当前位置: 仪器信息网 > 行业主题 > >

真空法密定仪

仪器信息网真空法密定仪专题为您提供2024年最新真空法密定仪价格报价、厂家品牌的相关信息, 包括真空法密定仪参数、型号等,不管是国产,还是进口品牌的真空法密定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空法密定仪相关的耗材配件、试剂标物,还有真空法密定仪相关的最新资讯、资料,以及真空法密定仪相关的解决方案。

真空法密定仪相关的论坛

  • 快速响应的大口径背压阀在聚合物挤出机定径箱真空度精密控制中的应用

    快速响应的大口径背压阀在聚合物挤出机定径箱真空度精密控制中的应用

    [align=center][img=挤出机定径箱真空度控制,690,305]https://ng1.17img.cn/bbsfiles/images/2022/07/202207051711221147_9479_3384_3.jpg!w690x305.jpg[/img][/align][color=#ff0000][size=14px]摘要:本文挤出工艺中定径箱对真空控制的要求,提出采用大口径真空背压阀的下游控制技术方案,整个过程是根据真空度设定点进行全自动控制,定径箱真空度控制稳定性可以轻松达到±2%以内,并可根据定径箱规格大小配备不同口径的背压阀,背压阀的影响速度可以达到1秒以内,完全能够满足各种高质量挤出产品的需要。[/size][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、背景介绍[/color][/size][size=14px]许多管状聚合物挤压件,例如PVC管,是使用真空定径箱制成的,以便在冷却前将挤出的塑料靠定型工具定型,真空挤出工艺的基本原理如图1所示。[/size][align=center][size=14px][img=挤出机定径箱真空度控制,600,260]https://ng1.17img.cn/bbsfiles/images/2022/07/202207051714169457_3024_3384_3.png!w690x299.jpg[/img][/size][/align][size=14px][/size][align=center]图1 真空挤出工艺原理图[/align][size=14px]在挤出过程中,真空稳定性对于创建和保持塑料产品的一致形状和表面光洁度至关重要,主要有以下几方面的要求:[/size][size=14px](1)在真空度1~760Torr(绝对压力)范围内任意真空度设定点控制要达到±2%稳定度。[/size][size=14px](2)挤出机定径箱一般尺寸空间较大,需要较大管路口径以提供较大抽气速率。[/size][size=14px](3)温度波动会对真空度带来不稳定影响,真空调节需具有较快的反应速度,使得工艺过程中带来真空度波动快速趋于稳定。[/size][size=14px]本文将针对上述挤出工艺对真空控制的要求,提出采用大口径真空背压阀的下游控制技术方案,整个过程是根据真空度设定点进行全自动控制,真空度控制稳定性可以轻松达到±2%以内,可根据定径箱规格大小配备不同口径的背压阀,背压阀的影响速度可以达到1秒以内,完全能够满足高质量挤出产品的需要。[/size][size=18px][color=#ff0000]二、技术方案[/color][/size][size=14px]基于图1所示的基本原理,针对挤出机的真空度控制,技术方案采用了下游控制模式,即保持定径箱的进口流量恒定(或漏气量恒定),通过调节下游抽气速率来实现真空度的精密恒定控制。选择下游控制模式主要是因为这种模式对定径箱这类低真空工艺非常有效。挤出设备的真空控制系统结构如图2所示。[/size][align=center][size=14px][img=挤出机定径箱真空度控制,690,519]https://ng1.17img.cn/bbsfiles/images/2022/07/202207051713532832_2347_3384_3.png!w690x519.jpg[/img][/size][/align][size=14px][/size][align=center]图2 挤出机真空控制系统结构示意图[/align][size=14px]在图2所示的真空控制系统中,真空调节器采用了真空背压阀,这种背压阀主要特点是:[/size][size=14px](1)具有各种规格口径,可满足各种规格挤出机真空系统的需要。[/size][size=14px](2)调节速度快,阀门从全闭到全开的时间可以小于1秒。[/size][size=14px](3)阀芯可在线拆装以便于清理或更换。[/size][size=14px]如图2所示,通过一个正压气体驱动的先导控制阀对真空背压阀进行调节。先导阀可采用以下三种方式进行控制:[/size][size=14px](1)手动输入设定值进行开环控制。[/size][size=14px](2)外接模拟信号进行开环控制。[/size][size=14px](3)外接真空度传感器和模拟信号进行闭环控制。[/size][size=14px]总之,通过本文所述技术方案,可以实现各种聚合物挤出机真空度的快速和精密控制。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 【原创】真空镀膜在线监测设备---光密度在线检测仪

    真空镀铝膜生产几经波折后如今又在全国迅速发展,主要看重的是真空镀铝膜复合材料不仅在包装上具有很大前途,而且在工农业、通讯、国防和科研领域中得以广泛应用;真空镀膜产品在以后必将形成主流,具有很大的市场空间。 然而,在国内所有的真空镀膜生产厂家中能够生产出品质好的镀铝膜很少,所以才会出现上马快,下马也快的现象。 究其原因主要是真空镀膜行业还是处于一个发展的阶段,目前所有的真空镀膜厂家,都还没有使用一款合适的真空镀膜监测设备---真空镀膜光密度在线检测仪。所以在生产过程中很难控制好镀膜层厚度的均匀性,造成镀膜产品质量不过关,以至于镀膜品质不够好;而且生产效率低,真空镀膜生产厂家往往需要投入较大成本。 真空镀膜质量的影响因素较多,除了跟设备有关,还与操作人员的水平,技术人员的指导和合适的工艺条件有很大关系。 但是不可否认,决定真空镀膜产品品质的最重要因素是镀膜层厚度的均匀性;镀铝薄膜通常应用于具有阻隔性或遮光性要求的包装上使用,因此,镀铝层的厚度和表面状况以及附着牢度的大小将直接影响其镀铝膜性能。镀铝膜的检测主要体现在厚度、镀铝层牢度和镀铝层的表面状况等方面。 如果对镀铝膜检测方法有所了解的,就一定知道检测镀铝膜品质有一种方法叫光密度测量法,目前市场上深圳市林上科技已经研发生产出一款专门的光密度仪,它是用于直接测量镀铝膜的光密度值来判定镀铝膜产品品质的优劣。 薄膜表面镀铝的作用是遮光、防紫外线照射,既延长了内容物的保质期,又提高了薄膜的亮度,从一定程度上代替了铝箔,也具有价廉、美观及较好的阻隔性能。目前应用最多的镀铝薄膜主要有聚酯镀铝膜(VMPET)和CPP镀铝膜(VMCPP)。 由于真空镀铝薄膜上的镀铝层非常薄,因此不能用常规的测厚仪器检测其厚度,通常都是需要使用光密度法来检测。光密度(OD)定义为材料遮光能力的表征。它用透光镜测量。光密度没有量纲单位,是一个对数值,通常仅对镀铝薄膜和珠光膜进行光密度测量。 光密度是入射光与透射光比值的对数或者说是光线透过率倒数的对数。计算公式为D=log10(入射光/透射光)或OD=log10(1/透光率)。通常镀铝膜的光密度值为1-3(即光线透过率为10%-0.1%),数值越大镀铝层越厚,美国国家标准局的ANSI/NAPM IT2.19对试验条件做了详细规定。 但是对于国内众多真空镀膜厂家而言,需要在大批量的生产线上就能控制好镀膜产品的镀膜层厚度均匀性。那就需要使用透光率光密度在线检测仪,在真空镀膜生产线上实行连续监测,才能保证真空镀膜产品的质量,同时提高真空镀膜设备的在线生产效率,减少生产成本。

  • 步进电机驱动的数字针阀和电动球阀在MOCVD工艺真空压力精密控制中的应用

    步进电机驱动的数字针阀和电动球阀在MOCVD工艺真空压力精密控制中的应用

    [color=#990000]摘要:针对目前MOCVD设备和工艺中真空压力控制方面存在的问题,如多数设备仅能使用下游控制模式、节流阀响应速度不够、节流阀耐腐蚀问题和压力控制器采集精度不高,本文提出了相应的解决方案,以进行MOCVD设备的改进和提高工艺和产品质量。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、问题提出[/color][/size]在半导体行业内,MOCVD具有许多显著特点,可用于大面积生长,可精确控制成分和厚度,具有高重复性和生长速率,可覆盖复杂基板形状,可快速切换气路制备陡峭的多层界面,适用于原位退火等。但在MOCVD设备的开发和工艺调试中,需要研究和选择与生产相关的生长参数,这些参数包括反应室形状、工作压力、生长温度、基座转速、气体流速和入口温度等。MOCVD的工作压力一般为10 mtorr-500 torr范围内,工作压力的精密控制决定了反应室的流动稳定性,但在目前的真空压力控制中还存在以下问题:(1)如图1所示,目前的MOCVD设备基本都采用下游模式对工作压力进行控制,即在排气端安装节流阀进行排气流量调节实现反应室内的压力控制,但这仅适用于压力较高的工艺,如工作压力100~500torr范围。但对于有些工艺的低压要求,采用下游控制模式会造成工作压力波动较大,无法准确控制,从而影响产品质量。对于低工作压力的精密控制最好采用上游控制模式,即控制进气端的流量实现反应室的压力稳定。[align=center][img=MOCVD压力控制,600,265]https://ng1.17img.cn/bbsfiles/images/2022/02/202202050858525574_7248_3384_3.png!w690x305.jpg[/img][/align][align=center][color=#990000]图1 MOCVD典型压力控制系统示意图[/color][/align](2)MOCVD工艺过程始终伴随着温度变化,而温度变化会严重影响工作压力的稳定性和可控性,因此要求在温度变化过程中同时实现工作压力的准确控制,这就要求进气和排气控制阀的响应速度越快越好,控制阀从全开到全闭至少要控制在5秒内,1秒以内更佳。(3)有些MOCVD工作气体带有腐蚀性,相应的阀门也需具有较强的抗腐蚀性以提高设备的连续正常工作寿命。(4)目前绝大多数控制都采用PLC模组,但极少PIC控制器能达到24位的模数转换精度,对于工作压力的精密控制,建议采用24位精度的PID控制器以充分发挥电容式压力传感器的高精度测量优势。本文将针对目前MOCVD设备和工艺中存在的上述问题,提出相应的解决方案。[size=18px][color=#990000]二、压力精密控制方案[/color][/size]在MOCVD工作压力范围内,一般要求在一定范围内,反应室内的工作压力可以在任意设定点上准确恒定。为了满足低压和高压的不同压力范围精密控制,所提出的压力控制方案是在原有的下游控制模式上增加上游控制模式,真空压力控制系统结构如图2所示,具体内容如下:[align=center][color=#990000][img=MOCVD压力控制,600,330]https://ng1.17img.cn/bbsfiles/images/2022/02/202202050900060793_95_3384_3.png!w690x380.jpg[/img][/color][/align][align=center][color=#990000]图2 MOCVD真空压力控制系统结构示意图[/color][/align](1)在反应室的进气口和排气口分别安装步进电机驱动的电子针阀和电动球阀,电子针阀直接安装在进气口处,电动球阀安装在排气口和真空泵之间。对于MOCVD设备,可增加一个气囊以对进入的工作气体进行按比例混合后再经电子针阀进入反应室。当在高压下进行控制时,可固定电子针阀的开度,仅调节下游的电动球阀;在低压下进行控制时,可固定电动球阀的开度,仅调节上游的电子针阀。由此可满足不同压力控制的需要。(2)电子针阀和电动球阀都有高速型节流阀,电子针阀的响应速度为0.8秒,电动球阀有两种响应速度型号,分别是5秒和1秒。针阀和球阀的阀体采用不锈钢,密封件采用FFKM全氟醚橡胶,超强耐腐蚀性,可用于各种腐蚀性气体和液体。(3)在MOCVD中一般采用1000torr或10torr量程的电容压力计进行压力测量,其精度可达±0.2%。也可采用更高精度±0.05%的真空压力传感器进行测量。由此,方案中采用专用的24位A/D采集的高精度PID真空压力控制器,以匹配高精度电容式压力传感器的测量精度,并保证控制精度。综上所述,通过以上方案的实施,可以在整个真空压力范围内,将压力波动控制在±1%以内,并会快速响应反应室的温度变化实现压力的快速恒定,同时耐腐蚀性密封件将大幅度提高阀门的使用寿命。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 蒸发浓缩工艺中降低溶剂损耗的真空度精密控制解决方案

    蒸发浓缩工艺中降低溶剂损耗的真空度精密控制解决方案

    [size=14px][color=#ff0000]摘要:针对蒸发浓缩工艺中存在的溶剂损耗和真空调节阀门耐腐蚀性差的问题,本文提出了相应的解决方案,其中包括了真空度精密控制方法、真空度与温度同时配合控制方法以及采用强耐腐蚀性的电动阀门作为真空度调节阀。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=14px]在溶剂萃取过程中一般会采用真空蒸发浓缩工艺,由于溶剂往往具有很好的挥发性,使得在真空抽取过程中溶剂容易产生损耗,有时可以达到5~8%的损耗。因此,为了解决蒸发浓缩工艺中溶剂的损耗,需要解决以下几方面的问题:[/size][size=14px](1)真空度的精确控制问题,如定点控制和程序控制,这是降低溶剂损耗的关键。[/size][size=14px](2)真空度和温度的同时控制问题,这是由于不同的真空度决定了溶液的沸点,通过真空度和温度的同时协调控制,可大幅度提高溶剂的出产率。[/size][size=14px](3)在蒸发浓缩工艺中,很多溶剂和溶液往往具有一定的腐蚀性,这就要求真空调节阀门具有很好的耐腐蚀性。[/size][size=14px]为解决蒸发浓缩工艺中降低溶剂损耗的要求,本文提出了真空度精密控制解决方案,其中包括了采用强耐腐蚀性的电动阀门作为真空度调节阀。[/size][size=18px][color=#ff0000]二、解决方案[/color][/size][size=14px]对于蒸发浓缩工艺中的真空度和温度的精密控制,其控制系统的整体结构如图1所示。[/size][align=center][size=14px][color=#ff0000][img=真空压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211029267972_5007_3384_3.png!w690x388.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 蒸发浓缩工艺的真空度和温度控制系统结构示意图[/color][/align][size=14px]真空度精密控制的基本原理是动态控制方法,即根据控制设定值和真空计测量值,分别调整真空容器的进气流量和排气流量,使这进出流量达到动态平衡。如果要进行自动化控制,则需采用PID控制算法和相应控制器。[/size][size=14px]如图1所示,本文提出的真空度精密控制解决方案就是采用了动态控制方法,采用电动针阀调节进气流量,采用电动球阀或电动针阀调节抽气流量,真空泵用作真空源,整个真空度的自动控制采用了PID控制器。[/size][size=14px]为了同时实现温度控制功能,本方案采用了双通道的PID控制器,一个通道用来控制真空度,另一个通道用来控制温度。此双通道PID控制器如图2所示。此PID控制具有24位A/D和16位D/A,具有47种(热电偶、热电阻、直流电压)输入信号形式,可连接各种真空度和温度传感器进行测量、显示和控制。2路独立测量控制通道,两线制RS485,标准MODBUSRTU 通讯协议。[/size][align=center][color=#ff0000][size=14px][img=真空压力控制,363,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211030055351_2240_3384_3.png!w515x567.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图2 VPC2021系列双通道PID控制器[/align][align=left][size=14px]为实现真空度控制过程中的高精度调节,采用了数控步进电机进行精细调节的电子针阀,如图3所示。此系列数控针阀的磁滞远小于电磁阀,并具有1秒以内的高速响应,特别是采用了氟橡胶(FKM)密封技术,使阀具有超强的耐腐蚀性。与数控电子针阀配备有一个步进电机驱动电路模块,给数控针阀提供了所需电源(24VDC)和控制信号(0~10VDC),同时也可提供 RS485 串口通讯的直接控制。[/size][/align][align=center][size=14px][img=真空压力控制,182,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211031223529_3651_3384_3.png!w275x604.jpg[/img][/size][/align][size=14px][/size][align=center]图3 NCNV系列电动针阀[/align][align=left][size=14px]对于较大口径的抽气管路,本方案采用了微型电动球阀,如图4所示。此系列的电动球阀是一种小型电动阀门,阀门开度可根据控制信号(0~10VDC)的变化连续调节,最快开启闭合时间小于7秒,也可达到小于1秒的开启闭合时间,其执行器和阀体的一体化设计,减小了外形体积,价格低廉,常安装在密封容器和真空泵之间用于调节抽气速率。[/size][/align][align=center][size=14px][img=真空压力控制,300,387]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211031028665_5415_3384_3.png!w521x673.jpg[/img][/size][/align][size=14px][/size][align=center]图4 LCV-DS系列电动球阀[/align][size=14px][/size][size=14px]总之,通过本文所述的解决方案,在蒸发浓缩工艺中的真空度控制精度可以达到1%,同时还可以进行相应的温度控制,真空调节阀具有超强的耐腐蚀能力,可有效降低溶剂的损耗。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 低压渗碳工艺中的真空度和温度精密控制解决方案

    低压渗碳工艺中的真空度和温度精密控制解决方案

    [color=#ff0000]摘要:为了满足低压渗碳工艺中对真空度精密控制的要求,本文提出了相应的解决方案,其中包括增加一个混气罐用于渗透气体混合、采用上游和下游形式的动态控制方法和真空度与温度同时配合控制方法,由此可实现渗透工艺中真空度和温度的快速和精密控制。[/color][size=18px][color=#ff0000]一、问题的提出[/color][/size]低压渗碳又称为真空渗碳,是在低压真空状态下,向高温炉内通入渗碳介质进行快速渗碳的工艺过程。真空渗碳工艺可分为一段式、脉冲式、摆动式几种形式,其中真空度、温度和渗碳时间等随具体要求的不同会发生相应变化,特别是真空度会随着温度变化发生剧烈变化。因此在真空渗碳工艺中,真空度控制方面需要解决以下几方面的问题:(1)真空度的快速精确控制问题,如定点控制、程序控制和快速脉冲控制,都要求真空控制系统具有较高的响应速度和控制精度。特别是在真空度全量程范围实现精密控制,势必要根据不同量程采用不同的真空度传感器和相应的上游和下游控制模式。(2)真空度和温度的同时控制问题,这是渗碳是在高温环境下进行,要求真空度和温度的同时协调控制。为满足低压渗碳工艺中对真空度精密控制的要求,本文提出了真空度精密控制解决方案,并采用双通道PID控制实现温度的同步控制。[size=18px][color=#ff0000]二、解决方案[/color][/size]低压渗透工艺中的真空度和温度控制系统,其整体结构如图1所示。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,690,482]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260835413442_9140_3384_3.png!w690x482.jpg[/img][/color][/align][align=center][color=#ff0000]图1 低压渗碳工艺中的真空度和温度控制系统结构示意图[/color][/align]真空度精密控制的基本原理是动态控制方法,即根据控制设定值和真空计测量值,分别调整渗碳室的进气流量和排气流量,使这进出流量达到动态平衡。如果要进行自动化控制,则需采用PID控制算法和相应控制器。如图1所示,本文提出的真空度精密控制解决方案就是采用了动态控制方法,采用电动针阀调节进气流量,采用电动球阀或电动针阀调节抽气流量,真空泵用作真空源,整个真空度的自动控制采用了PID控制器。对于不同的低压渗碳工艺,其真空度的控制范围为1Pa~100kPa范围。因此在具体工艺中,不同真空度范围内的控制需要采用不同的动态控制模式。对于1Pa~1kPa高真空区间内的真空度控制,采用固定抽气流量、调节进气流量的上游控制模式;对于1kPa~100kPa低真空区间内的真空度控制,采用固定进气流量、调节抽气流量的下游控制模式。如图1所示,为了实现对进气流量的调节和控制,在渗碳室的进气端增加一个混气罐,采用气体质量流量计分配各种渗透气体进入混气罐,混合后的渗透气体再通过电动针阀进行流量调节和控制。为了同时实现温度控制功能,本方案采用了双通道的PID控制器,一个通道用来控制真空度,另一个通道用来控制温度。此双通道PID控制器如图2所示。此PID控制具有24位A/D和16位D/A,具有47种(热电偶、热电阻、直流电压)输入信号形式,可连接各种真空度和温度传感器进行测量、显示和控制。2路独立测量控制通道,两线制RS485,标准MODBUSRTU 通讯协议。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,363,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260836105451_4665_3384_3.png!w515x567.jpg[/img][/color][/align][align=center][color=#ff0000]图2 VPC2021系列双通道PID控制器[/color][/align]为实现真空度控制过程中的高精度调节,采用了数控步进电机进行精细调节的电子针阀,如图3所示。此系列数控针阀的磁滞远小于电磁阀,并具有1秒以内的高速响应,特别是采用了氟橡胶(FKM)密封技术,使阀具有超强的耐腐蚀性。与数控电子针阀配备有一个步进电机驱动电路模块,给数控针阀提供了所需电源(24VDC)和控制信号(0~10VDC),同时也可提供 RS485 串口通讯的直接控制。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,182,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260836266795_6061_3384_3.png!w275x604.jpg[/img][/color][/align][align=center][color=#ff0000]图3 NCNV系列电动针阀[/color][/align]对于较大口径的抽气管路,本方案采用了微型电动球阀,如图4所示。此系列的电动球阀是一种小型电动阀门,阀门开度可根据控制信号(0~10VDC)的变化连续调节,最快开启闭合时间小于7秒,也可达到小于1秒的开启闭合时间,其执行器和阀体的一体化设计,减小了外形体积,价格低廉,常安装在密封容器和真空泵之间用于调节抽气速率。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,309,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260836408860_4144_3384_3.png!w521x673.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图4 LCV-DS系列电动球阀[/align]总之,通过本文所述的解决方案,低压渗碳工艺中的真空度控制精度在全量程范围都可以达到1%,同时还可以进行相应的温度控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空精密控制应用:在真空烘箱中干燥细粉的秘诀

    真空精密控制应用:在真空烘箱中干燥细粉的秘诀

    [color=#990000][b]摘要:针对目前普通真空烘箱在干燥细粉中存在污染系统和扬尘排出等安全隐患问题,特别是针对客户提出的真空干燥箱技术改造要求,本文提出了烘箱真空度程序控制的解决方案。解决方案的核心是要实现真空烘箱的受控冲洗和排放循环,更重要的要使烘箱真空度随时间有个缓慢且可控的变化过程,而这个变化过程可根据不同干燥细粉工艺进行任意设定。本文还详细介绍了解决方案中相应配套装置的关键技术参数和功能。[/b][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#990000]一、问题的提出[/color][/size][/b]真空干燥是一种将物料置于真空负压条件下,并适当通过加热达到负压状态下的沸点或者通过降温使得物料凝固后通过溶点来干燥物料的干燥方式。常见的干燥器类型主要包括托盘、流化床、喷雾、旋转和真空烘箱干燥器等。真空干燥过程是在与真空泵相连的密闭腔室内进行,而真空烘箱则是利用温度和真空压力的平衡来降低腔室内和被干燥产品的湿度。该技术是用于热敏、吸湿和/或有毒粉末和颗粒的最常见的实验室、研究和工业干燥。常用干粉的行业包括:制药、食品加工、塑料和化学加工。对于细粉的真空干燥,常出现的问题之一是无论采取何种类型的干燥设备,干粉都会在干燥机内的各个位置或真空泵等下游工艺设备中堆积成块状或层状物,从而影响真空泵的正常运转和使用寿命。如果细粉从真空泵中排出,还会引起其他潜在的危险问题出现。最近有真空烘箱厂家明确提出要对现有的真空烘箱进行技术升级,要求我们提供相应的技术配套措施以彻底解决真空烘箱在干燥细粉过程中出现的上述问题。本文将对相应的解决方案进行详细介绍,解决方案的核心是要实现真空烘箱的受控排放,使烘箱真空度有个缓慢且可控的变化过程。本文还详细介绍了解决方案中相应配套装置的关键技术参数和功能。[size=18px][color=#990000][b]二、解决方案[/b][/color][/size]在真空干燥细粉的工艺中不产生扬尘和堆积成块的现象,需要采取两方面的措施:(1)控制排放:在真空箱体内引入少量干燥空气或氮气以去除箱体内的水蒸气,也可以同时进行加热,这样通过排气/进气的循环冲洗会有助于加快干燥过程。但在干燥细粉时,如果不控制排气,此过程也可以冲洗掉细粉,因此要采用精密可控的抽气阀来进行微小排气流量控制。(2)控制真空:干燥过程的真空度变化一定要精密可控,特别是随着干燥时间的延长,真空度变化越要缓慢,以避免可能产生扬尘并被带到干燥机外的空气中。由此可见,解决细粉真空干燥问题的关键是要实现真空度的程序控制,真空度控制程序包括线性变化和恒定两种,而且控制程序可以任意设定,由此可进行各种不同的真空干燥工艺。按照真空度程序控制思路设计的真空烘箱技术改造方案如图1所示,整个真空控制系统主要包括进气电动针阀、排气电动球阀、真空计、可编程PID控制器和真空泵,PID控制器分别调节进气针阀和排气球阀的开度大小来实现箱体内真空度按照设定程序进行变化。[align=center][img=01.干燥箱真空线性控制系统结构示意图,690,434]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241814336548_5671_3221506_3.png!w690x434.jpg[/img][/align][align=center]图1 真空烘箱可编程真空度控制系统结构示意图[/align]对于细粉干燥过程的真空度控制,关键是要使得真空度按照某个设定的速率进行变化,该速率将在较长的一段时间内(如10-20分钟)将烤箱内的真空度从大气压缓慢降低到所需的低压压力。所谓速率是单位时间内的变化量,如 10Torr/min 斜率代表真空度在1分钟内逐渐变化10Torr 。对于我们一位客户的干燥粉末工艺,他们选择了大约 -150 Torr/min 的降压速率,他们将从 750 Torr 开始,一分钟后压力达到 600 Torr,然后下一分钟达到 450 Torr等,直到达到他们设定的目标压力。在目标压力达到后,也可以继续在目标压力处进行自动恒定控制。这样,通过这种自动化的真空度控制方式,可确保在干燥过程中粉末不会进入真空泵。此细粉干燥工艺用真空度控制系统具有以下特点:(1)普通细粉干燥工艺对最终达到的真空度要求并不是很高,真空度变化范围一般也只在10Torr~1个大气压的区间内,这时的真空度控制系统只需配备一只真空计就可覆盖所需压力变化范围。如果要求在更高的真空度下进行干燥,如0.1Torr~1个大气压范围,如图1所示,控制系统则需要配备两只真空计才能实现全量程真空度的精密测量和控制。(2)所用的真空度控制器是一台高精度的双通道控制器,每个通道都具有独立的PID自动控制功能。每个通道都是24位AD和16位DA,双精度浮点运算和最小输出百分比为0.01%。控制器具有RS485通讯和标准MODBUS协议,配备的测控软件,可遥控操作和存储显示测试曲线。(3)在如图1的真空度控制系统中,分别在进气口和排出口出配备的电动针阀和电动球阀,控制器自动调节针阀和球阀的开度来实现真空度的精密控制。在低压范围的真空度控制过程中,一般是将负责下游排气的电动球阀调节为始终的全开状态,通过电动针阀来调节进气流量实现真空度控制;在高压范围的真空度控制过程中,一般是将负责上游进气的电动针阀调节为某一开度并保持固定不变,通过下游的电动球阀来调节排气流量实现真空度控制。另外,这里所配备的电动针阀和电动球阀都属于高速阀门,从全闭到全开用时都小于1秒以内,非常适合真空度的动态控制需要,采用0~10V或4~20mA模拟信号可以直接驱动这两种电动阀门,且这两种阀门都有较低的真空漏率,适用于各种密闭设备的高真空要求。总之,本文所述的可编程真空度控制解决方案技术成熟很高,经过了大量试验,验证了此方案的可行性和可靠性,真空度控制精度可以很轻松的达到±1%以内,可彻底解决真空烘箱中干燥细粉所带来的扬尘和结垢问题,此方案也已在众多其他真空设备和工艺中得到了应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 求教顶空法精密度的问题!!!

    各位做过卤代烃顶空法的,不知道你们怎么做精密度的,我平时做的时候直接配2个平行样进行测定,然后算标准偏差。现在做新方法确认,关于精密度这块,貌似要配制一定浓度的溶液重复进样6,7次左右。这样问题来了!现在普遍使用自动顶空进样器,进完一次样,原样品还可以继续顶空?先不说瓶盖上已经有上次取样时留下的针孔,热乎乎的瓶子还能继续恒温震荡?有没有做过的朋友能给解答一下,不胜感激!

  • 低压缓冲罐的真空度精密控制解决方案

    低压缓冲罐的真空度精密控制解决方案

    [align=center][color=#ff0000][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130915093546_2463_3384_3.png!w690x368.jpg[/img][/color][/align][color=#ff0000]摘要:低压缓冲罐广泛应用于各种真空工艺和设备中,本文主要针对缓冲罐在全量程内的真空度精密控制,并根据不同真空度范围和缓冲罐体积大小,提出了相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、背景介绍[/color][/size]低压缓冲罐是真空系统中常用的一种真空容器,主要通过提供真空“储存”来防止真空泵的过度循环,其基本原理是利用滞留量(体积)来提供更平稳的真空度操作。在真空工艺过程中,低压缓冲罐主要有以下两种结构形式:(1)真空度波动衰减:缓冲罐安装在真空单元之间,避免连续过程中真空度的波动传播。(2)独立操作:缓冲罐安装在单元之间以允许独立操作,例如在临时关闭期间以及连续和批处理单元之间。低压缓冲罐在独立操作形式中,一般需要具备以下功能:(1)对于小尺寸空间的工艺容器,很难实现真空度的高精度恒定或程序控制,真空度的波动和不准确很难达到工艺要求。为此在工艺容器上串接一个容积较大的低压缓冲罐,通过对缓冲罐真空度的精密控制,则可以完美解决此问题。(2)提供气液分离功能,防止工作液体直接倒灌入真空泵。(3)提供冷凝功能,避免反应容器内的部分溶剂转化为气态直接进入真空泵,由此降低真空泵的故障率和提高真空泵的使用寿命。本文主要针对缓冲罐在全量程内的真空度精密控制,提出相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[size=18px][color=#ff0000]二、解决方案[/color][/size]在低压缓冲罐真空度精密控制过程中,基本控制方法是调节缓冲罐的进气和出气流量,并通过进出气流量的动态平衡来实现缓冲罐内部气压的准确控制,即所谓的动态平衡法。但在不同真空工艺和设备中,对低压缓冲罐的真空度范围会有不同的要求,相应的动态控制模式也不尽相同。而且,不同体积大小的低压缓冲罐,为实现缓冲罐内真空度的快速准确控制,则需要不同的调节装置。以下将针对这些不同要求,提出相应的具体解决方案和相关装置细节。[color=#ff0000]2.1 低真空(高压)和高真空(低压)控制方式[/color]一般我们将低于一个大气压下(760Torr)的绝对压力称之为真空(或低压),而整个真空范围又分为低真空(10-760Torr)、高真空(0.01~10Torr)和超高真空(0.01Torr)三部分。本文将只涉及低真空和高真空这两个范围内的真空度精密控制,对于超高真空,目前还没有很好的技术手段进行精密控制,基本还都是仅靠真空泵的抽气能力来实现数量级级别的控制。低真空和高真空缓冲罐真空度的动态平衡法控制中,为达到快速和准确的控制效果,必须分别采用上游和下游两种控制模式,通过上下游这两种模式及其两种模式之间的切换,可以实现真空度全量程内的精确控制。低压缓冲罐动态平衡法真空度控制系统的整体结构如图1所示。整个缓冲罐真空度控制系统主要由进气阀、抽气阀、真空泵、真空传感器和PID控制器组成,它们各自的功能如下:[align=center][color=#ff0000][img=低压缓冲罐真空度控制,500,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130911289636_8164_3384_3.png!w690x553.jpg[/img][/color][/align][align=center][color=#ff0000]图1 低压缓冲罐真空度控制系统结构示意图[/color][/align](1)进气阀的作用是调节进气流量。在缓冲罐真空度控制过程中,进气流量一般在较小的范围内进行调节,因此进气阀一般为电动针阀。(2)抽气阀的作用是调节出气流量。在缓冲罐真空度控制过程中,进气流量一般在较大的范围内进行调节,因此进气阀的口径大小一般需根据需要进行配置,后面还会进行详细介绍。(3)真空泵的作用是提供真空源。在缓冲罐真空度控制过程中,真空泵要根据真空度要求和缓冲罐体积大小来进行选配。(4)真空传感器的作用是实时测量缓冲罐的真空度并将测量信号反馈给PID控制。在缓冲罐真空度控制过程中,要根据缓冲罐真空度量程和精度要求选配传感器,一般是低真空和高真空范围内各配一个真空计。为保证测量精度,一般会选择电容式真空计。也可以根据需要只选择一个精度较差的皮拉尼计来实现整个高低真空范围内的测量。(5)PID控制器的作用是通过接受到的真空度信号来分别调节进气阀和出气阀,使得缓冲罐内的真空度达到设定值或按照设定程序进行变化。在全量程范围内的真空度控制时,如果需要采用两只不同量程真空计进行全量程覆盖,就需要具有传感器自动切换功能的双通道PID控制器,以便在不同量程范围内的控制过程中进行自动切换。如果采用电容式真空计来实现高精度的真空度控制,相应的PID控制器则需要具有24位A/D和16位D/A的高精度。在缓冲罐的不同真空度范围内,需要采用以下不同的控制模式才能达到满意的控制精度。(1)上游控制模式:上游控制模式也叫进气调节模式,主要适用于高真空范围内的精密控制。在上游控制模式中,抽气阀门基本是全开方式全速抽气,通过调节进气流量来实现缓冲罐内高真空的精密控制。(2)下游控制模式:下游控制模式也叫出气调节模式,主要适用于低真空范围内的精密控制。在下游控制模式中,进气阀门基本是某一固定开度,即固定进气流量,通过调节抽气流量来实现缓冲罐内低真空的精密控制。另外需要特别注意的是,不论采取上述哪一种控制模式,控制精度还受到真空度传感器和PID控制精度的限制。因此,除了选择合理的上下游控制模式之外,还需要根据不同精度要求选择合理的传感器和控制器。[color=#ff0000]2.2 不同缓冲罐体积的真空度控制[/color]缓冲罐真空度精密控制中,除了涉及上述的控制模式选择之外,还涉及控制速度问题,即根据缓冲罐的容积大小和真空度控制范围来确定合理的真空度准确控制速度。这方面主要涉及以下两方面的内容和基本原则:(1)对于小容积的缓冲罐,可以选择具有小流量调节能力的进气阀、排气阀和真空泵。(2)对于较大容积的缓冲罐,可能就需要配备较大流量调节能力的进气阀、排气阀和真空泵。其中进气阀和排气阀需要配备电动球阀等大口径阀门,具体情况还需根据所控真空度范围来进行进一步的合理选择。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    [size=16px][color=#6666cc][b]摘要:针对工作范围在5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa,控制精度在0.1%~0.5%读数的全量程真空压力综合测量系统技术要求,本文提出了稳压室真空压力精密控制的技术方案。为保证控制精度,基于动态平衡法,技术方案在高真空、低真空和正压三个区间内分别采用了独立的控制方法和不同技术,所涉及的关键部件是微小进气流量调节装置、中等进气流量调节电动针阀、排气流量调节电动球阀、正压压力电子调节器和真空压力PID控制器。配合相应的高精度真空压力传感器,此技术方案可以达到控制精度要求,并已得到过试验验证。[/b][/color][/size][align=center][img=全量程真空压力综合测量系统的高精度控制解决方案,690,384]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121052314254_1235_3221506_3.jpg!w690x384.jpg[/img][/align][size=16px][/size][b][size=18px][color=#6666cc]1. 项目概述[/color][/size][/b][size=16px] 真空压力综合测量系统是一个用于多规格真空传感器测量校准的高精度动态真空压力测量系统,主要由一套真空稳压室、一套电容薄膜真空测量模块、一套冷阻复合真空测量模块、一套高精度真空测量模块,其技术要求如下:[/size][size=16px] (1)真空稳压室体积为1L;[/size][size=16px] (2)真空稳压室含有10路VCR转接接头;[/size][size=16px] (3)真空稳压室加热烘烤温度范围:室温到200℃;[/size][size=16px] (4)冷阻复合真空测量模块量程为(5×10[font='times new roman'][sup]-7[/sup][/font]~1×10[font='times new roman'][sup]5[/sup][/font])Pa;[/size][size=16px] (5)冷阻复合真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (6)电容薄膜真空测量模块量程为10Torr,测量精度为0.5%;[/size][size=16px] (7)电容薄膜真空测量模块接口为8VCR接口;[/size][size=16px] (8)电容薄膜真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (9)高精度真空测量模块量程为0.1~10000Torr;[/size][size=16px] (10)高精度真空测量模块测量精度为读数的0.1%;[/size][size=16px] (11)配备高精度真空测量模块的控制器,满足真空测量模块的使用要求,包含通讯接口。[/size][size=16px] 从上述技术要求可以看出,整个系统的真空压力范围覆盖了负压和正压,具体的全量程覆盖范围用绝对压力表示为5×10-7~1.3×106Pa,其中包含了高真空(5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]-1[/sup][/font]Pa)、低真空(1.3×10[font='times new roman'][sup]-1[/sup][/font]~1.3×10[font='times new roman'][sup]5[/sup][/font]Pa)和正压(1.3×10[font='times new roman'][sup]5[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa)的精密测量和控制,更具体的是要在一个稳压室内实现三个真空压力范围的不同测量和控制精度。以下将对这些技术要求的实现,特别是对真空压力的精密控制技术方案和相关关键配套装置给出详细说明,其他通用性的装置,如机械泵和分子泵则不进行详细描述。[/size][size=18px][color=#6666cc][b]2. 高精度宽量程真空压力控制技术方案[/b][/color][/size][size=16px] 真空压力控制系统的技术方案基于动态平衡法控制原理,即在一个密闭容器内,通过调节进气和出气流量并达到相应的平衡状态来实现真空压力设定点的快速控制。在动态平衡法实际应用中,只要配备相应精度的传感器、执行器和控制器,可以顺利实现设计精度的控制。为此,针对本项目提出的技术指标,基于动态平衡法,本文所提出的具体技术方案如图1所示。[/size][align=center][size=16px][color=#6666cc][b][img=01.真空压力综合测量控制系统结构示意图,690,410]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121043350021_6971_3221506_3.jpg!w690x410.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图1 高精度全量程真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 对应于项目技术指标中的高真空、低真空和正压压力控制要求,图1所示的真空压力控制系统由三个相对独立的控制系统来实现项目技术要求,具体内容如下:[/size][size=16px][color=#6666cc][b]2.1 高真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于高真空控制,需要采用上游控制模式,在分子泵全速抽气条件下,需要在上游(进气端)通过精密调节微小进气流量,来实现高真空范围内任意真空度设定点的恒定控制。如图1所示,高真空控制系统主要包括了冷阻真空计、微量进气调节装置和真空压力控制器,这三个装置构成一个闭环控制系统,它们的精度决定了高真空度的最终控制精度。[/size][size=16px] 需要说明的是高真空和低真空控制系统公用了一套机械泵和分子泵,高真空控制时需要分别使用机械泵和分子泵,而在低真空控制时仅使用机械泵。[/size][size=16px] 对于高真空传感器而言,可根据设计要求选择相应量程和测量精度的真空计,其测量精度最终决定了控制精度,一般而言,控制精度会差于测量精度。[/size][size=16px] 在高真空控制中,关键技术是精密调节微小进气流量。如图1所示,微量进气调节装置有电动针阀、泄漏阀和压力调节器组成,可实现0.005mL/min或更低的微小进气流量调节。[/size][size=16px] 微量气体调节时,首先通过压力调节器来改变泄漏阀的进气压力,使泄漏阀流出相应的微小流量气体,然后通过调节电动针阀来改变进入真空稳压室的气体流量。压力调节器和电动针阀的控制则采用的是24位AD、16位DA和0.01%最小输出百分比的双通道真空压力PID控制器。[/size][size=16px][color=#6666cc][b]2.2 低真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于低真空控制,则需要分别采用上游(进气端)和下游(排气端)两种控制模式。如图1所示,两种控制模式的具体内容如下:[/size][size=16px] 在低真空的0.01~10Torr范围内,需要采用10Torr量程的电容真空计,并在机械泵全速抽气的条件下(电动球阀全开),通过动态改变电动针阀的开度来调节进气流量以实现设定真空度的精密控制。同时在电动针阀的进气端增加一个压力调节器以保证电动针阀进气压力的稳定。[/size][size=16px] 在低真空的10~760Torr范围内,需要采用1000Torr量程的电容真空计,并在固定电动针阀开度和机械泵全速抽气的条件下,通过动态改变电动球阀的开度来调节排气流量以实现设定真空度的精密控制。[/size][size=16px] 同样,在低真空控制系统中也同样采用了高精度的双通道真空压力控制器,两路输入通道分别接10Torr和1000Torr的薄膜电容真空计,两路输出控制通道分别接电动针阀和电动球阀,由此可实现两个低真空范围内的真空度精密控制。[/size][size=16px] 尽管电容真空计可以达到0.2%的测量精度,但要实现项目0.5%的控制精度,需要电动针阀和电动球阀具有很快的响应速度,电动针阀要求小于1s,而电动球阀要求小于3s,另外还要求真空压力控制器也同样具有很高的测量和调节精度,这些要求同样适用于高真空度控制。[/size][size=16px][color=#6666cc][b]2.3 正压压力控制系统[/b][/color][/size][size=16px] 对于正压压力控制采用了集成式动态平衡法压力调节器,并采用了串级控制方法。如图1所示,正压控制系统由压力调节器、压力传感器和真空压力控制器构成的双闭环控制回路构成。采用相应精度和量程的压力传感器和压力调节器可实现0.1%以内的控制精度。[/size][size=18px][color=#6666cc][b]3. 低真空控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于低真空精密控制解决方案,我们进行过相应的考核试验。低真空上游和下游控制考核试验装置如图2和图3所示,其中分别采用了10Torr和1000Torr薄膜电容真空计。[/size][align=center][size=16px][color=#6666cc][b][img=02.上游控制模式考核试验装置,550,371]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044011178_1432_3221506_3.jpg!w690x466.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图2 上游控制模式考核试验装置[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=03.下游控制模式考核试验装置,550,338]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044250558_2395_3221506_3.jpg!w690x425.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图3 下游控制模式考核试验装置[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的控制结果如图4和图5所示。[/size][align=center][size=16px][color=#6666cc][b][img=04.上游低真空度考核试验曲线,550,333]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044433769_7471_3221506_3.jpg!w690x418.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图4 低真空上游考核试验曲线[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=05.下游低真空度考核试验曲线,550,327]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045002696_1848_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图5 低真空下游考核试验曲线[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的恒定控制波动率如图6和图7所示。[/size][align=center][size=16px][color=#6666cc][b][img=06.上游模式低真空度恒定控制波动度,550,309]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045233797_3751_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图6 上游模式低真空恒定控制波动度[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=07.下游模式低真空度恒定控制波动度,550,340]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045436717_8569_3221506_3.jpg!w690x427.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图7 下游模式低真空恒定控制波动度[/b][/color][/size][/align][size=16px] 通过上下游两种控制模式的考核试验,可得出以下结论:[/size][size=16px] (1)配备有目前型号电动针阀、电动球阀和 PID 控制器的低真空控制系统,在采用了薄膜电容真空计条件下,恒定真空度(压强)控制的波动率可轻松的保持在±0.5%以内。[/size][size=16px] (2)由于真空控制系统中进气或出气流量与真空度并不是一个线性关系,因此在整个测控范围内采用一组 PID 参数并不一定合适,为了使整个测控范围内的波动率稳定,还需采用 2 组或2组以上的 PID 参数。[/size][size=18px][color=#6666cc][b]4. 正压压力控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于正压压力控制解决方案,同样进行过相应的考核试验。正压压力精密控制考核试验装置如图8所示,其中采用了测量精度为0.05%的压力传感器。[/size][align=center][size=16px][color=#6666cc][b][img=08.正压压力考核试验装置,600,336]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046014855_1011_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图8 正压压力考核试验装置[/b][/color][/size][/align][size=16px] 考核试验的压力范围为表压0.1~0.6MPa,选择不同的设定点进行恒定控制并检测其控制的稳定性。全量程的正压压力控制结果如图9所示。[/size][align=center][size=16px][color=#6666cc][b][img=09.正压压力考核试验曲线,600,337]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046261180_1880_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图9 正压压力考核试验曲线[/b][/color][/size][/align][size=16px] 为了更直观的演示正压压力控制精度,将每个压力设定点时的控制过程进行单独显示,以检测测定正压压力的稳定性,图10显示了不同正压设定点恒定控制时的正压压力和控制电压信号的变化曲线。[/size][align=center][size=16px][color=#6666cc][b][img=10.不同正压设定点恒定控制时的压力和控制电压试验曲线,690,555]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046471416_4804_3221506_3.jpg!w690x555.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图10 不同正压设定点恒定控制时的压力和控制电压试验曲线[/b][/color][/size][/align][size=16px] 通过所用的正压压力精密控制解决方案和考核试验结果,证明了此解决方案完全能够实现0.1%高精度的正压压力控制,具体结论如下:[/size][size=16px] (1)采用串级控制和模式,并结合后外置超高精度(0.05%)的压力传感器和真空压力控制器,完全可以有效提高压力调节器的压力控制精度,可实现0.1%超高精度的压力控制。[/size][size=16px] (2)如果选择更合适和狭窄的压力控制范围,还可以达到0.05%的更高控制精度。[/size][size=16px] (3)高精度0.1%的压力控制过程中,真空压力控制器的测量精度、控制精度和浮点运算是决定整体控制精度的关键技术指标,解决方案中采用的24位ADC、16位DAC和高精度浮点运算0.01%的输出百分比,证明完全可以满足这种高精度的控制需要。[/size][size=18px][color=#6666cc][b]5. 总结[/b][/color][/size][size=16px] 针对真空压力综合测量系统对高真空、低真空和正压精密控制的技术要求,解决方案可以很好的实现精度为0.1%~0.5%读数的精密控制,考试验证试验也证实此控制精度。[/size][size=16px] 更重要的是,解决方案提出了高真空度的精密控制方法和控制系统配置,这将解决在高真空度范围内的任意设定点下的恒定控制难题,为高真空度范围的计量校准测试提供准确的标准源。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~[/size][/align][size=16px][/size]

  • 真空脉冲卤制工艺中的真空度和温度快速和精密控制技术

    真空脉冲卤制工艺中的真空度和温度快速和精密控制技术

    [size=16px][color=#990000]摘要:卤制品作为传统美食,真空干燥工艺可有效改善加工品质和缩短生产时间而越来越在卤制品研制和生产工艺得到广泛应用。针对新型真空脉冲卤制工艺中对真空度这一重要工艺参数提出的快速和精密控制要求,本文详细介绍了完整的解决方案以及实施内容。[/color][/size][size=16px][color=#990000][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]卤制品作为传统而又营养丰富的食品,深受大众喜爱,是休闲、旅游的等需要的即食食品。目前的卤制品制造工艺主要分为传统卤制法和真空干燥法两大类,而新型的真空脉冲卤制工艺更是具有突出的特点,如文献[1]中所介绍的那样,真空脉冲卤制与传统卤制相比,不仅可以缩短卤制时间,由原来的8小时缩短到80分钟,大大提高生产效率、保留食品风味,还可以使微生物的含量降低了4个数量级,产品安全性大幅提升。[align=center][color=#990000][img=真空脉冲卤制,690,388]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281129045007_5097_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图1 真空脉冲卤制工艺过程中的真空度和温度变化示意图[/color][/align]典型的真空脉冲卤制工艺过程如图1所示,真空脉冲卤制工艺对设备的要求较高,对卤制工艺过程中的两个重要参数(真空度和温度)要求具有精密控制能力,具体要求如下:(1)可同时实现对真空度和温度的实时测量,并按照设定程序进行精密控制。由此控制器需具备至少两通道独立的信号采集和控制功能。(2)如图1所示,需要按照在设定的真空度和温度的上下限范围内以及相应的变化速度,对真空度和温度进行准确控制。这相当于要求控制器具备准确的程序曲线控制能力。本文将针对上述要求,提出相应的解决方案,并将介绍可用于真空脉冲卤制工艺的集成式真空度和温度控制器,介绍用于气体流量调节的步进电机驱动的耐腐蚀数控针阀和电动球阀,由此可很好的满足真空脉冲卤制工艺的精密控制要求。[size=18px][color=#990000]二、真空脉冲卤制工艺控制方案[/color][/size]真空脉冲卤制工艺中需要对真空度和温度进行精密控制,具体的控制系统实施方案如图2所示。[align=center][color=#990000][img=真空脉冲卤制,690,310]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281129179992_7999_3384_3.png!w690x310.jpg[/img][/color][/align][align=center][color=#990000]图2 真空脉冲卤制工艺控制系统结构示意图[/color][/align]在图2所示的真空度控制过程中,采用了与以往真空度控制不同的方法,即在真空腔室上增加了一路进气通道,并采用了响应速度较快的数控针阀、电动球阀和高精度多通道控制器。此方案具有以下两项突出特点:(1)可实现真空度在0.1~1000mBar范围内的精密控制,全量程范围内具有小于±1%的波动率。具体实施是真空度小于10torr时的控制采用上游模式,即全开电动球阀后调节数控针阀;真空度大于10torr时的控制采用下游模式,即恒定数控针阀开度后调节电动球阀。同时,快速响应型阀门和控制器能保证温度变化对真空度的影响最小。(2)配备的2通道集成式PID控制器,可实现对真空度和温度和转盘速度的同时控制。2个独立通道用于真空度和温度的测量、控制和显示。(3)上位计算机可与控制器实时通讯,以设计、编辑、存储和调用各种真空度和温度控制工艺曲线。[size=18px][color=#990000]三、24位高精度多功能控制器[/color][/size]为实现真空脉冲卤制工艺中真空度和温度的精密控制,目前我们已经开发出VPC-2021系列24位高精度可编程PID通用型控制器,如图3所示。此系列PID控制器功能十分强大,且性价比非常高。[align=center][color=#990000][img=真空脉冲卤制,650,338]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281129289786_1803_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图3 VPC-2021系列高精度PID程序控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)最高采样速度:50ms。(3)多种输入参数:47种(热电偶、热电阻、直流电压)输入信号,可连接各种温度和真空度传感器进行测量、显示和控制。(4)多种输出形式:16位模拟信号 、2A (250V AC)继电器、22V/20mA固态继电器、3A/250VAC可控硅。(5)多通道:独立1通道或2通道输出。2通道可实现温度和真空度的同时测控,报警输出通道可用来控制旋转电机。(6)多功能:正向、反向、正反双向控制、加热/制冷控制。(7)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(8)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(9)显示方式:数码馆和IPS TFT真彩液晶。(10)软件:通过软件计算机可实现对控制器的操作和数据采集存储。(11)外形尺寸:96×96×87mm(开孔尺寸92×92mm)。[size=18px][color=#990000]四、步进电机驱动耐腐蚀高速数控针阀[/color][/size]为实现真空度控制过程中的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,如图4所示。此系列数控针阀的磁滞远小于电磁阀,并具有1秒以内的高速响应,特别是采用了氟橡胶(FKM)密封技术,使阀门具有超强的耐腐蚀性,详细技术指标如图5所示。[align=center][color=#990000][img=真空脉冲卤制,450,385]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281129406454_4591_3384_3.png!w450x385.jpg[/img][/color][/align][align=center][color=#990000]图4 NCNV系列数控针阀[/color][/align][align=center][color=#990000][img=真空脉冲卤制,690,452]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281129509450_6453_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图5 NCNV系列数控针阀技术指标[/color][/align]NCNV系列数控针阀配备了一个步进电机驱动电路模块,给数控针阀提供了所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供 RS485 串口通讯的直接控制,其规格尺寸如图6所示。[align=center][color=#990000][img=真空脉冲卤制,690,219]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281130018013_9201_3384_3.png!w690x219.jpg[/img][/color][/align][align=center][color=#990000]图6 NCNV系列数控针阀驱动模块及其尺寸[/color][/align]真空微波干燥中使用数控针阀时,也可采用开环控制方式将针阀安装来真空泵前端代替电动球阀,通过调节抽气流量来实现真空度的控制,但这种开环控制方式的稳定性差,难达到较高的稳定性要求。所以一般建议采用图1中的闭环控制方式,即在真空腔室上增加一路进气控制阀,通过同时调节进气流量和排气流量实现真空度的精密控制。[size=18px][color=#990000]五、高速电动球阀[/color][/size][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]lc[/color][/url]V-DS系列电动球阀是一款微型电动球阀,其执行器和阀体的一体化设计减小了外形体积,如图7所示,常安装在密封容器和真空泵之间用于调节排气速率。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]lc[/color][/url]V-DS系列电动球阀的技术指标如图8所示。[align=center][color=#990000][img=真空脉冲卤制,400,461]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281130123098_1998_3384_3.jpg!w400x461.jpg[/img][/color][/align][align=center][color=#990000]图7 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]lc[/color][/url]V-DS系列电动球阀[/color][/align][align=center][color=#990000][img=真空脉冲卤制,500,568]https://ng1.17img.cn/bbsfiles/images/2022/02/202202281130349617_8904_3384_3.jpg!w690x784.jpg[/img][/color][/align][align=center][color=#990000]图8 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]lc[/color][/url]V-DS系列电动球阀技术指标[/color][/align]不同于传统电动球阀,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]lc[/color][/url]V-DS系列电动球阀具有以下突出特点:(1)具有小于7秒的较快响应速度,特殊订制可将响应速度提高到1秒以内。(2)密封性能良好,防护等级IP67,可用于低压和真空范围内的气流调节。(3)采用铜加不锈钢齿轮设计,精度高输出力矩大。(4)外型小巧,结构紧凑,安装简易,适用于设备的小型化。(5)运行电流低,可以使用电池供电。(6)寿命长达7万次到10万次。[size=18px][color=#990000]六、参考文献[/color][/size][1] 李海涛, 赵良忠, 范柳,等. 休闲豆干真空脉冲卤制工艺优化[J]. 食品工业科技, 2018, 39(17):7.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 美国埃米Angstrom V-950光谱仪 真空泵系统

    美国埃米Angstrom V-950光谱仪 真空泵系统

    使用过光电倍增管检测器直读光谱仪的用户都知道,真空泵的重要性。真空度满足要求且稳定,才能保证光室的稳定性和短波元素的光信号传输。像O、N、P、S、B、Te、As等短波元素光的最佳传输条件是真空环境。一台高端的光谱仪,一定会保证真空系统的长期稳定可靠。美国埃米Angstrom V-950 光谱仪使用的是国际大品牌安捷伦真空泵(如图一)。http://ng1.17img.cn/bbsfiles/images/2016/02/201602021412_584149_3057315_3.jpg图一、V-950真空泵安捷伦真空泵可以持续运转,运转率依据真空设定范围自动调整。真空度稳定在5Pa以下。在正常保养的情况下,该真空泵寿命可达30年。下图是安捷伦真空泵的技术参数(图二)。http://ng1.17img.cn/bbsfiles/images/2016/02/201602021412_584150_3057315_3.jpg图二、安捷伦真空泵参数V-950真空系统具有以下优势:1、 真空隔断技术 如遇突然断电或真空泵保养等情况,真空泵与光室相连的管路设计由真空隔断阀(如图三),即断开电磁阀的电源,泵与光室之间立即隔断。好处是,防止泵油倒吸,防止真空泄漏。2、 泵蒸汽过滤装置。光谱仪真空泵是24小时运转的,当真空达到稳定时,泵油的极少量油蒸汽有可能反向流量光室,V-950在泵与光室之间设计了油蒸汽过滤装置(如图三),只需要定期更换吸附剂即可。可以有效确保光室清洁无污染,即使十几年的老仪器光室内部组件依然光洁如新。3、 泵排气过滤装置。真空泵从光室抽出的气体是直排向空气的,为了减少对实验室空气的影响,V-950的真空泵排气口设计了泵排气过滤装置(如图三)。4、 真空泵维护简单。有了真空隔断阀,更换油气吸附剂,更换泵油都非常简单。不需要拆下真空泵,不需要等待很长时间光室真空度就能很快稳定。http://ng1.17img.cn/bbsfiles/images/2016/02/201602021412_584151_3057315_3.jpg图三、V-950真空系统精于细节是做好仪器的根基,美国埃米V-950光谱经过50多年的积累,各个细节都考虑的很周到,真空泵换油不需要把泵移出来,V-950的工程师在泵下方设置了放油口。使得V-950的真空泵维护很简便。http://ng1.17img.cn/bbsfiles/images/2016/02/201602021412_584152_3057315_3.jpg

  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    [color=#990000]摘要:在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。[/color][size=18px][color=#990000]一、问题的提示[/color][/size] 作为一种高精密光学仪器,迈克尔逊激光干涉仪得到了非常广阔应用,它可用于测量波长、气体或液体折射率、厚度、位移和倾角,具备对长度、速度、角度、平面度、直线度和垂直度等的高精密测量。但在高精密测量中,迈克尔逊干涉仪会受到气氛环境的严重影响,为此一般将被测物放置在低压真空环境中,如图1所示,并对真空度进行精密控制,否则会带来以下问题:[align=center][color=#990000][img=激光干涉仪真空度控制,500,315]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813137507_5730_3384_3.jpg!w690x435.jpg[/img][/color][/align][color=#990000][/color][align=center]图1 迈克尔逊激光干涉仪典型测试系统结构[/align] (1)测试环境的气体折射率波动,会对高精密测量带来严重影响。如果采用专门的气体折射率修正装置,测量精度也只能达到微米或亚微米量级,而无法实现更高精度的测量。 (2)如果真空腔室内有温度变化,腔室内的气压也会剧烈变化,相应折射率也会发生剧烈波动而严重影响干涉仪测量。 (3)在抽真空过程中,内外压差会造成真空腔室的微小变形,同时也会造成光学窗口产生位移和倾斜,从而改变测量光路的光程。 (4)在有些变温要求的测试领域,要求被测物能尽快的被加热和温度均匀,这就要求将真空度控制在一定水平,如100Pa左右,由此来保留对流和热导热传递能力。 总之,在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制。本文将介绍真空度的自动化控制技术以及具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 迈克尔逊激光干涉仪测试过程中,真空度一般恒定控制在100kPa左右,并不随温度发生改变。为此,拟采用如图2所示的真空度控制系统进行实施,具体内容如下:[align=center][color=#990000][img=激光干涉仪真空度控制,690,411]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813484950_7314_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图2 迈克尔逊激光干涉仪测试真空度控制系统结构[/color][/align] (1)采用1torr量程的电容真空计进行真空度测量,其精度可达±0.2%。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在真空腔室的进气口安装步进电机比例阀以精密调节进气流量。 (4)控制过程中,真空泵开启后全速抽取并保持抽速不变。然后对控制器进行PID参数自整定,使控制器自动调节比例阀的微小开度变化实现腔室真空度的精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 安捷伦气相色谱仪的真空电磁阀使用注意事项

    最近处理了几个安捷伦的设备异常问题,下面根据自己的经验与大家分享一下,现象:电磁阀工作一段时间后,不能工作了?主要因为该设备配套的电磁阀都为大电流电磁阀,因为要求真空密封性严实,所以比一般电磁阀的电流要大很多,才能保证真空状态下开关,而且要求零泄漏。所以电磁阀工作的电流一般都在5-7A左右,所以长时间用会出现电磁阀高温发热,而且如果保险丝(过载保护)设定值大于电磁阀额定工作值的话,长时间工作会烧坏电磁阀,注意:不要与真空泵并联一起,单独引入电源,过载保护要合理,就可以避免注意的问题!同时很多安捷伦电磁阀的问题,可以直接咨询电磁阀品牌原始供应商,他们更加专业,服务更好

  • 超低损耗单模光纤熔融拉锥制作中吸附夹具的真空压力精密控制技术

    超低损耗单模光纤熔融拉锥制作中吸附夹具的真空压力精密控制技术

    [align=center][img=真空压力控制,690,285]https://ng1.17img.cn/bbsfiles/images/2022/04/202204282026227435_9583_3384_3.png!w690x285.jpg[/img][/align][color=#ff0000]摘要:熔融法光纤拉锥系统中,极小损耗的光纤耦合对应于一个吸附固定光纤的最佳真空度,由此需要对吸附真空度进行精密控制,并找出此最佳真空度值。本文针对稳定批产制作极小损耗的光纤拉锥系统,提出了真空系统改进方案,由此可实现真空度的精密控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]在光纤拉锥系统制作光纤耦合器和光纤锥体过程中,一般采用真空吸附方式和特制夹具配合将两根或多根光纤定位并夹持在光学平台上,并以一定的方式使两根或多根裸纤旋转和对轴靠拢,用氢氧焰或激光进行加热熔融,同时以一定的速度向两边拉伸,最终在加热区形成双锥体形式的特殊波导结构。目前的这种光纤拉锥技术很难稳定地批量制作出损耗小于0.1的光纤耦合器,这主要是由于真空吸附将光纤固定的太紧所造成。有文献报道了对吸附固定夹具用的真空系统进行了改进,在一系列不同的吸附固定真空度下制作了相应的光纤耦合器,证明了在整个真空度范围内的耦合损耗有个最小区域,真空度在120mBar时损耗最小为0.05dB,如图1所示。[align=center][color=#ff0000][img=真空压力控制,500,310]https://ng1.17img.cn/bbsfiles/images/2022/04/202204282027598055_8620_3384_3.png!w690x428.jpg[/img][/color][/align][align=center][color=#ff0000]图1 不同真空压力下的耦合损耗[/color][/align]从图1结果可以看出,并不是真空度越高越好,真空度越高,光纤固定越紧,耦合损耗反而会较大。由此可见,为了得到超低损耗的光纤耦合器件,就必须对真空吸附装置的真空度进行精密控制。本文将针对光纤拉锥法制作超低损耗光纤耦合器件过程中对真空度精密控制的要求,提出真空控制系统技术方案以及相应的配套内容,以实现真空度的精密和快速控制。[size=18px][color=#ff0000]二、技术方案[/color][/size]为了实现左右拉伸夹具中对吸附真空度的精密控制,在原有真空系统中增加一个真空罐,只要实现对真空罐内真空压力的控制,即可对左右拉伸夹具的吸附真空度进行控制,如图2所示。[align=center][color=#ff0000][img=真空压力控制,550,452]https://ng1.17img.cn/bbsfiles/images/2022/04/202204282028327555_6494_3384_3.png!w690x568.jpg[/img][/color][/align][align=center][color=#ff0000]图2 光纤拉锥机真空度控制系统结构示意图[/color][/align]图2所示的真空度控制系统主要包括电动针阀、真空计、PID控制器和真空泵。真空度的精密控制采用动态控制法,即根据真空计的测量值与设定值的比较,PID控制器同时调节进气流量和抽气流量,以快速达到动态平衡,将真空度控制在设定值上,控制精度可达±1%。总之,通过真空度的精密控制,可实现超低损耗的光纤耦合器件的稳定批产制作。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • “百度文心”一言在超高真空度精密控制解决方案中的应用

    “百度文心”一言在超高真空度精密控制解决方案中的应用

    [size=16px][color=#cc0000]摘要:本文采用国产版本ChatGPT百度“文心一言”作为一种辅助工具,针对超高真空度精密控制装置的开发进行了初期的技术路线设计,对话调研的重点是了解可调节式微流量进气阀门和可用于连接非线性输出信号型真空计的PID控制器。总体而言,目前的人工智能技术所能提供的帮助十分有限,还无法替代研究人员的基本专业能力以及互联网技术的应用能力,但比较适合用来进行某个未知领域的入门级学习。[/color][/size][align=center][size=16px][color=#cc0000][b]===========================[/b][/color][/size][/align][align=left][b][size=18px][color=#c00000]1. [/color][color=#c00000]项目的提出[/color][/size][/b][/align][size=16px] ChatGPT做为全新一代知识增强大语言模型,使用特定的学习算法,可以用于对话方式的头脑风暴。正如最近的文献和各种报道所证明的那样,这种大语言模型的人工智能技术可能会给众多领域带来一场革命。然而,考虑到目前围绕这种人工智能技术的大肆宣传,也可能意味着对其当前能力存在着错误认识,虽然ChatGPT的应用范围似乎非常广泛,但在工业和科学界也存在一些问题。[/size][size=16px] 最近的很多报道都提出了一个严重的问题:虽然生成性聊天机器人是未来的变革工具,但大多数职业都需要快速解答来解决不确定性所带来的问题。聊天机器人有时会给出看似合理但完全错误的信息,这也是一个严重的问题。然而,无需置疑的是该工具可以加速研究,改善工作流程,降低语言障碍和展示新的想法。[/size][size=16px] 为了解ChatGPT能否有效地帮助仪器设备的研发,我们参考了有些文献中介绍的方法和途径,采用ChatGPT国产版百度“文心一言”研究ChatGPT在研发中的适用性,其中我们的重点是一个工业技术研究的主题:超高真空度的精密控制。问题是:ChatGPT能成为仪器设备开发人员的工具或有用的伙伴吗?本文介绍了实验方法、使用聊天机器人进行的查询以及对结果的讨论。我们工作的主要特点是展示了基于大语言模型的人工智能在未涉及的自动化控制领域中的适用性,并且我们的发现可能有助于从专业工业领域到教育和学术研究应用人工智能的讨论。[/size][align=left][b][size=18px][color=#c00000]2. [/color][color=#c00000]实验信息[/color][/size][/b][/align][size=16px] 我们想调查ChatGPT是否可以帮助我们开发各种仪器设备,我们的案例研究是超高真空度精密控制,这是因为超高真空度控制技术是最近在半导体行业(如镀膜、沉积、封装检漏、光刻机等)和仪器设备(如质谱仪、电子显微镜、加速器等)逐渐得到了重视。因此,聊天机器人可以在此超高真空度控制技术主题上开展工作,这从实际的软硬件开发角度来看也是十分有趣。此外,该主题的复杂性足以测试这种大语言模型人工智能对问题的各个层面给出答案的能力。本研究涉及以下几个技术层面:[/size][size=16px] (1)统一对超高真空度的定义和理解。[/size][size=16px] (2)对超高真空度控制装置进行分解,如分解为传感器、控制器和执行器三部分内容。[/size][size=16px] (3)超高真空度控制方法。[/size][size=16px] (4)传感器、控制器和执行器的选型、性能指标和功能要求。[/size][size=16px] (5)通过参考文献和专利扩大视野。[/size][size=16px] 采用国产版ChatGPT百度“文心一言”的具体工作流程如下:[/size][size=16px] (1)文心一言是通过第一个查询来引入问题:真空度一般如何定义,分为那几个范围。这个问题是一个一般性问题,以了解机器人对超高真空范围的理解,并为后续工作界定范围。[/size][size=16px] (2)之后,更具体的问题被问及:超高真空度控制装置一般由几部分组成,各自的功能是什么。这是为了让机器人进行项目分解,以便后续针对每个部分继续进行查询工作。[/size][size=16px] (3)然后,机器人被问及:超高真空度控制方法有那些。这是此项目的关键内容,这决定了开发工作的技术方向和具体技术路线,希望通过机器人的帮助能更全面的了解超高真空度控制方法,尽可能避免技术层面的缺失。[/size][size=16px] (4)机器人还被问及超高真空度控制装置中各个部分的厂家、型号和技术指标。[/size][size=16px] (5)最后,机器人被提示提供一个文献综述、相关专利和其他参考,包括DOI(数字对象标识符)号码。由于机器人的性质,这一步是在我们的查询结束时完成的。一旦户建立了主题,机器人就可以更深入地讨论这个主题。[/size][size=16px] 上述工作流程如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=在超高真空度控制设备开发中使用文心一言的工作流程,660,130]https://ng1.17img.cn/bbsfiles/images/2023/09/202309071141046519_4168_3221506_3.jpg!w690x136.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 在超高真空度控制设备开发中使用文心一言的工作流程[/b][/color][/size][/align][align=left][b][size=18px][color=#c00000]3. [/color][color=#c00000]结果[/color][/size][/b][/align][align=left][size=16px][b][color=#c00000]3.1. [/color][color=#c00000]超高真空度[/color][color=#c00000]的定义和范围[/color][/b][/size][/align][size=16px] 提问:真空度一般如何定义,分为那几个范围?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]真空度是指处于真空状态下的气体稀薄程度,通常用“真空度高”和“真空度低”来表示。具体来说,真空度等于大气压强减去绝对压强,即真空度=大气压强-绝对压强。绝对压强等于大气压强加上表压强,即绝对压强=大气压强+表压强(-真空度)。[size=16px] 在真空技术中,通常采用不同的范围来分类真空度。例如,低真空度范围是指压强在101325帕斯卡以下,中真空度范围是指压强在10-1~10-6帕斯卡之间,高真空度范围是指压强在10-7~10-9帕斯卡之间。[/size][size=16px] 需要注意的是,真空度的定义和范围可能因不同的应用领域而有所不同。[/size][size=16px] 评述:从上回答可见,机器人按照低、中、高三级对真空度进行划分,将超高真空度划分为高真空度范围内。[/size][align=left][size=16px][b][color=#c00000]3.2. [/color][color=#c00000]超高真空度控制装置的主要构成以及相应部分的功能[/color][/b][/size][/align][size=16px] 提问:何为高真空度控制,高真空度控制装置一般由几部分组成,各自的功能是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]高真空度控制是指在更高真空度下的压力测量和过程控制,高真空控制装置一般由以下几部分组成:[size=16px] 真空压力变送器:用于测量真空度,将真空压力信号转换为电信号。[/size][size=16px] 智能化控制仪:用于接收真空压力变送器的电信号,进行数据处理和控制输出。[/size][size=16px] 气动阀门:用于控制真空系统的进出口阀门,实现真空系统的开启和关闭。[/size][size=16px] 连接管道:用于连接真空系统各部分,保证真空度的稳定。[/size][size=16px] 其中,真空压力变送器是高真空度控制装置中的核心部件,其功能是将真空压力信号转换为电信号,并通过智能化控制仪进行处理和控制输出。智能化控制仪则是高真空度控制装置中的智能化核心,它可以对接收到的电信号进行处理、运算和控制,实现高精度的压力测量和过程控制。气动阀门是实现真空系统开启和关闭的关键部件,连接管道则是保证真空系统稳定运行的重要组成部分。[/size][size=16px] 需要注意的是,高真空度控制装置的具体组成和功能可能因不同的应用领域而有所不同。[/size][size=16px] 评述:机器人的回答完全准确和比较详细,这也为后续工作进行了内容分解。[/size][align=left][size=16px][b][color=#c00000]3.3. [/color][color=#c00000]超高真空度的控制方法[/color][/b][/size][/align][size=16px] 提问:高真空度控制方法有那些?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]高真空度控制的方法主要包括以下几种:[size=16px] 使用真空泵进行抽真空控制。这是最基本的控制方法之一,通过真空泵将真空腔室内的气体抽出,达到所需的真空度。[/size][size=16px] 使用压力控制器进行真空度控制。压力控制器可以监测真空腔室内的压力,根据设定的压力值进行控制,保持真空度稳定。[/size][size=16px] 使用双通道PID控制器进行真空度控制。这种控制方法具有更高的精度和稳定性,可以同时控制真空腔室内的压力和流量,以达到所需的真空度。[/size][size=16px] 使用电动针阀进行进气流量控制。通过调节电动针阀的开度,可以控制进入真空腔室的流量,从而控制真空度。[/size][size=16px] 使用材料选择控制。选择适合的材料可以减少气体的吸附和释放,从而提高真空系统的真空度。例如,使用不易吸附气体的材料,如不锈钢、铝等。[/size][size=16px] 需要注意的是,不同的控制方法具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:机器人给出了一个真空度控制的大致轮廓,但还不够具体,还需根据上述回答进一步追问。[/size][size=16px] 提问:超高真空度控制方式有那些呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]超高真空度控制通常是指在真空度达到10-7~10-9帕斯卡之间的控制。以下是几种常见的超高真空度控制方式:[size=16px] 使用分子泵进行抽真空控制。分子泵是一种能够将气体分子抽到真空腔室外的设备,其抽气速度和抽气效率比机械泵和分子泵更高,可以达到超高真空度。[/size][size=16px] 使用低温泵进行抽真空控制。低温泵利用低温表面将气体分子凝结,从而实现抽真空。其抽气速度和抽气效率也较高,可以达到超高真空度。[/size][size=16px] 使用离子泵进行抽真空控制。离子泵通过离子束将气体分子电离,并将电离后的离子抽到真空腔室外部,其抽气速度和抽气效率也很高,可以达到超高真空度。[/size][size=16px] 使用电子束蒸发进行真空度控制。电子束蒸发是一种通过电子束将材料加热到熔融状态,并迅速蒸发的方法。通过控制蒸发速率和蒸发面积,可以控制进入真空系统的气体流量,从而实现真空度控制。[/size][size=16px] 需要注意的是,不同的超高真空度控制方式具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:这一次机器人给出的超高真空度形成所用的真空泵类型,但对控制方式还是没有明确回答,继续追问。[/size][size=16px] 提问:在超高真空度控制中,压力控制器的具体功能是什么呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,压力控制器具体的功能是监测真空腔室内的压力,并根据预设的压力范围进行比较和分析,然后输出相应的控制信号,以控制真空泵、阀门等设备的动作,从而实现对真空腔室内压力的自动控制。压力控制器可以与压力变送器、电气转换器、电气阀门等设备一起使用,实现高精度的压力控制,以保证真空系统的稳定性和精度。[size=16px] 评述:都是一般常识性的内容,回答正确。[/size][size=16px] 提问:在超高真空度控制中,双通道PID控制器又是具体什么功能呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,双通道PID控制器是一种具有两个独立PID控制回路的控制器,可以同时对两个不同的控制变量进行PID控制。双通道PID控制器具体的功能如下:[size=16px] 采集两个不同的压力信号,例如绝对压力和表压,并将其转换为电信号。[/size][size=16px] 根据预设的压力偏差范围,对两个压力信号进行比较和分析,选择合适的控制信号输出。[/size][size=16px] 根据选择的控制信号,双通道PID控制器会输出相应的电压或电流信号,以控制真空泵、阀门等设备的动作,从而实现对真空腔室内压力的自动控制。[/size][size=16px] 双通道PID控制器还可以通过串口通讯或模拟量输出等方式,与上位机或PLC等设备进行数据传输和监控。[/size][size=16px] 双通道PID控制器具有高精度、高稳定性、可扩展性等优点,可以广泛应用于各种真空控制系统中,例如真空冷冻干燥机、真空镀膜机等。[/size][size=16px] 评述:也是一般常识性的内容,回答正确。[/size][size=16px] 提问:在超高真空度控制中,进气流量都有那些控制方法。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,进气流量控制的方法有很多种,以下列举几种常用的控制方法:[size=16px] 气体质量流量计控制:通过安装质量流量计来测量进入真空腔室的气体流量,然后根据测量值来控制气体流量。该方法精度高,但价格较高。[/size][size=16px] 薄膜电容规控制:通过测量薄膜电容规的电容变化来测量进入真空腔室的气体流量,然后根据测量值来控制气体流量。该方法精度较高,但需要较高的真空密封性。[/size][size=16px] 皮拉尼电阻规和电热偶规控制:通过测量进入真空腔室的气体流量,然后根据测量值来控制气体流量。该方法精度较高,但需要较高的真空密封性和稳定性。[/size][size=16px] 电动针阀控制:通过调节电动针阀的开度来控制进入真空腔室的气体流量。该方法精度较高,但需要较高的控制精度和稳定性。[/size][size=16px] 高速电动针阀控制:与电动针阀控制类似,但采用高速电动针阀,具有更高的控制精度和响应速度。该方法需要较高的控制精度和稳定性。[/size][size=16px] 需要注意的是,不同的进气流量控制方法具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:一般性常识,回答正确,但对于超高真空度控制,回答中所提及的方法并不适用,更改关键词继续提问。[/size][size=16px] 提问:超高真空度控制中,漏率控制有那些方法呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,漏率的控制非常重要,因为即使是微小的漏点也可能对真空系统的性能和稳定性产生显著的影响。以下是一些常用的漏率控制方法:[size=16px] 检漏仪直接连接到高真空侧进行检漏。在这种方法中,检漏仪连接到真空系统的被检容器上,通常是高真空侧,然后对整个系统进行检漏。这种方法适用于容器较大、焊缝和法兰连接较长的系统,因为较长的焊缝和法兰连接可能导致较大的漏率。[/size][size=16px] 检漏仪连接到前级真空侧进行检漏。在这种方法中,检漏仪连接到真空系统的高真空侧的前一级真空侧,然后对整个系统进行检漏。这种方法适用于容器较小、焊缝和法兰连接较短的系统,因为较短的焊缝和法兰连接可能导致较小的漏率。[/size][size=16px] 除了以上两种方法外,还可以采用其他漏率控制方法,例如氦质谱检漏、吸枪检漏、涂抹法检漏等。具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:回答侧重到了真空腔体的漏率以及相应的检漏方法。并未回答提问。[/size][size=16px] 提问:在超高真空度控制中,微小进气量的调节有那些方法。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,微小进气量的调节非常重要,因为微小的进气量可能会对真空系统的性能和稳定性产生显著的影响。以下是一些常用的微小进气量调节方法:[size=16px] 使用质量流量控制器(MFC)进行微小进气量的调节。MFC可以通过测量进入真空腔室的气体流量来控制气体流量,具有高精度和稳定性。[/size][size=16px] 使用针阀进行微小进气量的调节。通过调节针阀的开度,可以控制进入真空腔室的气体流量,具有较高的调节精度和稳定性。[/size][size=16px] 使用步进电机进行微小进气量的调节。通过控制步进电机的运动,可以精确控制进入真空腔室的气体流量,具有高精度和稳定性。[/size][size=16px] 使用热式质量流量控制器(TMF)进行微小进气量的调节。TMF可以通过测量气体流速和温度来控制气体流量,具有高精度和稳定性,适用于微小流量的调节。[/size][size=16px] 需要注意的是,不同的微小进气量调节方法具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。同时,在进行微小进气量的调节时,还需要注意气体流量的稳定性和控制精度。[/size][size=16px] 评述:还是在重复前面的回答,更换关键词继续提问。[/size][size=16px] 提问:什么是可变泄漏阀,可变泄漏阀在超高真空度控制中的作用是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]可变泄漏阀是一种用于控制真空系统中气体流量的阀门,其作用是在不同的真空度下,通过调节阀门的泄漏率来控制进入真空腔室的气体流量,以保持真空度的稳定。[size=16px] 在超高真空度控制中,可变泄漏阀的作用非常重要。由于真空系统的漏率通常很小,即使存在微小的漏点,也可能对真空度产生显著的影响。因此,通过使用可变泄漏阀,可以根据真空度的变化,自动调节阀门的泄漏率,以保持真空度的稳定。[/size][size=16px] 例如,当真空系统中的气体压力升高时,可变泄漏阀会自动增加其泄漏率,以保持真空度的稳定;反之,当气体压力降低时,可变泄漏阀会自动减小其泄漏率,以保持真空度的稳定。[/size][size=16px] 总之,可变泄漏阀在超高真空度控制中起着维持真空度稳定的作用,是保证真空系统性能和稳定性的重要组成部分。[/size][size=16px] 评述:回答侧重到了起到安全作用的泄漏阀,并不是调节微小进气流量的可变泄漏阀。继续提问。[/size][size=16px] 在经过多次不同问题的提问后,以下提问获得了比较有价值的回答。[/size][size=16px] 提问:可变泄漏阀的功能是什么?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]可变泄漏阀的功能主要是通过改变进气压力来实现微小进气流量调节,以维持真空系统的稳定性。在超高真空度控制中,超低漏率和超低流量调节阀是关键部件,国内外所采用的技术基本都是在超低漏率的前提下,通过调节阀门开度来进行流量调节。然而,对于微小流量调节而言,阀门的微小开度调节功能势必会大幅增加阀门的复杂和精密程度,自动调节需要增加机械结构的电动装置,甚至还需采用一些特殊材料,这是造成进口调节阀价格高昂的主要原因。[size=16px] 可变泄漏阀的优势在于,在保证超低漏率的前提下,它固定了阀门开度大小,通过改变进气压力来调节气体流量,由此直接将微流量调节技术升级到自动控制水平。这种阀门的出现,降低了进口调节阀的价格,并且达到了相同的调节效果。同时,可变泄漏阀还具有自适应能力,能够适应不同的真空泵抽气速率,达到更好的抽气效果。[/size][size=16px] 评述:在此回答中包括了真正有价值的内容。[/size][size=16px] 总结:根据上述的提问和回答,基本可以确定超高真空度精密控制的整体方案,具体内容如下:[/size][size=16px] (1)真空计采用适用于超高真空度范围的相应真空度传感器。[/size][size=16px] (2)真空泵采用分子泵、低温泵和离子泵等相应的超高真空抽气泵。[/size][size=16px] (3)真空度控制器采用双通道PID控制器,用来进行不同量程的真空度控制。[/size][size=16px] (4)实现超高真空度控制的关键是采用可变泄漏阀对进气流量进行调节。在自身具有超低漏率前提下,可变泄漏阀可采用两种形式进行微小进气流量调节,一是改变泄漏阀的开度大小以控制流经气体的流量,二是改变泄漏阀进气压力大小以改变流经气体的流速。[/size][size=16px] 有关真空计和真空泵的选择,这些都是真空技术领域内很容易获取和确定的内容,在此不再涉及。本文主要采用文心一言来帮助选择和探索可变泄漏阀和真空度控制器的技术方案以及所含技术问题。[/size][align=left][size=16px][b][color=#c00000]3.4. [/color][color=#c00000]可变泄漏阀查询[/color][/b][/size][/align][size=16px] 提问:具有上述功能的可变泄漏阀都有那些产品和型号呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]具有可变泄漏阀功能的真空阀门有很多种类,以下列举几种具有该功能的产品和型号:[size=16px] 型号为 FJL5-1/4-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 型号为 FJL10-1/2-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 型号为 FJL20-1/2-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 型号为 FJL50-1/2-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 评述:机器人所提供的回答都是用于超高真空系统的截止阀,只能作为气体通断开关使用过,都无法用于气流流量大小的调节。[/size][size=16px] 提问:具有上述功能的可变泄漏阀都有那些厂家的产品和型号呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]具有可变泄漏阀功能的真空阀门有很多厂家生产,以下列举几个厂家的产品和型号:[size=16px] 国产的陕西北斗星通,其产品有CJ174-1/2-300-A型针阀和CJ174-1/2-300-B型针阀,该类阀门采用针阀结构,适用于高真空系统的截止阀。[/size][size=16px] 国产的北京亚星仪,其产品有FJL5-1/4-300-A型真空截止阀,该类阀门采用波纹管密封,适用于高真空系统的截止阀。[/size][size=16px] 进口的安捷伦(Agilent Technologies),其产品有7791型可调泄漏阀,该类阀门适用于高真空系统的截止阀。[/size][size=16px] 评述:机器人提供的还都是截止阀,增加“超低漏率”关键词后继续提问。[/size][size=16px] 提问:超低漏率的可变泄漏阀,国内外有那些公司的产品和具体型号呢。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]超低漏率的可变泄漏阀是真空领域的一种重要部件,目前国内外有很多公司都在生产这种产品。以下是一些国内外公司的产品和具体型号:[size=16px] 安捷伦(Agilent Technologies):安捷伦的产品只有一种手动调节泄漏阀,具体型号为7791。[/size][size=16px] VAT公司:VAT调节阀则有手动和自动调节泄漏阀两款产品,其电动调节泄漏阀是在手动调节阀基础上增加了电动装置和PID调节器。具体型号包括59024-GE G(A)G(C-J)、59024-GE G(A)I、59024-GE G(A)L、59024-GE G(A)P、59024-GE G(A)Y。[/size][size=16px] MDC公司:MDC公司也有超低漏率的可变泄漏阀产品。[/size][size=16px] 除了以上列举的公司,还有诸如Pfeiffer公司和Parker公司等国外公司也有类似的产品。需要注意的是,这里只列举了部分具有超低漏率的可变泄漏阀功能的公司和产品,具体选择应根据实际应用需求和系统配置进行选型。同时,在购买时也需要注意产品的质量、性能、价格等因素。[/size][size=16px] 评述:进一步细化提问后,机器人给出了较准确的回答,我们根据回答进行了核实,所提到的三家国外公司确实有超低漏率可变泄漏阀,其中VAT公司产品的功能和型号都完全正确,而安捷伦和MDC公司实际上是同一款产品,但给出的型号不对。为了进一步了解VAT公司和安捷伦公司可变泄漏阀的工作原理,进行了追问。[/size][size=16px] 提问:安捷伦公司和VAT公司的调节泄漏阀的工作原理是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]安捷伦公司和VAT公司的调节泄漏阀的工作原理是基于压力改变流量的原理。[size=16px] 安捷伦公司的调节泄漏阀通过改变压力来实现泄漏量的调节。具体来说,该阀门通过改变进气压力来实现微小进气流量调节,从而实现对真空系统的稳定性和压力控制。[/size][size=16px] VAT公司的调节泄漏阀也是基于压力改变流量的原理。该阀门通过改变进气压力来实现微小进气流量调节,从而实现对真空系统的稳定性和压力控制。[/size][size=16px] 总之,安捷伦公司和VAT公司的调节泄漏阀都是基于压力改变流量的原理,通过改变进气压力来实现微小进气流量调节,从而实现真空系统的稳定性和压力控制。[/size][size=16px] 评述:根据我们对这两家公司产品的核实,机器人回答是完全错误的。分别进行单独追问。[/size][size=16px] 提问:安捷伦公司的调节泄漏阀的工作原理是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]安捷伦公司的调节泄漏阀的工作原理是通过对压力的调节来实现流量的控制。具体来说,该阀门通过改变进气压力和排气压力之间的压差来控制进入真空腔室的气体流量,从而实现对真空系统的稳定性和压力控制。[size=16px] 安捷伦公司的调节泄漏阀具有小于10^-10 PaL/s的超低漏率,以及微小流量调节功能。它采用了具有专利技术的超低漏率阀座和微型喷嘴,并通过改变阀口开度和压力差来控制气体流量。此外,该阀门还采用了压力反馈机制,通过PID控制器将实际压力与预设压力进行比较,然后根据误差信号进行自动调节,使真空系统保持恒定的真空度。[/size][size=16px] 综上所述,安捷伦公司的调节泄漏阀通过改变压力和阀口开度来实现对气体流量的控制,并通过压力反馈机制实现自动调节,从而实现对真空系统的稳定性和压力控制。[/size][size=16px] 评述:给出了新的回答内容,部分正确,但前后矛盾。[/size][size=16px] 提问:VAT公司的调节泄漏阀的工作原理是什么[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]VAT公司的调节泄漏阀的工作原理是基于压力改变流量的原理。该阀门具有超低漏率的微流量调节功能,通过改变进气压力来实现微小进气流量调节。具体来说,该阀门通过改变阀口开度和压力差来控制进入真空腔室的气体流量,从而实现对真空系统的稳定性和压力控制。[size=16px] VAT公司的调节泄漏阀具有手动和自动调节两种类型。对于手动调节泄漏阀,用户可以通过旋转手轮来改变阀口开度,从而实现对气体流量的控制。对于自动调节泄漏阀,它是在手动调节阀的基础上增加了电动装置和PID调节器,可以根据预设的压力和实际压力之间的误差进行自动调节,使真空系统保持恒定的真空度。[/size][size=16px] 总之,VAT公司的调节泄漏阀通过改变压力和阀口开度来实现对气体流量的控制,从而实现真空系统的稳定性和压力控制。[/size][size=16px] 评述:给出了新的回答内容,部分正确,但前后矛盾。[/size][size=16px] 到此为止,通过机器人的回答以及产品的具体核实,在目前的超高真空度精密控制过程中,已经基本可以确定微量进气控制国外采用的超低漏率可调节式泄漏阀,有手动和自动两种型号规格,它们的工作原理都是通过调节阀口开度来实现对气体流量的控制。[/size][align=left][size=16px][b][color=#c00000]3.5. [/color][color=#c00000]双通道真空控制器查询[/color][/b][/size][/align][size=16px] 提问:用于超高真空度测量的真空计有那些,它们的输出信号与所测真空度是线性关系还是非线性关系呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]用于超高真空度测量的真空计有以下几种:热阴极电离真空计、冷阴极电离真空计、压电陶瓷真空计、磁悬浮转子真空计、光学真空计。它们的输出信号与所测真空度之间的关系如下:[size=16px] 热阴极电离真空计:通常呈现出非线性关系,可以用指数函数或多项式函数描述。[/size][size=16px] 冷阴极电离真空计:通常呈现出非线性关系,可以用幂函数或多项式函数描述。[/size][size=16px] 压电陶瓷真空计:通常呈现出线性关系,可以用线性函数描述。[/size][size=16px] 磁悬浮转子真空计:通常呈现出线性关系,可以用线性函数描述。[/size][size=16px] 光学真空计:通常呈现出线性关系,可以用线性函数描述。[/size][size=16px] 评述:回答基本都是正确的。[/size][size=16px] 提问:PID控制器是一种线性控制,还是一种非线性控制呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]PID控制器是一种线性控制器。PID控制器根据给定值与实际输出值构成控制偏差,然后通过对偏差的比例、积分和微分进行线性组合来对被控对象进行调节,使得被控对象的输出接近于所期望的参考值。因此,PID控制器是一种线性控制器。[size=16px] 提问:对于线性控制的PID控制器,如果采集的非线性信号,那对控制效果有什么影响呢。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]对于线性控制的PID控制器,如果采集的非线性信号,会对控制效果产生以下影响:[size=16px] 控制不准确:线性PID控制器是基于线性系统理论的,它假设系统的输入与输出之间存在线性关系。然而,如果采集的信号是非线性的,那么系统的输入与输出之间的关系将不符合线性假设,导致控制不准确。[/size][size=16px] 控制稳定性下降:非线性信号可能导致系统的动态行为变得复杂,产生振荡或不稳定的行为。如果PID控制器对非线性信号进行线性调节,可能会导致系统的稳定性下降,使得控制效果变得不可预测。[/size][size=16px] 需要更复杂的控制策略:对于非线性系统,通常需要更复杂的控制策略来处理非线性信号。线性PID控制器可能无法满足非线性系统的控制需求,需要采用更复杂的控制策略来提高控制效果。[/size][size=16px] 因此,对于非线性系统,通常需要采用非线性控制策略来处理非线性信号,以确保控制效果的准确性和稳定性。[/size][size=16px] 提问:非线性信号的线性化处理,都采用那些具体技术手段呢,请列出所有线性化处理技术名称。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]非线性信号的线性化处理可以采用以下一些具体技术手段:[size=16px] 增量线性化模型(Incremental Linearization Model)、McCormick包络法(McCormick Envelope)、Mc-Carl方法(McCarl Method)、基于Taylor级数展开的线性化方法、基于反馈的线性化方法、基于状态空间模型的线性化方法、非线性滤波(Nonlinear Filtering)、非线性变换(Nonlinear Transformation)、非线性系统建模(Nonlinear System Modeling)、非线性时频分析(Nonlinear Time-Frequency Analysis)、非线性降噪(Nonlinear Denoising)、非线性信号识别(Nonlinear Signal Recognition)。[/size][size=16px] 需要注意的是,非线性信号处理涉及到较多的数学知识和算法,因此需要具备一定的数学和计算机基础才能进行研究和应用。[/size][size=16px] 评述:回答的内容尽管很多,但还是不够完整,继续追问。[/size][size=16px] 提问:那多点曲线拟合属于线性化处理技术手段嘛。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]多点曲线拟合(Polynomial Curve Fitting)是一种基于最小二乘法的拟合方法,通过对多个离散数据进行拟合,得到一个能够描述数据趋势的连续函数。虽然这种方法主要用于处理非线性数据,但也可以作为一种线性化处理技术手段来使用。[size=16px] 在某些情况下,非线性系统可以通过分段线性化方法来近似,即将非线性系统的输入输出关系近似为一系列的直线段。分段线性化方法通常用于处理具有分段线性特性的非线性系统,例如开关式系统、含有分段线性元件的系统等。[/size][size=16px] 在这种情况下,多点曲线拟合可以作为一种实现分段线性化方法的技术手段。通过选择适当的拟合函数和参数,可以将非线性系统转换为一系列的线性系统,从而可以使用线性控制理论进行分析和设计。[/size][size=16px] 因此,可以说多点曲线拟合可以作为一种线性化处理技术手段,但并不是所有情况下的非线性信号处理都需要进行线性化处理。具体的处理方法需要根据实际系统的特性和要求进行选择和调整。[/size][size=16px] 提问:那些国内外的PID控制器具有这种多点曲线拟合功能呢,具体型号是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]目前市场上有很多国内外的PID控制器都具备多点曲线拟合功能,以下是一些常见的品牌和型号:[size=16px] 国外品牌:National Instruments:NI-PIDController、Keysight Technologies:E8257D、Agilent Technologies:8720D、Rohde & Schwarz:R&S-PNG130/160[/size][size=16px] 国内品牌:YOKOGAWA:GC5510、BF-controller:BF-PIDController、other brands:EP100、LS200等[/size][size=16px] 需要注意的是,不同的品牌和型号可能具有不同的多点曲线拟合功能,具体使用方法和参数设置也可能有所不同。因此,在选择和使用时,需要根据具体的需求和实际情况进行评估和选择。[/size][size=16px] 评述:根据机器人的回答内容,我们做了核实,证明机器人回答的内容都是错误的。有用的信息是至少知道还是有多点曲线拟合功能的PID控制器产品。[/size][align=left][size=16px][b][color=#c00000]3.6. [/color][color=#c00000]关于此主题的[/color][color=#c00000]文献[/color][color=#c00000]和专利[/color][/b][/size][/align][size=16px] 在这里我们不做提问和回答内容的详细展示,因为机器人所提供的内容都是错误的。我们在广泛使用搜索引擎(谷歌学术和谷歌专利)和给定期刊的文章列表中寻找机器人给定的引文,发现这些论文和专利根本不存在。[/size][align=left][b][size=18px][color=#c00000]4. [/color][color=#c00000]讨论[/color][/size][/b][/align][size=16px] 通过采用国产版本ChatGPT百度“文心一言”的对话,我们发现在开发超高真空度控制装置时,机器人能够提供相应的基础性和常识性信息来帮助缩小选择的范围。可能是受制于训练机器人的大模型还不够完备,机器人仅能提供一些肤浅但非常有用的建议,这非常适用于该领域的入门学习。[/size][size=16px] 通过与机器人的对话以及产品的具体核实,至少可以勾画出超高真空度控制装置中的整体结构和关键部件所需达到的功能。确定了采用低漏率可变泄漏阀是正确的技术路线,而可变泄漏阀有阀门开度调节式和进气压力调节式两种形式,国外产品采用的是阀门开度调节式结构,而我们的产品开发则可以采用压力调节式结构。[/size][size=16px] 有关超高真空度传感器具有非线性特征这一事实,通过机器人回答和具体真空计指标得到了验证,通过机器人对话也明确了可采用具有线性处理功能(更具体是多点曲线拟合功能)的PID控制器来进行超高真空的准确控制。[/size][size=16px] 我们发现机器人进行文献检索的能力是不可靠的,这点在其他很多ChatGPT使用者得出的结论一样。机器人为给定的技术主题能推荐看似正确和相关的引用文献,但都是假的,都是用相关关键词、已有作者、期刊名和DII捏造的,看似真实但实际上并不存在。[/size][align=left][b][size=18px][color=#c00000]5. [/color][color=#c00000]总结[/color][/size][/b][/align][size=16px] 通过采用国产版本ChatGPT百度“文心一言”作为一种辅助性的调研工具,针对超高真空度精密控制项目的开发开展了初期的技术路线设计。总体结论是目前的人工智能技术所提供的帮助十分有限,还无法替代研究人员的基本专业能力以及互联网技术的应用能力,但比较适合用来进行某个未知领域的入门级学习。[/size][size=16px] 另外,尽管目前的大模型以及人工智能可能还不够完备以及无法进行更深入的数据挖掘,但在具体使用上如果注意一些技巧,还是能得到一些更有用的帮助。比较重要的技巧是对提问问题的设计,提问时一般需要把握此六项原则:明确问题、提供背景、限定范围、拆分问题、指出建议和多样提问。[/size][size=16px][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 【讨论】微型真空泵对密闭容器抽真空的时间问题

    微型真空泵对密闭容器抽真空的时间问题 对于微型真空泵对密闭容器抽真空的时间不是一个简单的算数问题,不少同事对此问题都有误解。比如,用一台5L/min的微型真空泵对一个10升的容器抽真空,并不是2分钟就可以使容器内的真空度达到泵的极限真空。当泵在抽气时,开始的一瞬间抽速确实是5L/min,但一旦容器内有了真空,抽气速率就下降了,随着容器内的真空度不断升高,抽气速率也不断下降,这不是一个简单的线性变化过程,而是一个呈指数函数变化的过程。在成都气海机电制造公司(是国内最早开始生产微型真空泵、微型气泵的一家企业)的网站上有这个函数关系式和计算程序。但各位同事在计算时要注意,其中的“抽气速率”应该用泵的有效值代入运算,而非峰值流量。还有,计算结果是理论值,没有考虑实际情况(比如气体泄露),因此实际时间比计算值要长些。参考资料:www.ruiyi,net (BH)

  • 工业减压蒸馏工艺中大流量耐腐蚀快响应精密真空控制的解决方案

    工业减压蒸馏工艺中大流量耐腐蚀快响应精密真空控制的解决方案

    [color=#ff0000]摘要:针对目前工业减压蒸馏工艺中对大流量、耐腐蚀、快速和精密真空控制阀门的需求,本文介绍了相应的解决方案,提出了不同于流量调节的调压控制方法,介绍了大口径、耐腐蚀和快速响应的新型真空调节阀门,配合采用电子先导阀可实现减压蒸馏中的快速和精密真空控制。此技术方案也可应用在真空闪蒸工艺中。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]减压蒸馏(真空蒸馏)工艺是将液体上方的气体压力进行减压至其蒸气压,从而使得最易挥发的液体被选择性的蒸发和蒸馏。但在目前工业减压蒸馏工艺中,还存在以下问题需要解决:(1)在减压蒸馏工艺中精确控制真空压力非常关键,如果液体在大气压或不合适的真空压力下沸腾,这将对敏感分子造成破坏。另外,因为被蒸馏的混合物可能包含几种沸点接近的液体,精确控制真空度可以在蒸馏过程中实现更高的选择性。而目前国内的工业减压蒸馏工艺中自动化水平还有待提高,许多真空调节器根本无法提供选择性蒸馏沸点接近的流体所需的精度,无法解决温度波动和泵压波动所带的综合影响,真空度的精确和快速控制问题还有待解决。(2)尽管有足够敏感的真空调节器可用于减压蒸馏,但适用的条件非常有限,很多无法承受真空蒸馏工艺中经常遇到的腐蚀性化学物质或高温。(3)在许多工业减压蒸馏工艺中,所采用的蒸馏塔体积比较庞大,这就要求真空压力调节器具有较大的进出口口径,并配备较大抽速的真空泵,以实现较快速度真空度调节和控制。(4)减压蒸馏过程中的液体会在相应真空压力下发生沸腾,蒸馏塔的内部压力会随之产生突变,这就要求真空调节装置具有较快的响应速度(毫秒级),需使内部压力快速恢复并恒定控制在设定真空度上。总之,无论蒸馏系统内的流量波动或供应的真空压力如何变化,都需能快速地将真空压力非常准确地控制到所需的设定值。总之,为了解决目前真空蒸馏工艺中存在的上述问题,本文提出以下解决方案,介绍了大口径、耐腐蚀和快速响应的新型真空调节阀门,配合采用电子先导阀可实现减压蒸馏中的快速和精密真空控制。[size=18px][color=#ff0000]二、技术方案[/color][/size]减压蒸馏工艺中精密真空控制的技术方案主要包括以下几方面的内容:[color=#ff0000]2.1 压力调节方式[/color]目前减压蒸馏工艺的真空控制绝大多数采用的是下游抽气流量调节方式,即蒸馏塔设置有进气口,采用调节蝶阀或球阀的开度来调节排气流量,与进气口流量达到平衡来实现蒸馏塔内部真空度的控制。本文的方案是直接采用压力调节,通过调节排气口处的气压来实现蒸馏塔内部的真空度控制。调压方式同样可以实现真空度的准确控制,特别是在减压蒸馏的低真空(高气压)工作区间内,控制更准确和快速,并减少了蒸馏塔上进气口设置。整个真空控制系统为分体结构,即将阀门和PID控制器进行了模块分离。采用分体结构主要出于以下几方面的考虑:(1)采用独立的2通道PID控制器。这种PID控制器具有24位A/D和16位D/A的超高精度,更能保证真空度的控制精度,同时具有40多种信号输入类型,即可用来控制真空度,也可控温等。(2)2通道PID控制器可以连接两个不同量程的真空度传感器,并具有真空计自动切换功能,由此可同时满足低真空和高真空的减压蒸馏需求。如果只连接一个真空计,另外一个通道可连接温度传感器进行温度控制。(3)很多减压蒸馏的工业设备和实验室仪器自身都配备了独立且功能强大的PLC控制系统用来进行真空度、温度和流量等电气参数控制,同时也具备达到一定精度的PID控制功能。分体结构可以使PLC系统直接去控制阀门,避免功能的重复,有利于降低造价。[color=#ff0000]2.3 气控驱动压力调节阀[/color]有别于目前传统的速度很慢的电动执行器驱动阀门方式,本文的技术方案是电子气控先导阀驱动阀门的阀芯位移,由此可带动阀芯实现高速位移和开度调节。针对不同口径采用相应规格阀芯,内部阀芯非常便于拆卸、更换和清理。重要的是调节阀接气和接液部件采用了FFKM全氟醚橡胶,具有超强耐腐蚀性和耐温性。[size=18px][color=#ff0000]三、真空控制系统[/color][/size]技术方案在减压蒸馏工艺中的具体应用如图1所示。[align=center][img=减压蒸馏真空控制,600,344]https://ng1.17img.cn/bbsfiles/images/2022/06/202206070923049266_5191_3384_3.png!w600x344.jpg[/img][/align][align=center]图1 减压蒸馏工艺真空控制系统结构示意图[/align]技术方案所设计的真空控制系统主要包括压力调节阀、先导阀和PID控制器。整个真空控制系统是一个闭环控制回路,其功能是将蒸馏塔顶部的压力按照设定值进行精密控制。真空控制系统的具体工作过程是PID控制器采集蒸馏塔顶部传感器的压力信号,将采集的压力值与设定值进行比较,根据比较后差值的大小来驱动先导阀的正压压力输出大小,压力调节器根据先导阀的输出压力来等比例的调节阀门,使得压力调节阀的进口处达到恒定压力,由此经过PID算法的调整使得蒸馏塔顶部压力快速达到设定值,并始终保证恒定。[color=#ff0000][size=18px]四、相关部件[/size]4.1 大口径高速真空压力调节阀[/color]新推出的国产化EVR系列(Eyoung Vacuum Regulator)真空压力调节阀及其内部结构如图2所示。[align=center][img=减压蒸馏真空控制,600,303]https://ng1.17img.cn/bbsfiles/images/2022/06/202206070923477864_789_3384_3.png!w600x303.jpg[/img][/align][align=center]图2 国产EVR系列真空压力调节阀及其内部结构示意图[/align]EVR系列真空压力调节阀是一种常闭型调压阀门,可直接对气密性容器的真空压力(负压或正压)进行高速调节,调节方式采用顶部气控先导阀,先导阀可采用手动和电子控制形式。EVR系列产品可配各种手动和电子控制形式的先导阀,可形成开环和闭环控制回路。通过外接真空计和真空压力控制器相结合,可构成闭环形式快速高精度可编程真空控制回路。EVR系列调节阀的特点之一是可以实现各种大口径连接和高抽速气体压力的调节,并且具有极快的响应速度,阀门从全闭到全开的时间不到100ms。这一特点可用于真空闪蒸工艺的控制。EVR系列真空压力调节阀的技术参数如表1所示。[align=center]表1 EVR系列真空压力调节阀技术参数表[/align][align=center][img=减压蒸馏真空控制,600,301]https://ng1.17img.cn/bbsfiles/images/2022/06/202206070924043805_5545_3384_3.png!w600x301.jpg[/img][/align][align=center][/align][size=18px][color=#ff0000]4.2 两通道24位高精度多功能PID控制器[/color][/size]对标英国欧陆控制器,国产VPC-2021系列PID控制器是多通道、24位A/D和16位D/A、可编程的通用型PID控制器,如图3所示。VPC-2021系列PID控制器可进行真空度、温度、流量和转速等多种参数的精密控制,功能十分强大,且性价比非常高。[align=center][img=减压蒸馏真空控制,600,312]https://ng1.17img.cn/bbsfiles/images/2022/06/202206070924184925_6708_3384_3.png!w600x312.jpg[/img][/align][align=center]图3 VPC-2021系列高精度PID程序控制器[/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)最高采样速度:50ms。(3)多种输入参数:47种(热电偶、热电阻、直流电压)输入信号,可连接各种温度和真空度传感器进行测量、显示和控制。(4)多种输出形式:16位模拟信号 、2A (250 VAC)继电器 、22V/20mA 固态继电器 、 3A/250VAC可控硅。(5)多通道:独立1通道或2通道输出。2通道可实现温度和真空度的同时测控,报警输出通道可用来控制旋转电机。(6)多功能:正向、反向、正反双向控制、加热/制冷控制。(7)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(8)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(9)显示方式:数码馆和IPS TFT真彩液晶。(10)软件:通过软件计算机可实现对控制器的操作和数据采集存储。(11)外形尺寸:96×96×87mm(开孔尺寸92×92mm)。[size=18px][color=#ff0000]五、总结[/color][/size]本文所设计的工业减压蒸馏工艺中的精密真空控制技术方法,完全可以满足减压蒸馏工艺的各种需要。通过精密的真空度控制,可实现沸点接近的液体混合物的选择性蒸馏所需的精度。此技术方案的另外重要特点是响应速度快、大口径、强耐腐蚀和耐高温,基本可以满足各种减压蒸馏工艺的需求,并具有长期运转的稳定性和可靠性。其中的高速响应能力可用于真空闪蒸工艺中压力快速变化的控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 自己动手一点也不难 轻松搞定真空干燥箱保养

    还有不到一个月的时间,2017年的春节就要来临了,在节假日之前对真空干燥箱的保养成了用户关心的话题。而保养除了让厂家上门之外,自己动手也可以解决,其实除了真空干燥箱之外,真空泵保养也是用户不可忽视的重点。 真空干燥箱真空泵维护保养要点: 1.尽量控制真空干燥箱真空泵的流量和扬程在标牌上注明的范围内,以保证真空泵在最高效率点运转,才能获得最大的节能效果。 2.真空泵在工作第一个月内,经100小时更换润滑油,以后每500小时,换油一次。 3.换油期限按实际使用条件和能否满足性能要求等情况考虑,由用户酌情决定。一般新真空泵,抽除清洁干燥的气体时,建议在工作100小时左右换油一次。待油中看不到黑色金属粉末后,以后可适当延长换油期限。 4.一般情况下,真空泵工作2000小时后应进行检修,检查桷胶密封件老化程度,检查排气阀片是否开裂,清理沉淀在阀片及排气阀座上的污物。清洗整个真空泵腔内的零件,如转子、旋片、弹簧等。一般用汽油清洗,并烘干。对橡胶件类清洗后用干布擦干即可。清洗装配时应轻拿轻放小心碰伤。 5.真空干燥箱真空泵长期停用,需将泵全部拆开,擦干水分,将转动部位及结合处涂以油脂装好,妥善保管。

  • 碳酚醛热防护材料气体渗透性能测试中的真空压力精密控制解决方案

    碳酚醛热防护材料气体渗透性能测试中的真空压力精密控制解决方案

    [align=center][b][img=防热烧蚀复合材料高温气体渗透率测试技术,690,458]https://ng1.17img.cn/bbsfiles/images/2023/11/202311090939039664_4444_3221506_3.jpg!w690x458.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:气体渗透率是树脂基纤维防热和烧蚀复合材料的关键性能参数,基于现有的稳态法渗透率测试技术相关研究报道,本文提出了更详细和切实可行的渗透率测试中的真空压力差精密控制解决方案。解决方案采用了两个真空度可精密控制的缓冲罐布置在被测样品的气流上下游,从而在样品上实现真空压力差可调且精密恒定控制。解决方案具有很强的可拓展性,为后续的高温氧化性能测试和质谱仪气体分析留有相应的连接接口。[/b][/color][/size][align=center][size=16px][color=#333399][b]=====================[/b][/color][/size][/align][size=18px][color=#333399][b]1. 项目背景[/b][/color][/size][size=16px] 树脂基纤维复合材料在工业炉、防火、棉絮材料和高速航天器的隔热罩等应用中被用作高性能隔热材料,这类高孔隙率材料通过在高温下提供气体缓冲,有效保护下层结构免受周围热源的影响,其低密度特性同时最小程度地增加了高速航天器的有效载荷质量。[/size][size=16px] 由于树脂基纤维复合材料的高孔隙率,气体可以很容易地在烧蚀材料中流动,例如酚醛树脂分解产生的热解气体在离开材料之前会穿过烧焦的结构,可能会与纤维发生反应。类似地,来自边界层的反应物可以进入材料微结构并在孔内流动,这种气体传输对整体材料响应具有显著的影响。这种通过多孔结构的流动行为常以渗透率为特征,因为渗透率控制着介质内的动量传输,因此在模拟多孔介质流动时,渗透率是一个关键的材料性能参数。[/size][size=16px] 材料渗透率的测量,特别是测试高温下的材料渗透率普遍采用稳态法,即在样品的上、下游端施加稳定的压力差,通过测量流经样品的流量气体,依据达西定律计算获得渗透率。在参考文献[1,2]中对纤维复合材料的高温渗透率稳态法测量进行了报道,并给出了测试系统结构示意图,但在如何形成稳定的高精度压力差方面并未给出说明,而这恰恰是稳态法渗透率测试的关键。[/size][size=16px] 为了真正实施稳态法高温渗透率测试方法,特别是模拟星际环境在被测样品两侧建立宽域可调且精确稳定控制的真空压力差,本文提出了如下真空压力控制解决方案。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 对于高温渗透率测试中的真空压力控制,解决方案拟达到如下技术指标:[/size][size=16px] (1)样品上下游的真空压力控制范围气压(绝对压力):0.1Torr~750Torr。[/size][size=16px] (2)控制精度:读数的±1%。[/size][size=16px] 可实现上述技术指标的真空压力差控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=高温渗透率测量装置真空压力差控制系统结构示意图,690,439]https://ng1.17img.cn/bbsfiles/images/2023/11/202311090940235059_6758_3221506_3.jpg!w690x439.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 高温渗透率测量装置真空压力差控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,本解决方案对文献[1,2]中所报道的真空压力差控制系统进行了细化,即系统中增加了上游和下游真空压力缓冲腔及其控制装置,分别将上下游缓冲腔按照所需的真空度设定值P1和P2(P1P2)进行精密恒定控制,由此可在高温样品的上下游形成宽域可调且精确稳定控制的真空压力差,然后通过布置在上游管路中的气体流量计测量压力差稳定后的气体渗透流量,由此最终根据样品尺寸数据计算得到不同温度和压差下的不同气体渗透率。[/size][size=16px] 对于上下游缓冲腔的真空度控制,配备了两套相同的真空度控制系统,每套控制系统主要由两只薄膜电容真空计、两只电控针阀和一个双通道真空压力控制器,具体型号和指标如下:[/size][size=16px] (1)薄膜电容真空计:量程1Torr和1000Torr,测量精度为读数的±0.25%。[/size][size=16px] (2)电控针阀:型号NCNV-20和-120,线性度0.1~2%,重复精度1%,响应时间1秒。[/size][size=16px] (3)双通道真空压力控制器:独立双通道,24位AD、16位DA和0.01%最小输出功率百分比,带PID参数自整体和MODBUS标准协议的RS485通讯接口,并配有计算机软件。[/size][size=16px] 在每个缓冲腔的真空度控制过程中,具体操作步骤需要注意以下内容:[/size][size=16px] (1)对于10~1000Torr的低真空范围内控制,采用排气调节模式,即将负责进气流量调节的电控针阀控制为固定开度使得进气流量恒定,然后再自动控制负责排气流量调节的电控针阀。[/size][size=16px] (2)对于0.1~10Torr的高真空范围内控制,采用进气调节模式,即将负责排气流量调节的电控针阀控制为100%固定开度使得全速排气,然后再自动控制负责进气流量调节的电控针阀。[/size][size=16px] (3)双通道真空压力控制器具有两路独立的PID自动控制通道,其中在第一输入通道上连接10Torr量程真空计,在第二输入通道上连接1000Torr量程真空计,第一输出通道上连接负责进气的电控针阀,第二输出通道上连接负责排气的电控针阀。[/size][size=16px] 还需说明的是本解决方案将气体流量计布置在样品的上游端,这样做的好处是流经流量计的气体温度为常温,常温气体对流量计不会带来损害。[/size][size=16px] 另外,红外测温仪也布置在石英管的上游端外,这是因为石英管上游端的密封法兰相对比较简单,而石英管下游端的密封法兰则相对比较复杂,这是因为下游端还需为今后的测试功能拓展留有余地。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对文献[1,2]所报道的高温渗透率测试装置中的真空压差控制系统进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,可实现样品上下游压力的恒定控制,这是文献[1,2]报道中所欠缺的关键技术,由此可任意设定和调节样品两端的压力差,更符合稳态法渗透率测试模型。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,实现不同压力差的精密控制及其对应渗透率测试。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同工作气体下的渗透率测量,也可进行多种气体混合后的真空压力差控制和氧化性能测试,具有很大的灵活性。[/size][size=16px] (4)更重要的是,本解决方案为后续的残余气体取样分析留有接口通道,可方便的与质谱仪和微流量可变泄漏阀连接,使得质谱仪分析流经被测样品的气体。[/size][size=16px] (5)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了试验装置的搭建和测试研究。[/size][size=18px][color=#333399][b]4. 参考文献[/b][/color][/size][size=16px] [1] Panerai F, White J D, Cochell T J,et al. Experimental measurements of the permeability of fibrous carbon at high-temperature[J]. International Journal of Heat and Mass Transfer, 2016, 101: 267-273.[/size][size=16px] [2] Panerai F, Cochell T, Martin A, et al. Experimental measurements of the high-temperature oxidation of carbon fibers[J]. International Journal of Heat and Mass Transfer, 2019, 136: 972-986.[/size][align=center][size=16px][color=#333399][b][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 质谱仪器的真空要求

    质谱仪器的真空要求质谱仪器必须在良好的真空条件下才能正常操作,一般要求质量分析器的真空优于10-4pa。质谱仪器所检测的离子必须要有较大的自由程才可以到达检测器,其他气体成分也可能与离子发生反应影响检测,在质谱仪中工作的部件(如离子源灯丝、较密排布的高压极板)需要在高真空下才能稳定工作。因此,质谱仪中的部件需要一个真空环境进行工作。但不同类型的质谱仪器对真空的要求不同,既与仪器的类型有关,又与仪器的大小有关;质谱仪器的不同部分对真空的极限要求也不同,质量分析器是所有部分中对真空要求最高的,离子源对氧的分压要求比较苛刻,但对总压的要求则比质量分析器低几个数量级。所以真空系统的配置要视实际情况而定

  • 新型低成本低压电子束焊接技术及其精密真空控制装置

    新型低成本低压电子束焊接技术及其精密真空控制装置

    [align=center][size=16px][img=新型低成本低压电子束焊接技术及其精密真空控制装置,550,337]https://ng1.17img.cn/bbsfiles/images/2023/03/202303270934409402_5689_3221506_3.jpg!w690x423.jpg[/img][/size][/align][size=16px][color=#339999]摘要:新型低压电子束焊接加工技术具有凹型阴极、自聚焦和低造价的突出特点,不再需要高真空系统,也无需磁透镜和磁线圈进行电子束的聚焦和偏转,可进行微零件焊接和低熔点材料表面微结构改性。但这种新型技术对氩气工作气压的要求较高,需要在7~12Pa的低真空范围实现高精度的调节和控制。本文针对此高精度控制提出了解决方案,即在电容真空计作为传感器的基础上,采用了电动针阀和超高精度压力控制器,控制精度可达±1%。[/color][/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 电子束焊是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。目前,电子束焊通常分为高真空、低真空和非真空三种类型,但无论是那种类型,电子束都需要在高真空条件下产生,且还需要磁透镜和磁线圈系统用于聚焦和偏转电子束,这使得高真空装置是电子束焊接设备中的重要且高成本的部件。[/size][size=16px] 最近,波兰研究人员Aleksander Zawada和Piotr Konarski介绍了一种真正低压环境且无需磁透镜和磁线圈的电子束焊接技术[1,2],这种新的低压电子束焊接技术具有以下特点:[/size][size=16px] (1)采用凹形阴极作为电子束源,直接在氩气环境中产生并聚焦电子束。工作气体的存在和伴随辉光放电的发生允许表面电荷中和,这使得电子束可以直接轰击绝缘材料。[/size][size=16px] (2)可直接采用微波炉用变压器,电压输出为1~3kV,就能建立一个以凹形阴极作为电子源的低压电子束加工装置。[/size][size=16px] (3)阴极和阳极之间的间隙约为25mm,氩气气体绝对压力可在0.05~0.09Torr范围内调节,采用机械泵就可在此真空度范围内可以获得了稳定的辉光放电进行焊接和加工。通过改变阴极电压以及选择合适的真空度,实现电子束电流的调节,以满足不同工具加工和焊接需要。[/size][size=16px] (4)通过使用凹面阴极可直接获得直径1~3mm的聚焦点。虽然与很多高端的电子束加工设备相比,它的尺寸似乎太大,但它可用于微零件焊接和表面改性。[/size][size=16px] (5)由于采用微波炉小功率电源和旋片泵,使得整个装置结构简单和非常便宜,同时可用于微零件焊接和低熔点材料表面微结构改性,如不锈钢、铜、铝、氧化铝、氧化硅和玻璃等材料。如果加大功率,可实现更大功率的电子束焊机。[/size][size=16px] 从上述这种真正低压电子束焊接加工技术的特点中可以看出,这种技术对真空度的要求很高,需要在很窄的气压范围内(约5Pa)进行调节以满足不同的焊接加工要求,而相关文献也未涉及气压精密控制的具体内容。为此,本文将针对此问题提出相应的具体解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 波兰学者提出的新型低压电子束焊接加工装置结构如图1所示[1,2],其真空室只有5升的体积。真空系统包括了真空计、机械泵和泄漏阀三部分,进气用了高压氩气气瓶,还配备了一个气阀用来加工完成后导入空气打开腔门。[/size][align=center][size=16px][color=#339999][b][img=01.新型低压电子束焊机原理图,650,409]https://ng1.17img.cn/bbsfiles/images/2023/03/202303270937189274_6985_3221506_3.jpg!w690x435.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 新型低压电子束焊接机结构示意图[/b][/color][/size][/align][size=16px] 从图1所示结构可以看出,所进行的真空度控制应该还是手动调节方式,即固定机械泵抽速(一般是全开状态),然后通过调节泄漏阀的开度来达到不同的真空度,但这种手动控制方式很难保证真空度控制的准确性和稳定性,完全不能按照设计好的不同设定值对真空度进行控制。[/size][size=16px] 为此,本解决方案的目的是进行真空度控制的自动化改造,改造方案的具体结构如图2所示。解决方案是在原有的电容真空计基础上,增加了电动针阀和高精度的真空压力PID控制器,由真空计、电动针阀和真空压力控制器组成一个典型的闭环控制系统。其中各个部件的具体内容如下。[/size][align=center][size=16px][color=#339999][b][img=02.新型低压电子束焊机和真空控制装置原理图,650,401]https://ng1.17img.cn/bbsfiles/images/2023/03/202303270937405037_1825_3221506_3.jpg!w690x426.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 包含真空度自动控制的电子束焊接机结构示意图[/b][/color][/size][/align][size=16px][color=#339999][b]2.1 真空计的选择[/b][/color][/size][size=16px] 方案中选择1Torr量程的薄膜电容真空计覆盖0.05~0.09Torr工作压力范围,这种电容真空计具有0.25%的高精度。[/size][size=16px] 除了高精度之外,这种电容真空计还具有线性的0~10V直流电压信号输出,即真空度测量值与输出电压值呈线性关系,这非常有利于数据采集和处理,更能保证控制的准确性。[/size][size=16px] 对于0.05~0.09Torr的工作压力范围,尽管在理论上也可以选择0.1Torr量程的真空计,但实际真空度控制范围已接近真空计上限,这使得对0.09Torr附近的真空度较难控制,实际真空度稍微过冲就超出真空计量程,这很容易造成真空控制失效。[/size][size=16px][color=#339999][b]2.2 电动针阀[/b][/color][/size][size=16px] 工作压力自动控制的关键技术之一是图1中的泄漏阀要具备电动调节能力,这时的电动调节阀门就相当于一个电动执行器来根据要求调节进气流量的大小。[/size][size=16px] 解决方案是采用电动针阀代替图1中的泄漏阀。电动针阀是一种步进电机驱动的针型阀,阀门位移分辨率可达到12.7um,并具有很小的真空漏率和线性度,可直接用直流0~10V模拟电压进行调节,很适合真空度控制过程中的进气流量调节。[/size][size=16px][color=#339999][b]2.3 超高精度真空压力控制器[/b][/color][/size][size=16px] 对于低压电子束焊接加工装置的真空度控制而言,另一项关键技术就是需要解决超高精度的PID控制问题。如在选择1Torr真空计时,对应的电压输出为0~10V,那在实际测量0.05Torr真空度过程中所对应的电压输出则为0.5V。如果要达到±1%的控制精度,则需要PID真空度控制器具有5mV的测量精度,这是目前绝大多数工业用真空度控制器无法达到的精度要求。[/size][size=16px] 为了在0.05~0.09Torr范围内实现±1%的真空度控制精度,解决方案选用了VPC 2021系列超高精度真空压力控制器。此控制器的主要特点如下:[/size][size=16px] (1)超高性能指标:24位AD、16位DA和0.01%最小输出百分比,同时采用的是双精度浮点运算,这是目前国际上工业用控制器最高的性能指标。[/size][size=16px] (2)多功能:具有程序控制、PID参数自整定、RS485通讯、标准MODBUS通讯协议和多条设定曲线以及多组PID参数存储等功能。[/size][size=16px] (3)丰富的扩展能力:控制器带有远程设定能力,即通过外接可变电位器旋钮实现真空度设定值的手动调节和设定,为现场真空度的随时调节和控制提供了极大便利。[/size][size=16px] (4)配套软件:配套有计算机软件,可通过计算机进行控制器的所有设置和运行,并可直观显示和存储多个过程参数随时间变化的实时曲线,[/size][size=16px] (5)体积小巧:具有常用工业用控制器典型的小巧尺寸(面板尺寸96mm×96mm)。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 在波兰学者提出的低造价低压电子束焊接和加工新技术基础上,本文对此新技术中未涉及到的真空度精密控制技术进行了分析,并提出了实现真空度高精度控制的解决方案。解决方案以及所涉及到的电动针阀和超高精度PID真空压力控制器,经过了大量试验验证考核,并已经在多个领域内得到了广泛应用,技术成熟度很高,可为这种新型电子束焊接和加工技术的推广应用提供有效的技术保障。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] Zawada A, Konarski P. Electron beam generated in low pressure noble gas atmosphere–Compact device construction and applications[J]. 2013.[/size][size=16px][2] Chien C H, Zawada A, Konarski P, et al. Developing a desk-top electron beam micro-machining system in the low-pressure argon atmosphere[J]. Procedia CIRP, 2020, 95: 950-953.[/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align]

  • 数控针阀在便携式真空计校准装置中的应用

    数控针阀在便携式真空计校准装置中的应用

    [color=#ff0000]摘要:针对便携式真空计校准装置以实现真空计的现场校准,基于静态比对法校准技术,本文提出了一种采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合双通道高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]真空计作为一种真空度传感器在众多领域应用普遍,并需要进行定期校准。而真空计校准装置是包含了真空标准器、真空泵、真空阀门及连接管路在内的一整套测量系统,一般体积较大,不便移动,多在实验室内固定使用。现有的真空计校准方式大多是将现场使用的真空计拆下送检。为满足现场校准的需求,需要解决以下几方面的问题:(1)减小相关部件的尺寸,使真空计校准装置便于携带。(2)采用数控和电动阀门,提高气体流量调节的精密度。(3)改进真空度控制方式,提高真空度控制精度和稳定性。为实现真空计 现场校准和校准装置的便携性,基于静态比对法校准技术,本文将提出采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题,真空度的波动可控制在±1%以内。[size=18px][color=#ff0000]二、便携式真空计校准装置技术方案[/color][/size]便携式真空计校准装置的整个结构如图1所示,这里示出的是0.1~760Torr真空度范围内的校准装置典型结构示意图。方案具体内容如下:[align=center][img=真空计校准,600,596]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261606551375_610_3384_3.png!w690x686.jpg[/img][/align][align=center]图1 便携式真空计校准装置结构示意图[/align](1)采用静态比对法,将被校准真空计与参考标准真空计比对。参考标准真空计采用两个电容薄膜真空计以覆盖整个真空度校准范围,参考标准真空计也同时作为真空度控制传感器。(2)真空度控制器采用二通道高精度真空度控制器,控制器的A/D为24位,D/A为16为,可对应电容薄膜真空计的高精度信号输出和满足真空度控制精度要求。控制器的两个通道分别对应于两个真空计的输入信号、两路数字针阀的进气和抽气流量的精密调节。在真空度控制过程中两路传感器信号可根据需要自动切换,以实现全量程范围内的可编程自动控制。控制器带PID自整定功能和标准的MODBUS通讯协议。(3)采用两个数字针阀分别调节进气和抽气流量,控制器采用双向模式分别对两个针阀进行调节。在粗真空范围内主调节进气针阀,在高真空范围内主调节进气针阀,全量程范围内的真空度恒定控制时,真空度波动率可控制在±1%以内。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 月壤环境地面模拟试验装置中的真空度精密控制技术方案

    月壤环境地面模拟试验装置中的真空度精密控制技术方案

    [size=14px][color=#ff0000]摘要:在探月工程中需要在月面真空环境下采集月壤样品,需要建立地面试验装置来模拟月面的真空热环境,以测试采样器在真空热环境下的性能,由此要求真空度能实现精密控制。本文针对真空热环境地面模拟试验装置,提出了真空度精密控制的技术方案,真空度控制范围为0.1Pa~0.1MPa,全量程的控制精度为±1%。[/color][/size][size=14px][color=#ff0000][/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#330033]一、问题的提出[/color][/size]在探月工程中需要在月面真空环境下采集月壤样品,由此需要建立地面试验装置来模拟月面的真空热环境,以测试采样器在真空热环境下的性能,并要求真空度能实现精密控制。由于月壤的特殊性,目前的月壤地面模式试验装置中的真空度控制还需要解决以下几方面的问题:[size=14px](1)月壤和模拟月壤样品,一般为粉末状颗粒,因此在开始阶段的抽气速率要进行严格控制以避免产生扬尘。[/size](2)目前的真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,造成试验结果的重复性很差。[size=14px](3)月壤地面模拟试验装置普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,也是造成试验结果重复性差的原因之一。[/size][size=14px]针对月壤地面模式试验装置中存在的上述问题,本文提出了相应的技术方案,并介绍了详细的实施过程。[/size][size=18px][color=#330033]二、技术方案[/color][/size][size=14px]月壤环境地面模拟试验设备真空度密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、电动球阀、PID控制器和真空泵。为了进行真空度全量程的精密控制,一般需要配备三只电容真空计,真空计的测量精度为0.25%。为配合电容真空计的测量精度,控制器采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游数控针阀和下游电动球阀的气体流量调节和控制。[/size][align=center][size=14px][img=真空度控制好,500,489]https://ng1.17img.cn/bbsfiles/images/2022/04/202204191021365551_7090_3384_3.png!w690x676.jpg[/img][/size][/align][size=14px][/size][align=center]图1 真空度精密控制系统结构示意图[/align][size=14px]真空度的精密控制使用了动态控制模式,即在低真空条件下调节电动球阀,在高真空条件下调节数控针阀,这是一种典型的正反向控制方法,可有效保证真空度的控制精度。[/size]总之,通过此经过验证的真空度控制方案,可实现全量程范围内真空度的控制精度优于1%。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 真空度测试仪的原理和特点简介

    真空度测试仪采用磁控放电法进行测量。将真空开关灭弧室的两触头拉开一定的距离,施加电场脉冲高压,将灭弧室置于螺线管圈内或将新型电磁线圈置于灭弧室外侧,向线圈通以大电流,从而在灭弧室内产生与高压同步的脉冲磁场。这样,在脉冲强磁场和强电场的作用下,灭弧室中的带电离子作螺旋运动,并与残余气体分子发生碰撞电离,所产生的离子电流与残余气体密度即真空度近似成比例关系。对于不同的真空管型号(管型),由于其结构不同,在同等触头开距、同等真空度、同等电场与磁场的条件下,离子电流的大小也不相同。通过实验可以标定出各种管型的真空度与离子电流间的对应关系曲线。当测知离子电流后,就可以通过查询该管型的离子电流一真空度曲线获得该管型的真空度。真空度测试仪将灭弧室的两触头拉开一定的开距,施加脉冲高压,将电磁线圈环绕于灭弧室的外侧,向线圈通以大电流,从而在灭弧室内产生与高压同步的脉冲磁场,这样在脉冲磁场的作用下,灭弧室中的电子做螺旋运动,并与残余气体分子发生碰撞电离,所产生的离子电流与残余气体密度即真空度近似成比例关系。对于不同的真空管,在同等真空度条件下,离子电流的大小也不相同,当测知离子电流后,通过离子电流一真空度曲线,由计算机自动完成真空度的计算,并显示真空度值。真空度测试仪特点:1、可定量测量各种型号真空开关灭弧室内的真空度;   2、现场测量时不需拆卸真空开关;   3、测试结果准确可靠;   4、液晶汉字显示,操作更加简单方便;   5、可保存、打印、查看测试的试验数据;   6、仪器带有RS232通讯接口,可以连接计算机实现真空度-离子电流曲线下载、寿命估计等多种功能;   7、仪器重量轻,携带方便。   8.实现了真空灭弧室的免拆卸测量,直接显示真空度值,使真空断路器用户详细掌握灭弧室的真空状态,为有计划地更换灭弧室提供了可靠的依据,为电网的安全运行提供了有力保障,克服了工频耐压法仅能判断灭弧室是否报废的缺陷。真空度测试仪技术参数1. 真空度测量范围: 9.999×10-1~1×10-5   2. 离子电流测量范围: 9.999×10-1~1×10-7   3. 测量误差: 10%   4. 测量分辨率: 10-5pa   5. 允许环境温度: -20℃~50℃   6. 空气湿度: ≤80%RH   7. 电源: AC/220V/50Hz±10%   8. 外型尺寸: 420×290×210(mm)   9. 高压输出: 脉冲30kV15kHz

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制