中曼石油分析

仪器信息网中曼石油分析专题为您提供2024年最新中曼石油分析价格报价、厂家品牌的相关信息, 包括中曼石油分析参数、型号等,不管是国产,还是进口品牌的中曼石油分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中曼石油分析相关的耗材配件、试剂标物,还有中曼石油分析相关的最新资讯、资料,以及中曼石油分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

中曼石油分析相关的厂商

  • 400-860-5168转0539
    北京中惠普分析技术研究所成立于1994年,是目前国内规模最大的气相色谱仪器配套气源发生器的生产厂家之一,产品涵盖高纯度氢气、高纯度氮气、低噪音空气源等各种流量单体机及各种相关组合机。产品系列多,品种全,有多种流量和纯度可供选择。经过多年的不懈努力,我们研制生产了多种大流量制氮、制空设备,可满足液质联用、蒸发光散射、氮吹、原子荧光和原子吸收等仪器的使用要求。目前国内外同行所有的实验室气源技术和产品,我们都已掌握并有同类产品生产和销售。 自2005年来,我们在样品前处理装置的研究和应用上也取得了长足的进步。在热解析(热解吸)、顶空进样及吹扫捕集领域,推出了多种产品,包括半自动和全自动的仪器,基本涵盖全部应用,获得广泛的应用和好评。我们坚持质量第一、用户至上的服务准则,产品遍及全国,并出口日本、德国、法国、阿根廷、俄罗斯、韩国、印度、新加坡等十多个国家和地区。 Beijing BCHP Analytical Technology Institute was founded in 1994. It is famous for its tremendous technology force, advanced manufacturing technic and flexible marketing strategy. BCHP specializes in producing gas generators for gas chromatograph, including high-purity nitrogen generator, high-purity hydrogen generator and low-noise air generator. It is the domestic leader in its industry. The products of BCHP have been sold throughout China and exported to Pakistan, Ukraine, Singapore, Thailand, Argentina, Algeria, Norway and many other countries.
    留言咨询
  • 青岛佳鼎分析仪器有限公司创建于2011年,公司主营实验室分析检测仪器设备,以实验室整体建设为发展方向。公司目前涉及电子电器、医药生物、石油化工、食品、机械、新材料、环境、科研高校等诸多领域。联合山东医药化工设计院,美国安捷伦、美国热电、日本岛津、江苏天瑞等众多品牌及多个重点实验室从实验室布局设计出图、基础设施建设、仪器设备供应、方法开发建立、后期运营管理,形成完整的专业实验室建设体系,达到一站式服务,为众多行业客户提供更为完善的整体解决方案。公司主营产品分为四大类,光谱仪、色谱仪、质谱仪和环境在线检测。能量色散X荧光光谱仪(EDX)、波长色散X荧光光谱仪(WDX)、等离子体发射光谱仪(ICP)、光电直读光谱仪(OES)、原子吸收分光光度计(AAS)、原子荧光光谱仪(AFS)、拉曼光谱仪(Raman)、碳硫分析仪(CS)、红外光谱仪、矿浆载流分析仪(OSA)、气相色谱仪(GC)、液相色谱仪(LC)、气相色谱-质谱联用仪(GC-MS)、液相色谱-质谱联用仪(LC-MS)、电感耦合等离子体质谱仪(ICP-MS)、水质在线分析仪(WAOL);
    留言咨询
  • 400-860-5168转0317
    鲁美科斯/鲁美科思(LUMEX) 分析仪器公司于1991年成立,作为分析仪器行业的领导者,经过多年的发展现已逐渐成长为全球化的分析仪器企业。目前在中国、加拿大、美国、德国、俄罗斯设有分公司,在中国、加拿大、俄罗斯、美国有技术研发和生产组装工厂,目前产品遍布全球80多个国家。 鲁美科斯公司凭借致力于为行业用户和合作伙伴提供兼备传统功能和创新性的解决方案,也凭借其独特的优势和持续的创新得到越来越多的行业专家和用户的认可和信赖。技术研发: 拥有一支致力于光谱、分析化学、工程学、软件开发等领域尖端技术研发和产品创新的专家团队,现已开发拥有100多种分析方法,产品方法符合中国GB国家标准、美国EPA、欧盟CE标准分析检测方法标准。正是专家们丰富的经验和创新的研发精神,保证了产品的高质量及高性能,从而使鲁美科斯逐渐成为分析仪器制造领域中颇具实力的现代化公司。 应用领域: 产品覆盖农业、环保、化工、食品、造纸、制药、采矿、石油、电力工程等行业,拥有广泛的客户群。其用户包括政府机关、工业企业、研究机构及高校科研部门等,许多知名研究机构和企业如联合国、美国EPA等均采购过LUMEX公司的产品。产品技术: 产品涵盖高频塞曼测汞仪、 石墨炉原子吸、 傅立叶红外/近红外光谱、 紫外荧光测油仪,毛细管电泳、 水质在线监测仪系列、 荧光光谱仪系列、 荧光定量芯片qPCR仪、 激光粒度仪 高效液相色谱(HPLC)、质谱(MS)医疗设备等。 质量保证: 产品符合欧洲安全(CE)标准并已通过国际ISO 9001:2015 质量标准认证,获得国际认可。LUMEX公司曾被"Industry Scoreboard,2000" 全球分析仪器行业560家最强企业名单收录。
    留言咨询

中曼石油分析相关的仪器

  • RAMANRXN5拉曼光谱分析仪—交钥匙工程的拉曼光谱分析仪Rxn5行业领先,是交钥匙的基于激光光谱技术的拉曼光谱分析仪。釆用拉曼光谱分析技术,用于化学成 分的定量测量。拉曼光谱分析仪Rxn5结构紧凑,最大限度地减少了样品使用量和耗电量,满足客户対维修和 危险区域认证的要求。分析仪具有高光学分析效率,是典型气相样品测量的理想选择。应用领域过程测量点:蒸汽甲烷重整制氢气化炉(煤、石油焦、 废料、生物质)转炉加氢处理加氢裂化除 CO2成品合成回路典型行业制氢/氢纯度、HyCO、氢气回收制甲醇制氨气燃气轮机燃料进料合成天然气/IGCC发电厂LNG相关环节应用优势无损气体分析,包括同核双原子分析 (&、N2v 02)结构紧凑,比大多数墙挂式气相色谱分析 仪的尺寸都小一台主机搭配四个探头,最多可以替换四 台传统分析仪表坚固耐用,最低样品使用量和耗电量需 求,无需样品传输,也无需易耗品(气相 柱、阀门、气体、泵)最短分析仪维护时间,最高安全性(有毒 气体不会进入分析仪)多通道测量,同时测量四路样品环境温度:-20-+50°C技术亮点激发波长:532nm通道:可拓展到四个通道探头兼容性:Rxn-30探头通讯接口: Modbus (TCP/IP or RS485)危险区域认证:ATEX, CSA, lECEx安装选项:IP 56壁挂式,密封/吹扫外壳
    留言咨询
  • 便携式塞曼效应汞分析仪产品介绍: 便携式塞曼效应汞分析仪采用高频塞背景校正技术(ZAAS-HFM),基于原子蒸气对254nm共振发射线吸收的原理,进行汞分析检测。 便携式塞曼效应汞分析仪可配备不同模块,实现固、液、气多种样品检测,适用于分析/监测大气、水、土壤、烟道气、应急泄露事故、有害废物、生物材料、职业环境检测等。相关检测方法符合国际标准方法:美国EPA METHODsw-846 ,EPA 1631方法,欧盟标准EN 1483,13806,EU15852,国家标准GB 7468-87,EPA Method 7473燃烧热解法,EPA Method 30B吸附管法,美国ASTM D7622-10标准。 产品简介: • RA-915M分析仪用于监测室内外环境空气和天然气中的汞含量• 该分析仪可用于解决环境问题,石油矿田勘探,工程工艺控制,职业健康安全及科学研究等领域中中的汞检测分析• RA-915M可通过添加模块化分析附件,使分析仪可以方便地测定烟道气、饮用水、天然水和废水、土壤、食品、饲料、生物样品、石油及其加工产品中的汞含量产品特点: • 操作简单,全自动化,自行校准• 通用型设计,满足实验室内的常规检测和野外的动态检测• 检出限低,抗干扰力强• 实时检测大气和天然气• 固体,液体直接进样(需附件),无需前处理,无需金丝富集,无需试剂及压缩气体• 多样化友好界面,可通过自带操作面板使用,也可连接电脑使用• 宽泛检测范围,可达四个数量级• 配备内置存储器,储存可长达122小时的数据• 内置电池满足8小时的连续检测需求 应用领域: • 生态调查 对环境空气和大气中汞含量的监控 对居住地及工作地环境中的汞的监测 汞排放源和污染区域的生态调查• 脱汞方法监测 连续监测模式,可在移动状态下连续监测室内外汞含量 实时监测各种方法或试剂的脱汞过程 脱汞方法和过程的质量保证• 地质和地球化学调查 自然界汞循环的研究 矿藏勘探
    留言咨询
  • 在线拉曼光谱分析仪 400-860-5168转6228
    在线拉曼光谱分析仪应用与石油化工、精细化工、化药、生物制药行业,针对反应物料多组分在线分析,实时监测。
    留言咨询

中曼石油分析相关的资讯

  • (回放)第六届石油化工分析技术及应用网络会议圆满结束
    石油化工行业在国民经济发展中具有重要意义,是我国的支柱产业部门之一,而分析检测技术又是石油化工行业高质量发展的重要支撑。为进一步促进石油、化工企事业单位高质量发展,推动分析检测技术进步,促进科技成果转化,同时也给石油化工相关工作者提供一个学习交流的平台,仪器信息网于2022年5月31日-6月1日举办的“第六届 石油化工分析技术与应用”主题网络研讨会(2022)圆满结束了!6月1日,色、质谱及其他分析技术在石化领域中的应用会场共展示了12位专家报告:可回放视频如下表所示,点击报告题目直达链接:“双碳”背景下的炼化行业发展路径探析 中石化石油化工科学研究院 吴昊岛津石油化工最新技术和整体解决方案 岛津企业管理(中国)有限公司 彭树红Memosens 2.0数字技术助力石化行业废水处理 Endress + Hauser 韩晋浅析石化化工行业高质量发展之数字化转型 中国石油和化学工业联合会 李文军小型分析仪器的自动化智能化管理 梅特勒托利多科技(中国)有限公司安晓松石化企业低碳转型路径与措施浅析 中国石化能源环境部陈广卫光谱及相关技术在石化领域中的应用 耶拿分析仪器(上海)有限公司 吕万良在线拉曼分析技术在石化工业中的应用案例 浙江大学 戴连奎讲解标准《柴油十六烷值测定法》 中石化石油化工科学研究院 王利重油中硫化物精细分子结构的表征及应用 中石化石油化工科学研究院 王威质谱新技术在突破石化传统分析局限中的应用 沃特世科技(上海)有限公司 蔡麒岛津GC在氢能产业链构建中的应用 岛津企业管理(中国)有限公司 李学伟安捷伦气相色谱技术助力绿色低碳发展新进展 安捷伦科技(中国)有限公司 李景林国产物联GC分析平台M6及其在石油化工中的应用 上海炫一智能科技有限公司 高枝荣在线质谱仪在大型乙烯装置中的应用简介 赛默飞世尔科技(中国)有限公司 彭永强气相色谱在汽油组成分析中的应用 中国石化上海石油化工研究院 李继文柴油中含氮及含氧化合物的分子表征方法开发及应用中国石油石油化工研究院 陈菲
  • 石油化工在线分析软硬件并行——记CIOAE 2016“石油化工在线分析”主题报告
    仪器信息网讯 在线分析仪器又称过程分析仪器,直接安装在工业生产流程或其它源液体现场,对北侧物质的组成或物性参数进行自动连续测量的仪器,广泛应用在环境、化工、制药等领域。  2016年11月22-23日,在国家会议中心举办的CIOAE 2016上,众多来自石油化工企业、相关科研院所、仪器制造商等齐聚“石油化工在线分析”专题会议,从石油化工在线检测仪器技术最新发展、应用等方面进行了探讨。会议现场  目前,用于石油化工领域的仪器技术主要有光谱、色谱等,本次主题论坛上,多位嘉宾就相关仪器技术进展及用用进行了分享。其中来自中石化石油化工科学研究院褚小立教授为大家分享了近红外光谱分析技术进展。  近红外技术应用广泛,与人类生活产品的质控息息相关,成为快速、无损分析的首选技术。近红外技术的测量结果具有高重复性,在我过已有20多年的发展历史,是一种潜力巨大的仪器技术。  在当前信息化时代,数据库是未来应用的核心。以近红外技术为核心开发技术,结合互联网、移动等技术,可建立应用于农业、饲料等领域在线品控的大数据库。此外,随身式/便携式红外检测仪器已经完成了概念设计的工作,未来红外检测仪器或可类似于智能手环应用于人们的日常生活中,辅助人们把控生活品质。  褚小立在报告中指出,原油评价是一个非常复杂的过程,分析结果达到几百项,传统分析方法难以快速得到分析结果,近红外技术在国际上被广泛用于原油分析。对此,褚小立团队开发了定性算法与定量分析叠加的新方法,并指出,定性和定量方法的叠加可能是未来的原油分析的方法的发展趋势。  报告中,褚小立讲到,在线仪器技术的发展在我国有两次握手:一次是分析和分析仪器的握手,即硬件和软件的握手,目前已经融合到一定阶段 另一次握手是过程分析和过程控制的握手。褚小立指出,过程分析不是目的,真正的效益在过程控制即优化操作上产生。在我国,过程分析和过程控制的握手尚处起步阶段,未来还有许多工作要做。中石化石油化工科学研究院 褚小立  大连大特气体有限公司李福芬为与会者分享了“标准样品浓度的设计及使用”报告。报告从分析定量的原理讲起,并以外标法定量和矫正归一法定量为例,具体讲解了气体分析过程中标准样品浓度的设计和使用技巧。报告指出,标准样品的使用和设计应考虑到组成不同带来的差异,根据样品进样的相态,选择合适的计算公式,设计合适浓度的标准样品 或者换算成不会失误的浓度单位进行计算,之后再换算成需要的浓度单位。大连大特气体有限公司 李福芬  中国石化北京北化院燕山分院邱科鹏做“DCS与工业在线分析仪质检基于Modbus协议的串行通讯”精彩报告。  报告中指出,近年来,大量先进的在线分析检测仪器被越来越多的应用于化工装置的各种过程检测和自动化控制。与常规仪表相比,在线分析检测仪器最大的特点是与DCS控制系统进行数据交换的各种信号类型异常庞杂、信号数量较多。传统的传输方式对线缆等辅件的要求多且工作复杂。报告以“银催化剂中试评价装置及银催化剂工业侧线评价装置”为例,分析了Modbus协议、通讯方式、通讯硬件、通讯软件、存在的问题以及应用效果等。  来自E+H公司的沈宝良做了“拉曼光谱分析仪及其在煤化工领域的应用”报告。报告中指出KAISER拉曼光谱分析仪可应用在煤制甲醇、合成氨、煤制SNG/氢气等方面,目前全球已安装上百套。E+H公司 沈宝良
  • 石油和天然气中汞的分析技术 | 石脑油
    石油和天然气中汞的分析技术 | 石脑油 液态烃具有高度易燃特性,粘度、闪点、沸点、比重等变化很大。至于汞,其性质不同于其他重金属,汞的蒸汽压相对较高。因此,它是高度挥发性的。分析不同液态烃产品中的汞始终是一个分析难题。石脑油的性质与汞污染的影响 石脑油是从原油蒸馏中提炼出的最轻的液体馏分,主要由具有 5~12 个碳原子的混合物组成。轻馏分的沸点为 35~130°C 重馏分和芳香族馏分的沸点为130~220℃。作为石化工业的重要原料,无汞石脑油具有很高的价值。石脑油原料在转移到催化重整装置前,首先要进行氢化处理。催化剂是由贵金属制成,对汞很敏感,非常容易中毒。因此,石化工艺需要对原料中 的汞含量进行严格的控制,控制在十亿分之几(ppb)的范围内,防止对其过程造成任何可预料到的不利影响:石脑油中实现准确汞分析的关键是保证准确的样品量转移,这对于所有分析测量都很重要,因为结果浓度与体积直接相关。此外,样品的完整性极为关键。必须做到的一点是阻止分析物(包括汞)的挥发性损失、快速准确地分析样品,以确保误差最小。

中曼石油分析相关的方案

中曼石油分析相关的资料

中曼石油分析相关的试剂

中曼石油分析相关的论坛

  • 石油中苯的气相色谱分析

    各位仁兄,我是位新手,请大家多多照顾!我想各位讨教石油中苯的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的方法!谢谢了!/:)

  • 【原创大赛】浅析环境样品中总石油烃的分析方法

    浅析环境样品中总石油烃的分析方法 美国环境保护署(u.s. environmental protection agency,EPA)将总石油烃(Total petroleum hydrocarbons,TPH)定义为一类源于原油的主要由碳、氢元素组成的烃类混合物,归类为环境污染物,同时表明将其组分完全分离检测是不切实际的,但是其总量的测定却具有重要的意义。 随着对TPH研究的深入和精细化,科研人员发现不同沸点的石油烃类化合物的危害性有着显著的差别。其中,低沸点饱和烃可能引发动物麻醉、昏迷现象,当浓度超过一定限值时甚至可能通过破坏细胞进而导致动物病变或死亡。而沸点相对高的烃类化合物易于附着于植物的根系表面,形成油膜膜以阻碍根系的呼吸和吸收,引起根系腐烂,影响作物的根系生长。同时,其富含的反应官能团可与无机氮、磷结合并限制硝化作用和脱磷酸作用,从而降低土壤中有机氮、磷的含量抑制作物的生长。总石油烃中为人们所熟知的苯、甲苯等芳香烃和苯并芘、苯并蒽等芳香烃的毒害作用更为明显,其中苯并芘更因致癌性、持久性累积性等被欧盟列入高关注化学物质(REACH SVHC)清单。因此,总石油烃的研究方向已逐步向着分类针对性研究进展。 沸点和结构显然是总石油烃分类研究的两个关键因素。根据沸点可将总石油烃划分为汽油段、柴油段和重油段,分区互有交互但特征明显,且目前研究较为集中在汽油段和柴油段的分析。汽油段又可称为挥发段,包括碳原子数C4-C12的所有烃类化合物,沸点在约40℃-180℃之间。柴油段又可称为半挥发段,包括碳原子数C10-C28的所有烃类化合物,沸点在约170℃-400℃。根据结构又可划分为脂肪烃和芳香烃,既链结构和具苯环结构,区分明显但种类众多,分离难度可见一斑。 截至目前,总石油烃分析方法包括紫外分光光度法、重量分析法、荧光分光光度法、红外线光谱、气相色谱法等,且每种方法在特定时期都曾被认为是当时最适合于总石油烃分析的方法,这也和当时的仪器技术水平和科研思路密切相关。目前,重量分析法、红外线光谱、气相色谱法仍是为最为普遍使用的总石油烃分析方法,也是EPA推荐的标准方法,但是显然采用不同分析方法获得的数据不尽相同。再次,笔者也只能简单评析下各方法的特征而无法言明何种方法更为的适合于总石油烃的检测。1. 紫外分光光度法 采用石油醚萃取,225nm(C-C共轭双键)和256nm(简单的、非共轭双键和具有n电子的生色基团有机化合物)双波长扫描的方式测定总石油烃。但溶剂石油醚需要经过预先脱芳处理,且只适用于高浓度样品的测定,而且无法测定饱和烃和环烃。2. 重量分析法 采用氟利昂-113、正己烷等溶剂萃取,硅胶吸附作用除动物油脂,溶剂挥干后测定残余质量。此方法优势在于操作简单且无需标准油校正。但劣势同样明显,方法灵敏度低,实验流程长,且只适用于≥10mg/L的样品,挥发性石油烃在提取和蒸发过程中的挥发损失导致实验难以控制且准确性较差,氟利昂-113的禁用更是限制了该方法在当今的应用性。3. 荧光分光光度法 采用正己烷萃取,激发波长310nm、发射波长360nm检测。荧光的原理注定该方法只可测定TPH中的苯系物,而无法测定直链、支链烷烃。然而,总石油烃中非苯系物的含量虽然存在波动,但仍是其不可或缺的重要组成,结果的误差性必然且较大。但其优势在于灵敏度明显高于紫外分光光度法,比较适用于生物体中TPH的测定。4. 红外线光谱法 包括非色散红外吸收光度法和红外光谱法两部分,原理均为根据碳氢化合物中不同C-H键伸缩震动在红外光谱区3000cm-1附近不同吸收峰的吸收强度对石油烃进行定量分析,但是非色散红外吸收光度法仅利用2930cm-1左右直链烷烃和环烷烃类C-H键存在伸缩振动吸收带进行测定,不适用于芳香烃含量高。红外光谱法可以同时或顺序测定三个波数段,较为全面的检测C-H键的伸缩振动,较为准确测定含量,充分的考虑了烷烃和芳香烃的共同影响,但受限于无法定性和无法区分挥发性、半挥发性比例。5. 气相色谱法 通常选择GC-FID来分离检测TPH。针对特定物质,也可采用MSD检测器进行定性定量分析。前处理可采用吹扫捕集或静态顶空(针对挥发性)或溶剂萃取(针对半挥发性)等方式。GC具有较高的灵敏,但TPH较为复杂,不利于选择合适的标准品进行外标法定量,但目前较为广泛使用的标准校正因子法可相对准确的进行数据处理。但是,气相色谱法的最明显的优势在于可以利用保留时间的分取进行更精细化的总石油烃划分。 综上所述,如果测定TPH时,重量法、红外光谱法、气相色谱法均是较好的选择,红外光谱法前处理简单、分析速度较快的特性为其应得更多的青睐,值得注意的是三种方式测定的数据并不具有可比性,如果将更多的时间浪费在不同方法数据的比对上则得不偿失,选择一种方法代表对其测定原理的认可,不能强求不同原理测定的复杂化合物数据完全相同。如果想将TPH细化分段,则只能选择气相色谱法,显然该种方法对于仪器进样器的要求要高于样品处理,但也是目前能够做到分段测定TPH的最为合适的方法。但分段具有人为性,过于苛求数据的精确性,纠结不同结构相同碳数的出峰顺序往往是自寻烦恼。但是,将其划分的更精细,将其检测方法进一步优化不失为未来很长一段时间内研究的突破口和创新点。因此,环境样品中TPH的分析技术离成熟还很远,值得大家去进一步研究。

  • 石油深加工中常见杂质分析的研究

    [align=center][b][font=楷体]石油深加工中常见杂质分析的研究[/font][/b][/align][b][font=黑体]摘[/font][font=黑体]要:[/font][/b][font=宋体]本文针对石油深加工中常见杂质分析进行了研究,通过对常见杂质的种类、来源、分析方法以及提高分析精度的措施进行系统总结和分析,对于保证石油产品质量和安全具有重要意义。[/font][align=left][b][font=黑体]关键词:[/font][/b][font=宋体]石油;深加工;杂质分析[/font][/align][align=left][b][font='Times New Roman','serif']1[/font][font=宋体]前言[/font][/b][/align][align=left][b][font='Times New Roman','serif']1.1[/font][font=宋体]研究背景[/font][/b][/align][font=宋体]石油深加工是将原油经过一系列的物理和化学处理过程,从中分离出石化产品的过程。石油深加工涉及的产品种类多样,如燃料油、润滑油、化学品、塑料、橡胶等。然而,在石油深加工过程中,常常存在着各种杂质,如金属离子、酸性物质、水分、沉淀物、固体颗粒等。这些杂质会影响产品的质量、稳定性和性能,甚至会影响生产设备的寿命和安全性。[/font][align=left][b][font='Times New Roman','serif']1.2[/font][font=宋体]研究意义[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])石油深加工中常见杂质分析是确保产品质量和安全的重要手段。杂质的存在会影响产品的性能和品质,甚至会导致生产设备的损坏和安全事故。因此,石油深加工企业需要及时、准确地分析常见的杂质,以确保产品符合相关标准和规定,同时保证生产设备的正常运行。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])石油深加工中常见杂质分析的研究对于改进生产工艺具有重要作用。通过对常见杂质进行分析,可以识别和定位生产过程中存在的问题,进而改进生产工艺,提高生产效率和产品品质。例如,通过分析润滑油中的金属杂质,可以确定生产设备的磨损情况,进而进行适当的维护和保养,提高设备的使用寿命。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])石油深加工中常见杂质分析的研究有助于提高企业的竞争力。在当今激烈的市场竞争中,不断提高产品的质量和性能是企业取得竞争优势的关键。通过对石油深加工中常见杂质进行分析,企业可以更好地控制生产过程,提高产品的一致性和可靠性,从而满足客户的需求,提高市场占有率。[/font][align=left][b][font='Times New Roman','serif']2 [/font][font=宋体]石油深加工中的[/font][font=宋体]常见杂质分析[/font][/b][/align][align=left][b][font='Times New Roman','serif']2.1[/font][font=宋体]常见杂质来源[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])原油中的杂质[/font][font=宋体]原油是石油深加工的原料,其中含有多种杂质,如水、机械杂质、沙、泥等,这些杂质会在炼制过程中随着原油进入各个装置和设备,成为常见杂质的来源之一。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])生产设备和管道中的杂质[/font][font=宋体]石油深加工设备和管道在长时间的使用过程中,容易产生氧化、腐蚀、磨损等问题,导致设备和管道内部出现沉积、锈蚀等杂质。这些杂质会影响产品的质量和稳定性,因此需要对生产设备和管道进行定期检查和维护。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])催化剂中的杂质[/font][font=宋体]催化剂是石油深加工过程中常用的催化剂,它在反应过程中可以起到加速反应、提高产品质量等作用。然而,催化剂本身也可能含有杂质,如金属离子、硫化物等,这些杂质会在反应过程中释放出来,影响产品的质量和稳定性。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])生产过程中人为因素的影响[/font][font=宋体]石油深加工过程中,人为因素也可能成为常见杂质的来源之一。例如,操作不当、污染源的存在、加工工艺不合理等因素都可能导致产品中含有一定的杂质。因此,在生产过程中需要加强对操作流程和环境的监管和管理。[/font][align=left][b][font='Times New Roman','serif']2.2 [/font][font=宋体]常见杂质特点[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])常见杂质在化学和物理性质上具有复杂性[/font][font=宋体]石油深加工过程中,常见的杂质包括铁、铜、镍、钒等金属离子,有机酸、树脂、胶体等有机杂质,以及沉淀物、水分、固体颗粒等无机杂质。这些杂质的化学和物理性质多种多样,如有机酸的极性较强,容易溶解在水中,而金属离子具有比较强的电化学反应活性,容易发生氧化还原反应,对分析方法提出了较高的要求。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])常见杂质的浓度较低,分析方法的灵敏度要求较高[/font][font=宋体]石油深加工过程中,常见的杂质浓度一般较低,如有机酸的浓度通常在数毫克[/font][font='Times New Roman','serif']/[/font][font=宋体]升以下,金属离子的浓度常常在微克[/font][font='Times New Roman','serif']/[/font][font=宋体]升以下,对分析方法的灵敏度要求较高。因此,在进行常见杂质分析时,需要选择灵敏度高、选择性好、可靠性高的分析方法。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])样品的处理过程中易受到污染[/font][font=宋体]在样品的制备和处理过程中,会受到空气中的灰尘、化学试剂、实验器皿等的污染。这些污染物会对样品的分析结果产生干扰,降低分析方法的准确性和可靠性。因此,在样品制备和处理过程中需要注意避免污染,采取严格的控制措施。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])常见杂质的种类和含量随着加工工艺的变化而变化[/font][font=宋体]石油深加工中,常见杂质的种类和含量随着加工工艺的变化而变化。例如,润滑油中的重金属杂质在炼制过程中的含量和种类会发生变化,而在不同种类的润滑油中,重金属杂质的含量和种类也会有所不同。因此,在进行常见杂质的分析和控制时,需要结合具体的加工工艺和产品特性,选择适当的分析方法和控制策略。同时,需要建立完善的质量控制体系,对各个环节进行严格的监管和管理,确保产品的质量和稳定性。[/font][align=left][b][font='Times New Roman','serif']2.3[/font][font=宋体]常见杂质的分析方法[/font][/b][/align][font=宋体]石油深加工中常见杂质的分析方法包括物理方法、化学方法和仪器分析方法,具体如下:[/font][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])物理方法[/font][font=宋体]物理方法是通过物理原理对样品进行分离和提纯,来检测其中的杂质的方法。如沉淀、过滤、萃取等方法。其中,沉淀法适用于固体颗粒和大分子有机杂质的分离;过滤法适用于固体颗粒和大分子有机杂质的分离;萃取法适用于有机杂质的提取和分离。这些方法具有简单、快速、易于操作的特点,但是灵敏度和选择性相对较低。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])化学方法[/font][font=宋体]化学方法是通过化学反应对样品中的杂质进行分析和定量。如络合滴定法、显色滴定法、酸度滴定法等。其中,络合滴定法适用于金属离子、有机酸等杂质的测定;显色滴定法适用于酸性物质的测定;酸度滴定法适用于酸性物质、碱性物质等的测定。这些方法具有比较高的灵敏度和选择性,但需要较长的分析时间和复杂的样品处理步骤。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])仪器分析方法[/font][font=宋体]仪器分析方法是通过各种分析仪器对样品中的杂质进行分析和检测。如质谱仪、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]、红外光谱等。其中,质谱仪适用于金属离子、有机酸等杂质的检测;[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]适用于大分子有机杂质的检测;[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]适用于小分子有机杂质的检测;[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]适用于金属离子的检测;红外光谱适用于有机杂质的检测。这些方法具有高灵敏度、高分辨率、高选择性等特点,但设备和分析成本较高,需要较为专业的技术支持。[/font][align=left][b][font='Times New Roman','serif']3 [/font][font=宋体]提高[/font][font=宋体]常见杂质分析精度的措施[/font][/b][/align][align=left][b][font='Times New Roman','serif']3.1 [/font][font=宋体]严格控制分析条件[/font][/b][/align][font=宋体]分析条件的控制直接影响分析结果的准确性和精度。在分析过程中,需要严格控制温度、[/font][font='Times New Roman','serif']pH[/font][font=宋体]值、流速、反应时间等分析条件,避免影响分析结果的因素干扰。[/font][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])确定合适的温度控制:对于热敏感的样品,需要严格控制分析过程中的温度。可以使用水浴或加热器来控制温度,确保样品在分析期间保持稳定的温度。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])确定合适的[/font][font='Times New Roman','serif']pH[/font][font=宋体]值:不同的样品需要不同的[/font][font='Times New Roman','serif']pH[/font][font=宋体]值来达到最佳分析效果。因此,在分析过程中,需要根据样品的特性和分析方法的要求来调整[/font][font='Times New Roman','serif']pH[/font][font=宋体]值,以确保分析结果的准确性和精度。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])控制流速和反应时间:流速和反应时间也是影响分析结果的因素。在分析过程中,需要确保流速的稳定,并根据反应时间要求来控制反应时间,以保证分析结果的准确性和精度。[/font][align=left][b][font='Times New Roman','serif']3.2 [/font][font=宋体]优化样品处理方法[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])确定样品处理方法。在进行样品处理之前,需要确定样品处理方法。样品处理的方法包括沉淀、过滤、萃取等。需要根据待测样品的性质和组成,选择合适的样品处理方法。例如,对于含有大量固体颗粒的样品,需要进行适当的沉淀和过滤处理,以减小对分析结果的影响。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])选择合适的试剂和溶剂。在进行样品处理过程中,需要选择合适的试剂和溶剂。试剂和溶剂的选择需要考虑其化学特性和物理特性,以及对分析结果的影响。例如,选择酸、碱、氧化剂等试剂时,需要考虑其对杂质的溶解能力和分析结果的影响。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])控制样品处理条件。样品处理条件对分析结果有重要影响。需要控制样品处理条件,包括温度、时间、[/font][font='Times New Roman','serif']pH[/font][font=宋体]值等。需要根据具体情况选择合适的处理条件,以提高分析精度和准确度。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])避免交叉污染。在样品处理过程中,需要避免样品之间的交叉污染。交叉污染会导致杂质的混淆,影响分析结果的准确性。需要采取相应的措施,如更换操作用品、严格控制操作流程等,避免交叉污染。[/font][font=宋体]([/font][font='Times New Roman','serif']5[/font][font=宋体])进行空白实验和对照实验。空白实验和对照实验可以评估样品处理方法的准确度和可靠性。空白实验可以检测样品处理过程中的污染来源,对照实验可以评估样品处理方法的准确性和可靠性。通过空白实验和对照实验,可以确定样品处理方法的适用性,并纠正分析结果的误差。[/font][align=left][b][font='Times New Roman','serif']3.3 [/font][font=宋体]做好仪器设备校准工作[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])定期检验和校准仪器设备。定期检验和校准仪器设备可以保证仪器设备的准确度和可靠性。需要根据仪器设备的使用频率和使用环境,定期进行检验和校准。对于一些需要精确测量的仪器,需要更加频繁地进行校准。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])选择适当的标准物质。校准仪器设备需要使用标准物质。选择适当的标准物质对校准结果具有重要影响。需要根据待校准的仪器设备和待测杂质的性质,选择合适的标准物质。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])控制环境因素。环境因素对仪器设备的准确度和可靠性有重要影响。在进行校准过程中,需要控制环境因素,包括温度、湿度等。需要根据具体情况选择合适的校准环境。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])按照标准操作流程进行校准。校准仪器设备需要按照标准操作流程进行。校准操作流程需要详细记录,包括校准步骤、校准结果、校准时间等。需要根据具体情况选择合适的校准操作流程。[/font][align=left][b][font='Times New Roman','serif']3.4 [/font][font=宋体]采用内标法和外标法[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])内标法的具体措施[/font][font=宋体]内标法是在样品中加入已知浓度的内标物质,用内标物质的响应与待测物质的响应比较,计算出待测物质的浓度。具体措施包括:[/font][font=宋体]选择合适的内标物质。内标物质应与待测物质具有相似的化学特性和物理特性,同时需要与待测物质分离度高、信号稳定等。[/font][font=宋体]确定内标物质的加入量。内标物质的加入量需要保证与待测物质的量在同一量级,以保证计算结果的准确性。[/font][font=宋体]进行内标物质的响应比较。待测物质和内标物质的响应需要通过仪器设备测量得到。对于一些需要高精度测量的分析,需要进行多次测量,取平均值。[/font][font=宋体]计算待测物质的浓度。通过内标物质的响应比较,计算出待测物质的浓度。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])外标法的具体措施[/font][font=宋体]外标法是使用已知浓度的标准物质,建立标准曲线,然后根据待测样品的响应值,计算出待测物质的浓度。具体措施包括:[/font][font=宋体]选择合适的标准物质。标准物质需要与待测物质具有相似的化学特性和物理特性,同时需要纯度高、溶解度好等。[/font][font=宋体]建立标准曲线。通过测量不同浓度的标准物质,建立标准曲线。标准曲线需要经过回归分析,计算出待测物质浓度的相关参数。[/font][font=宋体]测量待测样品的响应值。使用仪器设备测量待测样品的响应值,需要注意避免测量误差。[/font][font=宋体]计算待测物质的浓度。通过标准曲线的相关参数和待测样品的响应值,计算出待测物质的浓度。[/font][align=left][b][font='Times New Roman','serif']3.5 [/font][font=宋体]引入质量控制[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])制备质控样品[/font][font=宋体]制备质控样品是质量控制的关键环节。质控样品需要与待测样品具有相似的化学特性和物理特性,同时需要纯度高、浓度稳定等。通过制备质控样品,可以评估分析方法的准确度和可靠性。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])建立质量控制系统[/font][font=宋体]建立质量控制系统是保证分析质量的重要措施。质量控制系统需要包括内部质量控制和外部质量控制。内部质量控制需要对分析仪器设备和分析流程进行控制,保证分析结果的准确性和可靠性。外部质量控制需要参加国内外的质量控制项目,评估分析方法的准确度和可靠性。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])确定质量控制标准[/font][font=宋体]质量控制标准是评估分析结果的依据。需要根据待测物质的特性和分析要求,制定合适的质量控制标准。质量控制标准需要包括测量范围、检测限、准确度、精密度等。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])进行质量控制实验[/font][font=宋体]质量控制实验可以评估分析结果的准确度和可靠性。需要在每次分析前,加入质控样品,进行实验验证。通过比较实验结果和质量控制标准,评估分析方法的准确度和可靠性。[/font][font=宋体]([/font][font='Times New Roman','serif']5[/font][font=宋体])记录质量控制数据[/font][font=宋体]质量控制数据需要记录和统计,包括质控样品的制备和使用、质量控制实验的结果等。通过记录和统计质量控制数据,可以评估分析方法的稳定性和可靠性,并进行相应的纠正。[/font][align=left][b][font='Times New Roman','serif']4 [/font][font=宋体]结语[/font][/b][/align][font=宋体]总而言之,石油深加工中常见杂质分析的研究对于保证石油产品质量和安全具有重要意义。通过选择合适的分析方法和措施,可以提高常见杂质分析的精度和准确度,为石油深加工的稳定和可持续发展提供有力保障。未来,还需要进一步加强常见杂质的检测和分析研究,提高石油产品的质量和安全水平。[/font][align=center][font='Times New Roman','serif'] [/font][/align]

中曼石油分析相关的耗材

  • 石油族组成分析 其他气相专用柱
    石油族组成分析特点:可以将直馏石脑油中链烷烃、环烷烃和芳烃进行族分离,分析时间比PONA柱分析时间短色谱柱:30m*0.53mm(不锈钢毛细柱)柱温度:初始温度170℃ 保持2min 速率12℃/min 最终温度430℃ 保10min进样器:400℃检测器:400℃其它 条件:载气压力0.03MPa色谱柱货号:ZSY1-3520
  • 安捷伦Lowox丨CP8587石油分析柱
    石油分析柱石油分析应用千差万别。针对这一情况,安捷伦设计了品种丰富的各式色谱柱,可满足石油/石化色谱工作人员从惰性气体分析到模拟蒸馏的各类应用需要。有关用于轻质气体分析的色谱柱,请参阅PLOT 色谱柱一节。Lowox. 对多种氧化物分析具有独特的选择性. 最少的颗粒流失保证了检测器的性能. 在过程分析和车载气相色谱分析中经业内验证的成熟应用(ASTM D7059). 分析气态和液态烃类样品中的痕量含氧杂质. 强极性. 监测氧化物污染催化剂的理想选择内径(mm) 长度(m) 膜厚(μm) 温度范围(°C) 7 英寸柱架 5 英寸柱架 0.53 10 10.00 0 到350/350 CP8587 CP8587I5
  • DB-2887 石油分析柱
    产品特点: 石油分析应用千差万别。从稀有气体到模拟蒸馏,安捷伦提供了多种色谱柱,以满足石油/石油化学品色谱工作者的需要。有关用于分析轻质气体的色谱柱的信息,请参见PLOT 色谱柱一节。 为石油分析应用推荐的色谱柱 * 用于模拟蒸馏的 DB-HT SimDis * 用于PONA 和 PIANO 分析的 HP-PONA、DB-5 或 HP-1 DB-2887 * 100% 二甲基聚硅氧烷 * 专为使用ASTM 方法D2887 模拟蒸馏而设计 * 与填充柱相比,老化速度快、分析时间短、流失低 * 键合交联 * 可用溶剂清洗 相似的固定相:HP-1, Petrocol EX2887, MXT-2887, MXT-1, Rtx-2887 产品应用: 专为使用ASTM 方法D2887 模拟蒸馏而设计 DB-2887 柱的色谱图 石油 * 标准油 * 模拟蒸馏 订货信息:DB-2887 内径(mm) 长度(m) 膜厚(um) 温度范围(℃) 部件号0.53 103.00 -60 至350125-2814
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制