隧道窑温量仪

仪器信息网隧道窑温量仪专题为您提供2024年最新隧道窑温量仪价格报价、厂家品牌的相关信息, 包括隧道窑温量仪参数、型号等,不管是国产,还是进口品牌的隧道窑温量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合隧道窑温量仪相关的耗材配件、试剂标物,还有隧道窑温量仪相关的最新资讯、资料,以及隧道窑温量仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

隧道窑温量仪相关的厂商

  • 济南盛阳高温材料有限公司是一家在高温材料产业内多元化发展的高新技术企业。盛阳高温在济南高新区、淄博各拥有一个现代化的生产基地,生产陶瓷纤维、耐火棉、高温吊顶模块、陶瓷纤维纸、高温浇注料、陶瓷纤维毯等产品,年生产能力达到10000吨,是墙体材料协会指定大型试点企业之一。盛阳高温在平顶隧道窑、冶金装置、石油化工工艺、建材窑炉、有色金属、高温防护、新材料、航天科技、电厂节能和超高温技术等领域的研发一直处于国内外先进水平,绝大部分已形成了具有竞争实力的规模产业。
    留言咨询
  • 山东金石高温材料有限公司始创于1990年,公司位于耐火材料产业基地-山东淄博,是国内首批专业陶瓷纤维产品生产企业。金石公司秉承“品质如金石,服务至精诚”的发展理念,历经20余年公司已拥有先进成套的设备工艺、过硬的产品质量、充足的货源保障、完善的销售及售后服务体系使金石成为业内当之无愧的龙头企业。20余年以来,金石公司为钢铁、冶金、石油、化工、机械、制造、陶瓷、建材、航空等行业高温窑炉(600-2200℃)用户,提供一站式解决方案。本公司已通过ISO国际9001质量体系认证,产品达到国内高水平,并拥有多项专利,产品畅销全国,并出口至美国、加拿大、澳大利亚、日本、韩国、沙特、阿联酋、印尼等30多个国家和地区。公司生产装备完善,产品质量体系严格执行欧洲标准,产品全部采用国家标准一级原料生产,确保了产品的保温效果和使用寿命,公司拥有美国进口智能BW-Ⅱ型陶瓷纤维毯生产线2条,CBC-Ⅱ型陶瓷纤维双面针刺甩丝毯生产线6条,陶瓷纤维纸生产线1条,陶瓷纤维板湿法生产线1条,日产可达160吨,公司生产标准型(STD)、高纯型(HP)、高铝型(HA)、含锆型(ZA)陶瓷纤维毯、纤维模块、折叠块、纤维板、纤维纸、纤维棉和陶瓷纤维纺织品、异形件、喷涂料等多种产品;可提供600°C—2200°C温度区间的各种陶瓷纤维产品、烧砖隧道窑平吊顶和各类工业窑炉保温改造工程的咨询、设计、施工服务。我公司深知,用户要求千条万条,归纳起来有四条:质量可靠、交货及时、价格合理、服务周到。我们以此为基础,以创造精品,服务社会为企业发展的核心理念,竭诚与国内外朋友合作,共谋大业。
    留言咨询
  • 成都拓华科技有限公司是一家专注于工程爆破、安全监测、工程测量等相关行业专用测量仪器与系统研发、生产、销售的高科技公司,主要产品包括智能爆破测振仪与传感器、爆破冲击波与噪声智能监测仪、动态应变仪、静态应变仪、工程爆破遥测云系统、隧道振动自动化无线监测系统等,覆盖了振动、位移、噪声、压力、冲击波、应力应变等多种动态信号的测试测量,多年来服务于水利水电、公路铁路、桥梁隧道、矿山大坝、工程监测及教学科研等行业的国内外数千家用户单位,受到广大用户的广泛认可和好评。公司秉承以客户需求为导向的经营理念,以产品质量为生命的运营方针,立足工程应用,不断创新,锐意进取,竭诚为新老顾客提供一流的产品和技术服务。
    留言咨询

隧道窑温量仪相关的仪器

  • 产品应用连续式微波高温隧道窑,采用多气氛微波高温推舟窑/推板窑形式,利用微波介质加热和低损耗保温技术,在传统隧道窑炉传导、对流、辐射传统加热方式的基础上,创新性推出了连续微波高温加热装备,为新材料新工艺的研发,提供了一种可能。产品特点1、连续式微波高温隧道窑,相当于串联使用的微波马弗炉,创新性的设计,将微波马弗炉的固定式“静态”加热技术,优化为连续移动的“动态”加热技术;2、微波高温场内的物料,其连续移动过程,使得物料经过微波场的“波峰”和“波谷”,从而从概率上优化了微波加热的均匀性;3、微波加热技术没有热惯性,温度场的控制更准确,适合工艺控制;4、微波加热因为不依赖介质,没有高温燃烧气流和腔体杂质污染,高温内腔更洁净,适合提高产品品质;5、微波隧道腔体没有发热体,可以全程采用陶瓷结构密封,耐酸碱腐蚀,并且可以更好的进行气密,可充空气、氧气、氮气、氩气、弱还原性气体等;6、连续的加热流程,大大提高了设备效率,使得微波高温工业化的应用成为可能技术参数产品示例功能和参数描述设备构成设备整体长度要求为6米,隧道加热系统分布:预热区、烧结区、冷却区,设置高温循环风机和逆风预热回路,并根据其三个区域的特点进行微波功率分配;微波源1、微波功率:30KW,工作频率:2450MHz;2、微波系统采用水冷磁控管;3、微波源的馈入方式为:微波谐振腔四周多点微波馈入,腔内设置微波螺旋散射叶轮,均匀分布微波场;隧道结构1、微波隧道规格:箱体截面尺寸为720*500mm(宽*高),不锈钢304材质,厚度1.5mm;2、烧结区规格:截面尺寸190*60mm(宽*高),烧结温度为700~1000℃,使用温度可达1200℃;3、保温材料:微波谐振腔中空隔温设计;4、进、出料口微波防漏开口,不锈钢材质,根据微波特性分为微波抗流结构的反射段和高介电常数材料设置的吸收段,物料通道开口高度60mm;物料传动1、传动方式:采用推舟输送液压进料装置推送速度和频率可调;2、箱体内置推舟底板,底板材料为耐高温、低微波吸收材料,方便传送;3、盛料坩埚:采用方形托盘,外尺寸170*170*50mm,壁厚8mm,总数40件;参数监控1、温控系统:测温方式为红外测温及热电偶:(1)其中红外测温仪,测温范围500~1400℃对于内部物料进行即时测温;(2)热电偶测温,动态监测微波加热区域0~1200℃的环境温度;2、水冷系统:对微波源进行水冷散热,水循环管路换热器进行温度和压力监控,提高其使用效率及使用寿命;控制系统1、采用工业电气自动化PLC控制,触摸屏操作;2、所有微波源均可独立设置并调整,从而选择合适的功率节省能源;3、设置完善的独立控制保护电路,确保每个元件的使用互不干扰;安全防护1、设备各部分的工作异常状态均有报警并给出原因提示;2、每个微波源设置温度保护器,对于异常温度可以自动保护;3、微波谐振腔与外壳间设置散热通道,通过风机散热,控制表面温度保护操作者;4、微波泄漏控制:按国标要求,微波泄漏量5mW/cm2;
    留言咨询
  • 陶瓷纤维模块是采用陶瓷纤维毯制成的系列模块产品,广泛应用于各类热加工设备炉衬。根据不同的应用工况或者不同的热处理设备,可以选择相应等级的陶瓷纤维模块。耐火陶瓷纤维中有陶瓷纤维模块和折叠块两种,这两者除了密度上的差别外,还有模块是带锚固件和木板,而折叠块是没有的。主要说的陶瓷纤维模块是用对应材质的陶瓷纤维针刺毯,按纤维组件结构、尺寸,在专用机械上加工而成,加工过程中按照想要的规格进行打压下最终形成。陶瓷纤维模块按使用温度上面,从900℃到1600℃分为普通、标准、高纯、高铝、锆铝、含铬、含锆等9个级别,可以满足各种窑炉及热工设备不同部位不同档次不用形式的绝热保温要求。随着国家节能减排计划的推进,烧砖隧道窑的改造迫在眉睫,陶瓷纤维模块在烧砖隧道窑吊顶方面以其卓越的保温性能受到极大赞誉。 随着环保方面的重点改革,陶瓷纤维对环境保护起到了一定作用。加快了炉衬施工速度,减轻窑炉重量,大幅度提高窑炉耐火绝热性能。用户可根据窑炉结构,采用不同纤维模块,本公司可提供多品种,多系统纤维模块,也可根据用户要求加工制作。在与耐火结构材料比较时,陶瓷纤维模块具有如下特点:1、减小烧成周期 2、提高生产效率 3、低蓄热 4、降低燃料费用 5、安装费用低 6、修理容易产品特性:低热容量、低导热率。抗热震性。抗热流冲刷性能优良、机械强度高。弹性,由于纤维组块制作时保持压缩量,砌筑完成由于纤维组块自身膨胀,相互挤紧炉衬无缝隙,并可使纤维衬收缩,从而提高纤维炉衬的绝热性能。安装简便、迅速、锚固件内装、安全性能好。典型应用:冶金钢铁各种加热炉。钢包盖热处理炉、退火炉、罩式炉。陶瓷梭式窑、马蹄窑、隧道窑等各种瓷窑炉、窑车、窑门。石化裂解炉、转化炉、常减压炉、焦化炉、烟道。其它各类工业炉,如均热炉、坩埚炉、电阻炉等高温热工设备。
    留言咨询
  • HYXJ-1隧道限界测量仪 隧道断面及设备限界测量仪 激光限界测量仪 隧道限界检测小车 激光铁路限界测量仪  HYXJ-1隧道限界测量仪是一种采用激光测量技术完成限界检测的仪器。测量主机安装在轨道小车上,测量时由控制器对主机进行控制、数据采集、数据计算、数据分析及界限判断,自动完成限界检测、数据采集、数据分析和处理,生成检测报告。  HYXJ-1激光铁路限界测量仪可对隧道限界、铁路限界(如站台、信号机、风雨棚等)、桥梁、跨线桥、车站附属物限界、轨道相对隧道位置等数据进行准确测量,也可快速的测量铁路、地铁、城市轨道的站台及附属物限界尺寸和地下曲线车站站台边缘至机车轮廓线间间隔及附属物全断面、分断面、单点限界。测量软件并自动判断是否超限,自动生成图形和限界报表。特点能够同时测量铁路建筑物(如隧道及隧道设备、站台、信号机、风雨棚等)的垂直高度和水平距离。采用高精密传感器系统,测量速度快,提高检测效率。软件功能强大:标准限界数据可编辑、录入,测量数据自动和标准限界数据进行比较,操作简便,可以实现现场数据图像显示,更直观。符合铁路相关现场工作条件,具有防潮、抗烟尘、抗强光、电池供电等特点.结构特点:检测小车轻便,便于携带。技术指标测量范围:0.2~70m测量精度:±1mm角度精度:2"轨距范围:1410mm-1470mm(选配) 测量精度:±1mm水平(超高)范围:±200mm(选配) 测量精度:±0.5mm里程测量精度:优于1‰单次采样数:51个点(可设置)控制系统:一键式多接口用,50x10mmIRS微型外置,测量精度更高更稳定,无线可选数据存储量:大于3500组,可扩展操作软件:测量软件界面实时显示每个测点的水平距离、垂直高度及超限量。多模块兼容接口,hydcrack1.1-1A软件系统(标准限界数据可编辑、录入,测量数据自动和标准数据进行比较,可生成图形、Excel、CAD格式(DXF)、TXT等格式的检测报告)配可拆卸提手及检测小车工作温度:-20℃~60℃储存温度:-30℃~70℃尺寸:1500x230x1260mm总重量:<12kg
    留言咨询

隧道窑温量仪相关的资讯

  • 扬州大学研制地铁隧道“体检仪”
    来自中国城市轨道交通协会的消息显示,2020年,我国内地累计有41个城市开通城轨交通线路7141.55公里。地铁已经成为城市日常出行必不可少的交通工具,但在地铁隧道中也会出现各种“病害”,威胁着人们的出行安全。  “当前,我国地铁隧道检测主要依赖人工检测和少量进口自动化设备,效率低、成本高,无法满足庞大的里程检测需求。”扬州大学信息工程学院(人工智能学院)副教授徐永安在接受采访时表示。  如何高效、准确、经济地检测出地铁隧道“病害”?在“科创导师”制的“牵线搭桥”下,扬州大学信息工程学院(人工智能学院)学生张雅欣等组建了大学生科技创新团队。由导师徐永安指导,团队研发了地铁隧道三维激光检测系统。“该系统检测速度可达国外同类设备的5倍以上。”张雅欣说。  将宝贝搬出实验室  在初中时期,受家人的影响,张雅欣萌生了创业的想法。2019年,正在上大二的她加入徐永安课题组,并组建了自己的大学生科技创新团队,选择了地铁隧道检测研究。  对张雅欣而言,导师不仅是科研路上的护航人,更是自己创业的榜样。记者获悉,在科技创新和科研成果转化路上,徐永安已经坚持了20多年。  1997年,在北京举办的中国国际机床展览会上,一个摆放着国外光学测量仪的展台被观众围得水泄不通,正在攻读博士学位的徐永安也是围观者之一。  从展会回来后,研制光学测量仪的想法一直萦绕在徐永安的脑海里。他随之改变了自己的研究方向,历经两年攻关,终于研制出国产光学测量仪。但在当时,他对科研成果转化还没有深刻的意识,便将这一宝贝成果“藏”在自己的实验室里。  “国外的设备那么贵,你有这么好的仪器,为什么不推向市场呢?”这样的声音越来越多,终于说服徐永安将宝贝搬出实验室。2011年,徐永安参与创办了一家公司,并将自主研发的光学测量仪设备推向市场。  当然,教书育人才是徐永安的本职工作。如何让学生在学习课本知识之外,学会创新思考,尝试自主研发技术并推动成果落地转化?20世纪90年代,扬州大学开启了“科创导师”制的探索之路,让学生在导师的指导下参与科技创新工作。  徐永安说:“过去,学生与导师的关系,主要是学生在导师的实验室开展科研,导师对学生的毕业设计进行指导。现在,导师不但要在科研上指导学生,还要带领学生开展科创工作。”  深入隧道后改变方法  谈及为什么选择地铁隧道检测研究,张雅欣告诉记者,目前,国内外地铁隧道自动化检测系统大多采用1个激光点绕隧道旋转的测量技术,检测速度慢。“好比一个电动机带着一个手电筒旋转,手电筒每次照射在物体表面时只能出现一个亮斑。这意味着每次只能采集一个点,效率太低。”  如何实现快速检测呢?经过一年多的攻关,以张雅欣为首的大学生科技创新团队研发出6条激光线扫描技术,360°环形激光线投射在隧道表面,8部每秒500帧高速数码相机实时采集隧道表面的激光线图像,并换算为隧道表面形状坐标。张雅欣解释道:“6条激光线同时工作,地铁隧道检测效率得到显著提高。”  然而,研发过程并非一帆风顺。在徐永安的指导下,张雅欣带领团队先后前往青岛、兰州、佛山等城市的地铁公司,深入地铁隧道,开展实践调研。团队在调研中发现,地铁公司对隧道快速检测系统有着迫切的需求。  在精准了解地铁隧道检测痛点后,张雅欣团队开始了与时间“赛跑”的测量工作。“我们只能在夜间12点到凌晨4点进入现场开展检测工作,因为这段时间地铁处于停运状态。另外,每天进入现场前的安检过程就要耗费半个多小时,实际的测量时间非常有限。”  经过近3个月的测量,张雅欣团队发现进展缓慢,于是做出了改变测量方法的决定,希望提高检测效率。经过徐永安的点拨,团队在实验室里自建了模拟隧道。“在模拟隧道里开展实验,不但提高了实验效率,缩短了研发周期,还解决了后期新冠疫情期间实地检测的困难。”张雅欣介绍说。  在解决了测量环境问题后,团队又遇到了由振动引起的测量误差问题。“测量车在轨道上运行会产生轻微振动,这种振动会带来一些误差。”张雅欣团队成员吴传昊告诉记者。为此,团队采用了基于特征面的方法对隧道测量数据进行纠偏,“这种方法可以大幅降低测量车振动对测量精度的影响,降低动态测量误差。”  “该系统检测速度最高可达每小时17.1公里,是国外同类设备的5倍以上,动态精度为±1.6毫米,检测密度小于2毫米,而价格只有国外设备的70%左右。”张雅欣表示,系统还可以根据用户需求制定检测速度、密度、精度。  徐永安透露,目前,该系统申请发明专利4项、登记软件著作权4项,通过了江苏省产品质量监督检验研究院质检,符合CMA中国计量认证标准。  大学生创业还需多磨砺  来自用户的消息显示,张雅欣团队研发的这套系统已在投入运营的地铁隧道进行了实地检测,在检测速度、精度以及密度方面均满足实际应用要求。目前,已有多家轨道交通公司与团队达成初步合作意向。  张雅欣表示,下一步团队将继续对产品进行优化设计,并计划注册成立公司。“地铁里程数较大的城市,可直接购买检测系统 地铁里程数小的城市,可购买检测服务。”  在张雅欣看来,虽然研发过程非常艰辛,但非常有意义。“一方面培养了我们解决问题的能力,另一方面还培养了我们团队建设、组织和管理的能力,对未来的创业起了铺垫作用。”  她感叹道:“大学生参与科创,要有顽强的毅力和勤奋刻苦的精神,对团队中不同的意见要善于倾听,脚踏实地攻克每一个难关。”  徐永安也指出,对于刚毕业的学生而言,如果没有成熟的技术积累和市场认知,可以先进入企业积累几年经验,对市场形成一定认知后再进行创业。  在他看来,高校“孵化器”应该实现良性循环,当政府和高校投入资金等支持后,若能实现良好的产出,投入的积极性也将越来越大,反之则可能陷入不良循环。“政府和高校还应进一步研究如何解决这一矛盾。”
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 先进检测仪器助力隧道“体检” 获隧道界“奥斯卡”奖
    昝月稳在颁奖礼上  西南交通大学教授昝月稳团队凭借“高效快速检测隧道衬砌结构状态车载探地雷达新技术”,获得国际隧道与地下空间协会(ITA)颁发的2015年度技术创新奖。  这一被誉为隧道界“奥斯卡”的奖项今年吸引了全球103个项目参评,最终8个项目获奖。昝月稳团队的参评项目是中国今年获得的唯一奖项,也是ITA颁发的首个年度技术创新奖。这项检测技术,被ITA赞为“解决了国家铁路网隧道安全检查的重大问题,具有显著的社会效益”。  历时14年,研制出隧道新型“体检设备”  随着交通日益发达,地铁、公路隧道、穿山铁路隧道等地下交通在我们的生活中占有越来越大的比重。  不过,这些隧道开始运营之后,就像人体一样,会产生生老病死等各种问题,随之出现的落石、漏水、开裂等等,会对交通和安全产生不可估量的危险。因此,需要经常对这些隧道进行“体检”。但是,目前的体检方式还依赖于人工,检测人员操纵笨重的机器一步步的检测,有时仅仅一公里的隧道,一天都检测不完。  11月19日,国际隧道与地下空间协会在瑞士举行了一场颁奖典礼,由西南交通大学教授昝月稳、李志林等申报的“高效快速检测隧道衬砌结构状态车载探地雷达新技术”项目获得了年度技术创新大奖。这也是我国获得的唯一奖项。  这种车载探地雷达系统大大颠覆了现在的隧道检测技术,不仅解放了人力,还将检测成本至少降低了一半。而今年10月,这种检车方法已经在成都铁路局所属的达成铁路上应用了。  对比  老方法  检测人员手举天线一公里隧道一天都检测不完  “目前,隧道的运行周期是一百年,它会不断地老化,会产生各种问题。”12月18日上午,在西南交大,昝月稳教授介绍起了他的这项研究。  他说,隧道老化很正常,但列车在隧道运行的时候,最害怕的就是隧道掉块、漏水,掉块砸到列车,被迫停车,封锁线路十几个小时的事情都是有的。为了减少这种状况的发生,就需要经常对隧道进行体检。  而现在平常检查隧道的方法比较“原始”,主要依靠人工,拿着手电筒在隧道走上一遍,照一下重点方位,靠人判断是否有状况发生。  每隔一段时间,还会进行全面“体检”,通常用的是“探地雷达”,趁着列车行进的间歇,把机器开进隧道,由人工压着天线紧贴隧道墙壁,探头通过天线发射电磁波,检测人员再通过回波探测出墙下结构,分析墙面状况。这种人工检测的方法约莫需要七八个工作人员同时工作,检测时速在5公里左右,需要来回五次才能把整个隧道检测完毕。“因为检测必须在列车行进间歇进行,有时候一公里的隧道,一天都检测不完,”昝月稳说道。  新成果  6个探头安在列车尾部成都到西安一晚就能完成检测  同传统人工检测使用一个探头不同,昝月稳研究的“车载探地雷达设备”是安装在一节列车车厢的尾部,上方和左右两侧共有6个探头同时探测,与此同时,它的最高时速可以高达175km,只需要两名工作人员监控系统,就可以在正常的列车运行条件下完成整条线的检测。  “以前人工检测必须紧贴着墙壁,你看这个,安装在列车上的探头,距离墙壁的最远距离多达2.25米。”昝月稳指着图示解释说,以前的人工探测就像是照相机,而他的“车载探地雷达设备”就像是摄像机,列车一路行走,探头就能完成记录整个过程中的地质状况。“而为了保证质量,目前我们检测时列车运行时速为80公里。从成都到西安,坐在车上不用动,一晚上就可以完成整条线的检测。”  从间歇式的5公里/时到目前的80公里/时,从原来的紧贴墙壁到现在可透过空气检测,从原来的单线检测到现在的6个探头同时检测,不仅减少了人力,还把检测费用降低到了原有的一半,昝月稳的“车载探地雷达设备”彻底地改变了国家铁路网隧道病害不能普查和定期体检的现状。这项技术不仅节省了人力成本,还降低了检测费用。2015年,这项技术在西安铁路局全面推广并在成都铁路局达成铁路上应用。  应用  2002年开始测试今年已应用在成都线路上  这项技术是以昝月稳为主的科研团队从2002年开始研制,2012年,西南交通大学以此项技术申报国家发明专利,2014年4月获得国家发明专利权。  2013年1月,这项科研项目通过铁道部科技司课题验收,2015年,这项检测技术开始在西安铁路局所管辖的线路上进行全面推广,并进行了所有线路的检测。今年10月,在成都铁路局所管辖的达成线上完成检测。  “其实,这项技术不仅仅可以用在铁路隧道上的检测,在地铁隧道和公路隧道上,也具有广阔的应用前景。”这不,今年10月,这个项目还在广州地铁上进行了检测,测试效果也非常好。  背后故事  14年潜心研究  曾背着主机显示屏徒步10公里去测试  一个科研项目的成功,背后当然凝聚着研究人员的心血,而这项“车载探地雷达设备与技术”的成功,昝月稳整整用了14年的时间。  2002年,作为某单位里的唯一一名博士,他辞掉安稳的科长职务,开始专心研究车载探地雷达技术。当时,研究人员少、资金短缺,他就和几个科研人员背着显示器、计算机主机、探头、天线等一整套的探测雷达系统,走上10多公里的小路,到大山中的隧道中去探测。科研经费短缺,他就自己边赚钱边研究。  昝月稳说,因为需要跟着列车走,几天几夜吃住在车上的事情都是常有的。冬天内蒙古冷到零下28℃,那时候他就知道了手摸到铁皮要粘起来的感受。新隧道检测,里面全部是粉尘,他们就用被单把列车的车门、窗户全部蒙起来。  不过,这些苦还不是最大的挑战。最让他们焦心的是,研究过程中机器设备的耗损,一不小心就会坏掉,三更半夜到了车站,来不及休息,就到处敲门找人去修,“没办法呀,不修好所有数据都没了,这一趟真的是白跑了,那时候半夜去敲门的状况还是很多的。”最让昝月稳印象深刻的是一次事故,列车到了陕南的一小站,山间容易起雾,设备都是放在露天的车站,早上五六点发车,一启动,接收器全部都烧了,没有办法,只能白跑一趟,回去再全部重新定做机器。  昝月稳说,隧道的一般病态有漏水、断裂、腐蚀老化、掉块等,为保证运输隧道安全,需要对其进行病害普查,特别要对老龄隧道进行定期检查。该项目就是为铁路隧道提供“体检”的新设备与技术。

隧道窑温量仪相关的方案

隧道窑温量仪相关的资料

隧道窑温量仪相关的论坛

  • 火车进隧道

    火车进隧道,一片黑暗,只听一声亲吻,接着一记耳光。火车出了隧道,四个不相识的人都没吱声,唯有A男的眼圈发青。老太婆想:“小姑娘人美心也美。”姑娘想:“奇怪,A亲老太婆也不亲我。”A想:“B真狡猾,偷着亲嘴我却挨揍!”B想:“我吻了自己手背,又打了A一耳光,没有人发现。”

  • 【分享】宏观量子隧道效应

    【分享】宏观量子隧道效应

    隧道效应目录 定义 概述 原理 发现者 用途 隧道二极管 隧道巨磁电阻效应 宏观量子隧道效应     隧道效应   tunnel effect编辑本段定义  由微观粒子波动性所确定的量子效应。又称势垒贯穿 。考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。理论计算表明,对于能量为几电子伏的电子,方势垒的能量也是几电子伏 ,当势垒宽度为1埃时 , 粒子的透射概率达零点几 ;而当势垒宽度为10时,粒子透射概率减小到10-10 ,已微乎其微。可见隧道效应是一种微观世界的量子效应,对于宏观现象,实际上不可能发生。  在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒,实际也正是如此,这种现象称为隧道效应。对于谐振子,按经典力学,由核间距所决定的位能决不可能超过总能量。量子力学却证明这种核间距仍有一定的概率存在,此现象也是一种隧道效应。   隧道效应是理解许多自然现象的基础。编辑本段概述  在两层金属导体之间夹一薄绝缘层,就构成一个电子的隧道结。实验发现电子可以通过隧道结,即电子可以穿过绝缘层,这便是隧道效应。使电子从金属中逸出需要逸出功,这说明金属中电子势能比空气或绝缘层中低.于是电子隧道结对电子的作用可用一个势垒来表示,为了简化运算,把势垒简化成一个一维方势垒。   所谓隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为1nm(10-6mm),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E<V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。   产生隧道效应的原因是电子的波动性。按照量子力学原理,有能量(动能)E的电子波长=(其中,——普朗克常数;——电子质量;E——电子的动能),在势垒V前:若E>V,它进入势垒V区时,将波长改变为λ′=;若E<V时,虽不能形成有一定波长的波动,但电子仍能进入V区的一定深度。当该势垒区很窄时,即使是动能E小于势垒V,也会有一部分电子穿透V区而自身动能E不变。换言之,在E<V时,电子入射势垒就一定有反射电子波存在,但也有透射波存在。编辑本段原理  经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。例如骑自行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。如果坡很高,不蹬自行车,车到一半就停住,然后退回去。  量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantum tunneling)。可见,宏观上的确定性在微观上往往就具有不确定性。虽然在通常的情况下,隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在某些特丁的条件下宏观的隧道效应也会出现。编辑本段发现者  1957年,受雇于索尼公司的江崎玲於奈(Leo Esaki,1940~)在改良高频晶体管2T7的过程中发现,当增加PN结两端的电压时电流反而减少,江崎玲於奈将这种反常的负电阻现象解释为隧道效应。此后,江崎利用这一效应制成了隧道二极管(也称江崎二极管)。 1960年,美裔挪威籍科学家加埃沃(Ivan Giaever,1929~)通过实验证明了在超导体隧道结中存在单电子隧道效应。在此之前的1956年出现的“库珀对”及BCS理论被公认为是对超导现象的完美解释,单电子隧道效应无疑是对超导理论的一个重要补充。 1962年,年仅20岁的英国剑桥大学实验物理学研究生约瑟夫森(Brian David Josephson,1940~)预言,当两个超导体之间设置一个绝缘薄层构成SIS(Superconductor-Insulator- Superconductor)时,电子可以穿过绝缘体从一个超导体到达另一个超导体。约瑟夫森的这一预言不久就为P.W.安德森和J.M.罗厄耳的实验观测所证实——电子对通过两块超导金属间的薄绝缘层(厚度约为10埃)时发生了隧道效应,于是称之为“约瑟夫森效应”。 宏观量子隧道效应确立了微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而穿透绝缘层,使器件无法正常工作。因此,宏观量子隧道效应已成为微电子学、光电子学中的重要理论。编辑本段用途  隧道效应本质上是量子跃迁,电子迅速穿越势垒。隧道效应有很多用途。如制成分辨力为0.1nm(1A)量级的扫描隧道显微镜,可以观察到Si的(111)面上的大元胞。但它适用于半导体样品的观察,不适于绝缘体样品的观测。在扫描隧道显微镜(STM)的启发下,1986年开发了原子力显微镜(AFM),其工作原理如图5所示。利用金刚石针尖制成以SiO2膜或Si3N4膜悬臂梁(其横向截面尺寸为100μm×1μm,弹性系数为0.1~1N/m),梁上有激光镜面反射镜。当针尖金刚石的原子与样品的表面原子间距离足够小时,原子间的相互作用力使悬臂梁在垂直表面方向上产生位移偏转,使入射激光的反射光束发生偏转,被光电位移传感器灵敏地探测出来。原子力显微镜对导体和绝缘体样品都适用,且其分辨力达到0.01mm(0.1A),可以测出原子间的微作用力,实现原子级表面观测。  [img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624047_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200811517289_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172816_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172825_01_1602049_3.jpg[/img]

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

隧道窑温量仪相关的耗材

  • 测温环
    测温环是高精度陶瓷烧成的温度指示器,用来记录烧成品的真实烧制过程,包括辐射热和传导热,适用于非连续窑和连续隧道窑,以及氧、氮、空气、真空和还原等气氛中。 产品型号测温环主要特点1、使用机动灵活,可简易方便地测定炉内三维空间的温度分布,遍及任何角落。2、最贴近样品,精确测定烧制品受热状态。3、测温环一致性良好,可以保证样品烧制的良好重现性,因而可大大提高烧成品的成品率。4、可以减少甚至不再需要通过对烧成品的几何形状、密度、多孔性测量或破坏性试验,从而大大减少生产过程中的质量成本。技术参数1、外径:?20mm2、内径:?10mm3、厚度:7mm4、最大误差:小于3℃,甚至可达1.5℃5、测量范围:850℃-1100℃,低温耐火材料和窑具;970℃-1250℃,瓷料预合成、陶瓷、建筑用砖瓦和窑具; 1130℃-1520℃,单层和多层电容器、铁氧体和绝缘子、粉末冶金、卫生陶瓷、食具、瓦、砂轮、中温耐火材料和窑具;1340℃-1520℃,铁氧体、基片和绝缘子、硬瓷器、电子陶瓷、中至高 温耐火材料和窑具;1450℃-1750℃,高级陶瓷、工程陶瓷、高温耐火材料和窑具。
  • 测温环
    测温环是高精度陶瓷烧成的温度指示器,用来记录烧成品的真实烧制过程,包括辐射热和传导热,适用于非连续窑和连续隧道窑,以及氧、氮、空气、真空和还原等气氛中。 产品型号测温环主要特点1、使用机动灵活,可简易方便地测定炉内三维空间的温度分布,遍及任何角落。2、最贴近样品,精确测定烧制品受热状态。3、测温环一致性良好,可以保证样品烧制的良好重现性,因而可大大提高烧成品的成品率。4、可以减少甚至不再需要通过对烧成品的几何形状、密度、多孔性测量或破坏性试验,从而大大减少生产过  程中的质量成本。技术参数1、外径:?20mm2、内径:?10mm3、厚度:7mm4、最大误差:小于3℃,甚至可达1.5℃5、测量范围:850℃-1100℃,低温耐火材料和窑具;970℃-1250℃,瓷料预合成、陶瓷、建筑用砖瓦和窑具; 1130℃-1520℃,单层和多层电容器、铁氧体和绝缘子、粉末冶金、卫生陶瓷、食具、瓦、砂轮、中温耐火材料和窑具;1340℃-1520℃,铁氧体、基片和绝缘子、硬瓷器、电子陶瓷、中至高 温耐火材料和窑具;1450℃-1750℃,高级陶瓷、工程陶瓷、高温耐火材料和窑具。
  • 硅碳棒
    硅碳棒使用过程中注意事项硅碳棒硅碳棒是用高纯度绿色六方碳化硅为主要原料,按一定料比加工制坯,经2200℃高温硅化再结晶烧结而制成的棒状、管状非金属高温电热元件。氧化性气氛中正常使用温度可达1450℃,连续使用可达2000小时。硅碳棒使用温度高,具有耐高温、抗氧化、耐腐蚀、升温快、寿命长、高温变形小、安装维修方便等特点,且有良好的化学稳定性。与自动化电控系统配套,可得到精确的恒定温度,又可根据生产工艺的需要按曲线自动调温。使用硅碳棒加热既方便,又安全可靠。现已广泛应用于电子、磁性材料、粉末冶金、陶瓷、玻璃、半导体、分析化验、科学研究等高温领域,成为隧道窑、玻璃窑炉、真空炉、马弗炉、冶炼炉以及各类加热设备的电加热元件。注意事项1、硅碳棒质地硬而脆,受到剧烈震动和撞击容易断裂。因此运输时要格外小心,搬运时要轻拿轻放。2、硅碳棒发热部的长度应该等于炉膛的宽度。如果发热部伸入炉墙内,容易烧损炉墙。3、硅碳棒冷端部的长度应该等于炉墙厚度加上冷端伸出炉墙的长度。一般冷端部伸出长度为50~150mm,以便冷却冷端部及连接卡具。4、穿硅碳棒的炉子的内径应是冷端部外径的1.4~1.6倍,炉孔过小或孔内填充物塞得过紧,高温时会阻碍硅碳棒自由伸缩而导致断棒。安装时,应该使硅碳棒能够自由转动360度。5、硅碳棒与被加热物及炉墙的距离应大于或等于发热部直径的3倍。硅碳棒与硅碳棒之间的中心距应不小于其发热部直径的4倍。6、硅碳棒冷端部与主电路用铝辫或铝箔连接。冷端部的夹具要卡紧。7、新建炉或长时间不使用的电炉在使用前要进行烘炉,应采用旧棒或其它热源烘炉。8、硅碳棒存放时要防止受潮。因为受潮后容易使冷端部铝层分解、脱落,导致冷端部与卡具接触电阻增大,而且硅碳棒通电后容易崩裂。9、硅碳棒在使用前要进行配阻。先阻值相同或接近的硅碳棒连接在一起。10、为硅碳棒配备调压装置。送电初期电压为其正常工作电压的一半,稳定一段时间以后再逐渐提高电压。这样硅碳棒就不会因为急剧升温而导致断裂。11、硅碳棒连续使用寿命长;间断使用寿命短。12、硅碳棒使用时要选择合理的表面负荷密度和使用温度。使用温度应不大于1400℃;在有害气体环境中使用更要防止硅碳棒与有害气体发生化学反应。13、更换硅碳棒时,应选用和炉内运行的硅碳棒的电阻相接近的硅碳棒,必要时更换整炉硅碳棒,这样有利于提高硅碳棒的使用寿命,卸不来的硅碳棒,如果电阻值合适,还可以在电炉运行中后期换上使用。14、防止硅碳棒溅上熔融金属,溅上熔融金属容易导致断棒。15、防止碱、碱土金属和碱性氧化物腐蚀硅碳棒。16、经常观察电流表、电压表及温度表的读数是否正常;冷端部夹具是否松运、氧化发黑或打火;硅碳棒是否断裂;硅碳棒发热部红热是否均匀。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制