试仪,对有机太阳能电池OPV、钙钛矿太阳能电池PSC、量子点太阳能电池、染料敏化太阳能电池DSSC、无机太阳能电池等光电器件进行微观机理测试,进而全面分析光电器件中的载流子特性和瞬态过程。光焱科技-钙钛矿太阳能电池瞬态光电流光电压测试仪(TPC/TPV)钙钛矿太阳能电池瞬态光电流光电压测试仪原理钙钛矿太阳能电池瞬态光电流光电压测试仪是研究半导体光生载流子动力学过程和反应历程的强有力手段之一,它可以获得半导体体内光生载流子产生、俘获、复合、分离过程的重要微观信息。钙钛矿太阳能电池瞬态光电流光电压测试仪实现了对电荷抽取和电荷传输能力的表征,研究光生电子的传输行为,其光电压响应包括上升和衰退两部分,光电压上升部分在物理上对应于导电基底电子浓度增加,此过程由光生电子扩散到达基底引起,光电压下降部分主要对应于电子离开导电基底的复合过程,是光生载流子动力学及光生电子的传输行为的研究利器。钙钛矿太阳能电池瞬态光电流光电压测试仪范围有机太阳能电池OPV无机半导体光电器件有机半导体光电器件染料敏化太阳能电池DSSC钙钛矿太阳能电池Perovskite Solar Cell,钙钛矿LED无机太阳能电池(例如:单晶硅、多晶硅、非晶硅等硅基太阳能电池)钙钛矿太阳能电池瞬态光电流光电压测试仪测试数据TPVTPC
    留言咨询
  • 瞬态光电流/光电压测试系统用于太阳能电池瞬态光电性能测量(载流子迁移率测量,瞬态光电流测量、光电压测量、瞬态光电性能测量、强度调制光电压谱IMVS、强度调制光电流谱IMPS),对于光电器件微观机理研究提供了有力的测试工具;多功能一体化高性能瞬态测试平台,不但可以测量器件的载流子迁移率、载流子寿命、载流子动力学过程、阻抗谱等,还可以对瞬态光电流谱TPC,瞬态光电压谱TPV、调制光电流谱IMPS、瞬态光电压谱IMVS等进行测量分析,全面分析器件中的载流子特性和瞬态过程。主要应用: * 无机半导体光电器件,有机半导体光电器件; * 有机太阳能电池OPV; * 钙钛矿太阳能电池Perovskite Solar Cell,钙钛矿LED; * 无机太阳能电池(例如:单晶硅、多晶硅、非晶硅等硅基太阳能电池); * 染料敏化太阳能电池DSSC;主要测量功能 * 功率点MPP、FF、Voc、Isc、VS 光强,迁移率(I-V测试 & I-V-L测试,空间电荷限制电流SCLC法) * 载流子密度,载流子动力学过程(瞬态光电流法 TPC) * 载流子寿命,载流子符合动力学过程(瞬态光电压/瞬态开路电压法 TPV) * 载流子迁移率(暗注入瞬态法 DIT,单载流子器件&OLED) * 串联电阻,几何电容,RC时间(电压脉冲法 Pulse Voltage) * 参杂密度,电容率,串联电阻,载流子迁移率(暗态线性增加载流子瞬态法 Dark-CELIV) * 载流子迁移率,载流子密度(光照线性增加载流子瞬态法 Photo-CELIV) * 载流子复合过程,朗之万函数复合前因子(时间延迟线性增加载流子瞬态法 Delaytime-CELIV) * 不同工作点的载流子强度,载流子迁移率(注入线性增加载流子瞬态法 Injection-CELIV) * 几何电容,电容率(MIS线性增加载流子瞬态法 MIS-CELIV) * 陷阱强弱度,等效电路(阻抗谱测试 IS) * 迁移率,陷阱强弱度,电容,串联电阻(电容VS频率 C-f) * 内建电压,参杂浓度,注入势垒,几何电容(电容VS电压 C-V) * 陷阱分析(深能级瞬态谱DLTS) * 载流子传输时间分析(强度调制光电流谱 IMPS); * 载流子复合时间、收集效率等分析(强度调制光光电压谱IMVS); * 点亮电压(电流电压照度特性 I-V-L) * 发光寿命,载流子迁移率(瞬态电致发光法 TEL) *载流子迁移率(TEL瞬态电致发光,Photo-CELIV线性增压抽取载流子) *OLED/钙钛矿LED发光特性测量(发光器件测量);测量技术: 1)IV/IVL特性:IV和IVL曲线是针对OLED和OPV标准的量测手法,通过曲线可以得到样品的电流电压特性关系、电流电压与光强的特性关系;*对于有机半导体材料可通过空间电荷限制电流SCLC分析Pmax、FF、Voc、Isc和迁移率等; 2)瞬态光电流(TPC):研究载流子动力学过程和载流子密度等; 3)瞬态光电压(TPV):研究载流子寿命和复合过程; 4) 双脉冲瞬态光电流(Double Transient Photocurrent):分析电荷载流子俘获动态过程; 5) 暗注入瞬态法(Dark Injection):对于单载流子器件和OLED,研究其载流子迁移率; 6) 电压脉冲法(Voltage Pulse):串联电阻、几何电容和RC效应分析; 7) 暗态线性增压载流子瞬态法(Dark-CELIV):参杂浓度、相对介电常数、串联电阻、电荷载流子迁移率测量; 8) 光照线性增压载流子瞬态法(Photo-CELIV):提取有机太阳能电池片内载流子迁移率mobility,及载流子浓度分析等; 9) 时间延迟线性增压载流子瞬态法(Delaytime-CELIV):复合动态过程分析和郎之万复合因子分析等; 10)注入线性增压载流子瞬态法(Injection-CELIV):电荷载流子浓度和电荷载流子迁移率测量分析; 11)MIS-CELIV:几何电容和相对介电常数分析; 12)阻抗谱测量(Impedance Spectroscopy):器件等效电路分析等; 13)电容频率测量法(C-f): 迁移率、陷阱、几何电容和串联电阻测量; 14)电容电压测量法(C-V):内建电压、参杂浓度和几何电容等测量; 15) 深能级瞬态谱(DLTS):陷阱分析; 16)强度调制光电流谱(IMPS):载流子传输时间分析; 17)强度调制光光电压谱(IMVS):载流子复合时间、收集效率等分析; 18)瞬态电致发光测试(Transient Electroluminescence):抽取OLED器件的载流子,磷光寿命测量;另外,我公司提供专业太阳能测试设备制造商为客户提供全套专业的设备: 1.太阳能电池光谱响应测试系统、IPCE测试系统、量子效率测试系统; 2.太阳能电池测量系统(光谱响应测试系统,IPCE测试系统,量子效率测试系统,I-V曲线测量系统),太阳能电池测试仪; 3.太阳能电池I-V曲线测量系统; 4.I-V 数据采集系统; 5.大面积太阳能模拟器/太阳光模拟器/全光谱太阳光模拟器; 6.太阳能电池分选机; 7.太阳能电池I-V测试仪; 8.分光辐射度计, 9.参考电池/标准电池, 10.太阳能模拟器均匀性图像分析系统; 11.有机太阳能电池载流子迁移率测量系统; 12.钙钛矿太阳能电池载流子迁移率测量系统; 13.太阳能电池少数载流子测量系统;
    留言咨询
  • 高精度和高性能的OLED(钙钛矿(Q)LED,QLED)瞬态响应测量。M6200OLED瞬态EL/PL测试系统是为测试OLED器件的瞬态电致发光、时间分辨光致发光等瞬态响应特性而设计的。瞬变电致发光测试系统采用电脉冲发生器作为激励源,时间分辨电致发光测试系统采用高速脉冲激光器。它是研究电荷迁移率、响应时间和载流子寿命等载流子动力学的有用工具。-TPD 瞬态电致发光测试 (TPD Tr-EL)-瞬态电致发光(Tr-EL)-时间分辨光致发光(TR-PL)-低温测量-光谱测量-长余辉测试
    留言咨询
  • 产品介绍:DZDR-S瞬态法导热系数测试仪是南京大展仪器生产的一款热分析仪器,采用瞬态热源法,具有测量速度快,测试广泛广,采用双向的控制系统,操作便捷,并且配有软件分析,可以直接出数据报告,采用全新的外形设计,简约小巧。测试方法:DZDR-S瞬态法导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。测试范围:DZDR-S瞬态法导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。性能优势:1、测量方法。DZDR-S瞬态法导热系数测试仪采用非稳态法中的瞬态热源法,与其他测试方法相比,测量速度更快,准确性高。2、测量速度快。DZDR-S瞬态法导热系数测试仪能够在5~160s内测量出导热系数,提升实验的效率。3、多功能性。DZDR-S瞬态法导热系数测试仪适用于不同类型材料的导热系数测试,其中包括:液体、固体、金属、膏体、胶体、薄膜、粉末和复合材料等等,适用性广泛。4、易用性。DZDR-S瞬态法导热系数测试仪采用双向操作控制系统,仪器和计算机同时操作,彩色触摸屏操作,使得使用和操作设备变得简单和便捷。5、数据准确性。DZDR-S瞬态法导热系数测试仪拥有配套的分析软件,能够提供准确可靠的导热系数测试数据,可直接提供数据报告。6、重复性。DZDR-S瞬态法导热系数测试仪对样品实行无损检测,样品可以重复使用。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 瞬态有效光强测试仪 瞬时发光强度 型号:ZRX-29802C 仪器概述 ZRX-29802C瞬态有效光强测试仪主要用于测量多种脉冲光源的瞬时光度特性,如照明弹、信号弹、脉冲LED、火炸药、曳光弹等在闪光瞬间的瞬时光度特性,包括发光的瞬时发光强度、瞬时光照度、有效光强等,并绘出瞬时发光强度随时间变化的曲线图。 ZRX-29802C瞬态有效光强测试仪主要由个带有V(λ)滤光片的标准探测器、密前置放大器、速采集电路、同步触发电路、数据处理计算机、供电模块及测量软件等组成。当脉冲光源的瞬时脉冲光信号照射到探测器的表面时,由探测器行探测,经前置放大电路放大后,触发同步触发电路,启动速数据采集电路将数据存储于数据存储器中,待闪光过程结束后数据处理计算机行数据处理、计算分析、并输出测量结果。 本产品符合JJF1330-2011《瞬态有效光强测定仪效验规范》的要求。 3仪器术标 (1)瞬时光强测量范围:(10~107)cd; (2)有效光强的测量范围:(1~104)cd (3)脉冲时间范围:1ms~100s; (4)时间分辨率:≥2us; (5)有效光强的测量不确定度:4% (6)作温度:0~40℃;作湿度:小于75%; (7)作电源:~220V±10%和电池两种供电模式,电池连续作时间5小时左右。 (8)显示:液晶显示,显示瞬时光度参数的I-t曲线。 (9)防护等级:IP20 2.数字式标准模拟应变量校准器 型号:DR12 数字式标准模拟应变量校准器作为力学应变量的电学模拟标准,可代替标准电阻应变计产生模拟应变量,适应于检定和校准各种电阻应变仪 数字式标准模拟应变量校准器突破了过去传统使用波段开关的模式,采用研发的触摸式大屏幕显示,所有的操作均同触摸成,避免了过去使用波段开关开带来的接触不良现象,还可以通过菜单预设定意标准应变值,使整个检定过程自动扫描成。校准器线路设备为对称型结构,所采用的电阻元件为密交直流标准电阻器,其阻值密稳定,并具有良好的频率特性。校准器具有准确度,量程宽,稳定性好,线姓度好,操作快捷方便等特点,可以检定和校准各种交流供桥或真流供桥的静态电阻应变仪和动态电阻应变仪,是种交直流两用的校准器 校准器具有“半桥”和“桥” 1/4桥能,可根据具体情况,方便地选择不同桥路的连接 术参数 测量范围:(1~100000)με 频率范围: 0~100kHz 准确度级别:0.05级 灵敏系数: K=2.00 桥臂电阻: 120Ω 桥路连接:“半桥”和“桥” 1/4桥能 3.瓶坯底厚测定仪 型号:HAD-29447 、HAD-29447简介HAD-29447瓶坯底厚测定仪是专门为玻璃包装生产与使用单位检验使用的密仪器。本仪器采用了的容栅传感术,液晶显示屏,结果数字显示直观方便且仪器结构巧。HAD-29447采用316不锈钢圆测试头.带平面深沟轴承旋转固定治具及百分表设计,适用於安培瓶坯等中小型玻璃瓶的底厚检验。 二、HAD-29447术参数 分辨率:0. 01mm测试度:0. 01mm量程:0-12.7 (有更大量程及连接电脑的输出线选配)分表作温度:0-40℃ 4.电路分析实验箱 型号:HAD-TPE-DG2 HAD-TPE-DG2本产品基本含盖了电(或电路)实验中常用的弱电类实验,可满足各类、中等院校及职业术院校的电原理、电路分析等课程实验教学的需要。该机与DG1的主要区别在于实验内容采用模块化设计,每个实验的电路连接已基本成,学生不用花太多的时间接线,使学生有更多的时间用于实验的分析与测量。艺采用的两用板艺,正面印有原理图及符号,反面为印制导线并焊有相应元器件,结构紧凑、直观,使用方便、可靠,维修方便、简捷。 HAD-TPE-DG2 术性能及配置1.电源:AC220V±10% 。2.输出交流电源:2V、3V各路。3.直流稳压电源:提供0~20V(分0V~10V、10V~20V两档)连续可调稳压电源双路,接地方式自定(各路均有过流保护,自动恢复能)。4.直流恒流源:提供50mA、100mA两档。5.直流针表头:测量范围0~100μA, 内阻小于2250Ω,度为2.5级。 6.电感线圈:空芯电感,总电感量约200mH,带100mH、150mH和互感抽头 总直流电阻约64Ω;导线线径 φ0.41mm。 5.基本型声波清洗机 型号:HAD-30600 HAD-30600声波清洗机 术参数 电源 AC 220 ~ 240V, 50 ~60Hz 内胆材料 不锈钢冲压槽304 外壳材料 口铝板防腐喷涂 内槽尺寸 500 x 300 x 200 mm 外形尺寸 610 x 350 x 380 mm 时间控制 0-30分钟并可连续 声率 600W 作频率 40KHZ 容量 30升 排水 有,内连接管和阀门都是优质不锈钢 净重 20kg 毛重 28kg 6.泵吸式甲醇检测仪 型号:H29442 H29442 泵吸式甲醇气体检测仪,适用于各种业环境和特殊环境中的气体浓度检测,采用口电化学/红外气体传感器和微控制器术,响应速度快,测量度,稳定性和重复性好,整机性能,各项参数用户可自定义设置,操作简单,仪器防尘设计,配有粉尘过滤器,可用于各种恶劣的场合。USB 随时随地可充电,可用电脑或、电宝充电等 内置4000mA 大容量分子聚合物可充电电池,长待机 具有过压保护、过充保护、防静电干扰、防磁场干扰等能 软件自动校准、传感器多达 6级目标点校准能,保证测量的准确性和线性,并且具有数据恢复能 采用防尘设计与水气过滤,配有过滤器,可用于各种恶劣的场合 同时检测1-4种气体,传感器意组合PPM、%VOL、mg/m3、mg/L 四种浓度单位可自由切换 中英文菜单,声光报警,人性化人机操作界面 H29442 检测气体:甲醇(CH4O),口电化学/NDIR红外吸收气体传感器 测量范围: 0~100ppm、1000、2000、5000ppm、100LEL可选,其他量程可订制 分 辨 率: 0.01ppm或0.001ppm(0~10 ppm);0.01ppm(0~100 ppm),0.1ppm(0~1000 ppm), 1ppm(0~1000 ppm以上),0.1%LEL(0~100LEL 7.泵吸式氢气检测仪 型号:HAD-3H2 泵吸式氢气检测仪,适用于各种业环境和特殊环境中的气体浓度检测,采用口电化学/热传导气体传感器和微控制器术,响应速度快,测量度,稳定性和重复性好,整机性能,各项参数用户可自定义设置,操作简单,仪器防尘设计,配有粉尘过滤器,可用于各种恶劣的场合 HAD-3H2泵吸式氢气检测仪术参数检测气体:氢气(H2),口电化学/热传导气体传感器测量范围:0-100、500、1000、5000、10000、40000PPM、0-50%、99.99%VOL可选分 辨 率:0.1PPM(0-1000PPM)、1PPM(0-40000PPM)、0.01%VOL(99.99%VOL)响应时间:≤20秒(T90)检测度:≤±3%(视具体传感器而定)线性误差:≤±1%零点漂移:≤±1%(F.S/年)恢复时间:≤20秒气体扩展:支持1-4个传感器重 复 性:≤±1%防认证:CNEx16.0538防护等级:IP65温 湿 度:选配件,温度检测范围:-40 ~ 120℃,湿度检测范围:0-100RH检测方式:泵吸式,内置微型抽气泵检测模式:实时检测、定时检测可设置存储模式:实时存储、定时存储可设置;可存储数据120000组,可在屏幕上查看历史数据作环境: 作温度 -30 ~ 60℃作湿度 ≤95%RH,无冷凝作压力 -30Kpa ~ 100Kpa作电源 4000mA可充电聚合物电池尺寸重量:180*85*55 mm(L×W×H)0.5 Kg(仪器净重) 8.氮气发生器 制氮机 型号:DP-N2-3 氮气纯度:≥99%(可控可调) 氮气压力:0.1-0.60mpa(可控可调) 氮气产量:50L/MIN 气罐内置80L 分体的 空压机尺寸 1100*500*750毫米 重量80公斤, 冷干机500*750*750毫米 重量60公斤, 氮气机 尺寸 600*550*1300毫米重量 110公斤 9.台式锌离子测定仪 型号:HAD-ZN180 HAD-ZN180台式锌离子测定仪产品介绍: 仪器采用单色冷光源,利用微电脑自动处理数据,直接显示水样的锌浓度值。广泛适用于饮用水、地表水、地面水、污水和业废水的测定。 HAD-ZN180台式锌离子测定仪术参数1.测量范围:0.2~5.00mg/L2.示值误差: ≤±5%3.重复性 :≤3%4.光学稳定性:仪器吸光值在20min内漂移小于0.002A5.外形尺寸:主机 266mm×200mm×130mm6.重量:小于 1kg7.正常使用条件:⑴ 环境温度:5~40℃ ⑵ 相对湿度: ≤85%⑶ 供电电源: AC(220±22)V;(50±0.5)Hz 10便携式锌离子测定仪 型号HAD-N180 HAD-N180便携式锌离子测定仪产品介绍: 仪器采用单色冷光源,利用微电脑自动处理数据,直接显示水样的锌浓度值。广泛适用于饮用水、地表水、地面水、污水和业废水的测定。 HAD-N180便携式锌离子测定仪术参数1.测量范围:0~5.00mg/L2.示值误差: ≤±5%3.重复性 :≤3%4.光学稳定性:仪器吸光值在20min内漂移小于0.002A5.外形尺寸:主机80mm×230mm×55mm 6.重量:小于 1kg7.正常使用条件:⑴ 环境温度:5~40℃ ⑵ 相对湿度: ≤85%⑶ 供电电源: AC(220±22)V;(50±0.5)Hz⑷ 无显著的振动及电磁干扰,避免阳光直射。 HAD-N180便携式锌离子测定仪产品特点:
    留言咨询
  • 产品介绍:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。性能优势:1.测试范围广泛,测试性能稳定,在国内同类仪器中,处于优先水平;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套DZDR-S 瞬态热源法导热仪的操作方法:DZDR-S导热系数测试仪测试方法对比:
    留言咨询
  • 瞬态光电流/瞬态光电压测量系统(TPC/TPV),用于太阳能电池瞬态光电性能测量(载流子迁移率测量,瞬态光电流测量、光电压测量、瞬态光电性能测量、强度调制光电压谱IMVS、强度调制光电流谱IMPS),对于光电器件微观机理研究提供了有力的测试工具;多功能一体化高性能瞬态测试平台,不但可以测量器件的载流子迁移率、载流子寿命、载流子动力学过程、阻抗谱等,还可以对瞬态光电流谱TPC,瞬态光电压谱TPV、强度调制光电流谱IMPS、强度调制光电压谱IMVS等进行测量分析,全面分析器件中的载流子特性和瞬态过程。主要应用: * 无机半导体光电器件,有机半导体光电器件; * 有机太阳能电池OPV; * 钙钛矿太阳能电池Perovskite Solar Cell,钙钛矿LED; * 无机太阳能电池(例如:单晶硅、多晶硅、非晶硅等硅基太阳能电池); * 染料敏化太阳能电池DSSC;主要测量功能: * 功率点MPP、FF、Voc、Isc、VS 光强,迁移率(I-V测试 & I-V-L测试,空间电荷限制电流SCLC法) * 载流子密度,载流子动力学过程(瞬态光电流法 TPC) * 载流子寿命,载流子符合动力学过程(瞬态光电压/瞬态开路电压法 TPV) * 载流子迁移率(暗注入瞬态法 DIT,单载流子器件&OLED) * 串联电阻,几何电容,RC时间(电压脉冲法 Pulse Voltage) * 参杂密度,电容率,串联电阻,载流子迁移率(暗态线性增加载流子瞬态法 Dark-CELIV) * 载流子迁移率,载流子密度(光照线性增加载流子瞬态法 Photo-CELIV) * 载流子复合过程,朗之万函数复合前因子(时间延迟线性增加载流子瞬态法 Delaytime-CELIV) * 不同工作点的载流子强度,载流子迁移率(注入线性增加载流子瞬态法 Injection-CELIV) * 几何电容,电容率(MIS线性增加载流子瞬态法 MIS-CELIV) * 陷阱强弱度,等效电路(阻抗谱测试 IS) * 迁移率,陷阱强弱度,电容,串联电阻(电容VS频率 C-f) * 内建电压,参杂浓度,注入势垒,几何电容(电容VS电压 C-V) * 陷阱分析(深能级瞬态谱DLTS) * 载流子传输时间分析(强度调制光电流谱 IMPS); * 载流子复合时间、收集效率等分析(强度调制光光电压谱IMVS); * 点亮电压(电流电压照度特性 I-V-L) * 发光寿命,载流子迁移率(瞬态电致发光法 TEL) *载流子迁移率(TEL瞬态电致发光,Photo-CELIV线性增压抽取载流子) *OLED/钙钛矿LED发光特性测量(发光器件测量);测量技术: 1)IV/IVL特性:IV和IVL曲线是针对OLED和OPV标准的量测手法,通过曲线可以得到样品的电流电压特性关系、电流电压与光强的特性关系;*对于有机半导体材料可通过空间电荷限制电流SCLC分析Pmax、FF、Voc、Isc和迁移率等; 2)瞬态光电流(TPC):研究载流子动力学过程和载流子密度等; 3)瞬态光电压(TPV):研究载流子寿命和复合过程; 4) 双脉冲瞬态光电流(Double Transient Photocurrent):分析电荷载流子俘获动态过程; 5) 暗注入瞬态法(Dark Injection):对于单载流子器件和OLED,研究其载流子迁移率; 6) 电压脉冲法(Voltage Pulse):串联电阻、几何电容和RC效应分析; 7) 暗态线性增压载流子瞬态法(Dark-CELIV):参杂浓度、相对介电常数、串联电阻、电荷载流子迁移率测量; 8) 光照线性增压载流子瞬态法(Photo-CELIV):提取有机太阳能电池片内载流子迁移率mobility,及载流子浓度分析等; 9) 时间延迟线性增压载流子瞬态法(Delaytime-CELIV):复合动态过程分析和郎之万复合因子分析等; 10)注入线性增压载流子瞬态法(Injection-CELIV):电荷载流子浓度和电荷载流子迁移率测量分析; 11)MIS-CELIV:几何电容和相对介电常数分析; 12)阻抗谱测量(Impedance Spectroscopy):器件等效电路分析等; 13)电容频率测量法(C-f): 迁移率、陷阱、几何电容和串联电阻测量; 14)电容电压测量法(C-V):内建电压、参杂浓度和几何电容等测量; 15) 深能级瞬态谱(DLTS):陷阱分析; 16)强度调制光电流谱(IMPS):载流子传输时间分析; 17)强度调制光光电压谱(IMVS):载流子复合时间、收集效率等分析; 18)瞬态电致发光测试(Transient Electroluminescence):抽取OLED器件的载流子,磷光寿命测量; 另外,我公司提供专业太阳能测试设备制造商为客户提供全套专业的设备: 1.太阳能电池光谱响应测试系统、IPCE测试系统、量子效率测试系统; 2.太阳能电池测量系统(光谱响应测试系统,IPCE测试系统,量子效率测试系统,I-V曲线测量系统),太阳能电池测试仪; 3.太阳能电池I-V曲线测量系统; 4.I-V 数据采集系统; 5.大面积太阳能模拟器/太阳光模拟器/全光谱太阳光模拟器; 6.太阳能电池分选机; 7.太阳能电池I-V测试仪; 8.分光辐射度计, 9.参考电池/标准电池, 10.太阳能模拟器均匀性图像分析系统; 11.有机太阳能电池载流子迁移率测量系统; 12.钙钛矿太阳能电池载流子迁移率测量系统; 13.太阳能电池少数载流子测量系统;
    留言咨询
  • 产品介绍:DZDR-S是南京大展检测仪器生产一款瞬态热源法导热仪,采用全新的外形设计,简约小巧,配备天平,具有测量速度快,操作简单。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。性能优势:1.测试范围广泛,测试性能稳定;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;12.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍:DZDR-S是南京大展检测仪器生产一款瞬态平面热源法导热仪,采用一体化的机型设计,小巧轻便,同时测量速度快,一键计算导热系数,准确度高等优势。测试范围:DZDR-S 瞬态平面热源法导热仪可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间; 2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;9.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;10.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 瞬态平面热源法导热系数测试系统——变温变真空多试样一、简介瞬态平面热源法作为一种绝对导热系数测量方法,在理论上可以达到很高测量精度。在被测试样尺寸和其它要素满足测试方法规定的边界条件时,导热系数的测量范围理论上可以没有限制。因此,对于均质材料,采用瞬态平面热源法不失为一种操作简便和测量精度高的有效方法,在温度不高范围内(-196℃~200℃),这种方法可以作为一种标准方法来使用,并与其它导热系数测试方法一起形成有效的补充和相互比对,甚至可以用于校准其它测试方法。瞬态平面热源法已具有国际标准测试方法,即ISO 22007-2:2008 Plastics-Determination of thermal conductivity and thermal diffusivity-Part 2: Transient plane heat source (Hot Disk) method。依阳公司生产的瞬态平面热源法导热系数测试系统是一种多功能测试设备,具有测试块状和分体材料以及薄膜材料的功能,同时还配备了真空腔装置、循环油浴温度控制系统、气体压强控制系统和多通道扫描开关装置,从而实现了在不同温度和气氛压力下对多个试样同时进行测量。二. 特点(1)变温测试采用冷热循环油浴增压泵流出的硅油作为加热介质流经装载有试样的真空腔体壁,真空腔体放置在厚实的隔热材料套中,使得被测试样可以精确的按照循环油浴温度进行恒温控制,充分利用了循环油浴±0.05℃的高精度温度控制功能,保证了试样温度的均匀性和稳定性。并且,可以通过计算机控制循环油浴的设定温度来自动实现不同温度下的试样热导率测量。试样温度变化范围取决于恒温油浴的温度变化范围,一般温度变化范围为-40℃至250℃。同时还可以配备低温制冷机系统,从而实现温度达到液氦温度区间的材料导热系数测试。 (2)变气压测试工程材料,特别是孔隙率较大的低密度材料,它们所处的气氛压强会严重影响材料的导热系数。同时,空气中的水份也会使得材料的导热系数发生改变。所以,为了准确测量材料的导热系数,所有导热系数测试方法都对被测试样的气氛环境有严格规定,通常要求是一个标准大气压下的高燥空气环境。另外,在宇航空间用工程材料中,距离地球表面不同高度时气氛压强的不同也会导致材料不同的导热系数。为了规范测试气氛环境和模拟出准确的所需气氛压强,导热系数测试系统配备了依阳公司独自研发的具有人工智能的高精度气氛压强控制系统,使得放置试样的真空腔内的气压精确恒定在所需的气压设定点上,实现了不同气体成分在不同气压下的实验环境模拟。试样环境气氛可以是空气和其他任何气体,气压控制范围为3Pa至1个标准大气压,气压的波动率全量程范围内都小于±1%。 (3)多试样同时测量瞬态平面热源法作为一种非稳态法,在理论上有很快的测试时间,但这里所谓的测试时间是指纯粹的通电测试时间,并不包括达到测试模型边界条件要求(被测试样温度均匀)所需要的时间。被测试样热导率越小,试样达到温度均匀所需要的时间越长。一般规定,两次测试的间隔时间至少是测量时间的36倍。如果测量低导热材料(热导率约为0.03 的隔热材料),通常的测试时间为180秒以上,那么重复性测试的时间间隔至少要108分钟。这就意味一个完整的测试过程至少需要近2个小时,而大部分时间是在等待试样温度达到稳定,这还不包括变温过程中温度控制时的恒温时间。由此可见,在测量较低热导率材料过程中,整个测试过程和测试效率并不是很高,与其它稳态法旗鼓相当。为了进一步提高瞬态平面热源法的测试效率,我们增加了一个程序控制的多通道扫描开关,即采用多探头多试样同时测量技术,充分利用试样温度稳定这段等待时间,既保证了每个独立试样的有效测试时间间隔,又能最大限度提高样品测试数量,提高测试效率。 (4)试样多样化安装为了满足固体、粉体和膏状等不同形式材料的导热系数测量,瞬态平面热源法导热系数测试系统配备了专门设计的试样容器。 (5)各向异性导热系数测量为了适用于多层材料、纤维增强塑料等各向异性样品的热传导性能的测试,瞬态平面热源法导热系数测试系统配备了专门设计的测试软件,可进行厚度和面内方向的导热系数测量。(6)薄膜材料导热系数测量瞬态平面热源法导热系数测试系统还可用于单层薄膜样品如织物、高聚物薄膜、陶瓷薄膜、纤维材料、纸和陶瓷上的溅射金属涂层等材料的导热系数测试。样品厚度范围为0.01~2 mm,导热系数测试范围0.005~10 W/mK 三. 技术指标(1)温度变化范围:-269℃~250℃(依据所用温度环境装置)。(2)气压控制范围:3Pa~个标准大气压,气体可以是空气、氮气等,波动率小于±1%。(3)通道数:4线制连接,共8个通道。手动切换和计算机程控切换,最多可同时测量8组试样。(4)试样形式和尺寸:最大试样尺寸为50mm×50mm×40mm。(5)试样形式:固体、粉体、膏状物、薄板和薄膜等。(6)导热系数测量范围:0.005~500W/mK。(7)导热系数测量精度:优于±5%。(8)导热系数测量重复性:优于±7%。(9)薄板试样测试:薄板厚度范围0.1~10mm,导热系数测量范围为10~500 W/mK。(10)薄膜试样测试:薄膜厚度范围为0.01~2 mm,导热系数测试范围0.005~10 W/mK。 四. 应用(1) 瞬态平面热源法薄板试样测试方法对于薄板或薄片状材料,瞬态平面热源法中有专门的测试模型用于导热系数测量,所测试的导热系数是试样整体的导热系数,而不是面内方向的导热系数。如下图所示,测量时先选择两块厚度一致的样品,精确测量样品厚度后,将两块薄板样品分别放置于探头的两边,然后用两块相同材质的绝热隔热材料压紧,使探头与样品之间没有空隙,以保证探头产生的所有热量均为样品所吸收。薄板样品的直径或边长一般应大于50mm。每片样品的厚度可以从0.2mm至8mm不等,这取决于探头半径。薄板试样测试方法与块状试样测试方法有些类似,主要的区别有两点:被测薄板试样的外侧要用绝缘低导热材料压紧,使得试样四周的热损失与探测器加热量相比非常小。在试样中的热流传递主要在薄板试样面内方向上进行,所以瞬态平面热源法薄板测试模型假设试样是无限大平板热传递模型。 (2) 瞬态平面热源法薄膜试样测试方法对于薄膜材料(电绝缘),瞬态平面热源法中采用了薄膜测试模型用于导热系数测量,所测试的导热系数是试样整体的导热系数,而不是面内方向的导热系数。测试时,探头被放置于两片样品和导热性能良好的背景材料之间。测量时,根据薄膜材料的接触热阻的数据计算得到样品的导热系数。如下图所示,测量时先选择两片厚度一致的薄膜样品,精确测量薄膜样品厚度后,将两块薄膜样品分别放置于探头的两边,然后用两块相同的不锈钢块压紧,使探头与样品之间没有空隙,以保证探头产生的所有热量均为样品所吸收。 需要注意的是,在瞬态平面热源法薄膜导热系数测量过程中,被测试样一般没有加载力或加载力很小,对于试样的加载也是为了让被测试样贴紧探头减少探头与被测试样之间的热阻。 (3)不同气压下的导热系数测量硬质聚氨酯泡沫塑料试样,环境温度25℃,每个气压点上至少进行十次重复性测量,采用HOTDISK 4921探头,加热功率0.01~0.006W,加热时间160秒和320秒。(4)不同温度导热硅脂导热系数测量导热硅脂试样,测试温度25~150℃,每个温度点上至少进行10次重复性测量,采用4921探头。
    留言咨询
  • 瞬态光电压(TPV)、瞬态光电流(TPC)测试是揭示光伏、光催化等光电器件微观工作机理的关键手段。利用TPV 和TPC 检测的数据进行分析,可以得到器件内部载流子的传输、积累、复合等动力学过程的相关信息。TPV 和TPC 的测试是直接基于最终的工况器件进的,因而得到的参数可以直接反映工况条件下的光物理过程,这是一个相对于其它检测手段的很大的优势。TranPVC基于东谱科技的MagicBox主机研制而成,是专为有机太阳能电池(OSCs)、燃料敏化太阳能电池(DSCs)、钙钛矿太阳能电池(PSCs)、碲化镉纳米晶太阳能电池等研究领域开发的高性能瞬态光电流/光电压测量平台,集成了数种文献中常见的、前沿的瞬态测量模式,为TPV/TPC的研究提供了强有力的、便捷的测试工具。瞬态光电压(TPV)测试主要应用:有机太阳能电池 钙钛矿太阳能电池;染料敏化太阳能电池 碲化镉纳米晶太阳能电池;硅基太阳能电池 其它光伏、光催化、光电导器件等。
    留言咨询
  • 产品介绍 ATS-DRS-T瞬态平面导热系数测定仪是利用瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量热导率,为企业质量监控、材料生产以及实验室研究提供了极大的方便。该仪器操作方便,方法简单易懂,不会对被测样品造成损坏。 上海埃提森仪器科技有限公司基于瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上所发展起来的瞬态平面热源法研发了此产品。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数与温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。 该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。 检测方式特点ATS-DRS-T瞬态平面导热系数测定仪所使用的瞬态平面热源法相比较于激光法,热线法,保护平板法都有优势。首先在于适用材料的范围上瞬态平面热源法可检测固体、液体、粉末、颗粒、胶体等。其次在于样品制作上只需要保持平整即可,对于尺寸的要求极低。同时检测时间也在5-160S左右,相比较平板法的数个小时来说优势明显。 目前国家也在积极修改各行业产品导热系数的检测方式,逐步替代多年前的保护平板法。已修改完成GB∕T 32064-2015 建筑用材料导热系数和热扩散系数瞬态平面热源测试法。相信不久的将来,瞬态平面热源法这一更简单快捷的导热系数检测方式会出现在越来越多的国标中。而上海埃提森仪器科技有限公司的ATS-DRS-T瞬态平面导热系数测定仪也会积极更新,不断优化,让更多客户可以使用上优质便捷的设备。 产品特点 1、仪器参考标准:ISO 22007-2 20082、测试范围广泛,测试性能稳定,在国内同类仪器中,处于较高水平; 3、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间; 4、不会和静态法一样受到接触热阻的影响;5、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可; 6、对样品实行无损检测,意味着样品可以重复使用;7、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算; 8、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;9、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;10、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理 能力,计算结果更加精确; 11、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定; 12、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁; 13、强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。 售后服务按相关标准和技术要求验收,客户另加技术要求逐项认可。 上海埃提森仪器科技有限公司负责设备的运输及安装指导。客户负责设备的现场起吊、搬运等工作。 调试在客户公司内,在有被培训人员在场情况下,进行调试。上海埃提森仪器科技有限公司免费提供2-3人系统的现场操作培训和简单设备维修培训,以及任何时候的电话咨询。 质保时间整机质保期为最终验收后一年。在质保期内由于机器品质而发生的故障停机,正常情况下,上海埃提森仪器科技有限公司应免费修复。但试验设备因需方人为损坏,机器零配件费用则由需方承担。一年质保期后,由上海埃提森仪器科技有限公司负责售后服务。每年每季度埃提森技术中心都有专职人员进行电话回访,提供坚强的技术保障。
    留言咨询
  • 产品介绍: DZDR-S 导热系数测试仪是采用了瞬态平面热源法,仪器由南京大展检测仪器研发、生产,采用了一体化的机型设计,能够实现一键测量,同时进口芯片,测量速度快5~160s出结果,操作简单。测量范围: DZDR-S 瞬态平面热源法导热仪测试样品种类较多,包括:金属、陶瓷、合金、矿石、聚合物、复合材料、纸、泡沫和玻璃钢面板复合板材等。测试方法介绍: DZDR-S 瞬态平面热源法导热仪可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了极大的方便,可以选配有粉末测试容器、液体杯。优势特点:1、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;3、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;4、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;5、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;5、强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。测试步骤:技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 简介:瞬态光电流(TPC)/瞬态光电压(TPV)测量系统主要用于太阳能电池在稳态,瞬态以及交流条件下的光电性能测量(载流子迁移率测量Photo-CELIV,瞬态光电流测量TPC、瞬态光电性能测量TPV、强度调制光电压谱IMVS、强度调制光电流谱IMPS以及阻抗IS,CV等量测)为光电器件微观机理研究提供了有力的测试平台;多功能一体化高性能瞬态测试平台,不但可以测量器件的载流子迁移率、载流子寿命、载流子动力学过程、阻抗谱等,还可以对瞬态光电流谱TPC,瞬态光电压谱TPV、强度调制光电流谱IMPS、强度调制光电压谱IMVS等进行测量分析,全面分析器件中的载流子特性和瞬态过程。可量测器件类型: * 无机半导体光电器件,有机半导体光电器件; * 有机太阳能电池OPV; * 钙钛矿太阳能电池Perovskite Solar Cell,钙钛矿LED; * 无机太阳能电池(例如:单晶硅、多晶硅、非晶硅等硅基太阳能电池); * 染料敏化太阳能电池DSSC; 主要测量功能: * 最大功率点MPP、FF、Voc、Isc、VS 光强,迁移率(I-V测试 & I-V-L测试,空间电荷限制电流SCLC法) * 载流子浓度,载流子动力学过程(瞬态光电流法 TPC) * 载流子寿命,载流子符合动力学过程(瞬态光电压/瞬态开路电压法 TPV) * 载流子迁移率(暗注入瞬态法 DIT,单载流子器件&OLED) * 串联电阻,几何电容,RC时间(电压脉冲法 Pulse Voltage) * 参杂密度,电容率,串联电阻,载流子迁移率(暗态线性增加载流子瞬态法 Dark-CELIV) * 载流子迁移率,载流子密度(光照线性增加载流子瞬态法 Photo-CELIV) * 载流子复合过程,朗之万函数复合前因子(时间延迟线性增加载流子瞬态法 Delaytime-CELIV) * 不同工作点的载流子强度,载流子迁移率(注入线性增加载流子瞬态法 Injection-CELIV) * 几何电容,电容率(MIS线性增加载流子瞬态法 MIS-CELIV) * 陷阱强弱度,等效电路(阻抗谱测试 IS) * 迁移率,陷阱强弱度,电容,串联电阻(电容VS频率 C-f) * 内建电压,参杂浓度,注入势垒,几何电容(电容VS电压 C-V) * 陷阱分析(深能级瞬态谱DLTS) * 载流子传输时间分析(强度调制光电流谱 IMPS); * 载流子复合时间、收集效率等分析(强度调制光光电压谱IMVS); * 点亮电压(电流电压照度特性 I-V-L) * 发光寿命,载流子迁移率(瞬态电致发光法 TEL) *载流子迁移率(TEL瞬态电致发光,Photo-CELIV线性增压抽取载流子) *OLED/钙钛矿LED发光特性测量(发光器件测量);测量技术: 1)IV/IVL特性:IV和IVL曲线是针对OLED和OPV标准的量测手法,通过曲线可以得到样品的电流电压特性关系、电流电压与光强的特性关系;*对于有机半导体材料可通过空间电荷限制电流SCLC分析Pmax、FF、Voc、Isc和迁移率等; 2)瞬态光电流(TPC):研究载流子动力学过程和载流子密度等; 3)瞬态光电压(TPV):研究载流子寿命和复合过程; 4) 双脉冲瞬态光电流(Double Transient Photocurrent):分析电荷载流子俘获动态过程; 5) 暗注入瞬态法(Dark Injection):对于单载流子器件和OLED,研究其载流子迁移率; 6) 电压脉冲法(Voltage Pulse):串联电阻、几何电容和RC效应分析; 7) 暗态线性增压载流子瞬态法(Dark-CELIV):参杂浓度、相对介电常数、串联电阻、电荷载流子迁移率测量; 8) 光照线性增压载流子瞬态法(Photo-CELIV):提取有机太阳能电池片内载流子迁移率mobility,及载流子浓度分析等; 9) 时间延迟线性增压载流子瞬态法(Delaytime-CELIV):复合动态过程分析和Langevin复合因子分析等; 10)注入线性增压载流子瞬态法(Injection-CELIV):电荷载流子浓度和电荷载流子迁移率测量分析; 11)MIS-CELIV:载流子迁移率量测 12)阻抗谱测量(Impedance Spectroscopy):器件等效电路分析等; 13)电容频率测量法(C-f): 迁移率、陷阱、几何电容和串联电阻测量; 14)电容电压测量法(C-V):内建电压、参杂浓度和几何电容等测量; 15) 深能级瞬态谱(DLTS):陷阱分析; 16)强度调制光电流谱(IMPS):载流子传输时间分析; 17)强度调制光光电压谱(IMVS):载流子复合时间、收集效率等分析; 18)瞬态电致发光测试(Transient Electroluminescence):抽取OLED器件的载流子,磷光寿命测量; 应用案例:1.第三代太阳能电池的表征2. Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient and Frequency Domain
    留言咨询
  • 产品介绍:DZDR-S瞬态导热系数测定仪是南京大展检测仪器推出一款新导热仪,采用瞬态热源法,具备测量速度快、测试范围广,采用全新的外形设计,简约小巧,双向操作系统,操作便捷性高等优势。测试范围:DZDR-S瞬态导热系数测定仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测试方法:DZDR-S瞬态导热系数测定仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4.对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 载流子瞬态特性分析系统用于太阳能电池瞬态光电性能测量(载流子迁移率测量,瞬态光电流测量、光电压测量、瞬态光电性能测量、强度调制光电压谱IMVS、强度调制光电流谱IMPS),对于光电器件微观机理研究提供了有力的测试工具;多功能一体化高性能瞬态测试平台,不但可以测量器件的载流子迁移率、载流子寿命、载流子动力学过程、阻抗谱等,还可以对瞬态光电流谱TPC,瞬态光电压谱TPV、强度调制光电流谱IMPS、强度调制光电压谱IMVS等进行测量分析,全面分析器件中的载流子特性和瞬态过程。主要应用: * 无机半导体光电器件,有机半导体光电器件; * 有机太阳能电池OPV; * 钙钛矿太阳能电池Perovskite Solar Cell,钙钛矿LED; * 无机太阳能电池(例如:单晶硅、多晶硅、非晶硅等硅基太阳能电池); * 染料敏化太阳能电池DSSC;主要测量功能 * 功率点MPP、FF、Voc、Isc、VS 光强,迁移率(I-V测试 & I-V-L测试,空间电荷限制电流SCLC法) * 载流子密度,载流子动力学过程(瞬态光电流法 TPC) * 载流子寿命,载流子符合动力学过程(瞬态光电压/瞬态开路电压法 TPV) * 载流子迁移率(暗注入瞬态法 DIT,单载流子器件&OLED) * 串联电阻,几何电容,RC时间(电压脉冲法 Pulse Voltage) * 参杂密度,电容率,串联电阻,载流子迁移率(暗态线性增加载流子瞬态法 Dark-CELIV) * 载流子迁移率,载流子密度(光照线性增加载流子瞬态法 Photo-CELIV) * 载流子复合过程,朗之万函数复合前因子(时间延迟线性增加载流子瞬态法 Delaytime-CELIV) * 不同工作点的载流子强度,载流子迁移率(注入线性增加载流子瞬态法 Injection-CELIV) * 几何电容,电容率(MIS线性增加载流子瞬态法 MIS-CELIV) * 陷阱强弱度,等效电路(阻抗谱测试 IS) * 迁移率,陷阱强弱度,电容,串联电阻(电容VS频率 C-f) * 内建电压,参杂浓度,注入势垒,几何电容(电容VS电压 C-V) * 陷阱分析(深能级瞬态谱DLTS) * 载流子传输时间分析(强度调制光电流谱 IMPS); * 载流子复合时间、收集效率等分析(强度调制光光电压谱IMVS); * 点亮电压(电流电压照度特性 I-V-L) * 发光寿命,载流子迁移率(瞬态电致发光法 TEL) *载流子迁移率(TEL瞬态电致发光,Photo-CELIV线性增压抽取载流子) *OLED/钙钛矿LED发光特性测量(发光器件测量);测量技术: 1)IV/IVL特性:IV和IVL曲线是针对OLED和OPV标准的量测手法,通过曲线可以得到样品的电流电压特性关系、电流电压与光强的特性关系;*对于有机半导体材料可通过空间电荷限制电流SCLC分析Pmax、FF、Voc、Isc和迁移率等; 2)瞬态光电流(TPC):研究载流子动力学过程和载流子密度等; 3)瞬态光电压(TPV):研究载流子寿命和复合过程; 4) 双脉冲瞬态光电流(Double Transient Photocurrent):分析电荷载流子俘获动态过程; 5) 暗注入瞬态法(Dark Injection):对于单载流子器件和OLED,研究其载流子迁移率; 6) 电压脉冲法(Voltage Pulse):串联电阻、几何电容和RC效应分析; 7) 暗态线性增压载流子瞬态法(Dark-CELIV):参杂浓度、相对介电常数、串联电阻、电荷载流子迁移率测量; 8) 光照线性增压载流子瞬态法(Photo-CELIV):提取有机太阳能电池片内载流子迁移率mobility,及载流子浓度分析等; 9) 时间延迟线性增压载流子瞬态法(Delaytime-CELIV):复合动态过程分析和郎之万复合因子分析等; 10)注入线性增压载流子瞬态法(Injection-CELIV):电荷载流子浓度和电荷载流子迁移率测量分析; 11)MIS-CELIV:几何电容和相对介电常数分析; 12)阻抗谱测量(Impedance Spectroscopy):器件等效电路分析等; 13)电容频率测量法(C-f): 迁移率、陷阱、几何电容和串联电阻测量; 14)电容电压测量法(C-V):内建电压、参杂浓度和几何电容等测量; 15) 深能级瞬态谱(DLTS):陷阱分析; 16)强度调制光电流谱(IMPS):载流子传输时间分析; 17)强度调制光光电压谱(IMVS):载流子复合时间、收集效率等分析; 18)瞬态电致发光测试(Transient Electroluminescence):抽取OLED器件的载流子,磷光寿命测量;另外,我公司提供专业太阳能测试设备制造商为客户提供全套专业的设备: 1.太阳能电池光谱响应测试系统、IPCE测试系统、量子效率测试系统; 2.太阳能电池测量系统(光谱响应测试系统,IPCE测试系统,量子效率测试系统,I-V曲线测量系统),太阳能电池测试仪; 3.太阳能电池I-V曲线测量系统; 4.I-V 数据采集系统; 5.大面积太阳能模拟器/太阳光模拟器/全光谱太阳光模拟器; 6.太阳能电池分选机; 7.太阳能电池I-V测试仪; 8.分光辐射度计, 9.参考电池/标准电池, 10.太阳能模拟器均匀性图像分析系统; 11.有机太阳能电池载流子迁移率测量系统; 12.钙钛矿太阳能电池载流子迁移率测量系统; 13.太阳能电池少数载流子测量系统;
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面 复旦大学选购我司导热系数测试仪 部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage compositeswith high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • Trident 瞬态平面源 400-860-5168转0702
    加拿大C-Therm公司的Trident导热仪,可采用Flex TPS配置,通过瞬态平面源的柔性双面传感器,给予测试灵活性。用户可自由设置测试时间和功率参数,测定固体、液体、粉末、胶体的导热系数、热扩散系数和比热,并配有专门测试薄板、薄膜以及各向异性材料的模块,适应ISO 22007-2:2015, GB/T 32064-2015标准。 除瞬态平面源TPS方法外,Trident还可另外选择搭载MTPS改良瞬态平面热源法和TLS探针法。 技术参数:可选测试方法: 瞬态平面源(Flex TPS)、改良瞬态平面热源法(MTPS)和探针法(TLS Needle)导热系数:0-2000 W/mK热扩散系数:0-1200 mm2/s比热:0-5 MJ/m3K吸热系数:0 - 40,000 Ws?/m2K精确度:优于5%重复性:优于1%测试时间:0.8 – 180秒测试材料种类:块状材料,复合材料,薄膜材料,薄板材料,各向异性材料 如想了解更多关于应用、参数和报价的信息,欢迎来电或留言咨询。
    留言咨询
  • 产品关键词:稳瞬态荧光光、稳态瞬态荧光光谱、TRPL、TRES、荧光寿命、电致瞬态、TREL、荧光光谱、瞬态荧光、荧光量子产率、PLQY、变温荧光、时间分辨光致荧光光谱、激发谱、发射谱、同步谱、瞬态磷光、磷光寿命、荧光磷光衰减寿命、超快光谱、动力学扫描、多发射谱扫描、多同步扫描▌ 产品简介光电一体化时间分辨光谱仪HiLight是东谱科技自主研发的业内首款光电一体化时间分辨光谱仪(又称光致/电致稳瞬态/时间分辨荧光光谱仪TRPL),该设备拥有光致和电致荧光光谱模块,可以对各类型的光致(荧光、磷光、延迟荧光等)和电致发光样品进行全面的稳、瞬态测试分析,可在200 nm 至5500 nm、宽波长、2.5 ns至1200 s宽时域范围上对微弱发光信号进行精准测量。基于其光电一体的独特优势,HiLight可同时用于材料与器件的研究,从而极大地拓展了传统荧光光谱仪的适用范围。基于模块化的设计理念,HiLight可以提供灵活的配置方案,以适应多样化的测试需求,可广泛应用于材料科学、分析科学、生物医药、食品科学、石油化工、地质学、考古、法医学等领域。▌ 产品特点□ 模块化设计,可选配置丰富灵活,易升级维护;□ 光电一体,同时适用于材料与器件; □ 宽时域时间分辨:2.5ns-1200s; □ 时间分辨率:最小305fs; □ 宽波长范围可选:200-5500nm; □ 多种光源、光栅、探测器可选; □ 全反射式光路设计,影像校准技术; □ 配置SpectraHub软件,功能丰富。▌ 产品功能荧光/磷光时间分辨发射谱吸收与透射电致荧光/磷光荧光磷光寿命量子产率上转换荧光时间分辨电致发光光谱变温荧光比较荧光电致发光响应时间低温荧光时间相关动力学多维光谱显微荧光▌ 规格参数光谱范围激发光谱标配:200nm-900nm,可选:200nm-2500nm发射光谱标配:200nm-900nm,可选:200nm-5500nm时间范围SPC动力学1 ms~10 hMCS10 ns~1200 sTCSPC50 ps~100 μs激发源稳态MCSTCSPC350W氙灯脉冲氙灯Mic-MLD微秒激光器Mic-MLED微秒LED光源Pina-PLD皮秒激光器Pina-PLED皮秒LED光源NanoQ-NLD纳秒激光器NanoQ-NLED纳秒LED光源皮秒白光光源纳秒OPO可调谐激光器电致发光部件SMU电压范围±15 V电流范围±40 mA电压设置分辨率10 mV电流设置分辨率10 μA电压测量分辨率1 mV电流测量分辨率1 μA瞬态电致发光驱动源输出电压范围-10V~+10V电压分辨率16 bits信号频率范围10 mHz~10 MHz驱动电压信号类型脉冲、正弦波、三角波、方波等水拉曼信噪比12,000:1;可选配优化信噪比▌ 产品应用□ 荧光粉□ 上转换材料□ TADF□ 光伏材料□ 荧光微球□ 有机发光材料□ 荧光探针□ 天然染料□ 镧族稀土元素□ 碳点□ 钙钛矿材料□ AIE□ 二维材料□ 室温磷光材料□ 稀土发光材料□ 量子点□ 纳米微球□ 量子棒□ 合成染料□ 各类电致发光器件▌ 产品型号型 号特 点光电一体化时间分辨光谱仪HiLight 990 模块化,可选配置功能;升级与拓展功能强稳瞬态荧光光谱仪HiLight HS15 一体机;稳态和瞬态荧光功能荧光寿命测量仪HiLight T30 寿命测量功能;可选滤光片分光瞬态电致发光光谱仪HiLight E60瞬态电致发光功能荧光光谱仪HiLight S20稳态和磷光功能
    留言咨询
  • 飞秒瞬态吸收光谱仪 瞬态吸收光谱仪通过用“泵浦”脉冲激发分子系统,延迟后用探测脉冲获取系统信息的方式来研究分子特性。 我司瞬态吸收光谱仪能适应瞬态吸收测量广泛的范围。它具有多样的模块设计来允许选择“泵浦”和“探测”脉冲和在透射与反射二种操作模式上轻松地互换。Standalone and Lab ViewTM设计紧凑,占用珍贵的桌面空间小,具有良好的稳定性、自动化操作。泵浦源紧凑、无缝覆盖、宽广调谐。 特点&优势 1. 探测液体、固体以及薄膜中的瞬态吸收和模拟发射,分辨率可达100fs。 2. 全电脑控制 3. 宽波长范围瞬态谱的获得(200-1000nm) 4. 4ns时间窗口(-DP 选项),8ns(-DDP选项) 5. 瞬态吸收各向异性测量 6. 双光束规格(-U选项)提供超高信噪比表现 技术规格 激发 SHG THG Rainbow 20F 泵浦光谱范围 230-12,00nm 探测光源 连续白光 探测光谱范围 300-750nm;240-620nm and 380-1100nm optional 扫描范围 2ns,1fs resolution; (4ns,2fs optional) 时间分辨 <1.7 X pump pulsewidth 噪音级别 1.3 x 104OD typical 软件 Standalone and Lab ViewTM 尺寸 89L*64W*25H cm 重量 34Kg 输入参数 能量 >0.3mJ 脉冲宽度 30—150fs 光束直径 5---10mm (near TEM) 偏振 Linear,horizontal 重复率 0.3---3kHz 波长 750---850nm 光束高度 110nm 应用领域 1.三线态吸收2.分子动力学3.材料科学4.光催化5.激光晶体6.太阳能晶体
    留言咨询
  • 汽车瞬态传导干扰模拟器功能特点1、一体化设计,整机大小19"4U,集成了脉冲1、2a、3a、3b、5a、5b波形2、10寸安卓系统的电容触控屏3、脉冲1、2a阻抗和脉冲宽度多种可选4、内置耦合去耦网络5、P5a和5b可输出巨大能量,带载情况下内阻0.5Ω脉宽可达400ms6、P5a和5b zui大脉宽支持9999ms7、DUT和发生器在同样负载的情况下,P5a和5b输出脉冲宽度完全一致8、内置车厂标准9、支持USB导入报告,格式可编辑汽车瞬态传导干扰模拟器符合标准ISO7637-2GB/T21437.2JASO D001-94SAE J1113-11SAE J1455其他车厂要求更多技术参数访问长沙容测电子有限公司网站长沙容测电子有限公司是一家集EMC电磁兼容测试仪器研发、生产、销售为一体的高科技企业。公司注册资金800万元,坐落于湖南省长沙市高新区麓谷企业广场。致力于电磁兼容测试设备的研发以及电磁兼容测试技术的推广普及,全力为客户提供专业的EMC测试产品和解决方案。我们拥有从事EMC行业十余年的技术人才队伍,有着丰厚的技术底蕴。依托专业的技术能力,做到专业再专业,专注再专注,创新实干,打造成行业内标杆的企业。在国内相对于薄弱的军工和汽车领域,容测电子将发挥技术优势,攻艰克难,全方位突破国外供应商在中国市场的垄断。我们拥有功率放大器、信号源、功率计及电流注入探头等自主研发实力。特别是射频领域,能够的提供纯国产的射频测试系统,性能也在行业内领xian。
    留言咨询
  • 深能级瞬态谱仪DLTS 400-860-5168转3281
    仪器简介: 美国高分辨深能级瞬态谱仪是半导体领域研究和检测半导体杂质、缺陷深能级、界面态等的重要技术手段!测试功能:电容模式、定电容模式、电流模式、(双关联模式)、光激发模式、FET分析、MOS分析、等温瞬态谱、Trap profiling、俘获截面测量、I/V,I/V(T) 、C/V, C/V(T) 、TSC/TSCAP 、光子诱导瞬态谱、DLOS。 测试根据半导体P-N结、金-半接触结构肖特基结的瞬态电容(△C~t)技术和深能级瞬态谱的发射率窗技术测量出的深能级瞬态谱,是一种具有很高检测灵敏度的实验方法,能检测半导体中微量杂质、缺陷的深能级及界面态。通过对样品的温度扫描,给出表征半导体禁带范围内的杂质、缺陷深能级及界面态随温度(即能量)分布的DLTS谱,集成多种全自动的测量模式及全面的数据分析,可以确定杂质的类型、含量以及随深度的分布。 也可用于光伏太阳能电池领域中,分析少子寿命和转化效率衰减的关键性杂质元素和杂质元素的晶格占位,确定是何种掺杂元素和何种元素占位影响少子寿命。 感谢中国科学院宁波材料研究所,国家硅材料深加工产品质量监督检验中心 南昌大学 西安电子科技大学成为此设备的专业用户!! 此设备在全球用户众多,比欧洲设备性能价格比高,是研究材料深能级领域的理想工具!!使用闭循环液氦制冷机,从低温到高温只需要升温一次,就能完全得到所有频率的曲线,不同频率不再需要再做一次升降温, 这是其它设备所不具有的功能!Semetrol 的DLTS系统温度范围:25K - 700K,液氦制冷,性能价格比高系统配置:DLTS数据采集及分析软件 (DLTS, ODLTS, DDLTS)Semetrol型快速电容测试器自动电容零点界面数据采集卡及中断箱 ODLTS穿导件机柜安装硬件及电缆设备机柜GPIB 接口卡电脑是双核, 2GB 内存, 19”显示器. USB 接口, CD书写用于数据传输.可调节探针(2)闭环液氦制冷机 (25-700K)温度控制器 电容测试器指标:型号: Semetrol电容零点界面: Yes全自动电容补偿: Yes全自动范围设置: Yes响应时间: ~25μsec补偿范围: 256pF测试频率: 1MHz测试信号级别: 15, 30, 50, 100 mV电容范围: 2000pF灵敏度: 1fF电压范围: +100V to –100V (Boonton) +10V to –10V (数据采集卡)灵敏度: 1mV (电压小于 20V时), 10mV (电压大于 20V时) 0.3mV (数据采集卡)脉冲宽度: 15ms to 0.1sec (Boonton内置偏压) 5μs to 0.1sec (数据采集卡)脉冲幅度: 到 200V, slew rate 20V/ms (Boonton) 到 20V, slew rate of 20V/μs (数据采集卡)电流: 5mA 数据采集卡瞬时记录:采样速率: 可至 1μs. 一般使用 50μs 采样次数: 10,000.记录分辨率: 50ns暂时分辨率, 优于 50aF 电容分辨率过滤: 全自动检测及正弦噪音消除
    留言咨询
  • 瞬态吸收光谱仪 400-860-5168转2623
    瞬态吸收光谱仪通过用&ldquo 泵浦&rdquo 脉冲激发分子系统,延迟后用探测脉冲获取系统信息的方式来研究分子特性。我司瞬态吸收光谱仪能适应瞬态吸收测量最广泛的范围。它具有多样的模块设计来允许选择&ldquo 泵浦&rdquo 和&ldquo 探测&rdquo 脉冲和在透射与反射二种操作模式上轻松地互换。Standalone and Lab ViewTM设计紧凑,占用珍贵的桌面空间小,具有良好的稳定性、自动化操作。泵浦源紧凑、无缝覆盖、宽广调谐。特点&优势1. 探测液体、固体以及薄膜中的瞬态吸收和模拟发射,分辨率可达100fs。2. 全电脑控制3. 宽波长范围瞬态谱的获得(200-1000nm)4. 4ns时间窗口(-DP 选项),8ns(-DDP选项)5. 瞬态吸收各向异性测量6. 双光束规格(-U选项)提供超高信噪比表现激发 SHG THG Rainbow 20F泵浦光谱范围 230-12,00nm探测光源 连续白光探测光谱范围 300-750nm;240-620nm and 380-1100nm optional扫描范围 2ns,1fs resolution;(4ns,2fs optional)时间分辨 <1.7 X pump pulsewidth噪音级别 1.3 x 104OD typical软件 Standalone and Lab ViewTM尺寸 89L*64W*25H cm重量 34Kg输入参数能量 >0.3mJ脉冲宽度 30&mdash 150fs光束直径 5---10mm (near TEM)偏振 Linear,horizontal重复率 0.3---3kHz波长 750---850nm光束高度 110nm
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 深能级瞬态谱仪(DLTS) 400-860-5168转5919
    v 脉冲发生器电压范围 ±100v,解析度0.3mVv 脉冲宽度 1us-1000sv 电容测量的高频信号 1M Hzv 电容补偿范围 1pF- 3300pFv HF–频率: 1M Hzv HF-信号: 100mVv 电容测试范围 2pF,20pF,200pF,2000pF,自动或手动v 电容测试灵敏度 0.01fFv 电流放大器最大测试电流: 15mAv 电流放大器电流分辨率 10pAv 数字瞬态记录器最大采样 64000点v 数字瞬态记录器采样间隔 2us-4sv 耦合方式 提供28种耦合方式,包括Boxcar和Lock-in方式.一次变温即可得到28组曲线和数据点单个温度点测试参数序列 单温度点设置18种测试参数序列,无需重复变温即可得到不同测试参数
    留言咨询
  • 多通道冲击力测量系统适用于工业瞬态力测量,配合我司高频力传感器,广泛用于爆炸、冲击、内燃机系统、电力、军事工业、航空航天领域。硬件基于高速USB通讯技术,156kHz、4通道高速同步采集瞬态压力信号,软件可设置硬件触发、软件触发方式测量,可实时显示、记录、查询测试数据。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制