当前位置: 仪器信息网 > 行业主题 > >

测试装置

仪器信息网测试装置专题为您提供2024年最新测试装置价格报价、厂家品牌的相关信息, 包括测试装置参数、型号等,不管是国产,还是进口品牌的测试装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测试装置相关的耗材配件、试剂标物,还有测试装置相关的最新资讯、资料,以及测试装置相关的解决方案。

测试装置相关的论坛

  • 实验室测试装置的校准管理

    [align=center][/align][align=left]为确保测试数据的准确可靠,实验室针对测试装置的校准必不可少。要做好实验室测试装置的校准工作,就必须对实验室测试装置有一个全面准确地掌握,对测试精度高,测试设备使用频繁的测试装置,更应该作为重点校准管理。[/align][align=left]1. 测试装置校准台账[/align][align=left] 实验室应对测试装置进行分门别类建立台账,明确测试装置的校准要求和周期,特别是对那些关键测试装置更应该建立校准台账,由专人负责定期对台账信息进行更新。[/align][align=left]2. 测试装置校准计划及执行[/align][align=left] 制定了测试装置校准计划后就要按照计划对测试装置进行及时校准。大多实验室没有建标,不具备自校能力,基本都是委托第三方校准机构对测试装置进行校准。不管实验室采取什么方式,都必须定期对测试装置进行校准。校验完成后,及时对测试装置加校准标签予以状态表示并保存好校准证书,确认测试装置是否满足测试方法要求,定期对校验状态进行核查。在一个校准周期内,实验室还应采取标准物质测试的方式,来验证测试装置是否满足测试要求。如发现测试装置异常,应及时对测试装置进行维修,再次应用前一定要对测试装置进行校验,确保装饰测试满足标准要求。在这个过程中,大多实验室采用标准物质对维修后投运的测试装置进行自行校验,这种方法值得商榷。[/align][align=left]3. 测试装置校准工作定期核查[/align][align=left]在完成测试装置校准后,实验室要组织对校准结果进行期间核查,确认测试装置的测试精度符合要求。通过定期核查可以及时发现测试装置问题,因此上,实验室应按照核查计划及时做好测试装置的定期核查工作,来确保测试过程的稳定可靠。[/align]

  • 高效率检测太阳能热水器能效测试装置

    高效率检测太阳能热水器能效测试装置

    高效率检测太阳能热水器能效测试装置太阳能集热器是决定太阳能热水系统热性能的关键集热部件,对太阳能产品的发展起着决定性的作用。因此对集热器的研究和测试非常重要,绿光新能源根据国家检测标准要求和多年生产太阳能检测设备的经验,特推出太阳能集热器测试系统,该产品全部采用微机自动控制与检测,具有测试精度高,性能稳定,测试效率高等方面特点。得到国内外多户的使用与认可,是先进的太阳能集热器检测设备。可广泛应用于太阳能生产厂、太阳能实验室、太阳能检测中心、产品质量检验机构、大中专科研院所等对太阳能研究部门的使用。太阳能热水器能效测试装置按照国标GB/T4271-2007、GB/T17581-2007、GB/T6424-2007集热器热性能测试方法执行,系统指标符合国标中检测仪器指标要求。[img=太阳能热水器能效测试装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205300904513882_7812_4136176_3.jpg!w690x690.jpg[/img]集热器测试项目包括热性能,压力降落,外观,耐压,刚度,强度,闷晒,空晒,外热冲击,内热冲击,淋雨,耐冻,耐撞击共计13项。集热管被称作是太阳能热水器的核心技术所在。太阳能热水器能效测试装置适用于全玻璃真空太阳集热管,热性能检测完全依据GB/T17049全玻璃真空太阳集热管的标准要求,满足全自动检测要求,可以自动生成空晒、闷晒、热损等曲线图,有效保证了每一根全玻璃真空管的检测精准、快捷。太阳能热水器能效测试装置的运行环境在环境温度:-40℃~60℃,相对湿度:≤90%,工作电源:220V(±10%),50Hz(±2%),测评内容包括:热性能,空晒,闷晒,热损,环境温度,太阳辐射,环境风速等。绿光新能源太阳能集热管热性能测试系统主要适用于质检所、质检中心、太阳能热水器生产厂家、科研教学等。[img=太阳能热水器能效测试装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205300906483639_8318_4136176_3.jpg!w690x690.jpg[/img]

  • 锂电池的XRD原位测试装置

    RT!各位大神,有没有锂电池的XRD原位测试装置,或者相关信息啊?最近小弟想做一点锂电池正极材料随电压变化晶体结构变化的研究(即原位测试),有没有哪位用过或做过啊?在此谢谢各位看官!

  • 【求助】建一套氯碱膜测试装置

    建一套氯碱膜测试装置  本人不懂氯碱化工,但是想搞一套小型的氯碱电解装置,以测定离子膜(或质子交换膜)性能。  大概都需要哪些设备仪器,请高人指点。  期望测定的值包括:离子膜的电流效率,单元槽电压,水传递数和K系数等。 另外,什么是K系数?

  • 超高温材料冲击测试装置蒸发器冷冻油多怎么处理?

    超高温材料冲击测试装置中配件比较多,大到压缩机小到电气元器件都是很重要的,冠亚超高温材料冲击测试装置如果发现蒸发器冷冻油比较多的话,建议及时处理比较好。  超高温材料冲击测试装置蒸发器中冷冻油太多,也能引起制冷量不足而导致降温缓慢。超高温材料冲击测试装置蒸发器中存油,可直接通过其油面的冷热分界线来判断,如超高温材料冲击测试装置油位过高应及时放出。  有些氟利昂与冷冻机油互相溶解,因此,超高温材料冲击测试装置制冷系统里的制冷剂在循环流动时,就免不了会有冷冻机油残留于各部件。超高温材料冲击测试装置冷冻油残留在换热器内会影响传热系数。特别是当冷冻机油进入超高温材料冲击测试装置蒸发器后,若结构设计或安装不合理时,超高温材料冲击测试装置冷冻机油就会只进不出或多进少出,使蒸发器里残留的冷冻机油愈来愈多,严重影响其吸热效果,出现制冷量不足的情况,到这地步不处理的话温度就降不下去,因此,必须进行超高温材料冲击测试装置放油工作。  如何判断超高温材料冲击测试装置蒸发管内留有较多的冷冻机油而影响制冷是件较困难的事情。若遇到超高温材料冲击测试装置这种情况,则会出现一个明显的反常现象,即蒸发管上的白霜是稀稀拉拉的,结得不完全,并且呈浮霜,若无其他故障的话,那很可能是蒸发管内残留冷冻机油太多的缘故。清除超高温材料冲击测试装置蒸发器内冷冻机油,必须将它拆下来,进行吹洗再烘干。对排管式蒸发器,因拆卸很不方便,可将超高温材料冲击测试装置蒸发器的进口用压缩空气吹,然后用喷灯烘蒸发管。  超高温材料冲击测试装置的蒸发器种类也是比较多的,一旦存在冷冻油比较多的话,就需要我们及时解决。

  • 太阳能热水器热性能测试装置生成检测报告

    太阳能热水器热性能测试装置生成检测报告

    太阳能热水器热性能测试装置生成检测报告不论是居住建筑还是公共建筑,建筑节能都是系统工程。在节能技术上是系统的集成,主要包括建筑规划与建筑自身的节能技术、建筑设备的节能技术和可再生能源利用的节能技术三方面;在实施的全过程上是系统保证,太阳能热水器热性能测试装置主要包括建筑节能设计标准的制定与实施、建筑节能工程施工及质量验收规范的制定与实施和能效测评体系的制定与实施三方面。面对量大面广的居住建筑面积逐年增加和采暖、空调能耗逐年提高的现实与发展趋势,从科学发展观认识建筑节能是系统工程和求真务实地实施建筑节能事业的层面看,必须在居住建筑的节能设计和节能工程的验收阶段,开展居住建筑的能效测评工作。目前的居住建筑与公共建筑节能太阳能热水器热性能测试装置设计有两种方法:一是规定性指标设计方法,即规定建筑与建筑围护结构的热工性能不能超过某一限值;二是综合指标设计方法,也称动态性能指标设计方法或对比评定法,是在规定性指标中的某些项不符合规定性指标限值时,引入“参照建筑”,并以其计算全年的采暖空调耗电量为比较“基准”,然后按同样计算方法计算设计建筑的全年采暖空调耗电量,并要求此耗电量不超过“参照建筑”的基准耗电量。不管采用哪种节能设计方法,只要符合居住建筑节能设计标准的规定,都可认定为合格的节能型居住建筑。[img=太阳能热水器热性能测试装置,690,690]https://ng1.17img.cn/bbsfiles/images/2022/01/202201150902423343_1940_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器热性能测试装置有利于对可再生能源建筑进行全面管理和评价,通过构建绿色建筑能效测评指标,分析绿色建筑能效评价的具体方法,并且从照明、电梯、新能源和空调四个方面提出建筑节能的具体措施,旨在为绿色建筑能效评价体系的构建、实施和推进提供依据。近年来,关于绿色建筑的研究大多集中在绿色建筑结构设计和能耗监测,而作为绿色建筑评价的主要内容-建筑能耗,正在引起人们越来越广泛的重视。太阳能热水器热性能测试装置是针对建筑能耗和能源利用效率等指标进行监测评价,使用户能够全面地对建筑的能耗进行了解、评价的主要途径。(1)太阳能。太阳能目前主要的利用方式是太阳能板,虽然太阳能总体能量大,利用潜力高,但是由于太阳能利用密度低、太阳能板寿命低而且污染大等问题,使得太阳能的应用受到了一定的限制。(2)地热能。地源热泵的工作原理是利用水和土壤对太阳能的吸收,然后再利用能源转换系统将其转变为电能和热能。与太阳能相比,地源热泵有很多优点,如环保、经济效益高、用途广泛、使用寿命长、占地面积小、自动化程度高而且减排。[img=太阳能热水器热性能测试装置,690,690]https://ng1.17img.cn/bbsfiles/images/2022/01/202201150903024452_5636_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳能热水器热性能测试装置技术标准

    太阳能热水器热性能测试装置技术标准

    太阳能热水器热性能测试装置技术标准目前,在太阳能利用的诸多形式中,最成熟、最经济,与建筑关系最紧密的利用形式就是太阳能热利用。太阳能空气集热器是太阳能热利用主要形式之一。太阳能热水器热性能测试装置根据集热器的相关使用标准,研发出太阳能集热器测试系统对集热器的整体性能开展测试流程。1、外观检查:试验在常温下进行。样品进行两次外观检查——首次检查和末次检查。由专业技术人员目视检查太阳能空气集热器产品的主要部件情况,对主要部件存在的问题进行判定。2、刚度试验:试验在常温下进行,太阳能集热器不加工质,水平放置。未加工质的太阳能集热器水平放置,然后将其一段抬高100mm,保持5min后复原。检平板型太阳能集热器受损和变形情况。3、强度试验:试验在常温下进行,平板型太阳能集热器注满水,水平放置。在太阳能集热器表面放置轻质垫板,再在垫板上均匀铺放一层干砂,每平方米干砂质量为100kg。检查平板型太阳能集热器损坏和变形情况,并记录所加载和质量。[img=太阳能热水器热性能测试装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205120922023682_2962_4136176_3.jpg!w690x690.jpg[/img]4、太阳能热水器热性能测试装置闷晒实验:本实验在日平均环境温度ta≥8℃,太阳能集热器采光面接受的日太阳辐照量H≥17mJ/(m2d)条件下进行。按照在室外运行时的方向安装平板太阳能集热器,集热器内充满传热公职并被阳光加热至当天最高温度。价差平板型太阳能集热器损坏与变形情况,并逐时记录试验期间的日太阳辐照量H、环境温度ta、风速u。5、外热冲击试验:在太阳能集热器采光面上的总太阳辐照度G达到700W/m2以上时,使集热器孔筛30min。然后对满足实验条件的太阳能集热器均匀喷水,喷水方向与采光面之间的夹角不应小于20°,水温15℃±10℃,喷水流量应大于200kg/(m2h),保持喷水5min。检查太阳能集热器的各个部件是否损坏,变形,并记录试验期间的辐照量H、水流量、水温。6、淋雨实验:本试验在常温下进行,将太阳能集热器的进出口堵严,按40°倾角安放。用自来水从各个方向喷淋太阳能集热器。喷淋水与集热器采光面之间的角度不应小于20°,喷水量不应低于200kg/(m2h),喷淋面积应不小于集热器外表面积的80%,持续15min。检查太阳能集热器有无渗水、损坏。并逐时记录试验期间的环境温度、水流量、水温。7、太阳能热水器热性能测试装置密闭试验:试验在常温下进行,应该至少进行3次明示推荐流量最大值的测试。将流量仪表分别安装在集热器的进出风口,保证接口密封良好,流量仪表的安装应符合使用说明书的规定。分别测出进出口流量的值,单位面积的进出口流量的差值与单位面积的进口流量的值之比为单位面积泄漏量。8、热性能试验:热性能试验包括:准稳态的瞬时效率、集热器时间常数和入射角修正系数。按GB/T26977规定的试验方法。9、耐撞击实验:太阳能空气集热器按照GB/T6424规定的试验方法进行。真空管型太阳能空气集热器按照GB/T17581规定的实验方法进行。10、测定方法:吸热体涂层太阳吸收比:平板吸热体按GB/T6424规定的试验方法进行,真空集热管按GB/T17049规定的试验方法进行。[img=太阳能热水器热性能测试装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205120923026485_6543_4136176_3.jpg!w690x690.jpg[/img]吸热体涂层发射比:吸热体涂层红外发射比按GB/T19775规定的试验方法进行。吸热体和壳体涂层的附着力、耐盐雾、耐热性和老化性等推荐试验方法见GB/T6424—2007附录C。透明盖板太阳透射比:按GB/T6424规定的实验方法进行。

  • 【求助】化学试剂水分测试装置的购买

    我知道国标当中化学试剂的水分测试用卡尔费休方法,而且还有一个电量滴定装置,但是里面有一个滴定容器造型奇特,请教使用这种装置的大虾,我去哪儿能买到水分测试装置啊,装置图如附件中附录B所示。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=84413]化学试剂—水分测定—通用方法(卡尔费休法).[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=84414] 化学试剂—水分测定—通用方法(卡尔费休法)[/url]

  • 【原创大赛】烟气脱硝测试装置控制系统改造

    [font='宋体'][size=13px][color=#333333]烟气脱硝测试装置是模拟燃煤电厂烟气条件进行脱硝催化剂测试的非标装置,测试装置的参数按照[/color][/size][/font][font='宋体'][size=13px][color=#333333]DT/L1286要求进行控制。整个测试系统主要有:配气系统、制氮系统、反应器、控制系统、测试系统、取样系统等构成。[/color][/size][/font][font='宋体'][size=13px][color=#333333]1.控制系统作用及问题[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制系统单元主要由电源模块、传感器模块、质量流量计、继电器、电磁阀、P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制器等组成,主要[/color][/size][/font][font='宋体'][size=13px][color=#333333]作用是[/color][/size][/font][font='宋体'][size=13px][color=#333333]对系统参数的采集、控制及报警。全尺寸平台使用P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行控制,通过控制电脑提供人机交互界面,并结合软件平台实现控制元件参数的设定和自动化运行。随着对设备[/color][/size][/font][font='宋体'][size=13px][color=#333333]使用的不断积累[/color][/size][/font][font='宋体'][size=13px][color=#333333],以及检测能力扩大迫切的要求,伴随着多项技术改造,原始控制系统已经无法满足使用要求[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.系统改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]为完善自动控制功能,增强控制系统运行安全性和稳定性,对控制系统采取[/color][/size][/font][font='宋体'][size=13px][color=#333333]了如下的[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.1[/color][/size][/font][font='宋体'][size=13px][color=#333333]对P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行升级,增加一套冗余P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]专门用于分布式控制温控系统和电加热系统[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.2[/color][/size][/font][font='宋体'][size=13px][color=#333333]对模拟量数据采集和阀的控制等实现全局掌控,避免发生卡顿、宕机等隐患。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.3[/color][/size][/font][font='宋体'][size=13px][color=#333333]在空压机和制氮机端增加双绞屏蔽电缆和电脑通讯,既可以远程启停设备,还可以监视设备运行各项参数及状态,对冷干机使用基于L[/color][/size][/font][font='宋体'][size=13px][color=#333333]oRa[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术的远程控制方式。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.4[/color][/size][/font][font='宋体'][size=13px][color=#333333]对所有软件平台进行优化,整合线路,更换软件架构,采用无线与网线相结合的传输模式配合分布式多中央控制系统,增加系统运行的安全性。对设备控制根据各系统进行模块化布置,对测试过程按照逻辑顺序进行显示和监控。在保留和优化原有重要报警及保护程序的基础上,增加各系统分部锁定、多分布连锁,以及分布复位和总复位功能。有效发挥数据库管理系统作用,为组分配置提供数据参考[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.5[/color][/size][/font][font='宋体'][size=13px][color=#333333]对供气系统软件程序根据气源变化重新编辑公式以满足自动配气功能。根据管道加热器控制柜的改造,设计研发独立的控制软件,既能设定温度,还能控制交流接触器开断,实时监控温控表、电力调整器的各项参数,具备储存报警信息、三相电流异常数据、操作记录等功能。[/color][/size][/font][font='宋体'][size=13px][color=#333333]经过上述技术改造,控制系统更合理,可靠性和稳定性进一步增强,提高了测试效率。[/color][/size][/font]

  • 【转帖】欧盟颁布关于测量装置的限汞指令

    2007年10月3日,欧盟在其官方杂志上发布2007/51/EC指令,要求禁止在欧盟市场上销售含有汞的测试装置,该指令修改了原76/769/EC指令(对限用物质的框架性法规)与汞有关的内容,涉及的测试装置包括:温度计,压力计,气压计,血压计等,指令要求欧盟成员国在2008年10月3日前完成转换工作,生效日期是2009年4月3日。

  • 低温介电测量装置

    低温介电测量装置

    最近搭建了基于labview的介电测试系统,用advance research system的闭循环控温,信号跳动非常大,请问是哪些原因造成的?仪器震动的比较厉害的话是否会对测量造成影响? 有没有在这方面有经验的,希望能够指点一二。附图是测试装置。http://ng1.17img.cn/bbsfiles/images/2014/01/201401081649_487147_2269306_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/01/201401081650_487148_2269306_3.jpg

  • 吊50kg的砝码的装置图片

    哪位大侠有玩具斜面测试装置中吊砝码的图片啊?我们CMA评审开了不符合项斜面有了,吊50kg的砝码的装置没搞,哪位发个图片,我找人弄一个http://simg.instrument.com.cn/bbs/images/default/em09512.gif

  • 论检验检测试验装置数据质量和仿真质量综合评价体系的构建

    论检验检测试验装置数据质量和仿真质量综合评价体系的构建摘要检验检测试验装置多应用于研发、试验过程,也应用于产品研制、质量控制及性能评价等方面。随着检验检测标准对测试装置要求的多样性和复杂性,出现多参数且试验装置涉及多个专业领域,比如几何学、电学、热学等。从装置计量溯源确保数据的准确可靠已经不能满足检验检测机构的需要。除了数据质量,试验装置的仿真质量也至关重要,装置为了能更为真实的反映使用环境的仿真程度,需要搭建一个数据质量和仿真质量综合评价的体系。本文将介绍检验检测装置数据质量和仿真质量综合评价体系的构建。检验检测试验装置的概述检验检测试验装置通常有多个测量系统组成,比如家电检测领域一般都会有家电产品性能检测实验室,该装置较为庞大,设备需要施工搭建。设备整体构造包括封闭实验室、制冷制热系统、控制室等。设备按照测量系统又有温度测量系统(铂电阻温度、热电偶温度、环境工况温湿度)、电参数系统(功率计、直流电源、变频电源、电能表)、压力系统(指针压力表、数字压力表、微压表、压力变送器等)、流量系统(流量计、限位开关、冷却塔、水箱等)、其他系统(欧美表照度、温湿度风速小盒、烟雾报警器等)。正是由于设备装置测量参数的多样性,导致设备在计量溯源,评价设备质量时,不太好把握设备综合技术指标,故装置的质量需要全面的考量,而不能单一只是通过每个设备的单独计量来评价设备整体的性能。比如,装置中压力变送器是连接在系统的,系统控制柜通过采集装置将变送器电信号转换为压力数值,通过电脑读取采集。如果只是单独将变送器送至计量院,可能变送器是符合要求的,但是接在实验室系统中通过采集,是否准确不得而知,一旦采集装置设置错误,可能都会导致数据的偏差。数据质量评价体系的构建数据质量的评价主要是对实验装置的计量溯源,应在系统中对被测系统部件连同采集控制显示端一起进行计量。比如,压力系统,应该让计量人员来到现场,将标准压力与被测压力连接好,通过实验室被测压力真实环境进行计量,被测压力通过线路管理将信号传送至采集端,再将信号经过处理通过电脑读取,计量人员应该读取自身标准压力和实验室电脑被测压力显示数值,完成对实验装置压力系统的仪表整体计量。评价体系的构建还是要以设备计量检定规程和校准规范为依据,综合考虑实验室产品检测要求进行制定确保数据的准确可靠。数据质量的评价首先要考虑评价的依据,选择正确的评价依据是第一步,其次就是测量范围和准确程度(准确度等级或不确定度或最大允许误差),最后就是数据重复性和复现性。这些指标可能是超预期的符合,也可能是基本满足,可也能是较差但是符合标准的要求。故构建评价体系也是有优良中差之分的。仿真质量评价体系的构建仿真质量是一般被实验室忽视的,实验装置测量就是在考察产品各项指标是否满足标准要求。比如,冰箱在性能实验室中需要做16℃和43℃的工况耐久性测试,来模拟冰箱在家庭环境中使用的情况。实验装置仿真真实性就需要评价。有些实验室在设定温度后,一个小时就到达了,很快完成实验室,该装置效率高,有些实验室需要很长时间才能达到设置温度,虽然在做数据计量时,可能并看不出来,但是在做仿真质量评价时就会发现。可能原因就是装置结构或者配置区别,因为实验装置并没有对压缩机配置提出明确要求,这个直接影响实验装置降温的速度。故仿真质量评价也是对设备性能的评价极为重要的。计量人员与检验检测人员协作的必要性数据质量评价一般由规程规范决定,但是仿真质量评价依据一般是检验检测人员根据实验室自身需求进行量身定制,一旦跟计量人员确保他们实验装置仿真的要求,计量人员会按照该标准进行计量,确保符合使用需求。比如模拟冰箱开关门的耐久实验装置,看似只是计量开关门次数的计数装置即可,实际检验检测人员还需要关注装置中开关门用力、开关门触点的位移是否准确、实际实验环境中上万次试验次数是否准确计数以及限位开关是否可以有效归零等。总之,计量人员与检验检测人员需要进行沟通确认,仿真质量评价还是要根据具体使用实验室需求来定制,确保每年计量人员进行计量时都能满足需求,当然需求要求也是动态调整的,实验室一旦对产品要求变严格或宽松都可以随时对评价要求进行调整。但是,一旦标准中对设备装置有明确的要求,还是要优先满足标准的要求。比如,对实验室温度从40℃降到25℃需要在30分钟内完成,那么这个实验装置就要能够仿真这个环境变化,同时设备装置稳定度、均匀性以及示值误差可以满足标准要求。综合系统评价体系构建数据质量评价是静态的,较为独立的,但是仿真质量是较为综合的。比如,产品检测都有防水实验装置,单独计量评价装置中各个部件一般都是满足的,压力表、流量计和一些几何量的装置,但是如果能够综合考虑整个防水试验装置运行是否如实仿真各种防水条件还是未知的。仅是静态测量仪器仪表,而不是动态测量整体仿真模拟接近真实情况的能力,设备装置的评价还是片面的。故综合数据质量和仿真质量进行设备装置评价是必要的。所以,装置的性能应主要从试验测试数据质量和试验环境仿真质量两方面来表征。试验设施的综合评价,不仅应包括试验测试数据质量评价,同时也必须包括试验环境仿真质量评价,试验设施综合评价需要实验室系统性地构建试验装置综合评价理论和技术体系的通用性标准。评价体系未来发展趋势随着数字化、智能化发展,产品更新换代更为频繁,未来为了更好地满足产品多样化的检测,检测设备装置会更为多样化和复杂化,能够模拟更多的测试条件将是趋势,为了满足人员对产品使用的舒适度和耐用性等要求,生产企业就需要对产品进行不同的环境仿真,来充分考量产品的性能和好坏,故检测设备就不仅仅数据质量可以满足产品标准的要求,实际仿真的能力也是关键。检测装置的好坏,未来将不止需要通过计量校准,还要通过仿真能力评价综合装置的性能优劣。通过综合评价体系的构建和形成,检测装置将会优胜略汰,从而提升产品检验检测的质量,进而提升产品的质量,为消费者购置更为优质产品提供有力保障。[b][font=黑体]参考文献[/font][/b]JJF 1094-2002 测量仪器特性评定.JJF 1001-2011 通用计量术语及定义.动态计量技术发展中的几个关键问题 杨军, 张力, 李新良.动态校准、动态测试与动态测量的辨析 梁志国, 张大治, 吕华溢.

  • 液相测试背压装置

    液相测试时经常要用到背压装置,背压100MPa,压力可调的这种找了好久都没找到。各位在测试时有用到还是见到过这种背压装置吗?给推荐推荐呗。

  • 皮革中测试PCP,TeCP的蒸馏装置

    问一下各位大虾们,在做皮革中测试PCP,TeCP的前处理时,都是用哪种蒸馏装置的?有没有推荐好用一点的设备,我们实验室目前使用的是自己搭的蒸馏装置,感觉测试结果好像不太稳定,回收率也没有达到标准的要求。

  • 金属所材料热物理性能测试研究五十年

    金属所材料热物理性能测试研究五十年

    [color=#990000]本文转载自中科院沈阳金属研究所官网。[/color][color=#990000]编者按:中国的热物理性能测试技术的研究起步于1960年左右,基本与欧美处于同步发展水平,以中科院沈阳金属研究所何冠虎和周熙宁老师为代表的老一辈学者则是我国热物理性能测试领域的开拓者。这里转载两位前辈所撰写的文章,一方面是为了部分展示我国热物理性能测试技术的发展历史,另一方面是表达对前辈老师们的崇高敬意。[/color][hr/][b][size=18px]金属所材料热物理性能测试研究五十年[/size][/b]作者:何冠虎 周熙宁 准确的热物理性能数据是材料制备、热过程控制、热结构设计计算的基础。金属所建所之初,在开展金属物理基础研究的同时,十分重视物理性能测试方法和测试装备的研究工作。1958高温测试研究室正式成立,其任务是结合高温材料的发展与使用,在高温测试方面进行有关的系统研究,为金属所日后成为全国高温热物理性能测试基地的重要成员单位之一打下了坚实的基础。 1961年,国家科委决定成立包括一批研究所和高校在内的高温测试基地,承担科研,协作和仲裁任务,由李薰教授任领导小组组长,严东生教授和姚桐斌教授任副组长,周本濂和周熙宁等同志任组员。从此金属所在李薰所长的领导下,以该基地重要成员单位的面貌投入到热物性测试的研究工作中。 60年代,金属所在国外严密封锁和资料匮乏的情况下,依靠自己的力量,初步建成了一批测试装置,并有不少是创新性的研究工作。如1963年基本建成的纵向热流绝对法金属热导率测试装置,中心加热器上下试样组合方式有别于传统的热源与热汇两端设置,能充分利用中心热源功率,以工业纯铁为标准参考试样,所得结果表明在70℃~800℃范围内的热导率,接近文献结果;金属所于1963年基本建成比长仪直测法线膨胀仪。建成电热稳态法高温热导率测试装置。首先提出弹性模量测试的端点悬挂声频共振法。克服了高温下试样内耗大不易激发振动的困难。端点悬挂声频共振法高温弹性模量测试方法和装置与电热稳态法石墨高温热导率测试方法和装置于1965年通过委托单位专家的验收鉴定,全部合格。此外,1500℃电脉冲石墨高温比热,1000℃脉冲回波法钢材小试样弹性模量,1000℃声频共振弹性模量,1000℃示差线膨胀装置也都相继建立。 70年代在我国第一颗返地卫星研制任务的带动下,金属所的高温热物性测试研究进入全盛的发展时期。卫星裙部热控材料钼合金板材厚度仅几个毫米,热导、比热、模量、热膨胀、热辐射等性能均是必不可少的设计参数,1960年代建立的测试方法已不能满足板材热物性的需求。于是激光热导,铜卡计比热,板材示差法和直测法线膨胀,电热稳态法半球发射率,弯曲共振法弹性模量等一系列测试装置相继建成。1974年7月在北京召开的第一届空间热物理会议全面反映了卫星热控设计,热控材料制备,热模拟试验和热物理性能测试方法和装备的最新结果,金属所的热物性测试研究工作不仅满足了任务需求,而且测试研究水平上了一个新台阶。这一阶段的代表性成绩有: (1)金属所在国内首批合作研制激光脉冲热导仪,该项目在1978年获全国科学大会奖以后,金属所又在激光脉冲加热-降温测量比热容新方法和整机微机运控研究中取得成果。至今,金属所的激光脉冲法热导率装置已为所内和国内 70多个单位提供了400多种材料,包括金属,合金,陶瓷,石墨,橡胶,高聚物等的可靠数据。(图片1为仪器研制现场)。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010292119142790_2928_3384_3.jpg!w245x186.jpg[/img] [/align] (2)高温半球向全发射率测试装置的建立与发展,1971年至1974年热物性组在建成电热稳态法测试装置的同时,为一批批板材及时可靠地提供了大量数据,为金属所承担的卫星裙部蒙皮的研制和卫星的回收起到了重要作用。在此基础上设计制成的自动记录高温辐射仪是我国第一台三参数(温度,电流,电压)实现自动记录的半球向全发射率测试装置,该装置至今已为所内和国内高辐射率节能涂料,金属高辐射涂层材料,难熔合金管材和板材等提供了大量发射率测试数据。 (3)建成高精度真空自动绝热控制铜量热计比热测试装置,经对α-Al2O3标准参考试样热温测试表明与美国NBS、前苏联科学院数据相差3%,而且测量了它的熔化潜热。金属所的材料热物理性能测试研究始终以材料研制为背景,不断建立新方法和新装备,服务于材料研制的需求。目前金属所仍然保持着结构材料所必须的物理性能,如热扩散率和热导率、比热容、线膨胀系数、弹性模量、剪切模量、泊松比,低温DSC相变、熔点、密度等系列测试装备,并建立了碳-碳材料高温双向强度测试装置(图片2为双向试验装置)。测试服务范围已遍及所内和国内材料研制重点企业,研究院所和高等院校100多个单位600多种各类固体材料的高温(2600℃)和低温(-150℃)测试需求,金属所已经成为全国提供热物理性能测试数据最主要的单位之一。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010292120049613_8007_3384_3.jpg!w252x201.jpg[/img][/align] 90年代以来,周本濂同志在研究固体薄膜材料热膨胀动态过程中,发现了温度升高在先、热膨胀有滞后的现象,说明瞬态加热时薄膜材料内部存在巨大的热应力。与此同时,热物性研究组在中国科学院院长基金特别资助项目和多项国家自然科学基金项目资助下开展了二维材料热输运性的热膨胀的研究,取得了可喜的成果,并在863课题中得到应用。获得了不同工艺条件下金刚石膜的热扩散率,建立了由TEA CO2脉冲激光(0.1s脉宽),(HgCdTe)红外探测器(0.01s响应)和DAS 820M瞬态采集仪组成的测试系统,不仅测出了50um铝、铜薄膜的热扩散率,而且成功地探测了0.35mm金刚石膜的温升曲线和热扩散率。不同工艺制备的金刚石膜有不同的热扩散率。 采用CCD非接触法测量薄膜的热膨胀系数,创建了由准直卤素光源,光学放大系统、CCD采集处理系统组成的测试系统,试样因升温膨胀时,其像边缘移动,在CCD图像上出现两个边缘像,用滤波平滑处理和多点判据法可以确定移过的光敏元数,最终计算出试样伸长量。本方法的长度分辨率达到0.2um的高精度,已获得国家发明专利。 金属所的热物性测试研究之所以在国内有一定的地位,除了为材料研究提供测试数据外,是与周本濂教授力主创新,不断开拓新领域,促进国际学术交流,多次应邀在亚洲热物性会议上作大会邀请报告并获得热烈反响和好评分不开的。在一次于美国召开的国际热物性大会上,周本濂教授作了介绍我国热物性研究概况的报告及金属所多人作了热导率和比热容测试的报告后,美国信息及数据综合和分析中心(CINDAS)主任,著名科学家,美籍华人何焯彦(C.Y.Ho)教授十分感慨地说,想不到中国在热物性研究领域有如此高的水平。 在即将迎来金属所成立五十周年之时,回顾热物性测试研究的发展历程,抚今追昔,我们十分怀念已故著名科学家李薰院士和周本濂院士,是他们的高瞻远瞩和执着追求带来了金属所热物性测试研究的成就,是他们的拓展深化和求实创新精神为我们树立了榜样,激励着我们不断前进。我们相信,金属所热物性测试研究之舟,在改革开放的大潮中,一定能绕过礁石,冲破急流,在曲折中登上新的航程,驶向胜利的彼岸。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    [size=16px][color=#339999]摘要:电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/color][/size][align=center][size=16px][img=电化学热电池性能测试中的TEC半导体制冷片温度控制解决方案,600,379]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171026207841_631_3221506_3.jpg!w690x436.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 温差发电在固体材料与半导体材料的发展上均比较成熟,而近年出现了一种新型的电化学热电池(electrochemical thermcells)拥有更高的塞贝克系数,同时成本较低、能够适应复杂热源表面,因而具有一定的应用前景,成为当前研究的热点方向之一。如图1所示,这种电化学热电池的基本原理是利用电化学体系中的赛贝克效应,将冷热电极之间的温差直接转化为电势差而产生发电效果,因此温差环境是使用和测试评价电化学电池的必要条件。[/size][align=center][size=16px][color=#339999][b][img=01.电化学热电池原理图,450,396]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027053355_4631_3221506_3.jpg!w690x608.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 电化学热电池基本原理[/b][/color][/size][/align][size=16px] 电化学热电池中的电解质、材料和电极受温度的影响,以及整个热电池的相关性能测试评价,对测试过程中的温差形成有十分复杂的要求,具体内容如下:[/size][size=16px] (1)热电池的两个冷热端电极要处于不同温度以形成温差,两个电极温度要具有一定的变化范围以便在不同电极温度和不同温差条件下测试评价热电池的各种性能。[/size][size=16px] (2)对于冷端温度,可采用TEC半导体制冷片进行调节和控制,但热端温度普遍较高,采用制冷片无法实现高温加热,需采用电阻等加热。[/size][size=16px] (3)在热电池性能测试过程中,需要在冷热电极处实现台阶式或周期交变式可编程温度变化。这样一方面是能够测试不同电极温度和不同温差下的热电池性能,得到热电池最佳工作状态时的温度和温差条件,另一方面是测试考核热电池的疲劳衰减特性。[/size][size=16px] (4)新型的电化学热电池往往很薄,如各种可穿戴电子产品用热电池。在实际应用中,这类薄片或薄膜状热电池上形成的温差很小,这就要求热电池性能测量装置需要具备在冷热电极之间提供小温差的能力。[/size][size=16px] 根据上述要求可以看出,一旦电化学热电池形状确定,热电池性能测试装置的结构也基本确定,而测试装置中温度控制的关键是确定合理的加热方式和温控仪表。[/size][size=16px] 对于加热形式,采用电阻加热和TEC半导体制冷片两种形式,可满足绝大多数电化学热电池在任意温度和温差范围内的测试需要,对于温度不高的测试,可仅使用TEC半导体制冷片进行温度控制。电阻加热用于热电极处的高温加热,温度范围为50~150℃以上。TEC半导体制冷片加热用于冷电极处的低温加热和冷却,温度范围为-10~60℃。[/size][size=16px] 对于温控仪表,满足上述温度控制要求的控温仪表需具备以下功能:[/size][size=16px] (1)可对电阻加热和TEC半导体制冷片分别进行控制。[/size][size=16px] (2)可编程控制功能,可控制温度按照编程设定的温度折线进行变化。[/size][size=16px] (3)交变温度控制功能,可控制温度按照设定周期和幅度进行交替变化。[/size][size=16px] (4)带PID自整定功能,避免繁琐的人工调整PID参数,并可存储和调用多组PID参数。[/size][size=16px] (5)测量和控温精度高,特别是要满足薄膜热电池的温差控制,控温精度要达到0.01℃。[/size][size=16px] (6)带通讯功能可与上位机连接,由上位机进行设置、编程、控制运行、显示和存储。[/size][size=16px] (7)带计算机软件,无需编程,可通过计算机进行设置、编程、控制运行、显示和存储。[/size][size=16px] 从上述功能要求中可以看出,电化学热电池性能测试中对温度和温差形成的要求很高,特别是要求温控仪表具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能,而这些很多都是目前电化学热电池性能测试用控温仪无法具备的功能。为此,本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案设计的温控系统典型结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.电化学热电池性能测试温控系统结构示意图,690,343]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027488618_9875_3221506_3.jpg!w690x343.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 电化学热电池性能测试温控系统结构示意图[/b][/color][/size][/align][size=16px] 图2所示的解决方案示意图包含了电化学热电池性能测量装置和温度控制系统两部分。其中的电化学热电池测量装置示出的是对块状、板状或薄膜状热电池的测试结构,电极分别贴服在热电池的顶部和底部,顶部的阴极电极处通过TEC半导体制冷片进行低温控制形成冷电极,底部的阳极电极处通过电阻加热方式(电热膜和电热块)进行高温控制形成热电极,由此在热电池上下两端形成所需温差。需要说明的是,解决方案在冷电极处选择TEC半导体制冷片的主要目的是为了实现高精度的温度控制,这在测试评价薄膜式可穿戴用热电池中实现高精度小温差时非常重要。在热电极出选择电阻加热方式主要是为了满足更高温度的大温差测试需要。[/size][size=16px] 由于半导体制冷片和电阻加热是两种完全不同的发热制冷原理,它们的温度控制方式也完全不同,因此图2所示解决方案设计了两个独立的温控回路,两个温控回路采用的是相同的超高精度PID控制器VPC2021-1。选择使用VPC202-1这种PID控制器,是出于多功能和超高精度的考虑,此控制器可以满足前面所述的对温度控制器的所有要求。[/size][size=16px] 在TEC半导体制冷片温控回路中,使用了VPC2021双向控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动双向电源对TEC制冷片进行加热或制冷控制,由此实现高精度的温度控制。[/size][size=16px] 在电阻加热温控回路中,使用了VPC2021基本的温度控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动固态继电器进行加热,由此实现高精度的温度控制。这里需要注意的是,如果要在电阻加热中实现较高精度的温度控制,除了采用高精度的温度传感器(如铂电阻或热敏电阻)之外,还需要与相应的冷源配合以减小热惯性,如在电阻发热体下面配备冷却装置以便能够形成快速散热。如果是测量薄膜热电池,则无需这些考虑,只需在电阻发热体下面增加绝热层即可,因为热电池和电阻加热膜厚度很小,热惯性自然也小,冷电极的低温可以对热电极进行快速散热,有利于热电极处的温度高精度控制。[/size][size=16px] 为了实现热电池的温度交变试验,解决方案采用了VPC2021控制器的高级功能:远程设定点功能,即在辅助输入通道上接入外部信号发生器以生成各种周期性波形信号作为交变设定值,由此可控制热电极温度按照此设定波形进行周期性变化,从而形成交变温差。如图2所示,此远程设定点功能的选择可以通过一个外置开关进行选择,实现正常控温和交变控温之间的切换。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以满足绝大多数电化学热电池性能测试中的温差环境控制需要,为测试评价热电池性能和优化使用条件提供了便利的试验和考核手段。[/size][size=16px] 更重要的是高精度PID控制器配备了相应的计算机软件,采用了具有标准MODBUS通讯协议的RS485接口,与计算机一起可以组成独立的测控系统,通过计算机可方便的对PID控制器进行远程操控,设置控制器的各种参数,采集、存储和曲线形式显示PID控制器的过程参数,无需再进行任何编程即可进行测试试验,非常适应于实验室研究试验。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现多种物理量和波形的准确控制,更可连接上位机直接与中央控制器进行集成,与整个设备形成很好的配套。[/size][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • 全自动玻璃表面应力仪FSM6000LE测试原理

    全自动玻璃表面应力仪FSM6000LE测试原理

    一、测试基础:  FSM-6000LE玻璃[url=http://www.dorin17.com/][b]表面应力仪[/b][/url]是用于测量化学强化和物理强化玻璃的表面应力。机器利用专用光源(LED灯)产生平面偏振光,让通过让光沿着玻璃表面传播,根据光弹性测试法计算出其表面的应力以及应力层深度。  二、测试法原理:  平面偏振光透过受有外力作用的双折射棱镜时,分解成两束相互垂直的偏振光,分别在两个主平面上振动,且传播速度不等,其结果从双折射棱镜上每一点透出的振动方向相互垂直的两个光波间产生光程差。如果再使它通过偏振镜,则产生光的干涉现象,得到等倾线和等差线两种干涉条纹。由等倾线可以求得主应力方向,由等差线可以求得主应力差σ1-σ2,再配合其他方法则可以求解出双折射棱镜上一点的主应力σ1和σ2。根据双折射棱镜相似理论可以由双折射棱镜应力换算求得真实零件上的应力。  附:测试原理图[url=http://album.sina.com.cn/pic/003DCsBIgy72wgdjq6B39][img=玻璃表面应力仪FSM-6000LE测试原理,479,225]http://s10.sinaimg.cn/mw690/003DCsBIgy72wgdjq6B39&690[/img][/url]  三、测试用试剂:  本测试装置用折射率为1。64的折射液体。  四、测试装置:  应力测试仪主机由:由光源、准直透镜、起偏振镜、1/4波片、加载架、1/4波片、检偏振镜、视场透镜、高分辨率工业相机等部件组成。本机带有电脑,能够减少测量者的误差也更便于测量数据的管理。  五、测试装置图示:[url=http://album.sina.com.cn/pic/003DCsBIgy72wgetdIAf8][img=玻璃表面应力仪FSM-6000LE测试原理,554,244]http://s9.sinaimg.cn/mw690/003DCsBIgy72wgetdIAf8&690[/img][/url]  六、测试装置功能及说明:  1。LED光源  2。起偏振镜  3。1/4波片  4。双折射棱镜  5。测试试样  6。1/4波片  7。起偏振镜  8。成像透镜系统  9。高分辨率工业相机(CCD)  七、外观尺寸图:[url=http://album.sina.com.cn/pic/003DCsBIgy72wgfuqRo56][img=玻璃表面应力仪FSM-6000LE测试原理,554,269]http://s7.sinaimg.cn/mw690/003DCsBIgy72wgfuqRo56&690[/img][/url]  1。LED光源及组件。2。光源升降架。3。双折射棱镜。4。棱镜固定框架。5。废液收集盒。6。废液收集盒固定板。7。废液收集瓶(环保,可拆卸)。8。镜筒支撑固定块。9。镜筒连接杆。10。滤光盒。11。成像镜筒。12。工业相机。13。光源升降调节手轮。14。镜筒角度调节固定座。15。镜筒角度调节杆。16。主机底板。17。主机盖板。18。调水平脚垫。19。主机箱体。  八、测试软件界面:[url=http://album.sina.com.cn/pic/003DCsBIgy72wgh93i535][img=玻璃表面应力仪FSM-6000LE测试原理,336,277]http://s6.sinaimg.cn/mw690/003DCsBIgy72wgh93i535&690[/img][/url]  九、测试装置优点:  1。具有其他型号没有的唯一的测量方法(折射计光弹性分析原理)。  2。自动测量,因测试者造成的个人差小。  3。能够用电脑保存数据,便于品质管理。  4。测试条件不佳的试料可以进行手动测量。  5。使用LED光源,使用寿命长,达到10,000小时。  6。使用了玻璃校准片因此可将机器误差控制到最小。 十、测试装置优点:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908211415418278_3629_2863862_3.jpg!w690x517.jpg[/img]

  • 高低温循环装置性能指标的测试正确使用说明

    高低温循环装置性能指标的测试正确使用说明高低温循环装置是一种提供高、低温(交变)循环变化的环境对工业产品(如:电子电工、汽车摩托、航空航天、船舶兵器、高等院校、科研单位等相关产品的零部件及材料)检验其高、低温的可靠性或其它各项性能指标的设备。  1. 高低温循环装置实验过程中,如无特殊必要,不要打开箱门以免受伤。  2. 保证设备箱体通风,不能有异响,否则不可运行。  3. 为连续合理正确的地运用本仪表,请定期对仪表较正及整机的保养等维护工作。  4. 实验室规范操作是每个操作人员都必须遵守的,如果违规操作将会出现不可预料的后重,轻则设备损坏,重则人员损伤甚至引发重大隐患:   以供应商提供的最佳安装场地准务实验室的放置环境,需提供提供额外电压领域内的电源,(标准源:380V/50HZ)  为了避免触电或发生误举措和毛病,在装置和接线完毕之前,请不必接通电源。另外制止私自装配、加工、改造或修补,不然会有发生异常举措、触电或火灾的风险。  接线必需正确,一定要实行接地。不接地能够形成触电、错误举措事故、显示等不正常或测量有较大误差。  5. 高低温循环装置为非防爆产品,使用过程中绝对不能用于对下列物质或含这些物质的试验

  • 【原创】土壤有机碳矿化装置

    【原创】土壤有机碳矿化装置

    [img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007152228_230921_1634750_3.jpg[/img]如上图所示:为土壤有机碳矿化室内培养装置图,鉴于学校实验条件有限,实验装置要亲手制作。仅提供广口瓶,为250ml大小。大家知道,本实验装置很重要。若是大量样品,实验装置的简易就很重要。现将实验时装置制作方法供上:我在做实验时样品数是100多个,亲自制作了100多个实验瓶。内小瓶子为医用小药瓶,掉线用普通缝衣线代替,连接于小药瓶与广口瓶瓶颈处。实验照片如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007152236_230930_1634750_3.jpg[/img]大家可以看到,在小药瓶处打上活结即可。大家在做实验的时候,都是怎么做的呢?欢迎讨论。。。。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制