当前位置: 仪器信息网 > 行业主题 > >

磁热疗仪

仪器信息网磁热疗仪专题为您提供2024年最新磁热疗仪价格报价、厂家品牌的相关信息, 包括磁热疗仪参数、型号等,不管是国产,还是进口品牌的磁热疗仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁热疗仪相关的耗材配件、试剂标物,还有磁热疗仪相关的最新资讯、资料,以及磁热疗仪相关的解决方案。

磁热疗仪相关的论坛

  • 用磁疗仪“吸出”病菌

    美国研究人员开发出一种新型磁疗装置,可把病菌从血液中吸出来。这有望成为治疗败血症的新方法。据英国《每日邮报》报道,实验显示,数小时的治疗就能除去患者血液中80%的病菌。目前美国每年约有3万人死于败血症。病菌通过皮肤上的伤口或者被感染的耳朵、鼻腔、尿路进入人体后,会以惊人的速度引发败血症。临床表现为发热、严重毒血症状、皮疹瘀点、肝脾肿大和白细胞急剧增加等。一些细菌入侵小血管壁导致血管瘘,器官的血液循环被迫中断。面对这种致命情况,医生通常会用大剂量抗生素对抗细菌。

  • 塑料材料热老化箱怎么选择?

    目前需要采购一台热老化箱,用来测试塑料制品的热老化性能。但查询到的标准对热老化箱的要求不一样。电线电缆标准中对热老化箱的要求是“热老化箱内空气每小时更换次数不小于8次,不大于20次,老化箱内不得采用鼓风机。“但塑料热老化试验方法标准中对热老化箱的要求是”方法B 强制通风式热老化试验箱,采用50次/h换气率“。两个标准很矛盾,该采用哪个标准为好?

  • 热封(塑料软包装)过程的讲述

    热封过程是利用外界条件(电加热、高频加热、电磁感应加热、超声波等)使塑料薄膜的封口部分变成熔融的流动状态,并借助热封时外界的压力,使两薄膜彼此融合为一体,冷却后保持一定的强度。

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 纳米材料在隔热涂料中的应用

    当前,节能和新能源探索已经成为世界的重要课题。建筑能耗在人类整个能源消耗中所占的比例一般在30%~40%,它们绝大多数是采暖和空调造成的能耗,而通过门窗散失的热量约占整个建筑采暖及空调耗能的50%。因此,提高门窗的保温隔热性能是降低建筑能耗的有效途径。为节约能源,人们发明了多种节能方法,都是为了阻隔太阳光中多余的热辐射而达到降温的目的。但是有些产品有的隔热效果不佳,有的价格过于昂贵等多种原因在应用推广上有些困难。纳米材料由于具有宏观尺寸物体所没有的性质,能为新型涂料的研制带来意想不到的效果而成为研究的热点。透明隔热宝(UG-C06)是由优锆纳米新研发出的一种水性陶瓷类隔热保温涂料,采用最新复合陶瓷隔热技术和纳米二氧化钛材料,设计用来反射光能和辐射热能。在炎热的季节降低表面温度和内部温度;在寒冷的季节更好地保持室内温度;在使用空调的环境中降低能源消耗。不仅如此,透明隔热宝(UG-C06)独特的环保成分――液体纳米ATO,纳米二氧化钛更能消除周围环境中的异味,解甲醛和其他有害物质。透明隔热宝(UG-C06)中的4种陶瓷微珠能够产生魔术般的功效!第一种陶瓷微珠能够有效地阻隔紫外线达99%;第二种陶瓷微珠能反射90%以上的可见光;第三种陶瓷能够阻隔红外线达92.5%,而神奇的第4种陶瓷分子能够防止超量的水蒸汽进入,而允许正常数量的水分子的通过。由此极大增加整个建筑表面的防晒绝热能力。该产品采用先进的生产工艺将纳米超活性ATO ,TIO2做成适合在玻璃,瓷砖,金属,水泥、PE,PET,PC,PP,PVC等表面涂覆的纳米涂层材料。其透明性的超活性ATO,起到吸收红外线和阻隔紫外线功能。超活性ATO化学性稳定的对热,湿度等外部环境引起的物性变化小,所以能保持半永久性导电性质,能有效地阻止红外辐射和紫外线辐射,阻隔红外效果达95%,阻隔紫外效果达90%,该涂层材料与基材有极好的相容性,铺展,流平性能好,附着力强,持久不脱落。纳米隔热涂料(优锆纳米)不仅能够兼顾隔热与透光性,而且具有机械性能优异、耐老化、耐腐蚀等优点。纳米透明隔热涂料的开发应用能够很好地解决对采光玻璃既透明又隔热节能的技术要求,加上其自身的结构特点保证了该涂料的使用寿命长,因而纳米透明隔热涂料在普通玻璃、有机玻璃等透明载体表面的开发应用,不但环保节能,而且经济实用。在当今社会能源危机和环保压力日益增大的情况下,隔热涂料将具有很好的应用前景。

  • 获得软包装材料最佳的热封性能介绍

    封口强度对包装材料来讲是一个重要的性能指标,因为任何一种软包装材料都要做成包装袋来包装各种商品,包装商品都要通过热封或粘接来封口,达到包装目的。而封口要有一定的强度才能够承受一定重量内装物的压力,保证商品在流通过程中不开裂。 热封是利用外界条件(电加热、超声波等)使塑料薄膜的封口部位变成粘流状态,借助刀具压力使薄膜融合为一体,冷却后能保持一定强度。 热封工艺的三大因素是热封温度、压力、时间,其中主要的是温度。根据材料的不同和料袋运动状态的不同需要不同的热封因素,三者必须协调配合才能获得好的热封质量。因此在实际大规模生产之前,要进行大量的实验来确定恰当的热封参数。 二、获得软包装材料热封性能的途径 首先选用热封试验仪,传统的热封试验仪,温度、压力、时间分别由单独的元器件来控制,且精度、性能较差,不但起不到指导生产的作用,甚至会造成重大的质量事故。 兰德梅克FS-300热封试验仪采用"热封温度、压力、时间"单片机集中数字控制,且在技术上做如下处理: 1.压力:采用高精度压力控制元器件,双刚性连接同步回路设计,不但提高了出力效率,而且保证了热封头的重合精度。 2.时间:采用磁型开关控制,就是当上封头在慢速下降到磁型开关时,磁行开关会使上封头全速下压试样,同时开始计时,当达到设定时间后,上封头会全速回 位。该设备把1s分成65000份,可以控制到1/65000,所以时间控制是非常准确的。热封时间一般就是几秒钟,对时间准确的控制是体现设备精确性的 一个重要方面。 3.温度:数字PID温度控制系统,使用比例积分微分,实现更精确、更稳定的智能温度控制,误差在±1℃,采用铝制的加热元件,使加热非常均匀,从而保证封口表面的温度一致(即均温设计),通过以上处理,确保温度、压力、时间达到精确的控制。 试样热封后,进行热封强度的实验,参照标准ZBY2804。 1.实验环境:温度23±2℃,相对湿度为常湿状态。 2.试验步骤(以兰光(XLW-G)PC型智能电子拉力试验机为例: 试样宽为:15±0.1mm,展开长度为100±1mm:②将经状态调节后的试样,以封口部位为中心线,展开呈180°,把试样的两端分别夹在试验机的两 个夹具上,应使试样纵轴与上下夹具中心的连线相重合,并要松紧适宜,以防试样滑脱和断裂在夹具内;③调整夹具间的距离,设置试验速度为300± 20mm/min,启动试验,设备自动进行力值判断,当Fn+1Fn寄存Fn+1值,当Fn+1Fn×70%设备自动判断停机,排除人为 干扰;④参照国家标准实验方法试验,试验过程中,当试样断裂在夹具内,该试样作废,另取试样补做。此种情况说明封口强度大于塑料薄膜拉断力时,应考虑生产 工艺。 3.试验结果讨论。根据力值测试来调整热封试验仪温度、压力、时间的参数,经验如下: 热封树脂厚度:封口强度与 树脂厚度基本上成直线正比上升;②热封温度:温度太低,薄膜不能全融合;温度太高,薄膜会变形,严重的会烫伤。因此必须随各种薄膜的不同来加以调节;③热 封时间:在一定压力下温度越高,时间相应地越短;④热封压力:施以压力可以增加封接处的强度,但压力过大会使接缝处薄膜强度削弱;⑤薄膜材质的选择以及表 面处理的不同都对封口强度有影响;⑥封口强度参考如下表。 总之,通过以上途径获得软包装材料最恰当的热封参数,以达到最佳的生产工艺。

  • GE医疗收购Xcellerex

    通用电气(GE)旗下的医疗保健业务部门GE医疗集团(GE Healthcare)宣布,该公司已达成收购Xcellerex, Inc.的协议,Xcellerex是一家为快速增长的生物制药行业提供创新生产技术的供应商。对Xcellerex的收购将使GE医疗集团进一步扩大其为生物制药生产提供产品和服务的能力,如重组蛋白、抗体和疫苗的生产。双方公司间的强大战略契合与在产品开发和营销方面的扩大能力相结合,将为客户提供显著效益。此次收购的有关财务条款尚未公布。Xcellerex开发并生产围绕一次性使用组分的统包生物制药系统和生产规模的生物反应器。其专有产品具有显著优势,如较快地安装、较低的资金投入,此外,还可降低交叉污染的风险,与传统生产技术相比,显著提高了灵活性。Xcellerex具有生产规模的一次性使用生物反应器系统与GE医疗集团的产品及一系列用于细胞培养的培养基相辅相成。Xcellerex的FlexFactory?是一个围绕一次性使用技术的完全定制设计的模块化生产平台,所采用的一次性使用技术可帮助客户更加快速地配置生产能力。双方公司所拥有专长和能力的结合,将使GE医疗集团能够向生物制药行业提供更为宽广范围的增值综合产品和服务。GE医疗生命科学、生物技术副总裁兼首席技术官Nigel Darby博士评论道:“GE医疗集团已为生物制药生产行业建立了一整套世界一流的工具、技术和服务,而且,新加入我们产品组合的Xcellerex创新产品,将能够极大地促进我们向客户提供的产品及服务。GE和Xcellerex拥有共同的愿景,整合式作业可帮助客户优化他们生产过程中的每一个阶段,可望提高生产的灵活性,而且在缩短产品进入市场时间的同时,还具有提供更高成品产率的潜能。随着全球对医疗费用的持续上涨及可承受医疗需求的关注,这些都成为行业的关键问题。”Xcellerex总裁兼首席执行官Guy Broadbent表达了对此次收购的赞同:“我们非常高兴成为GE医疗集团生命科学业务的一部分。Xcellerex工作人员、技术和服务与GE医疗集团的资源和全球影响力相结合,无疑将使我们发展业务的规划向前推进。Xcellerex产品与GE医疗集团在上游和下游生物加工领域互补能力的结合,将有助于为我们的客户带来更大的利益。我们整个Xcellerex团队都期待着加入GE。”预期收购将于2012年第二季度完成,但尚待惯例成交条件的达成。

  • 热场场流仪在高分子材料分析测试方面的应用介绍

    热场场流仪,简称TF3,是利用在空心的分离通道内的垂直方向上施加由温度差引起的热扩散力,来实现对有机相溶剂体系的高分子材料的分子量分布、含量、共混物的分离进行分析测试。热场TF3的主要应用,就是测试分子量分布、聚合物共混物的分离与分析、橡胶样品中的凝胶含量测试等等,以及聚合物质的纳米材料的尺寸分布的分析测试。由于热场具有两个分离原理:1 流体力学体积分离;2 化学性质,因此热场可以分离分析聚合物共混物,这在高分子材料的科研当中具有广阔的应用前景。此外,热场场流仪的一个独特应用,是分析超大分子量淀粉的分子量分布。此方法以DMSO(N,N -二甲基亚砜)为溶剂、流动相,在较高温度下操作。热场TF3,是利用分离通道上下壁的温度差:上壁为热壁、下壁为冷壁,来实现对样品的分离与分析的。热扩散性,是在热场中是样品分离的原动力,影响热扩散性的因素,既包括流体力学体积/分子量,也包括样品自身的化学性质,即:不同种类的高分子材料,其热扩散性也不同。就是利用这个原理,热场TF3实现了对聚合物共混物的分离与分析。橡胶中的凝胶含量分析,目前已被全球各大橡胶制品企业、橡胶轮胎企业广泛接受,世界知名的轮胎厂,基本都购买、使用热场TF3来分析橡胶原胶、混炼橡胶的凝胶含量测试,TF3享有很高知名度。与凝胶渗透色谱仪GPC相比,热场除具有上述优势外,还具有分析速度快、溶剂消耗少——多数应用方法,流速都是0.2--0.5ml/min——等许多优点。

  • 塑料软包装热封条件的检测

    [em62] 塑料软包装包装复合膜、袋,在生产过程中通常是采用热封的方式将要包装的产品密封到一个密闭的环境中。为了保证商品在包装、运输、贮存和消费过程中能承受一定的外力,保证商品不开裂、泄漏、达到保护商品的目的,要求封合部位有足够的强度和密封性能。热封强度反映了复合包装材料的各种综合物理机械性能,是包装材料的最重要指标之一。一)热封条件的检测热封过程是利用外界条件(电加热、高频加热、电磁感应加热、超声波等)使塑料薄膜的封口部分变成熔融的流动状态,并借助热封时外界的压力,使两薄膜彼此融合为一体,冷却后保持一定的强度。1、检测设备进行热封强度检验时,首先是用热封试验机制作热封试样,然后把裁取的试样在电子拉力机上检测其热封强度。热封试验机主要有气压式热封试验机和凸轮式热封试验机两种。气压式热封试验机能控制调节热封温度、热封时间、热封压力等参数。气压式热封试验机的工作原理是,将压缩空气经调压阀,调节成设定压力,当测试器启动后,气缸在调压后的压缩空气的推动下带着安装有控温装置的热封刀运动,当运动到与待热封材料刚好接触时,触发行程开关,热封时间继电器开始计时工作,时间继电器计时到设定时间时,发出信号,使电磁阀工作,气缸换向,热封刀离开,从而完成了热封过程。(注意,气缸活塞面积应与衰减后的热封刀面积相当)。凸轮式热封试验机是利用机械凸轮结构来使上热封刀进行运动。其热封时间是靠控制凸轮的转速来进行的,调节范围一般较窄,只有0.2~5s。其热封压力一般是通过弹簧调节或砝码调节,精度较差调节也麻烦,目前市场比较少见。电子拉力机使用实验室通用的产品即可,一般精度在0.1牛顿的以下即可,如北京兰德梅克公司的LDX-200型电子拉力机(精度在0.002牛顿)。2、检测过程以市场常见的的FS-300型热封试验机和LDX-200型电子拉力机为例,热封强度检测过程如下:首先调节FS-300热封试验机达到需要的热封条件,即设置需要的温度、压力、时间(温度需稳定30分钟左右)。取要测的试样薄膜,裁取合适的宽度(因为FS-300型热封试验机所限,应小于150mm),对齐后折叠置于下热封刀处,踏下启动开关,热封刀下压。待达到设定时间后热封刀自动升起时取出。用标准取样刀裁取宽度(15±0.1)mm,展开长度(100±l)mm的标准试样(可用低倍放大镜检查缺口,舍去边缘有缺陷的试样),按GB 2918中规定的标准环境正常偏差范围进行状态调节,时间不少于4h。设定LDX-200电子拉力机的速度为200mm/min,夹具间净距离为50mm。裁取热封好的试样,宽度(15±0.1)mm,展开长度(100±l)mm。以热封部位为中心,打开呈180°,把试样的两端夹紧在LDX-200电子拉力机的上下两个夹具上,试样轴线应与上下夹具中心线相重合,并要求松紧适宜,以防止试验前试样滑脱或断裂在夹具内。开始拉伸试验。观察并打印屏幕显示数据和曲线。 若试样断在夹具内,则此试样作废,另取试样补做。试验结果以10个试样的算术平均值作为该部位的热封强度,单位以N/15 mm表示,取二位有效数字。3、注意事项在进行热封强度检测时应注意如下几点。①由于材料的各向异性,纵向与横向的热封强度可能会有差异。②不同的材料其热封温度不同,在实验中应根据材料进行调节,选取热封强度较高的温度作为制样温度。③对于已成袋的复合袋,其热封强度的检测可以按QB/T 2358—1998《塑料薄膜包装袋热合强度试验方法》的规定进行。④若拉断不是在热封处,应注明材料拉断,其所测得的强度为复合材料的拉断力而不是热封强度。二)热封条件对制袋时热封工艺的参考热封工艺分热封温度、热封压力、热封时间、热封次数等。1、热封温度热封工艺有三大要素即热封温度、热封压力和热封时间。其中热封温度是主要的因素,对热封强度等质量指标的影响最为直接。各种热封基材的熔融温度的高低,直接决定塑料复合包装材料的最低热封温度和热封温度适应范围。因此不同的热封基材有着不同的温度-热封强度关系曲线。达到起封温度后,热封强度随热封温度的升高而急剧升高。当达到一定温度后,热封强度达到最大极限。同时热封口的脆性也随着热封温度的升高而逐步提高。 对于塑料复合包装来说,由于热封压力、制袋速度以及复合基材的厚度(影响热传导速度)等多方面影响,实际采用的热封温度往往要高于热封材料的熔融温度。热封的压力越小,要求热封温度越高;机速越快,热封层和复合膜的厚度越厚,要求的热封温度也越高。采用两边加热方式时,可相应缩短加热的时间或者降低热封的温度。 热封温度若低于热封材料的软化点,则无论怎样加大压力或延长热封时间,均不可能使热封层真正封合。但是,若热封温度过高,又极易损伤热封边缘部位,使封边处的热封材料熔融挤出,产生脆断现象,大大降低封口的热封强度和袋子的耐冲击性能。热封温度适应范围较宽的材料,能够宽容较大的温度变化。温度过高常会引起以下问题:1)、材质扭曲。2)、热封部位脱层。3)、热封部位变脆。4)、热封刀过度膨胀而引起压力变化。5)、热粘强度降低。6)、材质摩擦力增加。7)、热封刀因树脂的熔解附着而变粘。8)、浪费能源。 2、热封压力 要达到理想的热封强度,必须辅以一定的压力,而且随着复合膜总厚度的增加或热封宽度的增加所需要的压力也相应提高。若热封压力不足,两层薄膜之间难以达到真正地熔合,可导致局部脱封,或者难以赶尽夹在两个热封层中间的气泡,造成虚封、气泡或不平整;当然,热封压力也不是越大越好,应以不损伤热封边为宜,因为在较高的热封温度时,封边处的热封材料已处于半熔融状态,太大的压力易挤走部分热封层树脂、热封部位迅速变薄,使热封边缘形成半切断状态,造成热封边发脆、热封强度降低甚至脆断。在调整压力前,务必注意的是热封刀上下是否校正良好,若校正不良,无论如何调整压力也是枉然。 3、热封时间 热封时间也是影响热封口强度和外观的一个关键因素。相同的热封温度和压力,热封时间长,则使热封层熔合更充分,结合更牢固。但热封时间过长,容易造成热封部位起皱、影响外观。同时热封时间过长,还会造成塑料大分子断裂使封口界面密封性能劣化。 一般说来热封时间主要由制袋机的速度决定的。旧式的制袋机,调节热封时间只有靠改变制袋机的速度,要延长热封时间,就必须牺牲生产效率。近年来,国内外的制袋机生产厂家使用独立的变频电机技术控制热封刀下降和送料,使制袋机能够在不改变制袋速度的情况下独立调节热封时间或在控制热封时间不变的情况下独立调节制袋速度,大大方便了制袋机的操作和质量控制。

  • 【求助】二次热解析仪器解析率怎么做?

    [size=4] 请教用过二次热解析的前辈,你们是怎么做解析率的?[/size][size=4]我这用的是Dani二次热解析仪器,我的解析率是把标样打到采样管里,然后在热解析上解析进[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]。然后再再在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]进样口打一针同样量的标样。用热解析做出来的峰面积除以直接进样的峰面积得到解析率。不知道我做的对不对,请各位老师指导一下。[/size][size=4][/size][size=4][/size][size=4]做的是苯系物的标样,tenax的填料管 安捷伦的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url] FID检测器 [/size]

  • 集热式是什么意思?集热式磁力搅拌器有什么特点?

    集热式恒温加热磁力搅拌器采用集热式加热法,被加热容器完全处于强烈的热辐射之中。 [img]https://yixiaoer-img.oss-cn-shanghai.aliyuncs.com/20230224/c36618ce-89bc-4ea7-a680-2beb3618da64.jpg[/img]集热锅采用优质不锈钢冲压而成,与特制加热管和耐高温密封组合。电机采用直流有刷电机,转速稳定可靠,噪音低。可加水(水浴)、加油(油浴),加热温度波动小,可使反应物受热均匀。是各大中院校、环保、卫生、防疫、石油、化工、医疗等单位实验人员理想的必备工具。产品特点1、PID 控温技术,LED 数码管显示设定温度及当前温度,内容清晰直观;2、直流电机,无极调速、低噪音、运行平稳、使用寿命长;3、外接 PT100 温度传感器,耐高温、温度测量准确可靠;4、采用集热式加热法,加热速度快、温度均匀、效率高;5、选用强磁力磁铁,确保足够吸力、配合搅拌子使得搅拌效果显著;6、锅体采用加厚 304 不锈钢冲压而成,耐高温、耐腐蚀、结构坚固耐用;7、加热部分与电气箱之间采用隔热板隔离,高温不影响仪器内部的电器性能[img]https://yixiaoer-img.oss-cn-shanghai.aliyuncs.com/20230224/c8cb5c86-8447-4cdd-aee2-eaa1173f4fd4.jpg[/img]【力辰】品牌,深耕实验室通用仪器设备领域12载。自主研发,生产,销售,服务;产品齐全,专业,超值,高效。关注我,让仪器带你换个角度看世界

  • 瑞德仪表(Redder)在食品与饮料行业的应用

    不断变化的人口数量、顾客新的口味需求、对高质量产品的期望、不断完善的法规以及想要获取具有更多利润空间价格的压力,食品和饮料行业面临着诸多挑战。大零售商的要求不断提高,对于食品安全的关注永远存在,因此市场需要更快更灵活的补给线,产品的跟踪调查也变得越来越重要。在这种环境下,具备竞争优势是头等大事—即在优化成本的同时保持提供灵活的产品。采用合适的自动化技术,公司就可以将竞争和压力转化为自己的优势。在食品和饮料生产中,核心的问题是测量控制。这对于获取价值、提高质量、增强灵活性、增加利润和保持可靠性是非常关键的。无论这一技术是否可打破瓶颈、提高质量或提供失败预警,我们在过程控制方面所具备的知识和应用产品可以帮助客户走上成功之路。瑞德仪表提供世界一流的技术,用来迎接食品和饮料行业面临的各种挑战。瑞德仪表有能力满足过程仪表和分析的全部需求。遍布全球的服务,广泛的产品范围,使Redder可以满足您发展历程中的各种需求。当您选择与Redder同行时,您就已踏上通往成功之路。当您选择与Redder同行时,您就具备了成功的要素:?可以提供完善、协调的产品组合,以及针对价值链中每一个过程的解决方案?整个公司无缝集成的单一理念,使您可以从容面对生产、质量和供应的挑战?元件种类少—简化备件数量并确保高效的维护支持?世界一流的品牌,确保提供一流的自动化技术?资深的专业人士,可根据您的运营条件提供恰当的解决方案[img=,747,618]https://pic1.zhimg.com/80/v2-805b949fa03a52b6016d8a00588c30c0_720w.webp[/img]行业应用瑞德电磁流量计REDU3160E卫生型电磁流量计是一种专门应用于食品、制药、饮料等行业,作为计量、配料、控制成品灌装等用途的专用流量计量仪表。该仪表本体采用不锈钢(304或316L)制成,电极和衬里材质符合卫生级标准。整机结构突破传统工艺,采用先进结构优化设计,大大提高了仪表的精确度和重复性。该系列卫生电磁流量计已经达到同类型产品国际水准,是卫生行业理想的测控仪表。REDU3160E卫生型电磁流量计采用了不锈钢外壳及不锈钢卡箍连接,方便电磁流量计的快速拆卸、清洗,使电磁流量计在使用过程中介质不易被污染,且能有效防止测量流体残余物在测量管中的堆积,可广泛应用于矿泉水、酱油、果酱、啤酒、果汁、米酒、牛奶等食品的生产制造过程及卫生、化工等领域。瑞德质量流量计REDM4020-U卫生型质量流量计在传感器内部有两根平行的U型振管,中部装有驱动线圈,两端装有拾振线圈,流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。由于其优异的性能,使其测量准确度高,对流体状态要求低,压力损失小。多种规格的仪表都可以直接获得被测量液体或浆液的质量流量、体积流量、密度、温度,无需人工计算或估算。瑞德雷达液位计REDR7125雷达液位计采用整体PTFE材料的齐平式喇叭天线,具有出色的耐腐蚀优势,用于强腐蚀性液体的液位测量。REDR7125传感器通过了ASMEBPE,USPVI级,3-A和EHEDG等认证,也适用于食品和生命科学行业中卫生要求严格的测量场合。用于液体、浆料和泥浆的连续性、非接触式的物位测量。测量不受介质变化、温度变化、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]介质或蒸汽的影响。[img=,520,470]https://pic1.zhimg.com/80/v2-764c27750bb82322a50054d60da637cc_720w.webp[/img]Redder电磁流量计瑞德液位传感器模拟量连续液位传感器测量原理基于电容技术,探杆采用空心铝管芯体外套PTFE或PEEK、PFA等绝缘材料,探杆的金属内芯为一极,导电液体为另一极,随着液位的变化,探杆与液体之间电容值发生变化,传感器放大器根据电容公式的精确算法得出液体高度与电容的关系。瑞德音叉液位开关REDWH31紧凑型音叉液位开关是专用于液位测量的经济型限位控制开关。产品整体结构小巧轻便,产品总长度160.5mm,最大直径31.5mm,其中音叉长度仅有38mm。该产品不仅适用于容器、储罐、槽罐内有泡沫、气泡、粘稠液体以及有振动干扰的液位测量,更适用于小型容器和罐体周围空间狭小的场合。同样基于检测叉体浸泡于介质时振动频率变化的设计原理,产品可测量介质密度低至0.7g/cm3。[img=,599,919]https://pic1.zhimg.com/80/v2-172afbb4d7e2398850614cf2369df96c_720w.webp[/img]Redder音叉开关瑞德压力变送器REDP6013是一款精巧型的压力变送器,配备齐平式膜片,用于食品、饮料和制药行业中的压力或液位的应用。非常适用于齐平式及无菌安装的要求。该款通用的压力和液位变送器,即使经受定期的SIP/CIP清洁,也能长期稳定地提供重复性佳的测量信号,同时还能确保对工艺介质和清洁溶剂的耐化学腐蚀性。REDP6013采用模块化的设计,允许将各种全焊接的过程连接、各种膜盒填充液和电气连接进行组合,以适应几乎任何无菌要求。在选择散热片选项后,能长期耐受过程温度最高可达300°C/572°F。

  • 【在线分析仪器知识普及】在线分析仪…顺磁氧篇…概论与热磁氧(收集)

    顺带说明一下:本资料无个人发明,都是书上和个人工作中的一点体会,用于分析工的个人技能培训用的。顺磁式氧分析仪第一节:简述顺磁式氧分析器:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。

  • 什么是 热重分析仪 TG或TGA热重分析仪,热重分析原理的应用

    什么是 热重分析仪 TG或TGA热重分析仪热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。TGA在研发和质量控制方面都是比较常用的检测手段。热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)的定义,热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。这里值得一提的是,定义为质量的变化而不是重量变化是基于在磁场作用下,强磁性材料当达到居里点时,虽然无质量变化,却有表观失重。而热重分析则指观测试样在受热过程中实质上的质量变化。热重分析仪热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。TGA 可以得到样品的热变化所产生的热物性方面的信息。热重分析通常可分为两类:动态法和静态法。⒈静态法:包括等压质量变化测定和等温质量变化测定。等压质量变化测定是指在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。等温质量变化测定是指在恒温条件下测量物质质量与温度关系的一种方法。这种方法准确度高,费时。热重分析仪结构2、动态法:就是我们常说的热重分析和微商热重分析。微商热重分析又称导数热重分析(Derivative Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。以物质的质量变化速率(dm/dt) 对温度T(或时间t)作图,即得DTG曲线。热重分析法可以研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;研究物质的热稳定性、分解过程、脱水、解离、氧化、还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学等化学现象。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。热重法已在下述诸方面得到应用:⑴无机物、有机物及聚合物的热分解: ⑵金属在高温下受各种气体的腐蚀过程;⑶固态反应;⑷矿物的煅烧和冶炼;⑸液体的蒸馏和汽化;⑹煤、石油和木材的热解过程;⑺含湿量、挥发物及灰分含量的测定;⑻升华过程;⑼脱水和吸湿; ⑽爆炸材料的研究;⑾反应动力学的研究;⑿发现新化合物;⒀吸附和解吸;⒁催化活度的测定;⒂表面积的测定;⒃氧化稳定性和还原稳定性的研究;⒄反应机制的研究。18. 还可以作为测量固体表面酸碱度的表征手段。http://www.faruiyiqi.com/upfile/article/20141018156682889985.jpg热重分析仪FR-TGA-101热重分析仪热重分析法(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。测量与研究材料的如下特性:热稳定性、分解过程、吸附与解吸、氧化与还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学。

  • 【转帖】染料行业如何应对欧盟REACH法规

    在REACH法规中,染料类产品属于“物质”或“配制品”的范畴。染料按性质及应用方法可以分为:直接染料、不溶性偶氮染料、活性染料、还原染料、可溶性还原染料等不同类型。染料类产品在REACH法规中的责任分别有(预)注册、供应链上信息传递、授权、通报以及限制。  其应对欧盟REACH法规的一般步骤如下:  1.罗列企业对欧盟贸易产品;  2.根据REACH法规注册指南和物质的命名和识别指南(详见www.reach.gov.cn),计算企业出口欧盟物质的吨位;(对其中比较难以鉴别的产品,可以寻求专业服务商的帮助)  3.列出所有出口欧盟大于等于1吨/年的物质清单;  4.根据REACH法规适用范围,列出所有需要履行REACH义务的物质清单;  5.收集需履行REACH法规义务物质的信息(物质的识别、结构式等);  6.寻找联系专业可靠的“唯一代理”,进行物质的REACH(预)注册。  由于染料产品自身的特殊性,染料类企业在应对欧盟REACH法规过程中要注意下列事宜:  首先是物质的识别比较复杂。与普通的化工产品相比,染料产品的组成比较复杂,很多的染料类产品的成分都不只一种。染料的大部分种属名(如:C.I. disperse yellow 163)对应的是有CAS但无EC。而染料的索引号(C.I. Constitution Number)对应的都有确定的物质结构。对REACH法规而言,染料企业需要做的是关注染料产品的物质组成,即染料组分的结构式、纯度和助剂使用情况。因为在REACH法规中,有助剂存在的染料属于“配制品”的范畴,需要为其中的主要组分和助剂分别进行REACH应对。中国检验检疫REACH解决中心专家特别提醒的是,如果在预注册时,企业没有以正确物质识别提交,可能将导致无法享受分阶段物质的注册缓冲期。  其次,关于限制的义务。在REACH法规附件17中,对经过还原后会释放出法规指定的20多种芳香胺类的偶氮染料在纺织品和皮革制品中的应用进行了限制,此限制涉及的偶氮染料有100多个品种。虽然,此限制条款需要在2009年6月1日正式实施,但现在仍然执行的欧盟76/769/EEC指令对此类物质已经在有效监管。因此,染料类企业需要加强自己的染料产品品质的管理。  相关提示  我国是世界最大的染料出口国,出口量超过全球的25%。REACH法规的出台涉及欧盟市场上约3万种化学品和300万~500万种下游产品,其中染料产品及下游纺织印染产品是其涉及的重要领域。对于染料生产企业来说,由于产品种类繁多,前期分析复杂等原因,中国检验检疫REACH解决中心专家强烈建议,染料类企业需要寻求专业、可靠、中立的服务商来进行REACH法规的应对工作,尤其是前期的物质识别工作。中国检验检疫REACH解决中心专家同时提醒染料类企业,必须要牢牢抓住12月1日之前的预注册机遇期,做好REACH法规的应对工作。  欧盟REACH法规最新动态  2008年7月24日,欧洲化学品署(ECHA)发布了REACH法规化学品安全报告的指南文件和模板,以供产业部门使用(指南电子版可从中国检验检疫REACH解决中心网站http://www.reach.gov.cn上下载)。欧盟REACH法规自2008年6月1日启动(预)注册程序以来,截至7月28日,已有32191个物质成功提交了预注册。  中国检验检疫REACH解决中心

  • 热重差热-质谱联用仪

    热重差热-质谱联用仪

    [align=left]热重差热-质谱联用仪,该仪器具有同步性强、灵敏度高、准确性好、分析速度快等优势,可对样品受热后释放的气体产物进行分析,从而解析出样品结构。该仪器主要应用于聚合物材料、药物、催化剂、阻燃剂、半导体材料、陶瓷材料、电池材料的热分析和分解气体产物分析[/align][align=left][/align]

  • 油漆涂料词汇

    AAccelerate 促进剂Accelerator硬化剂,接触剂Acetic acid 醋酸Acetone 丙酮Achromatic color 无彩色Acid stain 丙烯酸树脂Acrylic丙烯酸Acrylics acid resin 丙烯酸(类)树脂Acrylonitrile butadiene styrene resin ABS树脂,丙烯腈-丁二烯-苯乙烯树脂Active agent 活性剂Additive 添加剂Additive mixture 加色混合Adhesive 胶粘剂Adhesive solvent 胶(料)溶剂Adjacent color 类似色Advancing color 进出色Aerosol spraying 简易喷涂After image 残象Air drying 常温干燥Airless spraying 无气喷涂Alcohol stain 酒精着色剂Alert color警戒色Alkyd resin 醇酸树脂Alligatoring 漆膜龟裂Amount of spread 涂胶量Anticorrosive paint 防锈涂料Antifouling paint 防污涂料Antique finish 古式涂料Automatic spraying 自动喷涂BBaking finish 烤漆喷涂Base boat 底漆Blistering 小泡Blushing 白化Body varnish 磨光漆Brilliant 鲜艳的Brushing 刷涂Brushing mark/streak 刷痕Bubbling 气泡Button lac 精致虫胶CCafé 咖啡色Carbamide resin adhesive 尿素树脂胶Catalyst 催化剂,触媒,接触剂Chalking 粉化Cherry 樱桃色Chipping 剥落Chromatic color 有彩色Chromaticity 色度Chromaticity coordinates 色度坐标Chromaticity diagram色度圆Clssing 补漆Clear coating 透明涂层Clear lacquer 透明喷漆Clear paint 透明涂料Coarse particle 粗粒Coating 涂料Cobwebbing 裂痕Cocos 可可色Cold water paint 水性涂料Color blindness 色盲Color conditioning 色彩调节Color harmony 色彩调和Color in oil 片种特(调色用)Color matching 调色Color number 色号(色之编号或代号)Color paint 有色涂料Color reaction 显色反应Color reproduction 色重现Color tolerance 色容许差Compatibility 相容性Complimentary color 补色Consistency 稠厚度Contractive color 收缩色Col color 寒色,冷色Cooling agent 冷却剂Covering power 覆盖力Cracking 龟裂,裂纹Cresol resin adhesive 甲酚树脂胶Crimping 皱纹Cure 硬化Curing agent 固化剂Curing temperature 固化温度DDark 暗Deep 深Degumming 脱胶Dewaxed shellac 胶蜡虫胶Diluent 稀释剂,冲淡剂Dilution ratio 稀释比例Dingy 浊色Dipping 浸渍涂层Dipping treatment 变色Discoloring 变色Discord 不调和色Drier 干燥剂Dry rubbing 干磨Drying time 干燥时间Dulling 失光Dusting 粉化EEgg-shell 埴孔亚光,显孔亚光electrostatic spraying 静电涂装emulsion adhesive 乳化胶emulsion paint 乳化涂料enamel 色漆,磁漆end-coating 端面涂层end-gluing 端面胶合epoxy finish环氧效果epoxy resin glue环氧树脂胶ethyl cellulose lacquer乙基纤维素喷漆FFading退色Filler 腻子,埴料,填充剂Finish code 涂料编号Finshing 涂饰Flaking 剥落Flat paint 消光涂料Flatness 消光Floor paint 地板涂料Foam glue 泡沫胶GGelatin 明胶,凝胶Glare 眩目Glue 胶粘剂,胶,胶料Glue and filler bond 动物胶及填料胶结Glue mixer 调胶机Glue spreader 涂胶机Gum 树胶,胶树HHardener 硬化剂Hide 皮胶High solid lacquer 高固体分漆Honey color 蜂蜜色IIlluminant color 光源色JJelly strength 胶质强度Joint strength 胶接强度LLac 虫胶Lac varnish 光漆Lacquer 漆Latex 乳胶Latex paint 合成树脂乳化型涂料Leveling agent 均化剂Light 光亮的Liquid glue 液态胶Long oil varnish 长性清漆Love formaldehyde 低甲醛MMake up paint 调和漆Medium oil varnish 中油度清漆Melamine resin adhesive 三聚氯胺树脂胶,蜜胺树脂胶Melamine resin sheet 三聚氯胺树脂(片)Methyl alcohol 甲醛Multi-color 多彩漆NNatural clear lacquer 清漆N.C lacquer 硝化棉喷漆N.C lacquer enamel 硝色棉色漆N.C lacquer sealer硝化棉底涂料N.C lacquer surfacer 梢化棉中涂整面涂料Nitro-cellulose lacquer 硝化纤维漆,硝基榉Nitro-lacquer 硝基漆Nitrocellulose lacquer 硝化纤维(喷)漆Non toxix finishes无毒喷漆Novolac (线型)酚醛清漆OOff- color 变色的,退色的,不标准的颜色Oil paint 油性漆Oil putty 油性腻子Oil solvent 油溶剂Oil stain 油性着色剂Oil staining 油着色Oil stone 油石Oil varnish 油性清漆,上清漆Opacity 不透明度Opaque paint 不透明涂料PPaint 涂料,油漆Paint film 涂膜Paint nozzle 涂料喷头Penetrant 渗透剂Phenol aldehyde resin 酚醛树脂胶Polishing varish 擦光(亮)清漆Poly Urethane Resin 聚氨酯(PU)Poly ester 聚酯Polyester resin lacquer 聚酯树脂涂料Polypropylene 聚丙烯Polystyrene聚苯乙烯Polyurethane 聚氨酯Polyvinyl acetate adhesive 聚醋酸乙烯(树脂)胶Polyvinyl adhesive 聚乙烯树脂胶Polyvinyl chloride resin 聚乙烯树脂涂层Pre-coating 预涂Procuring 预固化Preservative 防腐剂Primer 底漆(下涂涂料)Putty 腻子Pyroxylin lacquer 硝基漆QQuick drying paint 速干漆RReady mixed paint 调和漆Refined shellac 精制虫胶Resin adhesive 树脂胶Reverse coater 反向涂料器Roller brush 滚筒刷SSample board 样板Sand blast 喷砂Sand pa来自:FanE『翻译中国』http //www.FanE.cn

  • 【原创大赛】DSC差示扫描量热仪在塑料行业的应用

    【原创大赛】DSC差示扫描量热仪在塑料行业的应用

    由于塑料的轻便和便宜,随处可以用到塑料。下面就简单介绍一下塑料的各种特性和用途。塑料为合成的高分子化合物,可以自由改变形体样式。塑料是利用单体原料以合成或缩合反应聚合而成的材料由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。广义的塑料定义指具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。狭义的塑料定义是指以树脂(或在加工过程中用单体直接聚合)为主要成分以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。由于生产塑料的企业越来越多,对原料的质量把控尤为重要。国家相继推出针对塑料行业的测试仪器以及测试标准。 在塑料的热分析测试中,DSC差示扫描量热仪用的频率最高。主要用来针对塑料的氧化诱导时间测试、玻璃化转变温度测试、固化度、结晶、分解温度等等,相对应国标有GBT 19466.6-2009,GBT 23257-2009等。由于差示扫描量热仪研发技术难度大,目前国内做的比较成熟的没几家,南京大展机电技术研究所是国内热分析仪器做的最早的一家,1992年左右就推出了差示扫描量热仪,目前塑料行业市场用的比较多,做的比较成熟。另外一家,北京恒久科学仪器有限公司,也是国内做的相对比较早的,1996年公司成立的,也是相对做的比较成熟的。这几年由于国内市场需求量大,国外进口设备也在陆续进入中国市场,如德国耐驰、美国的TA、日本的岛津等等。 根据塑料性能不同,可以将塑料分为两大类,分别是热固性、热塑性。热固性塑料主要以树脂为主,树脂的一个主要测试项为玻璃化转变温度,即物质由固态向玻璃态(粘流态)转变的温度;热塑性塑料主要是用在给水管道等方面的通用性塑料,主要测试其氧化诱导时间。根据塑料的特性以及测试要求,将塑料的分类大致如下图:[img=,608,597]http://ng1.17img.cn/bbsfiles/images/2017/07/201707031717_01_2781725_3.png[/img] (上面的分类图自己绘的图,一格一格画的,画的对称性不是很好,大家见谅) DSC差示扫描量热仪针对热塑性塑料的氧化诱导时间测试图谱及图谱分析,如下图: [img=氧化诱导期图谱,690,361]http://ng1.17img.cn/bbsfiles/images/2017/07/201707031721_01_2781725_3.png[/img] 如上图所示,氧化诱导期测试的步骤为,在氮气氛围保护下,仪器升到200℃,然后切换成氧气(注意:很多标准要求,达到200℃时,恒温5分钟之后,再通氧气,目的是让温度更加稳定),选配气体时,气体的纯度要高。通过软件分析,通氧之后40分钟左右,出现向上的一个氧化峰,表示氧化了,分析得出氧化诱导时间OIT=40.60min。由于现在很多塑料颗粒的生产厂商,都是通过一些回料、废料,加入抗氧剂,再次生产利用。由于生产搅拌不均匀,导致抗氧剂分散的也不均匀,最终同一批料可能会出现,氧化诱导时间有长、有短。建议同一批料,在不同位置取样,做三次分析。 DSC差示扫描量热仪针对热固性塑料的玻璃化转变温度测试图谱及图谱分析,如下图: [img=,690,360]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041141_01_2781725_3.png[/img]如上图所示,树脂的玻璃化测试,第一个峰是玻璃化转变温度Tg,后面的一个固化峰,接着是融化峰。这边只对玻璃化进行分析,玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。根据高分子的运动力形式不同,绝大多数聚合物材料通常可处于以下四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。而玻璃化转变则是高弹态和玻璃态之间的转变,从分子机构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它既不是一级相变,也不是二级相变 (高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动 而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显著的变化,其中,热容的变化使热分析方法成为测定高分子材料玻璃化温度的一种有效手段,以DSC测试为例,当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC曲线上的基线向吸热方向移动(如上图,玻璃化温度达到时,基线向下移动)。通过变化前,以及变化后的切线分析得出,该样品的玻璃化转变温度Tg=78.6℃[img=,61,112]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,56,134]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,61,136]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,49,99]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,288,40]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,46,2]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,46,4]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]

  • TMA测试材料的热变形温度

    目前我们实验室的TMA的探头是压缩式探头,主要用来测试材料的热膨胀系数。现在客户要求用TMA测试材料的热变形温度,不过测试夹具要更改为拉伸夹具。各位实验室的TMA有用拉伸夹具测试材料的热变形温度吗?如果用压缩夹具,能不能测试出来材料的一个大概的热变形温度呢?欢迎各位讨论。

  • 【讨论】我们实验室的GC该如何配置?是不是一次热解析要被二次热解析仪淘汰了?

    智慧的弟弟提问:你做GC用过热解析仪没? 是不是一次热解析要被二次热解析仪淘汰了? 二次热解析是不是比一次热解析安全?相比较各有什么优缺点?测试项目主要有:1.水中VOCS、挥发性卤代烃、苯系物2.饮用水四氯化碳、三氯甲烷3.废气中挥发性卤代烃、非甲烷总烃、苯系物、氯乙烯、丙烯醛、丙烯腈4.室内空气苯、甲苯、二甲苯、苯乙烯、TVOC除了四氯化碳和三氯甲烷要用到ECD之外,其它的都是用FID。依据GB/T14677、GB50325测试苯、甲苯、二甲苯、苯乙烯和TVOC,还需要配置热解吸仪;依据GB/T18883测试TVOC,需要配置二次热解吸仪。水中VOCS、挥发性卤代烃、苯系物其中一方法,需配置吹脱捕集装置,依据《水和废水监测分析方法》(第四版)5. 有仪器厂商说一次热解吸要被二次热解吸淘汰,且说他们的工作站可以自动换算成空气中的浓度(比一般工作站贵),不知道是不是真的。综合以上,我们实验室的GC该如何配置,请大家赐教!谢谢!

  • 热界面材料热性能常用测试与考核方法汇总

    热界面材料热性能常用测试与考核方法汇总

    1. 前言 通过前两篇帖子对莱尔德公司各种热界面材料技术参数的分析可以看出莱尔德公司对热界面材料的热性能测试采用了四种测试方法,分别为改进的ASTM D5470方法、HOTDISK方法、闪光法和实际导热性能考核法。这四种方法也是目前业界普遍认可和使用的方法,下面将简要介绍这四种方法在热界面材料热性能测试评价中的具体应用。2. 改进的ASTM D5470方法 ASTM D5470导热型电绝缘材料热传输性能标准测试方法(Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials)是热界面材料的传统测试方法,应用十分广泛。按照该标准的描述,D5470适用于以下三类热界面材料的测试: (1)Type 1:在受到应力后显示出无限形变的粘性液体。包括液态混合物,如油脂,胶及相变材料。这些材料不显示出弹性特征,在移除应力后无回复到原始状态的趋势。 (2)Type 2:粘弹性固体。形变应力并最终与材料内部的应力保持平衡,因而限制了更大的形变。如凝胶,软硬橡胶。这些材料显示出与材料厚度相关的线性弹性特征。 (3)Type 3:微小形变的弹性固体,包括陶瓷,金属以及某些塑料。 ASTM D5470的主要功能在于测量材料的热阻,但如果试样与热阻仪的接触热阻较之试样自身热阻非常微小(一般小于1%),则可以通过测出的热阻及试样厚度直接计算出被测试样的导热系数。需要特别注意的是此时得到的导热系数为等效导热系数或表观导热系数,是被测试样在试样平均温度下的导热系数。 如果试样与热阻仪的接触热阻比较大,那么试样的等效导热系数可在一些列试验后排除接触热阻后精确得出。即先测试不同厚度试样的热阻,再绘制出热阻对厚度的坐标图,则绘制出的直线斜率的倒数即为试样的等效导热系数。在零厚度时的热阻即为试样与热阻仪两接触面的接触热阻之和。 ASTM D5470方法的测量原理和相应的热阻测定仪如图 2.1所示。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223342865_01_3384_3.jpg图 2.1 ASTM D5470测量原理和相应的热阻测定仪 目前绝大多数热阻测定仪都对ASTM D5470方法进行了改进,主要的改进点体现在以下两方面: (1)ASTM D5470方法中规定热阻测量过程中的加载压力为100 500psi。就算最小的100psi加载压力也常常超过热界面材料实际工程应用时的加载压力。因此,热阻测定仪一般都把这个加载压力进行了调整,加载压力可以精确的控制到最小1psi,这样就可以满足不同工况下的热界面材料热阻测量。 (2)增加了在线厚度测量装置,可以实时测量试样加载后的厚度。 需要注意的是ASTM D5470是一种相对法(或二级方法),这种方法是采用已知导热系数的高导热材料作为热流计来测量流经试样上的热流密度。因此,热流密度的测量准确性首先要取决于热流计材质导热系数的测量准确性。3. HOTDISK方法 HOTDISK方法是一种瞬态测量方法,又称为瞬态平面热源法。HOTDISK方法作为一种绝对的热导率测量方法,在理论上可以达到很高测量精度。在被测试样尺寸和其它要素满足测试方法规定的边界条件时,热导率的测量范围理论上可以没有限制。因此,对于均质材料,采用瞬态平面热源法不失为一种操作简便和测量精度高的有效方法,在温度不高的范围内(-196℃~200℃),这种方法可以作为一种标准方法来使用,并与其它热导率测试方法一起形成有效的补充和相互比对,甚至可以用于校准其它测试方法。 瞬态平面热源法已具有国际标准测试方法,即ISO 22007-2:2008 Plastics-Determination of thermal conductivity and thermal diffusivity-Part 2: Transient plane heat source (Hot Disk) method。 如图 3.1所示,Hot Disk探头是一种两片绝缘薄膜夹持双螺旋金属薄带的薄片结构,绝缘薄膜既起到强度支撑作用又具有电绝缘功能,整个HOTDISK探头既作为通电发热源又作为温度探测器使用。 在测试过程中,HOTDISK探头被夹持在两个被测试样中间,在试样和探头温度达到恒定后,在探头上加载一个短时间的固定电流,探头通电后产生热量,热量向四周的被测试样进行散热,使得探头和试样的温度升高。探头和试样的温度上升范围一般为0.5~5℃,通过测量探头的电阻变化可以获得探头温度整个变化过程,然后根据加载电流的大小和时间以及其它参数,可以计算出被测试样的导热系数。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223350830_01_3384_3.jpg图 3.1 HotDisk探头 HOTDISK方法针对不同的被测试样厚度有不同的测试模型和测试形式,针对众多形式的热界面材料,HOTDISK方法一般采用三种测试模型和相应软件,分别是块状模型、薄板模型和薄膜模型。3.1. HOTDISK块状试样测试方法 在块状试样测试方法中,如图 3.2所示,要求HOTDISK探头在通电加热所发出的热量,在整个测试过程中热量(或热波)不能达到试样的边界。由此可见,在块状试样测试时,被测试样尺寸要求较大较厚,从而满足测试模型要求。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223352816_01_3384_3.jpg图 3.2 HOTDISK块状试样测试模型 在众多热界面材料中,导热脂和导热胶类热界面材料非常适合采用HOTDISK块状试样测试方法进行导热系数测量,如图 3.3和图 3.4 所示就是采用HOTDISK块状测试方法对导热脂和导热胶片测试时的试样及探头安装形式。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223470761_01_0_3.jpg图 3.3 HOTDISK法块状形式测试中的导热脂试样和探头装配形式 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223472136_01_3384_3.jpg图 3.4 HOTDISK法块状形式测试中厚片状导热胶试样和探头装配形式 对于热界面材料,在HOTDISK块状法测量过程中,被测试样的最小厚度一般为20~25mm,最佳厚度最好在40mm以上,导热系数测量范围为0,005~500 W/(mK),导热系数测量重复性为±2%。3.2. HOTDISK薄板试样测试方法 对于薄板或薄片状材料,HOTDISK方法中有专门的测试模型和相应软件模块用于导热系数测量,所测试的导热系数是试样整体的导热系数,而不是面内方向的导热系数。如图 3.5所示,测量时先选择两块厚度一致的样品,精确测量样品厚度后,将两块薄板样品分别放置于探头的两边,然后用两块相同材质的绝热隔热材料压紧,使探头与样品之间没有空隙,以保证探头产生的所有热量均为样品所吸收。 http://ng1.17img.cn/bbsfiles/images/2017/10/2015051223531345_01_3384_3.jpg[color=#3333f

  • 热界面材料热性能测试方法调研

    热界面材料热性能测试方法调研

    随着IT行业的发展,特别是这些年手机行业的飞速发展,出现了一些新型热界面材料,对热界面材料热性能的测试和可靠性考核提出了更高的要求。由于热界面材料的类型较多,热界面材料的热性能测试和考核方法确实比较杂乱,最近也一直有朋友和客户咨询这方面的问题。为了梳理清楚热界面材料热性能测试和可靠性考核方法,更便于提供有效的测试评价手段,我们在热界面材料热性能测试和可靠性考核方面做了一些工作,这里我们将逐步介绍这些研究工作的内容以供大家参考和讨论。1. 前言 热界面材料TIM(Thermal Interface Materials)作为一类用于两种材料间的填充物,是热传递的重要桥梁。这类材料是一种具有较高的导热系数,容易形变,能有效降低界面间热阻的材料。 目前市场常用的热界面材料主要包括以下几种类型: (1)导热脂:导热脂是目前应用最广泛的一种导热介质,它是一种脂状物并具有一定的黏稠度,没有明显的颗粒感。 (2)导热胶:导热胶的特点是具有一定的黏合力,可以制成各种脂状和片状形式并具有一定的柔韧性,可以很好的贴合功率器件与散热器件或填充器件之间的间隙并不易发生边缘流溢,从而达到最好的导热及散热目的。 (3)相变导热材料:相变导热材料一般为低熔点金属复合材料薄片,在一定温度区间内会发生固液相变,并在装卡压力作用下流进并填充发热体和散热器之间的不规则间隙内,挤走空气,形成良好的导热界面。 (4)石墨(石墨烯)垫片:石墨(石墨烯)垫片采用特殊的制作工艺,具有极佳的导热导电和耐温性能,特别适合于不需要绝缘的高温散热场合。 衡量热界面材料的重要技术指标是导热性能,而导热性能的两个主要参数是导热系数和热阻。对于一定厚度的热界面材料,导热系数与热阻是一种互为倒数乘以厚度的关系。从理论上来说,知道热界面材料的实际厚度后,只要测量出导热系数和热阻这两个参数中的任意一个,就可以计算出另一个参数。但由于热界面材料的种类繁多,再加上热界面材料使用过程中实际厚度较小和具有加载压力的因素,使得导热系数和热阻的这个简单关系中相关量变得复杂和难以准确测量,由此使得热界面材料导热系数和热阻的测试评价方法十分混乱。 针对目前热界面材料热性能多种测试方法并存的现状,本文对目前市场上国外厂家的热界面材料产品进行了统计和分析,并对热界面材料热性能的主要测试方法和可靠性试验方法进行了汇总,展现了国外热界面材料厂商如何选择相应的测试方法,以期对今后热界面材料导热性能测试评价技术的研究提供参考和借鉴。 本文重点选取了美国莱尔德公司的热界面材料进行统计和分析,这主要是因为莱尔德公司相对于其他热界面材料厂商在官网上提供了最为详细的技术资料。2. 导热脂类热界面材料 导热脂类热界面材料是目前应用最为广泛的一种热界面材料,莱尔德公司导热脂产品的相关技术资料是众多厂家中最为全面的,尽管有些资料不是非常完整,但也是所能看到的唯一一家所提供的技术报告非常详细的公司,这为我们进行统计和分析提供了便利。2.1. 莱尔德公司导热脂类热界面材料的热性能指标 从莱尔德公司的官网上可以看到有五种牌号的导热脂热界面材料,根据官网所提供的各个牌号的公开技术资料,可以得到这五种牌号导热脂的导热系数和热阻数据以及相应的测试方法,如表 2.1所示。表 2.1 莱尔德公司导热脂热界面材料导热性能指标和测试方法http://ng1.17img.cn/bbsfiles/images/2017/10/2015051119574021_01_3384_3.jpg2.2. 测试方法分析 通过以上各种牌号导热脂的技术指标和各种老化考核试验结果,可以获得以下信息: (1)莱尔德公司对其所有导热脂产品的导热系数测试都采用的瞬态平面热源法(HOTDISK法)。HOTDISK方法对于这类脂状的热界面材料确实是非常简便和准确的方法,只需在恒定温度环境下将导热脂完全包裹住HOTDISK探头就可以进行测量,通过这种方法可以非常准确评价不同导热脂导热性能以指导工艺和生产,而且这种方法是一种绝对法,不需要其他方法进行校准。 (2)莱尔德公司对导热脂热阻的测量还是采用经典的ASTM D5470方法,这主要是为了测量导热脂在不同加载压力下的热阻,毕竟在不同压力下导热脂的热阻值不同。 (3)在使用HOTDISK测试方法之前,莱尔德公司是采用ASTM D5470方法测量导热系数,即在线测量出不同加载压力时导热脂的厚度值,然后再除以表 2‑1中对应的所测量得到的热阻值,就可以得到不同加载压力下的导热系数。由此可见,对于导热脂这种脂类材料,莱尔德公司现在已经摒弃了ASTM D5470这种导热脂导热系数测试方法,没有给出原因,也没有看到两种导热系数测试方法的对比测试分析。但据我们的经验和分析,这主要是因为ASTM D5470这种方法是一种相对法,测量误差要比HOTDISK方法的测试误差大很多,造成误差大的原因是在压力加载情况下导热脂的厚度很难精确测量。 (4)莱尔德公司所有的热阻测量都没有提到测试温度,有可能按照ASTM D5470中的规定温度进行热阻测量。3. 导热胶类热界面材料3.1. 莱尔德公司导热胶类热界面材料的热性能指标 导热胶类热界面材料也是目前应用非常广泛的一种热界面材料,而且导热胶的形式很多以满足不同需要,莱尔德公司将这类热界面材料归类为热填隙料(Thermal Gap Fillers)。从莱尔德公司官网上可以得到近18个系列牌号导热胶的导热系数和热阻数据以及相应的测试方法标注,如表 3.1所示。表 3.1 莱尔德公司导热胶(填充料)类热界面材料导热性能指标和相应测试方法http://ng1.17img.cn/bbsfiles/images/2017/10/2015051120034447_01_3384_3.jpg3.2. 测试方法分析 莱尔德公司的导热胶(热填隙料)类材料有脂状和片状两种形式,按照上述导热脂导热系数的测试技术逻辑,所有脂状导热胶的导热系数都应该采用HOTDISK方法进行测量。但从表 3‑1中可以看出,莱尔德公司在导热胶导热系数测试方法的选择上似乎非常混乱,采用HOTDISK方法既测量脂状导热胶也测量片状导热胶。同样,采用D5470A方法也是如此,看不出一个明显的测试方法选择原则。 例如,对于TputtyTM 504这种典型脂状热填隙料,导热系数测试采用的是D5470A方法,而对于相同脂状热填隙料TputtyTM 403则采用的是HOTDISK方法。 例如对于Tflex™ HR200这类片状热填隙料,导热系数测量采用的是HOTDISK方法,而对于具有类似硬度的片状热填隙料Tflex™ HR400则采用的是D5470A方法。 根据HOTDISK测试方法和测试能力,HOTDISK对脂状和片状热填隙料的导热系数都可以进行测量。根据实际测试经验,我们从具体测试的便利性方面分析,认为莱尔德公司在测试方法的选择上可能有一个前提条件,这个前提条件就是粘度和清洗的便利性。在HOTDISK导热系数测试中,HOTDISK薄膜探头要与被测热填隙料接触,如果热填隙料太粘或不易清理则容易损坏HOTDISK薄膜探头。但对于D5470A方法则不存在这种现象,在D5470A方法测试中与被测热填隙料接触的是金属块。4. 相变类热界面材料4.1. 莱尔德公司相变材料热性能指标 从莱尔德公司官网上可以得到近7个系列牌号相变材料的导热系数、热阻数据以及相应的测试方法标注,如表 4.1所示。表 4.1 莱尔德公司导热胶(填充料)类热界面材料导热性能指标和相应测试方法http://ng1.17img.cn/bbsfiles/images/2017/10/2015051120095158_01_0_3.jpg[align=cente

  • 采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    下图是ASTM D5470测试方法中的测试模型,采用ASTM D5470热阻测定仪或导热仪使用中测量精度的影响因素主要有以下几个方面:http://ng1.17img.cn/bbsfiles/images/2015/03/201503182256_538771_3384_3.png 1. 针对不同的热阻范围需要采用不同热流测量范围的热流计,这就需要采用不同材质来制作热流计,如分别采用不锈钢和铜等材料制成不同测量范围热流计。一般热流计金属棒上插入了多只温度传感器以及外围的隔热材料组件,在不同热流计测试过程中,这就使得操作人员不可能去更换对应的热流计,如此就必须配置和购买至少两套热阻测定仪或导热仪来覆盖尽可能宽泛的热阻和热导率测量范围。很多测试机构为了节省经费一般只购买一套设备来进行全量程的测试,这就使得在某一区间的热阻和导热系数测量存在巨大误差。 2. ASTM D5470方法中,是通过测量热流计金属棒轴向上的温度分布来计算获得流经试样的热流,而温度分布是通过间隔布置在金属棒上的多只温度传感器进行测量来获得。由于金属材料的导热系数很大,这就使得两两温度传感器之间的温度差很小,为了保证准确测量出热流计棒上相应位置处的温度,必须采用更高测量精度的铂电阻温度传感器,采用测量精度不高的热电偶往往会带来较大误差。 3. 上下两个热流计的尺寸完成一致,并要求压紧试样过程中上下两个热流计要完全对准,而且要求两个热流计的端面平行度和端面光洁度非常高,以免造成被测试样的厚度不均匀和热流计端面粗糙所带来的接触热阻,这就对热流计的上下移动机构和对准机构的精度要求非常高,这部分内容占了整个ASTM D5470热阻测定仪或导热仪的大部分费用。考核ASTM D5470热阻测定仪或导热仪测量精度的一种方法是空载测试,即不加载任何被测试样,只使得上下两个热流计金属棒直接对准接触,由此测量出此时的接触热阻,此接触热阻就是仪器的最小热阻分辨率,这个空载热阻测量值越小,说明导热仪的测量分辨率越高,测量试样时越是容易达到更高的测量准确度。 4. 热阻测量准确度除了与温度测量准确度有关外,还与试样上的加载压力测量准确度有关,因此压力传感器要具有一定的准确度才行。同时,金属棒热流计和被测试样在受热时会受热膨胀,在膨胀过程中势必会引起压力的改变,因此热阻或导热系数测量要在温度和压力都稳定的情况下测量,否则也会带来误差。 5. 引起热阻或导热系数测量误差的另外一个重要因素是热流计和试样的散热影响,尽管很多测试设备都在金属热流计和试样外部都采取了一定的隔热措施,如采用隔热材料进行包裹,但还是会有部分热量会从热流计和试样上流失。最有效的办法是采用等温绝热措施,即在热流计棒和试样外部增加绝热屏,绝热屏上的温度分布与热流计金属棒和试样上的温度分布相同,通过等温绝热来消除热损失的影响。但这势必会大幅度的增加测试设备的造价。 6. 由于试样导热系数等于试样厚度除以试样热阻,因此采用ASTM D5470方法测量导热系数时要求精确测量被测试样的厚度,但恰恰这是最困难的事情。对于刚性材料来说,被测试样可以比较厚并且不宜变形,可以在进行实验前进行测量。但对于柔性材料,如导热酯、导热硅胶、硅胶导热片等,试样的厚度在压力加载后会发生改变,这就需要配置在线厚度测量装置。另外,在柔性试样加载后,试样厚度往往会降低到几十至几百微米,这对在线厚度测量来说几乎不可能实现准确测量,因此,厚度测量的准确度是采用ASTM D5470方法时带来误差的最大因素。我们可以经常看到国外厂家导热材料的性能指标中只提供热阻数据而没有提供导热系数数据,就是因为厚度测量几乎无法实现。就算有厂家能提供出导热系数数据,哪这个数据也会存在巨大的误差。

  • 【分享】热重分析仪的温度标定与称重校正

    【分享】热重分析仪的温度标定与称重校正

    近日看到2009年8月《塑料制造》上的一篇文章,标题是“热分析仪的标定”,内容可能使用热分析仪的版友会有兴趣,摘编一些给各位分享。热重分析法是在程序温度下,测量物资的质量与温度的关系技术。热重分析的仪器只进行温度标定。目前热重法的标样是铁磁性的金属或不同比例含量的镍铁合金,标定温度方法常用的是居里点法,当铁磁材料变成顺磁性、测得的磁力降为零的这一点的温度定义为居里点,当在恒定的加热磁场下加热铁磁材料通过居里点时,磁学质量为零,天平表现为表观质量损失,利用这一特性进行TG的温度标定。所用耐驰TG209C热重仪的镍铁合金标样转变温度分别是74℃,160℃,266℃,358℃,497℃,660.3℃,770℃。(本人加注:耐驰热重现在有些具有cDTA功能,可以直接用样品熔点标定温度)标定的温度曲线图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001291608_199522_1633752_3.jpg[/img]

  • 酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    [b]摘要:针对酚醛树脂这类烧蚀型防热材料导热系数测试中多年来存在的稳态法测试温度不高、闪光法测量误差大和无法测量烧蚀过程中的导热系数,本文提出了一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[/b][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px]一、问题的提出[/size][/b]酚醛树脂复合材料做为一种轻质强韧化防热材料,由于其具有防隔热一体化、抗剪切能力强、线烧蚀率和导热系数小及成炭率高等优点,被广泛地应用于飞行器的热防护系统(TPS)。而热防护系统占飞行器较大的比重,是飞行器安全性和可靠性的重要保证。因此,对酚醛树脂防热复合材料导热系数的准确测量,是合理设计和优化热防护系统的前提条件,也是解决过度冗余或防热设计可靠性不足等问题的有效途径。酚醛树脂防热材料的防热机理是主动式防热。如图1所示,一方面,树脂基高分子材料在高温下发生吸热的碳化反应,从而吸收外界热量。另一方面,碳化反应分解释放的气体可以被用来实现阻隔散热,同时形成的多孔结构的碳化层也具有较为优良的隔热性能。在三者协同作用下,飞行器在高热流环境下的使用和运行变得安全可靠。[align=center][img=01.酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化,550,330]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200945412753_9630_3221506_3.png!w690x414.jpg[/img][/align][align=center]图1 酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化[/align]由此可见,如此复杂的防热过程,使得准确测量防热材料的导热系数变得十分困难,用传统方法进行导热系数测试会出现巨大偏差。针对酚醛树脂这类烧蚀型防热材料,传统测试方法存在以下几方面的问题:(1)无法测量烧蚀材料物理和化学变化过程中的导热系数,只能测试烧蚀前(原材料)和烧蚀碳化后(多孔炭层)的取样样品。(2)烧蚀前样品的导热系数测试普遍采用稳态法,此方法目前多用于防热材料质量控制中的导热系数监控,但测试温度不超过300℃。(3)烧蚀后的多孔碳层导热系数,目前国内外普遍还都采用激光闪光法进行测试,主要原因是这种方法可以达到2000℃以上的高温。但由于多孔碳层导热系数较低,取样必须很薄(厚度一般小于1mm),由此容易造成加热激光脉冲透过被测样品带来严重误差。如果对样品前后表面进行遮光处理(如喷涂石墨或镀金),而高温下表面涂层会脱落而无法实现高温测试。另外,闪光法只能测试热扩散系数,还需采用其他高温设备测试相应的比热容和密度随温度变化数据。针对上述树脂基防热材料导热系数测试中多年来存在的问题,本文将提出一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到烧蚀型防热材料在整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[size=18px][b]二、恒定加热速率测试方法[/b][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此提出了如图2所示的测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面布置一用来测量流经样品厚度方向上热流的金属板,样品四周和金属板背面为绝热边界条件,使得整个测试过程保持一维热流形态。[align=center][img=02.恒定加热速率法测试模型,300,320]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200946219228_6669_3221506_3.png!w615x658.jpg[/img][/align][align=center]图2 恒定加热速率测试模型[/align]在图2所示的一维热流测试模型中,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=,400,168]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200947004183_313_3221506_3.png!w503x212.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效导热系数随温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到量热计的作用,即在线性升温过程中测量金属板温度(即样品背面温度),并结合金属板的已知热物理性能参数,可计算得到金属板所吸收的热量,由此间接获得流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效导热系数随温度的实时变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热材料导热系数测量的有效性。[b][size=18px]三、结论[/size][/b]这种恒定加热速率测试方法,是一种动态测试方法,准确的说是一种准稳态测试方法,即在样品热面温度线性升温过程中,样品中的各个位置处的温度在经历初期的非线性升温后,也会逐渐演变为相同速率的线性变化。恒定加热速率导热系数测试方法的最大特点是可以测量样品相变和热解过程中的导热系数,由此可见,采用此方法,完全可以测量酚醛树脂防热材料在整个烧蚀过程中的导热系数变化。当然,此方法也非常适合单独测量高温下碳化层导热系数随温度的变化。对于烧蚀型低密度的酚醛树脂防热材料,其特征之一是烧蚀后表面层会发生烧蚀退后现象,即样品厚度会发生变小现象。对于这种样品边界发生移动的条件,会对恒定加热速率测试方法的准确性带来影响,在测试方法中还需进一步的深入研究。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制