当前位置: 仪器信息网 > 行业主题 > >

卤素灯加热仪

仪器信息网卤素灯加热仪专题为您提供2024年最新卤素灯加热仪价格报价、厂家品牌的相关信息, 包括卤素灯加热仪参数、型号等,不管是国产,还是进口品牌的卤素灯加热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合卤素灯加热仪相关的耗材配件、试剂标物,还有卤素灯加热仪相关的最新资讯、资料,以及卤素灯加热仪相关的解决方案。

卤素灯加热仪相关的资讯

  • 热烈祝贺梅特勒超越系列HX/HS卤素水分测定仪全新上市
    梅特勒-托利多全新上市的新款超越系列卤素水分测定仪采用创新的悬挂式秤盘设计以及第二代卤素灯加热技术,提供了极佳的测量性能,可在很短的时间内获得非常可靠的结果。一键水分测定 (One Click&trade Moisture) 的图形化用户界面可快速、顺畅地执行操作,同时提供了实时的干燥曲线和控制图表。坚固的设计和简单清洁概念确保长久的使用寿命和实验室及生产现场的无中断操作。 超越系列HX/HS卤素水分测定仪 卓越的性能 悬挂式秤盘消除了温度对天平的负面影响,确保最佳的称量性能。快速加热 先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。30 秒即可清洁 样品腔表面是平整且密封的。清洁操作从未如此轻松快速。一键水分测定 (One Click&trade Moisture) 直观的用户界面易于操作。实时干燥曲线或红/绿显示合格/不合格判定。卓越的可操作性 生产食品、化学品和许多其他商品需要定期的进行样品检测,以保持全面的过程控制。 确保您始终高枕无忧 HX204 水分测定仪满足研究、质量控制和生产的严格需求。 详细信息,请访问东南科仪网站www.sinoinstrument.com或致电全国免费电话400-113-3003垂询!
  • 超越系列HX/HS卤素水分测定仪即将上市
    梅特勒托利多即将上市的新款超越系列卤素水分测定仪采用创新的悬挂式秤盘设计以及第二代卤素灯加热技术,提供了极佳的测量性能,可在很短的时间内获得非常可靠的结果。一键水分测定 (One Click&trade Moisture) 的图形化用户界面可快速、顺畅地执行操作,同时提供了实时的干燥曲线和控制图表。坚固的设计和简单清洁概念确保长久的使用寿命和实验室及生产现场的无中断操作。详细信息,请访问梅特勒托利多网站:http://www.mt.com/hxhs
  • 梅特勒卤素水分仪测定锂离子电池浆料固含量方法
    我们知道,锂电池浆料分为正极浆料和负极浆料两种,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。 锂离子电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂离子电池浆料制备的整个过程。合浆后的浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。表征浆料稳定性的主要参数有流动性、粘度、固含量、密度等。 浆料的固含量和浆料稳定性息息相关,同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。在一定范围内,粘度越高,浆料稳定性越高。固含量越高,浆料搅拌时间越短,所耗溶剂越少,涂布干燥效率越高,节省时间。高固含量的浆料还可以减少涂层间厚度,降低电池内阻。 锂电池的生产包括极片制造工艺阶段的浆料制备、浆料涂覆工序是整个锂电池制造的核心内容,浆料的固含量等参数就关系着电池电化学性能的好坏,我们就来探讨一下主流的测量锂离子电池浆料固含量的方法。锂离子电池正负极浆料目前的标准的测试方法为GB/T18856.2-2008 水煤浆试验方法第2 部分 浓度测定。浆料试样的采取与制备按锂离子电池浆料采样方法进行。BINDER FD115 (固含量测定烘箱)1.1 取充分搅拌均匀的浆料试样(3.0±0.2g) 置于预先干燥并称量(称准至0.0002g)过的称量瓶中,迅速加盖,称量(称准至0.0002g),晃动摊平。1.2 打开瓶盖,将称量瓶和瓶盖放入预先鼓风并已经加热到120~125℃的干燥箱中,在鼓风条件下,干燥2h。1.3 从干燥箱中取出称量瓶,立即盖上盖在空气中冷却约3min后放入干燥器中,冷却至室温,MT电子分析天平称量。1.4 进行检查性干燥,每次30min,直到连续两次干燥的试样质量的减少不超过0.003g或质量增加后为止。在后一种情况下,应才有质量增加前一次的质量作为计算依据。由此我们看出此方法的局限性: 目前主流采用是梅特勒的经典型HC103及超越型HX204这两款卤素红外水分仪测量电池浆料的固含量,其测定方法是如何简化测试流程又能和烘箱法的结果保持一致呢? 一:HX204 超越型的卤素水分测定仪,主要的优势为:创新的悬挂式秤盘设计避免了加样腔的热量对秤盘的影响,通过消除对称量单元的负面热效应,改善测定结果。高性能 MonoBloc 称量单元可提供最大量程和最佳分辨率(200g,0.1mg),可满足要求最严苛的任务,可在最短的时间内获得非常可靠的结果。快速加热:先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。第二代卤素加热技术最大程度减少了热物质,通过缩短加热/冷却循环及精确的温度控制增强性能。采用冷仪器进行首次测量,与随后采用热仪器进行测量的精确程度相同。一键水分测定 :One Click™ Moisture 的图形化用户界面可快速、顺畅地执行操作,同时提供实时的干燥曲线和控制图表。了解测量,自动化控制图表可显示每个样品的固含量的含量变化趋势。具有测试方法开发功能。 具有终点判定方法选择功能 二:梅特勒-托利多全新经典HC103水份测定仪 使用 HC103 卤素水份测定仪轻松执行浆料固含量的测定。借助触摸屏操作和用户指导,HC103 使用起来十分方便。 2. 坚固耐用的设计均可确保今后数年内获得可靠的结果。 3. 图形化用户界面:让您倍感舒适自在,只需轻轻一击即可立即开始水份测定。4. SmartCal功能:确保可信水份结果的性能验证,应当在保养间隔期间定期测试卤素水份测定仪,以确保水份测量结果始终正确。通过 SmartCal,我们可提供一种在简单的 10 分钟测试中对您卤素水份测定仪的整体性能进行验证的独特测试物质。5.HC103 和HX204 的最小浆料的称量量为0.1g, 为了保证浆料固含量的准确性及重现性,建议称量量在0.5-3.5 g 左右。对于浆料而言,需要选用可重复使用的不锈钢样品盘及玻璃纤维盘进行测试。 根据正负极浆料水分残留及NMP残留物质的特性,一般可以进行120-155度左右的方法开发,通过测定方法开发功能,以烘箱法的结果进行比对修订及优化,最终形成固定的正负极浆料固含量的标准方法,保存在仪器界面的快捷键中,均匀放置好浆料样品好,一键开始测量,约2-10min自己显示结果。 结论梅特勒公司的HX204和HC103 卤素红外水分仪,非常适合于工厂车间和实验室进行原料,半成品和成品的水分或者固含量的测定。可以在几分钟内提供精确可靠的水分或固含量的信息,确保最佳的产品质量和至高的生产力,助力于锂电池正负极浆料固含量测定,有力保障锂离子电池的性能品质。
  • 最新一款M-20A卤素快速水分测定仪隆重上市
    目前市场快速水分测定仪主要要红外快速水分测定仪和卤素快速水分测定仪,红外水分测定仪为老一代经典快速水分测定仪,而卤素水分测定仪为后起之秀,随着产品质量要求越来越高,人们对产品的水分含量精度,测试时间,数据的平行性及自动化程度,卤素水分测定仪逐渐取代红外水分测定仪,具后来之势。 红外和卤素水分测定仪其原理都是一样的,都是加热减重法,即通过外部加热,蒸发样品的水分,然后通过加热器正面的电子天平得出样品的水分百分比,快速水分测定仪的精度主要取决于电子天平的精度,目前常规电子天平的精度基本上0.001g(千分之一)。 由于红外线在加热过程中,由于红外灯的发热方式,局部区域温度较高,所以容易造成部分区域加热超热,而部分区域则可能没有干燥,相对来说,加热不是很均匀。同时,由于 产品对红外线加热会对其内部产生化学变化,这也限制了红外水分测定仪的发展。最新技术的卤素水分测定仪则去除了红外水分测定仪的缺点,加热均匀,升温速度快,很快便获得了市场的认可。 M-20A卤素快速水份测定仪是一种新型快速的水分检测仪器。其环状的卤素加热器确保样品在高温测试过程中均匀受热,使样品表面不易受损,快速干燥,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。 产品特点:1、采用环状的卤素加热器2、检测速度快3、操作简单,测试准确4、样品受热均匀5、用途广泛6、具有与计算机、打印机连接功能 产品技术指标:1、称重范围:0-90g2、水分测定范围:0.01-100%3、称重最小读数:0.001g4、样品质量:0.5-90g5、加热温度范围:起始-205℃6、水分含量可读性:0.01%7、显示参数:7种8、通讯接口:RS 2329、外型尺寸:380× 205× 325(mm)10、电源:220V± 10%11、频率:50Hz± 1Hz12、净重:3.7Kg与国际烘箱加热法相比,其检测结果具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。一般样品只需几分钟即可完成测定。该仪器操作简单,测试准确,显示部分采用红色数码管,示值清晰可见,分别可显示水分值、样品初值、终值、测定时间、温度初值、最终值等数据。并具有与计算机,打印机连接功能。该水分仪可广泛应用于一切需要快速测定水分的行业,如塑胶、橡胶、化工、医药、食品、等行业中的生产过与实验过程中。
  • 万分之一(M-30A)卤素快速水分测定仪最新上市
    目前市场快速水分测定仪主要要主要有卡尔· 费休水分测定仪、红外水分仪、卤素水分仪、露点水分仪、微波水分仪、库仑水分仪等, 红外水分测定仪操作简单,耗时少,测量结果准确,故红外水分仪可广泛应用于化工、医药、食品、烟草、粮食等行业的实验分析和日常进货控制及过程检测。称之为老一代经典快速水分测定仪,但是红外线在加热过程中,由于红外灯的加热方式,产生聚焦点,局部区域温度较高,所以容易造成部分区域加热超热,发生糊状,而部分区域则可能没有干燥,相对来说,加热不是很均匀。同时,由于 产品对红外线加热会对其内部产生化学变化,这也限制了红外水分测定仪的发展。而最新技术的M-30A卤素水分测定仪则去除了红外水分测定仪的缺点,加热均匀,升温速度快,很快便获得了市场的认可.其环状的卤素加热器确保样品在高温测试过程中均匀受热,使样品表面不易受损,快速干燥,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示,其技术性能和指标在国内属领先。M-30A卤素快速水份测定仪提供快速、简单的水分测定过程,具有准确、可靠的测定性能,并且能够测定低至0.0001的水分含量.通过优化干燥和调节过程,帮助用户节省时间和精力。 M-30A卤素快速水份测定仪是一种新型快速的水分检测仪器。其环状的卤素加热器确保样品在高温测试过程中均匀受热,使样品表面不易受损,快速干燥,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。红外和卤素水分测定仪其原理都是一样的,都是加热减重法,即通过外部加热,蒸发样品的水分,然后通过加热器正面的电子天平得出样品的水分百分比,快速水分测定仪的精度主要取决于电子天平的精度,目前常规电子天平的精度基本上0.001g(千分之一)。M-30A卤素快速水份测定仪电子天平的精度达到0.0001g(万分之一)是一种新型快速的水分检测仪器.产品技术指标:1、称重范围:0-90g2、水分测定范围:0.001-100%3、称重最小读数:0.0001g4、样品质量:0.5-90g5、加热温度范围:起始-205℃6、水分含量可读性:0.01%7、显示参数:7种8、通讯接口:RS 2329、外型尺寸:380× 205× 325(mm)10、电源:220V± 10%11、频率:50Hz± 1Hz12、净重:3.7Kg
  • 卡式加热炉水分仪对比卤素加热水分仪,您选对了吗?
    在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。水分对锂离子电池影响巨大,主要会造成以下不良后果: 1、电解液变质,使电池铆钉生锈。2、电池内部压力过大,爆裂使得电解液喷溅,电池碎片也容易伤人。 3、高内阻(High ACR),不能进行大电流放电,电池的功率比较低。4、高自放电(HSD),电池在不使用的情况下,电量也会损耗。5、低容量,电池内部水分过高,损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。6、低循环寿命 7、电池漏液,当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸,氢氟酸是一中腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。 目前市场上水分含量测定的技术方法最常用的是卡尔费休方法和加热失重方法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。卡尔费休方法检测,精度没有问题,但是由于样品本身固体粉末无法溶解,直接进样的方法会污染反应杯和电极,样品也无法检测,因此,采用卡尔费休间接进样的方法,也就是用卡式加热炉(也有叫卡式干燥炉)进样,结合卡尔费休水分测定仪检测就成为目前唯一的可以选择的测量方式。卡式加热炉作为卡尔费休水分测定仪的辅助组成部分,它要求加热后的样品水分挥发后能够无任何残留地进入到卡尔费休水分仪电解池中测量,这对仪器的加热组件,管路组件,密封组件等提出了非常高的要求,长期以来,国产仪器厂家在这一块儿是个空白,被国外公司所垄断,进口仪器价格十分昂贵,在十几万和二十几万之间,日常维护成本也非常高。另外,国内一些卡尔费休水分仪的生产厂家声称自己的产品可以应用在锂电行业,但也仅仅局限于电解液等液体样品,正负极材料,极片等固体样品根本无法检测。早在2011年,在浙江大学,中科院宁波材料所等一批老师的帮助下,我们开始进行卡式加热炉结构设计和材料筛选的工作,经过几年摸索,样机成型,并结合我禾工公司的AKF-3库伦法卡式水分测定仪,组成一套国产的第一台带卡式加热炉的卡尔费休水分测定仪,AKF-BT2015C锂电池水分测定仪客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%。 AKF-BT2010C锂电池专用水分测定仪:采用卡尔费休间接进样的方法,用卡式加热炉(也有叫卡式干燥炉)进样,加热后的样品水分挥发后能够无任何残留地进入到卡尔费休水分仪电解池中测量。适用于锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 典型用户:钱江锂电科技有限公司(4套)、个旧圣比和实业有限公司(1套)、海门容汇锂业有限公司(2台)、惠州基安比新能源有限公司(1台)、山东临沂杰能新能源(2套)、南阳嘉鹏新能源(1套)、山西中科忻能科技有限公司(2套)、四川南光新能源有限公司(1套)、新乡中科科技公司(1套)、浙江谷神能源(2套)、无锡市明杨电池有限公司(2套)、北京般若涅利(1套)、包头石墨烯材料研究院(1套)、重庆中欣维动力(1套)、贵州赛德丽新能源(1套)......
  • 天瑞(中国)仪器公司提供无卤素测试解决方案
    卤素(halogen),卤族元素的简称,是元素周期表上的第ⅦA族元素,包括氟、氯、溴、碘、哎等五元素。由于哎属于放射性元素,所以人们常说的卤素是指氟、氯、溴、碘。 卤素的危害极大,对免疫系统的毒性,对内分泌系统的影响,对生殖和发育的影响,致癌作用,其他的毒性(精神和心理疾患),多数卤化物属于环境荷尔蒙物质。 根据许多科学研究显示,卤素系阻燃剂已经成为日常环境中到处扩散的污染物,且对于环境与人类的威胁日益升高。而制造、循环回收、或拋弃家电及其它消费性产品的行为,则是造成这些污染物释放到环境的主要途径。为保护环境,各种法律法规也相继出现,是为了限制卤素的使用。某些卤素系阻燃剂已经不能使用在电器产品和房屋建材的塑料材料部份 (此泛指塑料的表面/外壳)。 塑料材料中禁用卤素系阻燃剂的原因是此种阻燃剂无法回收使用,而且在燃烧与加热过程中会释放有害物质,威胁到人类身体的健康、环境和下一代子孙。 目前,天瑞仪器在EDX3600B的基础上进行优良改造,引进美国产的卤素测试高效X光管,利用高信噪比的电子线路单元和卤素测试专用X荧光分析软件,已经成功研制出新款分析仪器EDX3600B(H)。EDX3600B(H)卤素测试专用配件是针对卤族元素(特别是氯元素)的测试而开发。经过多次实验无卤分析所得数据分析,无卤分析的结果十分接近标准值,EDX3600B(H)可广泛应用于各种类型的无卤测试。screen.width-300)this.width=screen.width-300"EDX3600B(H)实验无卤分析(大气状态)数据
  • 上海精科推出LHS16-A卤素水份仪
    上海精科天平仪器产品部不久将向市场推出LHS16-A卤素水份仪,这项产品是用新技术改进的一款仪器,它在单片微机的控制下,采用由磁平衡和卤素管加热技术以及其它新技术设计而成。  此水份仪体积小、外型美观、功能完善、使用方便、坚固耐用。不但有称量校准、温度与时间设定、手动与自动加热选择,而且有显示参数可调等多种功能,配上打印机或电脑串口,可输出多种参数 有多种输出模式可供选定。此项产品由于温控技术改进,加热升级的特点,据该产品部技术与工艺人员分析,会进一步受到用户的欢迎。LHS16-A卤素水份仪广泛应用于医药、食品、粮食、烟草、化工等行业的实验室和日常进货及过程控制。     图为LHS16-A卤素水份仪
  • 快速退火工艺在欧姆接触中的应用RTP
    作为新一代半导体的代表材料,氮化镓(GaN)具有大禁带宽度、高临界场强、高热导率、高载流子饱和速率等特性,是制造高功率、高频电子器件中重要的半导体材料。其中,GaN材料与金属电极的欧姆接触对器件性能有着重要的影响,器件利用金属电极与GaN间接触形成的欧姆接触来输入或输出电流。当欧姆接触电阻过高时会产生较多的焦耳热,缩短器件寿命,而良好的欧姆接触可使器件通态电阻低,电流输出大,具有更好的稳定性。退火温度影响欧姆接触质量氮化镓欧姆接触的制备通常需要进行退火处理,退火的目的是通过热处理改变材料的结构和性质,使金属电极与氮化镓之间形成低电阻接触。而金属与GaN之间形成欧姆接触的质量受退火条件的影响,良好的欧姆接触图形边缘应保持平整,电极之间不应存在导致短路的金属粘合,退火完成后不会出现金属的侧流。(a) 退火前欧姆接触形态 (b)退火后欧姆接触形态(图源网络)退火温度作为影响欧姆接触性能的重要参数,温度过高或过低都会导致电阻率的增加和电流的减小。一般来说,退火温度越高,金属电极与氮化镓之间的比接触电阻率则越低。比接触电阻率与退火温度的函数关系(图源:知网)然而,当退火温度过高则可能导致氮化镓材料的损伤或金属电极的熔化,不利于形成好的欧姆接触;当温度过低时会导致金属与半导体之间形成较高的势垒,阻碍载流子的传输。因此在对GaN欧姆接触进行退火处理时,对于退火温度的条件选择尤为重要。快速退火炉(RTP)原理:快速退火炉(RTP)是一种用于半导体器件制造和材料研究的设备,其工作原理是通过快速升温和降温来处理材料,以改变其性质或结构。RTP结构示意图(图源网络)晟鼎快速退火炉(RTP)优势RTP快速退火炉具有温度控制精确、升温速度快等优点,可以满足欧姆接触对温度敏感的材料和结构的需求。晟鼎快速退火炉制程范围覆盖200-1250℃,具有强大的温场管理系统,此外,还能灵活、快速地转换和调节工艺气体,使得其在同一个热处理过程中可以完成多段处理工艺。晟鼎快速退火炉RTP温度控制—1000℃制程半自动快速退火炉RTP-SA-12为半自动立式快速退火炉,工艺时间短,控温精度高,相对于传统扩散炉退火系统和其他RTP系统,其独特的腔体设计、先进的温度控制技术和独有的 RL900软件控制系统,确保了极好的热均匀性。产品优势◎红外卤素灯管加热,冷却采用风冷◎大气与真空处理方式均可选择,进气前气体净化处理◎灯管功率 PID 控温,可精准控制温度升温,保证良好的重现性与温度均匀性全自动双腔退火炉RTP-DTS-8相对于传统扩散炉退火系统和其他 RTP 系统,其独特的腔体设计、先进的温度控制技术和独有的RL900 软件控制系统,确保了极好的热均匀性。产品优势◎红外卤素灯管加热,冷却采用风冷 ◎灯管功率 PID 控温,可精准控制温度升温,保证良好的重现性与温度均匀性 ◎大气与真空处理方式均可选择,进气前气体净化处理 ◎标配两组工艺气体,最多可扩展至 6 组工艺气体桌面型快速退火炉RTP-Table-6 为桌面式 6 英寸晶圆快速退火炉,使用上下两层红外卤素灯管作为热源加热,内部石英腔体保温隔热,腔体外壳为水冷铝合金,使得制品加热 均匀,且表面温度低。 RTP-Table-6 采用 PID 控制,系统能快速调节红外卤素灯管的输出功率,控温更加精准。产品优势◎双层红外卤素灯管加热,氮气快速降温◎自主研发灯管分组排布,使温度均匀性更好 ◎采用PID 算法控制,实时调节灯管功率输出 ◎软件主界面能实时显示气体、温度、真空度等参数◎自动识别错误信息,出现异常时设备自动保护
  • 欧盟全面停止销售白炽灯
    自2012年12月31日起,欧盟全面停止销售白炽灯。这项已经着手运作了5年多的绿色能源方案,终于最终落实。  发明于19世纪末的白炽灯泡,一直是照明市场的主角。但这种灯泡浪费能源、二氧化碳排放量相对较大。据研究,白炽灯能效低,只有不足15%用来照明,其余都变成了热能。欧盟委员会早在2007年3月就制订出具体时间表,逐步淘汰这种产品。据欧盟一家研究机构的最近调查显示,2007年白炽灯泡占法国照明市场份额曾达45%,2012年已降至10%,卤素灯占46%,紧凑型荧光灯占36%,LED节能灯占8%。LED节能灯消耗能源少,使用寿命长,具有光明的前途。根据麦肯锡公司的一项调查,2011年,全球LED节能灯市场份额为12%,预计将在2016年提高到40%,2020年达到63%,届时其销售额将达1000亿欧元。将来,照明市场将是紧凑型荧光灯、卤素灯和LED节能灯的天下。  但节能灯也有短处,导致一些消费者不愿放弃传统灯泡。如在使用上,节能灯刚打开时灯光比较暗,几分钟之后才逐渐亮起来,灯光颜色等与传统白炽灯不同,需要有一个适应过程 其次,节能灯虽然寿命相对较长,但价格偏高 另外,因为节能灯里含有具有毒性的水银,所以废旧节能灯不能随便丢弃,必须专门回收处理。  目前除了欧盟区内外,日本、澳大利亚等国也宣布了同样的政策。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 仪方成为TE总有机卤素分析仪中国区总代理
    新加坡仪方亚洲有限公司成功成为TE总有机卤素分析仪中国区总代理 新加坡仪方亚洲有限公司(INTERMASS FISCHER-ASIA PTE LTD),是一家总部设在新加坡的专业科学仪器公司。作为多家世界先进的分析仪器设备制造商在中国地区的总代理,仪方公司的产品主要被应用于石油炼制、精细化工、生物制药、环保监测、电子元件等众多行业及领域。经过TE (Trace Elemental Instruments)多方考察,仪方公司凭借成熟稳定的销售团队和优秀的售后服务团队以及长期以来在实验分析设备领域积累的优秀口碑,赢得了TE公司的认可。仪方公司将作为TE总有机卤素分析仪在中国市场的独家总代理负责产品的市场销售和售后服务工作。 如果您对产品有任何疑问或兴趣,欢迎随时垂询我公司或登陆公司网站查询。 联系方式:北京办公室:010-5867 8333上海办公室:021-6439 9787Email:ifac@intermasschina.comWebsite:www.intermasschina.comTE XPLORER AOX analyzer 总有机卤素分析仪适用于现代环保检测实验室检测各种有机卤素的快速准确分析 TE结合70多年来在燃烧法及库仑滴定检测的经验,推出了新型的XPLORER全自动总有机卤素分析仪,可以快速、精确地检测各种类型的有机卤素。并且通过模块化设计提供自定义解决方案, 从而满足未来的升级需要。技术参数:检测原理:高温燃烧法/库仑滴定法燃烧温度:最高可至1150° C样品前处理方式:柱吸附法和振荡吸附法进样量:5-1000mg检测范围:0.8 µ g/L ~1000 µ g/L平均分析时间:3-10min(不包含样品预处理过程)气体:氧气99.6%,氩气99.998%20位全自动进样器,可扩展至60位TEIS在线控制及数据处理软件外形尺寸(W xH xD):40 x28 x70cm重量:29kg 产品特点:紧凑外观设计, 同类产品体积最小快速启动时间 15 min快速和准确的分析固体和液体样品高效的20-60位全自动进样器低电压高温炉,有效保证使用寿命专利的可控温滴定池设计,可以24/7全天候工作高度自动化设计,自动控制最佳实验条件,减少维护费用延长仪器寿命模块化设计,便于在各种分析模块间切换易于使用和直观的用户界面符合CEN,DIN,EPA,ISO, NEN及GB/T国家标准 应用领域:饮用水,地表水,地下水,污水,流出水,废水,自来水,盐水,处理水,纸浆排出水,土壤,沉积物,淤泥和废油
  • 艾德姆全新推出PMB快速水分分析仪
    艾德姆PMB水分分析仪现已全新上市!  PMB水分分析仪是一款卤素灯加热为原理的快速水份分析仪。是一款反应快速,操作简便,功能多样,性价比极高的产品。  机身采用全金属的抗氧化外壳,坚固耐用防腐蚀 标配两种数据接口,包括RS232接口以及USB接口,数据存储简单方便 超大背光液晶显示屏,测量时能同时显示加热时间,实时温度和重量等信息 内置存储块,能够存储49种检测模式和99种检测结果 多种加热模式满足不同样品的加热需求。 同时艾德姆还推出了HCB,CQT高精度的便携式天平。
  • 欧盟国家从明年起逐步禁售普通白炽灯泡
    欧盟成员国专家日前起草了一项限制出售普通白炽灯泡的法令草案,目前此项法令草案已获各成员国能源部长的首肯。明年由欧盟议会和欧盟委员会形式上通过批准后将正式颁布施行。  法令草案的具体内容是:从明年九月开始禁止出售100瓦和100瓦以上的普通白炽灯泡 从2010年开始禁止出售40瓦和40瓦以上的普通白炽灯泡 从2012年开始禁止出售25瓦和25瓦以上的普通白炽灯泡 从2016年开始除了节能灯泡以外,完全禁止出售包括效率不高的卤素灯泡在内的所有不节能的灯泡。
  • 快速退火炉在化合物半导体上的应用(RTP SYSTEM)
    前言碳化硅(SiC)是制作半导体器件及材料的理想材料之一,但其在工艺过程中,会不可避免的产生晶格缺陷等问题,而快速退火可以实现金属合金、杂质激活、晶格修复等目的。在近些年飞速发展的化合物半导体、光电子、先进集成电路等细分领域,快速退火发挥着无法取代的作用。01快速退火在化合物半导体上的应用碳化硅(SiC)是由碳元素和硅元素组成的一种化合物半导体材料,具有硬度高、热导率高、热稳定性好等优点,在半导体领域具有广泛的应用前景。由于碳化硅器件的部分工艺需要在高温下完成,这给器件的制造和封测带来了较大的难度。例如,在掺杂步骤中,传统硅基材料可以用扩散的方式完成掺杂,但由于碳化硅扩散温度远高于硅,所以需要采用高温离子注入的方式。而高能量的离子注入会破坏碳化硅材料原本的晶格结构,因此需要采用快速退火工艺修复离子注入带来的晶格损伤,消除或减轻晶体应力和缺陷,提高结晶质量。*退火工艺处理前后对比(图源:网络)02什么是快速退火炉(RTP SYSTEM)快速退火炉是利用卤素红外灯作为热源,通过极快的升温速率,将材料在极短的时间内从室温加热到300℃-1250℃,从而消除材料内部的一些缺陷,改善产品性能。*图源:网络03快速退火炉产品介绍 全自动双腔快速退火炉 RTP-DTS-8是一款全自动双腔快速退火设备,可兼容6-8英寸晶圆Wafer。产品优势✅ 全自动双腔设计,有效提升产能✅ 温度可达1250℃,具有超高温场均匀性✅ 具备稳定的温度重现性✅ 能够满足SIC量产化制程需求半自动快速退火炉RTP-SA-12是在保护气氛下的半自动立式快速退火系统,可兼容4-12英寸晶圆Wafer。产品优势✅ 采用红外卤素灯管加热,冷却采用风冷;✅ 快速PID温控,可控制温度升温,保证良好的重现性和温度均匀性;✅ 采用平行气路进气方式,气体进出口设置在晶圆表面,避免退火过程中冷点产生,保证良好的温度均匀性;✅ 大气与真空处理方式均可选择,实现进气前气体净化处理;✅ 标配两组工艺气体,可扩展至6组工艺气体。桌面型快速退火炉RTP-TABLE-6是一款桌面型快速退火设备,标配三组工艺气体,可兼容6英寸晶圆Wafer。产品优势✅ 红外卤素灯管加热,冷却采用风冷;✅ 采用快速PID温控,可控制温度升温,保证良好的重现性和温度均匀性;✅ 采用平行气路进气方式,气体进出口设置在晶圆表面,避免退火过程中冷点产生,保证良好的温度均匀性;✅ 大气与真空处理方式均可选择,实现进气前气体净化处理。
  • TE XPLORER AOX analyzer 总有机卤素分析仪
    TE XPLORER AOX analyzer 总有机卤素分析仪适用于现代环保检测实验室检测各种有机卤素的快速准确分析 TE结合70多年来在燃烧法及库仑滴定检测的经验,推出了新型的XPLORER全自动总有机卤素分析仪,可以快速、精确地检测各种类型的有机卤素。并且通过模块化设计提供自定义解决方案, 从而满足未来的升级需要。技术参数:检测原理:高温燃烧法/库仑滴定法燃烧温度:最高可至1150° C样品前处理方式:柱吸附法和振荡吸附法进样量:5-1000mg检测范围:0.8 µ g/L ~1000 µ g/L平均分析时间:3-10min(不包含样品预处理过程)气体:氧气99.6%,氩气99.998%20位全自动进样器,可扩展至60位TEIS在线控制及数据处理软件外形尺寸(W xH xD):40 x28 x70cm重量:29kg 产品特点:紧凑外观设计, 同类产品体积最小快速启动时间 15 min快速和准确的分析固体和液体样品高效的20-60位全自动进样器低电压高温炉,有效保证使用寿命专利的可控温滴定池设计,可以24/7全天候工作高度自动化设计,自动控制最佳实验条件,减少维护费用延长仪器寿命模块化设计,便于在各种分析模块间切换易于使用和直观的用户界面符合CEN,DIN,EPA,ISO, NEN及GB/T国家标准 应用领域:饮用水,地表水,地下水,污水,流出水,废水,自来水,盐水,处理水,纸浆排出水,土壤,沉积物,淤泥和废油 如果您对产品有任何疑问或兴趣,欢迎随时垂询我公司或登陆公司网站查询。 联系方式:北京办公室:010-5867 8333上海办公室:021-6439 9787Email:ifac@intermasschina.comWebsite:www.intermasschina.com
  • 四项食品快速检测方法发布 这些仪器大有可为!
    众所周知,快速检测方法能在尽量短的时间内检测出被检物质是否处于正常状态,检测得到的结果是否符合标准规定值。快速检测是食品安全监管人员的有力工具,在日常监督监管过程中,采用现场快速检测方法,可及时发现问题并迅速采取相应措施,这对提高监督工作效率、保障食品安全有着重要意义。为打击食品非法添加、掺假掺杂行为以及规范食品快检方法使用,强化食品安全监管技术支撑,近日,市场监管总局发布了4项食品快速检测方法,其中包括《食用植物油中天然辣椒素的快速检测 荧光免疫层析法》、《面制品中铝残留量的快速检测 比色法》、《水产品中地西泮残留的快速检测 胶体金免疫层析法》、《玉米及其碾磨加工品中伏马毒素的快速检测 胶体金免疫层析法》。据了解,目前在市场监管总局网站上发布的食品快速检测方法共有30项,包含了非法添加、黄曲霉毒素、兽药残留等多类项项目。 本次发布的食品快速检测方法主要聚焦在粮油及水产品中的兽药残留、毒素、重金属等项目上。其中《面制品中铝残留量的快速检测 比色法》适用于油条、油饼、麻花、撒子等油炸面制品中铝残留量的快速检测。用到的仪器设备包括粉碎机、移液器、水浴锅、酸度计、离心机、电子天平、快速水分测定仪(卤素灯加热型)。《食用植物油中天然辣椒素的快速检测 荧光免疫层析法》主要适用于菜籽油、大豆油、花生油、芝麻油、玉米油、葵花籽油、茶籽油、橄榄油、调和油等食用植物油中天然辣椒素的快速测定。用到的仪器及设备主要有荧光测速仪、电子天平、涡漩混合器、孵育器、氮吹仪/空气吹干仪(带温度控制)、天然辣椒素荧光免疫层析试剂盒、移液器、离心机。《水产品中地西泮残留的快速检测 胶体金免疫层析法》主要适用于鱼、虾中地西泮的快速定性测定。主要涉及的仪器设备有电子天平、离心机、移液枪、涡旋仪、氮吹仪、孵育器、胶体金读数仪。《玉米及其碾磨加工品中伏马毒素的快速检测 胶体金免疫层析法》则主要针对的是玉米及其碾磨加工品中伏马毒素B1、伏马毒素B2、伏马毒素B3的快速检测方法。主要涉及的仪器设备有电子天平、粉碎机、离心机、移液器、振荡器、涡漩混合器、pH计、孵育器、胶体金读数仪。四项食品快速检测方法使用仪器一览(点击可入专场)序号仪器名称1粉碎机2移液器3水浴锅4酸度计5离心机6电子天平7快速水分测定仪(卤素灯加热型)8荧光测速仪9电子天平10涡漩混合器11孵育器12氮吹仪/空气吹干仪(带温度控制)13天然辣椒素荧光免疫层析试剂盒14胶体金读数仪15振荡器 食用植物油中天然辣椒素的快速检测 荧光免疫层析法.pdf面制品中铝残留量的快速检测 比色法.pdf水产品中地西泮残留的快速检测胶体金免疫层析法.pdf玉米及其碾磨加工品中伏马毒素的快速检测胶体金免疫层析法.pdf
  • 深芬仪器针对注水肉难题推出国标注水肉检测仪专利产品
    CSY-R快速注水肉检测仪深芬仪器针对注水肉难题推出国标注水肉检测仪专利产品CSY-R快速注水肉检测仪可作为市场工商管理部门的一种有效的检测工具,防止不法商贩损害消费者的健康和利益的行为。在注水肉检测领域,测量准确性和测量速度之间的矛盾一直没有解决;针对这一现状深圳市芬析仪器制造有限公司提供一种有烘干法结构的快速注水肉检测仪。CSY- R快速注水肉检测仪是我公司自主研发生产的高新技术产品,获得国家发明专利号:ZL201310178317.X 国家实用新型专利号ZL201320262557.3;符合国标《GB 18394-2001 畜禽肉水分限量》检测标准。CSY- R快速注水肉检测仪简化了肉类水分检测的操作步骤,排除人为、环境和湿度的影响,缩短检测时间周期,整个操作时间不超过10分钟,是一种新型的快速检测注水肉的仪器。目前中国关于注水肉的检测大部分采用电导法和传统烘烤法两种方式。所谓电导法,其原理是采用正负电极针插入肉内,利用肉类中本身含有的结构水中的电导率,与注入水中的电导率不同来进行测量,这决定如果注入的是盐水、矾水或者污水时,水分中的电导变化不大,导致结果误差很大。而若是采取传统烘烤法,工序繁琐,操作周期长,准确度不够稳定,这也是注水肉安全事故频发的重要原因。CSY-R快速注水肉检测仪解决了注水肉检测领域关于测量准确性和测量速度之间的矛盾。采用电磁力传感器确保称重准确,环形卤素灯可以在高温下将样品均匀地快速干燥,样品表面不易受损,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。另外,CSY-R注水肉检测仪体积小,重量轻,不需要对送检物品进行预处理,使全部检测时间缩短为不到10分钟。这场快速检测功能使其成为市场工商管理部门的一种有效的检测工具。快速注水肉检测仪产品优点:(1) 体积小,重量轻,结构简单(2) 精度高,电磁力称重传感器确保称重精度准确度(3) 不受环境,湿度影响,无需辅助设备(4) 操作简单,无需安装调试培训(5) 效率高、速度快,整体操作不超过10分钟(6) 多种分析方式,全自动、定时、半自动满足各种分析方式(7) 注水肉检测仪标配RS232通讯接口-方便连接打印机、电脑和其他外围设备、符合FDA/HACCP格式要求(8) 注水肉检测仪红外加热方式可直接从物质内部加热,大大缩短了烘干时间,而且还具有加热均匀、清洁、效率高、节约能源。(9) 注水肉检测仪专利产品、技术保障(国家发明专利号:ZL201320262557.3)注水肉检测仪可作为市场工商管理部门的一种有效的检测工具,防止不法商贩损害消费者的健康和利益的行为。技术参数:1、水分测定范围:0.01-100%2、水分含量可读性:0.01%3、称重范围:0-30g4、传感器精度:0.001g5、称重传感器:电磁力平衡传感器确保称重准确6、加热温度范围:起始-205℃7、加热源:红外线卤素环形灯8、显示参数:%水分,时间,温度,重量
  • 北交所为创新仪器企业增强信心,浅谈国产仪器发展问题
    浅谈国产仪器发展问题——仪器论坛用户:viki大家好!我是浙江一家药企研发分析实验室管理者,仪器管理是日常我工作的一小部分。仪器这块主要负责年度仪器预算制定、仪器品牌调研与选型、维修渠道联系、日常仪器维护保养规划与安排、仪器培训选题制定等。目前我所在的实验室主要仪器设备为色谱和质谱,这两大块儿我们目前使用的是进口品牌。其他小设备有国产的,例如超声仪、氟离子测定仪、烘箱、马弗炉、冷藏柜、卤素水分测定仪是国产。实践出真知,真实使用经历分析仪器设备是各行业检测领域必不可少的测试手段和分析测试技术支撑条件。 当前我国检测市场应用的分析仪器绝大多数是国外分析仪器, 即便是功能、 参数与国产仪器几乎相同的进口分析仪器设备, 在价格较国产高出近50%的情况下,仍为广大用户所青睐, 成为应用的首选。 特别是高端分析仪器设备( 如色谱-质谱联用仪、 光谱-质谱联用仪、核磁共振仪等)几乎全部被国外厂商垄断。本文以本人工作实验室入手的第一个测量性质的仪器为例,谈谈我对国产仪器调研过程及使用心得。2021年4月份我们入手一台国产快速卤素水分测定仪。当时调研参数如下表:目前此设备硬件上最大区别是加热方式的不同,调研到市面上的仪器主要有金属管加热、红外圈加热、卤素灯加热。准确度和精度主要差距就在内置天平的质量了。通过比较卤素灯加热是三种加热方式中最稳定的方式、于是品牌锁定了梅特勒和国产奥豪斯上。对比所有的参数,同等参数奥豪斯的价格要比梅特勒便宜50%以上。考虑到本公司针对的业务要求选择了性价比相对高一点的奥豪斯MB90。目前此仪器我们使用了5个月,仪器运行平稳,数据可靠,仪器没有出现任何故障。相比于进口仪器,它的最大优势就是价格便宜、货期很短、配套的耗材也便宜。目前药企合规化发展要求越来越严格,国产仪器在这方面也意识到这方面的问题,正在做数据合规化这方面的努力,用户权限管理基本上能实现,但数据完整性系统依然还是远远不够的。细数国产核心检测仪器发展问题目前核心检测国产仪器为什么无法很好地发展,主要原因如下:其一是缺乏建立品牌的紧迫感和长期规划。作为高新技术行业,分析仪器企业构建知名品牌的道路是漫长而曲折的,需要靠长期的研发投入和品牌规划。但由于投入回报期较长,而一般企业却急功近利,只注重短期的销售业绩与利润,希望通过宣传和广告,或寄托代理国外产品迅速提本升企业的知名度。其二是缺乏强有力的技术、质量支持,产品竞争力弱。目前,我国分析仪器企业技术基础薄、新产品研发力量弱,核心产品主要靠引进获得,高端 分析仪器的灵敏度、稳定性与国外知名品牌存在很 大差距。这是造成国产分析仪器品牌在国内、国际 竞争力低下的重要原因。其三是品牌核心价值不清晰,缺乏个性品牌。气质趋于雷同。对品牌而言,核心价值是品牌的终极追求,如同灵魂一般,企业所有的产品和活动都要围绕这个核心价值展开。国内分析仪器企业品牌的核心价值多突出仪器对社会进步及国家建设的作用,缺乏品牌个性及差异,难以打动用户。 其四是对已有品牌维护不当。某些企业在苦心经营取得品牌优势后,往往忽视对品牌的维护和管理 ,没有及时给予产品和服务新的功能,或急于实施多元化经营战略进行品牌延伸,分散了企业品牌的实力及在消费者心中的形象。发现上述如此之多问题,不经让我们反思,从源头来说,国产仪器验证与综合评价工作的不断深入为一个助力国产仪器良性发展至关重要!验证与综合评价要走向市场化的道路随着对国产仪器验证与综合评价工作的不断深入 ,我们深刻的认识到 ,检测仪器设备验证与综合评价不仅是建立管理规程和技术规范,更重要的是深入研究如何创建国产仪器设备验证与综合评价的品牌(创品牌),如何更进一步的增强综合评价的服务能力 (强服务),如何更广泛的对综合评价服务进行推广(广推介),如何树立综合评价成果的权威性和影响力 (树权威 )。最终达到建立一个权威的、可独立运营的第三方性质的检测机构 。验证与综合评价要走向市场化的道路 ,就要完成以下工作 :(1)创品牌 建立一个以政府为导向的,能够出具具有法律 效力的验证报告的,第三方性质、可独立运作的国 产检测仪器设 备验证与综合评价品牌。该品牌将立足于验评结果的公正性、客观性以及权威性,并能够独立承担验评结果的法律责任。(2)强服务国产仪器设备验证与综合评价是一项高科技服务业 ,其存在的根基是专业和公允的技术服务。 因此,验评走向市场化重要的一个环节就是增强验评服务的专业能力 ,加强验评工作的服务意识 ,努力提高国产仪器产生的参与度 。(3)广推介利用会议、网络、电视、广播和平面媒体等传播 手段,加大对国产仪器设备验证与综合评价成果的 推广。加大验评成果在政府采购、仪器评奖、国家重大专项成果验证等权威评价中的采信度 。(4)树权威一定要将国产仪器验评工作与法律法规层面 挂钩,将验评体系通过行业标准的形式实现其权威性 。有行业标准做依据 ,就可以进一步推动整个国产仪器验证与综合评价工作的发展。国内现有的仪器生产厂商可分为两类:自主创新型和仿制型。对于自主创新型仪器生产商,应该是国家大力支持的重点对象,近几年由于国家的支持与鼓励国现在有很多自主创新型仪器已经赶上或超过了国外研发水平 (如北京吉天仪器公司的原子荧光仪,上海手术器械厂的离心机,昆山超声仪器有限公司的超声机, 哈尔滨东联电子的水浴振荡器,上海树立仪器公司 的红外线干燥箱等)。现在北京交易所的成立给了创新型仪器企业很大的信心,相信此举一定会有大量的此类型企业涌入这个行列中,因为资本化一定能驱动大量的淘金者。北京证券交易所在创新的基础上发展壮大创新型中小企业,让更多的企业有机会参与这项事项中。我相信在不久的将来国产仪器一定能成为全世界的主流!加油国产仪器!参考文献【1】高越 《中国科技资源导刊》 2012年第5期103-106,共4页【2】刘来福 《分析仪器》2015年第1期67-70【3】饶晓露 《分析仪器》2012年第6期I0007-I0009,共3页
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。  DM 2500P 技术参数  1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光  2. 目镜:10X/22mm视域  3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度  5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um  6. 可双向调中孔位的物镜转盘,5孔位  7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺  8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱  9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱  DM 2500P 主要特点  1. 无限远光学校正系统,图像清晰,高反差  2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱  3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力  4. 检偏镜可180度旋转  5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整  7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护  8. 调节工具可放在镜体上方便随时取用  9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变  10. 各种滤片都经过防热处理  11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动  江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。  工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。  摘自南通醋酸纤维素工程技术研究中心网站
  • 多功能桌面型快速退火炉:高效退火,精准测温
    在半导体制造中,快速热处理(RTP)被认为是半导体制程的一个重要步骤。因为半导体材料在晶体生长和制造过程中,由于各种原因会出现缺陷、杂质、位错等结构性缺陷,导致晶格不完整,施加电场后的电导率较低。需要通过RTP快速退火炉进行退火处理,可以使材料得到修复,结晶体内部重新排列,可以消除硅片中的应力,激活或迁移杂质,使沉积或生长的薄膜更加致密化,并修复硅片加工中的离子注入损伤。RTP快速退火炉通常还用于离子注入退火、ITO镀膜后快速退火、氧化物和氮化物生长等应用。桌面型快速退火炉-RTP-Table-6RTP-Table-6为桌面型6英寸晶圆快速退火炉,使用上下两层红外卤素灯管 作为热源加热,内部石英腔体保温隔热,腔体外壳为水冷铝合金,使得制品加热均匀,且表面温度低。6英寸晶圆快速退火炉采用PID控制,系统能快速调节红外卤素灯管的输出功率,控温更加精准。桌面型快速退火炉的功能特点①极快的升温速率:RTP快速退火炉的裸片升温速率是150℃/s,大大缩短了热处理时间。②精确的温度控制:配备高精度的温度传感器和控制系统,确保温度的精确性和稳定性。③多样化的气氛选项:支持多种气体气氛,如氮气、氩气等,满足不同材料的热处理需求。④紧凑的桌面式设计:适合实验室和小型生产环境,节省空间,便于移动和部署。除了以上功能特点,在半导体制造的快速热退火工艺步骤中,测量晶圆的温度是关键。如果测量不准确,可能会出现过热和温度分布不均匀的情况,这两者都会影响工艺的效果。因此,晟鼎桌面型快速退火炉配置测温系统,硅片在升温、恒温及降温过程中精确地获取晶圆表面温度数据,误差范围控制在±1℃以内。桌面型快速退火炉的应用1. 晶体结构优化:在加热阶段,高温有助于晶体结构的再排列。这可以消除晶格缺陷,提高晶体的有序性,从而改善半导体材料的电子传导性能。2. 杂质去除:高温RTP快速退火可以促使杂质从半导体晶体中扩散出去,减少杂质的浓度。这有助于提高半导体器件的电子特性,减少杂质引起的能级或电子散射。3. 衬底去除:在CMOS工艺中,快速退火炉可用于去除衬底材料,如氧化硅或氮化硅,以形成超薄SOI(硅层上绝缘体)器件。4. 应力消除:高温退火还有助于减轻半导体器件中的内部应力,从而降低了晶体缺陷的形成,提高了材料的稳定性和可靠性。
  • 多功能桌面型快速退火炉:高效退火,精准测温
    在半导体制造中,快速热处理(RTP)被认为是半导体制程的一个重要步骤。因为半导体材料在晶体生长和制造过程中,由于各种原因会出现缺陷、杂质、位错等结构性缺陷,导致晶格不完整,施加电场后的电导率较低。需要通过RTP快速退火炉进行退火处理,可以使材料得到修复,结晶体内部重新排列,可以消除硅片中的应力,激活或迁移杂质,使沉积或生长的薄膜更加致密化,并修复硅片加工中的离子注入损伤。RTP快速退火炉通常还用于离子注入退火、ITO镀膜后快速退火、氧化物和氮化物生长等应用。桌面型快速退火炉-RTP-Table-6RTP-Table-6为桌面型6英寸晶圆快速退火炉,使用上下两层红外卤素灯管 作为热源加热,内部石英腔体保温隔热,腔体外壳为水冷铝合金,使得制品加热均匀,且表面温度低。6英寸晶圆快速退火炉采用PID控制,系统能快速调节红外卤素灯管的输出功率,控温更加精准。桌面型快速退火炉的功能特点①极快的升温速率:RTP快速退火炉的裸片升温速率是150℃/s,大大缩短了热处理时间。②精确的温度控制:配备高精度的温度传感器和控制系统,确保温度的精确性和稳定性。③多样化的气氛选项:支持多种气体气氛,如氮气、氩气等,满足不同材料的热处理需求。④紧凑的桌面式设计:适合实验室和小型生产环境,节省空间,便于移动和部署。除了以上功能特点,在半导体制造的快速热退火工艺步骤中,测量晶圆的温度是关键。如果测量不准确,可能会出现过热和温度分布不均匀的情况,这两者都会影响工艺的效果。因此,晟鼎桌面型快速退火炉配置测温系统,硅片在升温、恒温及降温过程中精确地获取晶圆表面温度数据,误差范围控制在±1℃以内。桌面型快速退火炉的应用1. 晶体结构优化:在加热阶段,高温有助于晶体结构的再排列。这可以消除晶格缺陷,提高晶体的有序性,从而改善半导体材料的电子传导性能。2. 杂质去除:高温RTP快速退火可以促使杂质从半导体晶体中扩散出去,减少杂质的浓度。这有助于提高半导体器件的电子特性,减少杂质引起的能级或电子散射。3. 衬底去除:在CMOS工艺中,快速退火炉可用于去除衬底材料,如氧化硅或氮化硅,以形成超薄SOI(硅层上绝缘体)器件。4. 应力消除:高温退火还有助于减轻半导体器件中的内部应力,从而降低了晶体缺陷的形成,提高了材料的稳定性和可靠性。
  • 浅谈影响数码显微镜分辨率的两大因素
    p style="text-align: justify text-indent: 2em "数码显微镜是在传统显微镜上增加了数字图像传感器CCD或CMOS的显微镜,与计算机、图像处理、自动化、互联网等技术相结合,可衍生出多种产品和应用,如自动显微镜、数码互动显微镜、数字切片扫描仪等,能给用户带来极大的便利,在教学、医疗、科研等领域得到广泛的应用。/pp style="text-align: justify text-indent: 2em "作为传感器,人眼和数字图像传感器CCD/CMOS主要有两方面的不同:一是数字图像传感器是由很多离散的感光器件组成,用其作为传感器接收显微图像,实际上是一个数字化过程(也称为空间采样)需要满足采样定理即奈奎斯特定理,这样图像才能准确重建;二是数字图像传感器的响应波长与人眼不一样,所以会受光源光谱特性的影响。本文从空间采样率和光源这两方面来分析对数码显微图像分辨率的影响。br//pp style="text-align: justify text-indent: 2em "strong空间采样率对数码显微图像分辨率的影响/strong/pp style="text-align: justify text-indent: 2em "奈奎斯特采样定理是指将模拟信号转化为数字信号时,要求采样频率fsubs/sub要大于模拟信号中最高频率fsubmax/sub的2倍,即fsubs/sub>fsubmax/sub才可以通过采样之后的数字信号准确地重建出模拟信号。对于显微图像的数字化,其最高频率就是由物镜的极限分辨率决定的,采样频率也称为空间采样率,一般实际应用时要求空间采样率为物镜的极限分辨率的2.8倍左右。/pp style="text-align: justify text-indent: 2em "显微镜的极限分辨率r是由物镜的数值孔径NA和波长λ决定的,满足式①span style="text-align: center " /spanimg src="https://img1.17img.cn/17img/images/202004/uepic/afecb7f6-313d-4fe3-a7d7-3a936fe605d8.jpg" title="1.png" alt="1.png" style="text-align: center max-width: 100% max-height: 100% "//pp因此波长越短,显微镜的极限分辨率越高。/pp style="text-align: justify text-indent: 2em "空间采样率s的计算式②为/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/6bfc528d-423f-46a1-8292-e3823f507b7c.jpg" title="2.png" alt="2.png"//pp式中p为数字图像传感器像素的边长;β1为显微物镜的放大倍率;β2为摄像镜头的放大倍率。/pp style="text-align: justify text-indent: 2em "因此改变摄像镜头的放大倍率,可以改变空间采样率。选用一组不同放大倍率的摄像镜头实现不同的空间采样率,以研究空间采样率对数码图像分辨率的影响。具体实验条件如下:/pp style="text-align: justify text-indent: 2em "显微镜:BA310显微镜。/pp style="text-align: justify text-indent: 2em "光源:白光LED和卤素灯(可互换),带有550/20nm的干涉滤色片。/pp style="text-align: justify text-indent: 2em "显微物镜:根据式①,其极限分辨率为0.45μm。/pp style="text-align: justify text-indent: 2em "摄像头:CM3-U3-50S5M黑白摄像头,像素边长为3.45μm。/pp style="text-align: justify text-indent: 2em "观察标本:采用USAF1951鉴别率板(如图1)所示,40× /0.75显微物镜可观察的极限线对数为2048(11-1组)。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 350px height: 350px " src="https://img1.17img.cn/17img/images/202004/uepic/900c84e7-0400-490e-9b1e-df00bd23a1ba.jpg" title="3.png" alt="3.png" width="350" height="350" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图1 USAF1951鉴别率板/strong/span/pp style="text-align: justify text-indent: 2em "摄像镜头倍率:0.35× 、0.5× 、1× 分别对应三种不同的采样率,采集的图像如图2所示,结果如表1所示。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 128px " src="https://img1.17img.cn/17img/images/202004/uepic/10ab04e3-b4cb-4324-9054-967b80dfda29.jpg" title="4.png" alt="4.png" width="450" height="128" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图2 不同摄像镜头下的数码显微图像/strong/span br//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong表1 不同摄像镜头下的数码显微图像分辨率 /strong/spanbr//pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/73950d5f-a61d-41aa-a1f6-1430b39f3040.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "由此可见,在没有满足采样定理的情况下即欠采样,数码显微图像分辨率会降低;在过采样的情况下,并不会带来数码显微图像分辨率的提升。/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "光源对数码显微图像分辨率的影响/span/strong/pp style="text-align: justify text-indent: 2em "式①提及的波长λ是最终被传感器接收的波长,此波长与传感器响应曲线和光源光谱特性有关。作为传感器,人眼的响应波长为400~700nm,即通常说的可见光,如图3所示。而对于数字图像传感器CCD/CMOS,其响应波长更宽,包括人眼不敏感的紫外和近红外部分,其中近红外的波长更长,如图4所示,这会导致显微镜分辨率的下降。因此当光源的光谱包含有人眼不敏感的近红外光谱或者紫外光谱时,在使用数字图像传感器时就会有影响。显微镜中常用的光源有白光LED和卤素灯,其中白光LED的光谱是450~700nm,如图5所示,与人眼的响应曲线比较接近,而卤素灯的光谱为400~2500nm如图6所示,包括了更长波长的红外部分。在分别使用卤素灯和白光LED时,由图像传感器得到的结果是有区别的,如图7所示。/pp style="text-align: center text-indent: 0em " img style="max-width: 100% max-height: 100% width: 350px height: 241px " src="https://img1.17img.cn/17img/images/202004/uepic/63e10ec6-6db0-4cb4-b480-df43cecc4f65.jpg" title="6.png" alt="6.png" width="350" height="241" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图3 人眼的响应曲线 /strong/spanbr//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width: 100% max-height: 100% width: 400px height: 221px " src="https://img1.17img.cn/17img/images/202004/uepic/4d151923-4162-4ff6-bed0-c4d379380b4b.jpg" title="7.png" alt="7.png" width="400" height="221" border="0" vspace="0"//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图4 相机的响应曲线 br//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width: 100% max-height: 100% width: 350px height: 278px " src="https://img1.17img.cn/17img/images/202004/uepic/263ba96b-37c6-4d8e-97a9-d1bf32f59d6c.jpg" title="8.png" alt="8.png" width="350" height="278" border="0" vspace="0"//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图5 LED光谱曲线 /strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width: 100% max-height: 100% width: 350px height: 263px " src="https://img1.17img.cn/17img/images/202004/uepic/90d67a50-f6b4-43da-bac1-93120d97ba89.jpg" title="9.png" alt="9.png" width="350" height="263" border="0" vspace="0"//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图6 卤素灯光谱曲线 br//strong/span/pp style="text-align: justify text-indent: 2em "表2为不同光源下的数码显微图像分辨率,可以发现,人眼在不同光源下观察到的极限线对是一样的,都是2048线对,而对于数码显微图像,采用卤素灯时,观察到的分辨率会有所下降。主要原因在于卤素灯有红外光谱,人眼直接观察时会将红外部分滤掉,所以效果与LED相当,而数字图像传感器可以响应卤素灯的红外波长,所以分辨率会下降。解决办法就是数字传感器前放置一个红外滤色片(俗称IR-cut),将卤素灯的红外部分滤除,得到接近于人眼的响应曲线,这样就与目视观察结果一致。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 215px " src="https://img1.17img.cn/17img/images/202004/uepic/af939b79-1302-4765-828c-3e42b08ace0c.jpg" title="11.png" alt="11.png" width="450" height="215" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图7 卤素灯和LED时的数码显微图像/strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong表2 不同光源下人眼观察与数码显微图像分辨率的比较 br//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/c1631144-1358-4af5-b3e3-51da6e4b4c82.jpg" title="捕获.PNG" alt="捕获.PNG"//strong/span/pp style="text-align: justify text-indent: 2em "因此在使用数码显微镜时,应严格遵从采样定理,并深入研究数码显微镜各个关键部件,这样才能选择合适的摄像镜头、光源、滤色片等,才能满足采样定理,准确重建出数字图像,达到最佳的观察效果。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(127, 127, 127) "ispan style="font-size: 14px "本文摘自:陈木旺. 浅析数码显微镜分辨率的影响因素[J]. 光学仪器, 2017, 40(3)./span/i/span/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/webinar/meeting_13067.html?hmsr=zixuan&hmpl=ling&hmcu=&hmkw=&hmci=" target="_self"img src="https://img1.17img.cn/17img/images/202004/uepic/8e3999fc-35db-4591-8d2d-1da82b8fafb0.jpg" title="10.png" alt="10.png" style="text-indent: 2em text-align: center max-width: 100% max-height: 100% "//a/pp style="text-align: justify text-indent: 2em "strong讲座:/strong《四合一数码显微镜,多种难题一机解决!》/pp style="text-align: justify text-indent: 2em "strong时间:/strong2020年4月22日 10:00/pp style="text-align: justify text-indent: 2em "strong主讲人:/strong夏天齐Draven,基恩士公司显微/3D测量系统部门,显微镜技术负责人,负责数码显微镜的技术支持工作。/pp style="text-align: justify text-indent: 2em "strong内容:/strong很多用户在使用光学/金相/测量显微镜时,经常会遇到景深小、倍率低、需要另外准备光源、不能直接拍摄图片等困难,而一台数码显微镜可以轻松解决以上问题。此次讲座旨在让更多客户了解到数码显微镜能解决的常规问题(讲座中有实机演示);作为技术储备,认识到该产品的一些功能和应用场景等;搭建交流平台,与行业内人士互动等。/pp style="text-align: left text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meeting_13067.html?hmsr=zixuan&hmpl=ling&hmcu=&hmkw=&hmci=" target="_self"strong style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "免费报名参会:点击即可链接到报名官网/span/strong/a/p
  • 梅特勒参加第六届中国国际食品安全高峰论坛
    2013年4月1日-2日,由北京食品学会、北京食品协会主办的&ldquo 第六届中国北京国际食品安全高峰论坛&rdquo 在国家会议中心盛大召开。本届论坛为期两天,吸引了来自国内外的知名食品企业、政府部门、科研院校和技术厂商等1000余名专业人士参加。论坛共设置1场主题论坛、17场专题研讨会,邀请了来自多个不同学科的著名专家学者和企业技术负责人等86位演讲嘉宾来做精彩报告,同期举办的产品展览会上共有58家参展商携食品安全最新技术、先进的检测仪器和应用解决方案闪亮登场。梅特勒托利多受邀参与了这次会议,并带来两款最新产品:超越系列HX卤素水分测定仪和SevenExcellenceTM系列仪表。 梅特勒托利多超越系列HX卤素水分测定仪采用创新的悬挂式秤盘设计以及第二代卤素灯加热技术,提供了极佳的测量性能,可在很短的时间内获得非常可靠的结果。一键水分测定 (One Click&trade Moisture) 的图形化用户界面可快速、顺畅地执行操作,同时提供了实时的干燥曲线和控制图表。坚固的设计和简单清洁概念确保长久的使用寿命和实验室及生产现场的无中断操作。 上图:超越系列HX卤素水分测定仪 梅特勒托利多SevenExcellenceTM系列仪表是精确的电化学测量技术与模块组合设计理念的完美结合,秉承Seven系列台式仪表的优良品质,并引入创新的ISM(智能电极管理)技术和OneClickTM方法概念,为实验室pH、电导率、离子测量建立新的标准,将为制药生物、食品饮料、教育科研等各领域的用户带来前所未有的测量感受。 上图:SevenExcellenceTM系列仪表 更多信息,请登录梅特勒-托利多网站:www.mt.com
  • IEC最新动态及“无卤素”应对交流会—2008年5月8日中国 天津
    岛津公司继2008年3月,邀请IEC委员会委员 何重辉(中国代表委员)、山下昇(日本代表委员)在上海、东莞、佛山3地举行《RoHS综合对应技术交流会》后,于2008年5月8日在天津金皇大酒店举行了《IEC最新动态及&ldquo 无卤素&rdquo 应对交流会》。 随着欧盟(EU)、中国关于特定有害物质的限制指令(RoHS)和有关报废汽车的指令(ELV)的发布和实施,对制造、销售成品和部件的企业而言,对应这些法规成了不可或缺的一环。 国际电工标准委员会(简称IEC)一直在推进此领域的国际标准的制定,因此IEC最新动态成为相关企业的关注焦点。 岛津公司首席RoHS专家于小林先生,就大家关心的筛选分析与精确分析,筛选分析测试的误差及来源,标准样品的选择,及欧盟对相关产品的监测重点等问题进行了阐述与释疑。 电子行业极为关心的&ldquo 无卤素&rdquo 对应问题,岛津公司也给出了完整的对应方案,全球首家提供了&ldquo 无卤素&rdquo 测试用的第三方标准样品,为电子行业提供可靠的分析方法,受到参会者的热烈欢迎。 岛津公司将会不断推进绿色产品链的解决方案,为中国的制造业发展作出贡献。百人会场座无虚席 欲了解岛津公司RoHS相关的最新动态,请登陆http://www.shimadzu.com.cn/edx/index.html
  • 梅特勒参加中美药典国际论坛暨中国药典年会
    2012年9月6-7日,第五届中美药典论坛暨2012年中国药典科学年会在西安隆重召开,共有500余名来自国内食品药品检验系统和药品生产企业的质量监督、检验、研发部门人士参会。本届年会以加强药品标准的国际合作,扩大在药品标准领域间的交流,不断提升药品质量控制水平,并针对药品标准的发展趋势与动态、药用辅料标准、企业在药品标准中的重要作用为主题,由中国国家药典委员会、美国药典委员会,中国医药国际交流中心主办。国家食品药品监管局局长尹力和美国药典委员会首席执行官Roger Williams博士、国家药典委员会秘书长王立丰出席了年会。 上图:第五届中美药典论坛暨2012年中国药典科学年会开幕式 梅特勒托利多受邀参加了此次年会,并带来了全面的实验室检测解决方案,电子天平、快速水分测定仪、卡尔费休水分仪、酸度计等实验室产品基本覆盖到全球所有的研发、科研、药物发现及质量控制实验室,尤其在检测实验室、制药和食品等行业领域应用广泛。 上图:梅特勒托利多展位 此次年会梅特勒托利多特别展示了最新上市的新款超越系列卤素水分测定仪,新款超越系列卤素水分测定仪采用创新的悬挂式秤盘设计以及第二代卤素灯加热技术,提供了极佳的测量性能,可在很短的时间内获得非常可靠的结果。一键水分测定 (One Click&trade Moisture) 的图形化用户界面可快速、顺畅地执行操作,同时提供了实时的干燥曲线和控制图表。坚固的设计和简单清洁概念确保长久的使用寿命实验室及生产现场的无中断操作。 上图:新款超越系列卤素水分测定仪 更多信息,请登录梅特勒-托利多网站:www.mt.com
  • 浙江省计量院主持起草《卤素检漏仪》国家计量技术规范
    近日,浙江省计量科学研究院主持起草的国家计量校准规范JJF1964-2022《卤素检漏仪》经国家市场监督管理总局批准发布,将于2022年10月29日实施。   卤素检漏仪是广泛用于化工、制冷、电力等涉及卤素气体生产及使用相关行业的分析仪器,多用于泄漏报警和安全防护,因此其计量性能指标尤为重要。新发布的校准规范主要规定了卤素检漏仪漏率示值误差、报警响应时间等计量特性的校准方法,为卤素检漏仪校准工作提供了科学统一的技术依据,为制冷、电力、化工、消防等行业和相应的质检机构服务,确保各领域中漏率检测的准确可靠。   浙江省计量院长期以来一直致力于漏率检测及检测方法的研究,主持制定《空气微泄漏检测仪校准规范》,参加制定《真空氦漏孔校准规范》,具备开展空气微泄漏检测仪CNAS校准资质能力,同时还建有真空氦漏孔校准装置和通道型标准漏孔校准装置等。   目前漏率检测不仅是汽车、制冷、电器制造等产业产品质量的保证,更是关乎大气污染和环境安全,省计量院将不断研究漏率计量检测技术,进一步提高计量供给和服务能效,助力企业产品质量和公共安全,为市场监管作出新的计量贡献。
  • 看GDS如何助力“灯厂”奥迪独领风骚?【GDS微课堂-6】
    汽车圈中只有两种灯,一种是奥迪的灯,另一种是其他车的灯。奥迪灯厂的称号在整个汽车圈中几乎无人不知,不得不称赞奥迪在车灯的设计上的的确用心,在其他车还在用卤素灯,氙气灯的时候,奥迪已经推出了“矩阵式LED大灯”,来感受一下它的炫酷效果。它不仅可以做成各种形状,还可以有各种颜色。图片来源:Pixabay因为与其他光源相比,LED寿命长、能耗低,并且环保无污染。随着全球性能源短缺问题的日益严重,寻找未来世界能源成为头等大事,而LED将是取代白炽灯、钨丝灯和荧光灯的潜力光源。LED是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,发射出光。这块发光芯片就像LED的心脏,负责控制LED,比如芯片的材料直接就决定了发光的颜色。对于厂家来说,技术升级的关键就在于如何开发出更高效、更稳定的 LED 芯片。它是个多镀层的结构,如下图所示,P-GaN下有InGaN和GaN构成的交替镀层,这个交替镀层就是LED芯片的活性结构,它的好坏直接关系到LED芯片的性能及质量,进而影响到LED发光。在GDS技术未普及前,人们常用SIMS(二次离子质谱)完成对LED芯片质量的分析研究。但GDS技术的出现,成功取代了SIMS,成为LED芯片分析的神兵利器。价格SIMS有两个致命缺点,一是价格偏贵,实际上只有少数“土豪”可以负担这样的费用,多数单位只能乖乖地将样品送至第三方检测,很不方便。而GDS的价格仅是SIMS的一半,大大降低了研发成本。图片来源:Pixabay分析速度另一个就是SIMS的测试速度特别慢,通常一个样品需要测试几个小时,一天也测试不了几个样品,效率低。而GDS的检测速度非常快,比如我们利用GDS测定LED芯片镀层中各个元素随深度的分布,只需要20s就能获得结果,和SIMS相比,简直就是从牛车换成了飞机。LED质量控制GDS能够快速测定LED芯片镀层中各个元素随深度的分布,进而根据LED芯片镀层的结构,判断产品质量是否合格。如上图,红色曲线为In元素,我们可以看到在:活性镀层处,In元素随时间变化,它的上升与下降非常清晰明显,说明这个产品的质量完全合格的。另外,GDS还能帮助厂家监控批次产品质量是否一致,直接反馈不同批次间产品的差异,怎么做呢?首先利用GDS快速获取不同批次芯片镀层的元素分布结果,然后进行对比。如上图,这是10个批次LED芯片的测试结果对比,大家要记住:只有曲线完全重合才能说明产品一致。这里的结果就不言而喻了。所以在生产线上,我们只需要将待检样品的测试结果直接与合格产品进行比对,重合即为合格产品,不重合即为不合格。HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。您可点击阅读原文进行浏览,还可分享至朋友圈让更多科研工作者看到。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 海南中地矿业与深圳冠亚水分仪建立长期合作关系
    海南中地矿业投资有限公司主营铁矿石贸易、加工与选矿设备研发/生产/输出,提供铁矿石领域一站式的服务,兼营非金属矿研发与深加工等业务。铁矿石业务 铁矿石贸易:内矿主要销售海南独有的高硅低铝优质铁矿石;外矿主要销售南非、澳大利亚等高硅低铝优质铁矿石,兼营印尼、中东等**与地区的铁矿石、镍矿、氧化铁皮等资源。 铁矿石加工:在海南投资两个铁矿石加工厂,年产能200万吨。 选矿设备研发/生产/输出:下属海南中地设备投资有限公司从事跳汰选矿设备技的术研发、生产与输出,目前已经拥有“杠杆复合动筛跳汰机”和“同轴反向引力双侧动复式选矿机”等多款专利设备,产品特点一是产能高,是传统设备的2倍;二是回收率高,一道选矿就可以完全将矿石与石头分离。合作模式是我司出技术、工艺与设备,与矿企合作,对其生产线进行升级改造,分享节省加工费、提高回收率、提高品位等增效的50%。 非金属矿业务 非金属矿产品与工艺研发:下属海南中地非金属矿业有限公司已经和**非金属矿资源综合利用工程技术研究中心签订成立“海南试验基地”的协议,由**非金属矿资源综合利用工程技术研究中心提供技术支撑,对本地区高岭土、石英砂等非金属矿进行产品与工艺研发,通过输出技术、工艺、设备等,与矿企合作,对其产品进行升级、尾矿回收等业务,将工厂建设成技术含量高、绿色环保的非金属矿产品深加工厂,分享产品升级、尾矿回收等增效的50%。 高岭土开采与加工:下属文昌中海高岭土科技有限公司是一家集高岭土的开采与加工于一体的专业化公司,充分利用海南本土高岭土资源优势从事高岭土的生产与销售,产品远销全国。 石英砂深加工:海南中地非金属矿业有限公司充分利用**非金属矿资源综合利用工程技术研究中心签订成立“海南试验基地”的研发成果,已经与海南文昌信义矿业有限公司签订了石英砂矿深加工合同,年产超白石英砂30万吨。 近日海南中地非金属矿业有限公司订购冠亚全新触摸液晶超大屏快速水分测定仪。冠亚快速水分测定仪WL-01D无需安装、调试,拆箱即可使用;操作简单,省却繁琐的使用步骤;测定时间短、工作效率高;加热均匀、性能稳定、测试准确;用途非常广泛。 以往传统的水分测定一般是采用烘箱干燥法,一个样品的测试需要两三个甚**三四个小时,而且还需通过天平称重、人工计算,才能得出样品的水分值(含水率)。烘箱法水分测定的低效率,不能够适应高节奏的企业生产需要。冠亚快速水分测定仪WL-01D是深圳市冠亚水分仪新研制的高效率水分测定仪器,采用高效率的烘干加热器-高品质的环状卤素灯,对样品进行快速、均匀的加热,样品的水份持续不断的被烘干。整个测量过程,仪器全自动的实时显示测量结果:样品重量、含水量、测试时间、加热温度等。 冠亚公司主导的两大系列水分仪被企业、大专院校、科研机构等行业广泛用于各种生产与实验过程中:如非金属矿、粉体、工程塑料、化工、助剂、母料、肉类、饲料、粮食、医药、食品等,该设备填补了国内高端水分仪应用领域的空白,并已替代进口,打造了业内知名的“冠亚”品牌和“WL”品牌。通过ISO9001质量体系认证的高科技集团公司。 冠亚水分仪公司将以先进科技为创新,以完善服务为宗旨。
  • NCC:天然卤素在气候变化中缓冲对流层臭氧
    本篇论文解读由方雪坤研究团队的杜千娜同学撰写。杜千娜同学:浙江大学环境与资源学院2022级硕士研究生,主要研究方向温室气体HFCs排放反演与清单。第一作者:Fernando Iglesias-Suarez通讯作者:Alfonso Saiz-Lopez通讯单位:1Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain. 文章链接:https://doi.org/10.1038/s41558-019-0675-6论文发表时间:2020年1月研究亮点1.全球综合的、由卤素驱动的对流层O3柱损失在整个21世纪是恒定的(~13%)。2.卤素造成的对流层臭氧损失在目前和本世纪末都显示出明显的半球不对称性。3.预计卤素介导的臭氧损失最大(高达70%)发生在北半球污染地区(美国东部、欧洲和东亚)的地表附近。(注:以上为这位同学的论文解读,非论文原作者意思)研究不足(或未来研究)1.未来经济发展情况预测仍然有多种,目前对未来臭氧损失的估计仍旧依赖于未来经济预测,可能与事实有所偏离。2.未来天然卤素通量和分布的变化将由气候敏感性、未来人为排放和大气化学等因素综合决定。3.未来研究仍需对卤素化学加深了解。(注:以上为这位同学的论文解读,非论文原作者意思)全文概要反应性大气卤素破坏对流层臭氧(O3)。天然卤素的主要来源是海洋浮游植物和藻类的排放,以及海洋和对流层化学的非生物来源,但其通量在气候变暖下将如何变化,以及由此对O3产生的影响目前尚不清楚。本研究使用一个地球系统模型(共同体地球系统模型(CESM))估计发现在当今气候中,天然卤素消耗了大约13%的对流层O3。尽管21世纪天然卤素的含量有所增加,但由于对流层O3损失的半球、区域和垂直异质性的补偿,这一比例保持稳定。这种卤素驱动的O3缓冲预计在污染和人口稠密的地区最大,对空气质量有重要影响。背景介绍对流层臭氧(O3)丰度受原位光化学、平流层内流和地表干沉积之间的平衡控制。O3的光化学破坏发生在整个对流层,主要是通过其光解和随后与水蒸气的反应以及与自由基的反应直接损失。对流层O3也会通过催化循环与活性卤素(Cl, Br, I)发生反应而被破坏,只有将对流层卤素化学考虑在内才能更准确地了解其变化。目前,卤素被估计将使全球对流层臭氧减少约10-20%,对地表臭氧有很大影响。生物源性短寿命卤代烃(VSL),包括CHBr3、CH2Br2、CH3I和CH2ICl,是通过海洋生物如浮游植物、微藻和大型藻类的代谢自然排放出来的。这些卤素化合物的寿命不到6个月,是对流层中活性氯、溴和碘的重要来源。此外由于O3沉积到海洋中,随后海水碘化物氧化为次碘酸(HOI)和分子碘(I2),并释放到大气中,海洋也是无机碘的非生物来源。在对流层中,活性溴和氯实际上是由VSL卤化碳的光氧化产生的。气候变化和社会经济发展已经改变了VSL卤化碳的自然通量(1979-2013增加约7%)和无机碘(1950-2010增加两倍),并可能在21世纪持续。然而,天然卤素变化将如何影响臭氧和对流层化学以及气候仍然未知。结果讨论21世纪的天然卤素排放:在考虑的每种情况下,与目前相比VSL卤代烃排放量在21世纪末都要更大;全球海洋无机碘排放量在RCP 8.5之后增加了约20%,而在RCP 6.0和RCP 2.6期间分别减少了约10%和20%;到2100年,活性卤素浓度将增加约4-10%,在RCP 6.0下,溴驱动了这些变化,但由于碘碳(增加)和无机碘(减少)通量之间的相互作用,碘没有出现显著变化,溴和碘对RCP 8.5反应性卤素负荷变化的贡献相同。在RCP 2.6情景下,活性卤素浓度降低(~5%)。2000-2100年全球天然卤素的年度变化。a)短寿命卤代烃通量,b)无机碘排放,c)对流层天然反应性卤素浓度天然卤素对21世纪对流层臭氧的影响:图2显示了2000-2100年间全球对流层臭氧柱浓度的变化,上面和中间的图分别显示了对流层臭氧柱的绝对变化及其与活性卤素相关的损失。与目前相比,到本世纪中叶,卤素驱动的对流层O3柱损失增加,与RCP 6.0和RCP 8.5期间VSL卤碳排放量不断增加相一致。到2100年,在RCP 8.5条件下,活性卤素对对流层O3的影响保持相对不变,而在RCP 6.0条件下,预计会有较小的消耗。无论排放情景如何(下面的图),预计全球卤素驱动的对流层O3柱损失在整个世纪几乎保持不变(~12.8±0.8%)。2000-2100年全球年度对流层臭氧柱时间序列与卤素化学有关的纬向平均对流层O3损失如图3a、b所示。O3质量的纬向平均损失约为~0.3DU(全球综合为3.9DU),其中溴和碘分别贡献了约16%和80%。卤素介导的臭氧损失显示出明显的半球不对称性(目前在南半球更大)。在南半球温带地区,通过非均相激活进一步增强了平流层O3的消耗。O3相对损失呈现显著梯度,从对流层上层到下层,从北向南增加。RCP 6.0和RCP 8.5由天然卤素驱动的纬向平均对流层O3损失趋势如图3c,d所示。其模式是不均匀的,具有明显的半球和垂直梯度,尽管两种排放情景一致(仅强度不同)。反应性卤素造成的纬向平均对流层O3损失在本世纪,由反应性卤素驱动的臭氧相对损失在对流层中高层减弱(在250hPa时为10-20% 图4a),这一特征在本世纪上半叶和下半叶的南半球高纬度地区被放大。此外,在300至850 hPa之间的热带自由对流层,到本世纪末,卤素造成的未来臭氧损失将减少,这表明该地区臭氧的命运将主要由其他驱动因素控制,包括光解作用以及与水蒸气和羟基自由基的反应(图3c、d和4b)。此外,臭氧损失呈现明显的半球不对称,与“更清洁”的南半球相比,污染更严重的北半球臭氧损失趋势更大。与目前相比,未来卤素介导的O3损失预计将增加10-35%(图4),其中边界层内损失最大。从现在(1990-2009年)到本世纪末(2080-2099年),由活性卤素引起的部分O3柱损失的垂直分辨变化图5显示了从现在到21世纪末近地表臭氧损失变化。在全球范围内,在RCP 6.0情景下,天然卤素引起的2000 - 2100年近地表O3损失变化(15.0±1.1%)大于RCP 8.5情景(3.1±0.7%),但两者共同显示了臭氧损失的增加主要局限于温带地区,在中纬度地区(30°-60°N和30°-60°S)达到峰值(图5b、d)。现在(1990-2009年)到本世纪末(2080-2099年)卤素驱动的近地表臭氧损失变化预计到本世纪末,最大的臭氧损失将发生在受污染的大陆地区,而不是在遥远的海洋环境中,并具有明显的半球不对称性。特别是,在美国东部、欧洲和东亚地区,预计卤素驱动的O3损失大,分别为71.5±12.9%、30.8±4.2%和6.9±10.1%,RCP 6.0和RCP 8.5分别为48.2±12.6%、18.3±3.2%和23.2±10.9%。2000-2100年卤素驱动的近地表O3损失时间序列ReferenceIglesias-Suarez, F. et al. Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change 10, 147-154 (2020).
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制