当前位置: 仪器信息网 > 行业主题 > >

电损伤仪

仪器信息网电损伤仪专题为您提供2024年最新电损伤仪价格报价、厂家品牌的相关信息, 包括电损伤仪参数、型号等,不管是国产,还是进口品牌的电损伤仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电损伤仪相关的耗材配件、试剂标物,还有电损伤仪相关的最新资讯、资料,以及电损伤仪相关的解决方案。

电损伤仪相关的耗材

  • 大型无损伤蓝光凝胶观察仪
    蓝色LED光源, 广泛用于核酸或蛋白质凝胶染色的观察。与传统的紫外透射仪相比:-蓝光光源,使实验人员的易暴露部位,如:眼睛、脸、手等部位免受紫外线伤害-对核酸片段无损伤,不会因照射导致片段断裂、交联、替换等损害-环保节能长效冷光源,无需经常更换灯管,省钱免维护产品优势:紧凑– 节省实验室空间小巧 - 方便移动安全 - 对人和样品无损伤精确 - 灵敏度高均一 - 可以观察胶的任何位置人性化 - 方便观察和切胶通用技术参数1. 蓝色LED激发光源:470nm,无需蓝色滤光片2. 光强比普通的透射光强3倍3. 光强从100%到50%可以调节4. 黄色滤光屏:可以屏蔽蓝光,让发射光透过,滤光屏可以自由翻转,在任意位置固定,方便切胶5. 检 测的灵敏度0.1ng6. 变异系数:7. 观察面积:16×20cm8. LED光源的寿命:5万个小时9. 体积:28×34×8cm(D×W×H),占用空间少10. 重量:3kg11.用途:用于EB替代荧光染料的激发,如SYBR? Safe, SYBR Gold, SYBR? Green I & II, SYPRO? Ruby, SYPRO? Orange, Coomassie Fluor? Orange stains, GelGreen, GelRed 和 Lumitein? Protein Gel Stain等,凝胶观察和切胶操作
  • 非损伤微测系统专用流速传感器
    一、产品介绍1、非损伤微测系统专用流速传感器(组织样品专用传感器8-10um) 型号:XY-CGQ01 价格:68元/支,10支起订 本传感器适用于测定组织样品的所有离子传感器,特别针对Cl-、NO3-、NH4+测试时信号采集不稳定而开发出的新型传感器,使得测定上述三种离子时,信号的稳定性大大提高。 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:8-10微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米响应时间:300毫秒空间分辨率:5微米2、非损伤微测系统专用流速传感器(组织样品专用传感器4-5um) 型号:XY-CGQ-01 价格:68元/支,10支起订 用于非损伤测量组织样品专用的流速传感器 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:4-5微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米响应时间:300毫秒空间分辨率:5微米3、非损伤微测系统专用流速传感器(细胞样品专用传感器1-2um) 型号:XY-CGQ-02 价格:79元/支,10支起订 用于非损伤测量细胞样品专用的流速传感器 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:1-2微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米响应时间:300毫秒空间分辨率:5微米4、膜电位专用流速传感器 型号:XY-CGQ-03 价格: 51元/支,10支起订 专门用于测量膜电位的流速传感器 技术参数:材料:硼硅酸盐玻璃微管导液丝:有长度:50毫米尖端直径:1-2微米末端直径:外径1.5毫米/内径0.84毫米管壁厚度:0.33微米响应时间:300毫秒空间分辨率:5微米5、离子交换剂微容器(LIX Holder 载体) 型号:XY-LIX-01 价格: 34元/支,10支起订 装载离子交换剂的微量容器 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:35-45微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米6、膜电位专用流速传感器 型号:XY-CGQ-04 价格: 34元/支,10支起订 用于传感器动态校正 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:10微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米
  • 小型无损伤蓝光凝胶观察仪
    适合不同应用的便携尺寸轻薄机身铝合金外壳设计桌面占用空间小高发光效率,低散热照明均匀度 80 %470nm 无害蓝光用于野广泛DNA 安全染料染色先进的 Transblue ST 将其 580nm 琥珀色滤光板与机身分开,使观测仪更薄更轻。 与上一代 Transblue ST 一样,它配备了安全的 470nm 蓝光 LED 灯。 成像尺寸为 153x153 毫米,您可以在观测仪上放置任何中小型凝胶。Transblue ST 还与我们的成像系统兼容,例如 Glite 600 BW。Transblue ST 适用于以下应用:EtBr、GelRed、GelGreen、SYBR Gold、GelSafe、ECO Safe 和大多数 DNA 安全染色染料。规格Trans-Blue ST材料铝合金蓝光波长470nm可见范围6"x6" (153x153mm)滤光板琥珀色滤光板尺寸 (WxHxD)7.9"x7.9"x0.6" (200x200x13.9mm)重量1.68lb (760g)电源DC 12V, 2A
  • 低插入损耗单模光纤跳线
    低插入损耗单模光纤跳线特性低插入损耗(典型值):0.3 分贝 (600 - 800 nm)0.5 - 0.6 分贝(405 - 532 nm和488 - 633 nm)0.9 分贝(320 - 430 nm)有效波段范围:320 - 430 nm,405 - 532 nm,488 - 633 nm或是633 -780 nm可选的接头有(皆为2.0 毫米的窄口接头):FC/PCFC/APCFC/PC转FC/APC具有每根跳线单独测试的数据附带两个CAPF防尘帽Thorlabs公司提供两头带有FC/PC或FC/APC接头的低插入损耗单模跳线。此外,我们还提供FC/PC转FC/APC跳线。这些小纤芯跳线由我们自己的工厂中用zui先进的设备进行制造,每一根都经过人工挑选,保证光纤具有很小的公差以及匹配的插芯。它们都经过测试,保证了其低损耗特性。这里提供的跳线设计用于320 - 430 nm,400 - 532 nm,488 -633 nm,或者633 - 780nm光波范围的信号传输,在低插入损耗跳线之间分别具有典型0.9 dB,0.5-0.6 dB或者0.3 dB插入损耗。我们的FC/PC跳线具有较高的50分贝(典型值)回波损耗,FC/APC跳线具有60分贝(典型值)回波损耗。每根光纤跳线的测量性能参数都在其附带的规格表中有详细介绍。在标准跳线中,光纤参数(如纤芯-包层偏心度或纤芯与跳线中心的不对准程度)都会有微小的差异。在使用标准匹配套管对准单模跳线的纤芯时,其小纤芯会使这些差异更加严重,或是导致更高的插入损耗。通过广泛地挑选和测试过程,我们的低插入损耗跳线具有高同心度、对心良好的纤芯,可以极大地减小跳线的插入损耗(请参看对比标签了解更多细节)。生产低插入损耗跳线的流程的di一步是人工挑选纤芯-包层同心度高于典型值、小公差光纤外径的光纤,从而与插芯进行匹配。每个插芯也是通过人工进行挑选,从而使插芯内径与光纤尺寸相匹配,并匹配插芯的纤芯-外径同心度。这样就可以保证光纤能够zui紧凑地被包裹,并具有zui佳同心度,保证低插入损耗性能。插芯经过机器抛光,光纤纤芯与接头插销之间的对准公差为±5度。zui后,跳线的插入损耗通过测试,直到符合you秀跳线的标准。通过人工挑选光纤和插芯,Thorlabs公司的低插入损耗跳线能够具有出色的性能和质量。我们还提供匹配套管用于连接FC转FC、SMA转SMA和FC转SMA接头。这些匹配套管可以将背向反射zui小化,保证每个连接光纤末端的纤芯能够很好地对准。我们特别推荐使用我们更小公差的ADAFCPM2精密PM匹配套管,被用于达到下面说明书提到的插入损耗。每根跳线有两个防尘帽,能够防止插芯末端受到尘土和其它污染物的污染。我们也单独销售保护FC/PC终端CAPF塑料光纤帽和CAPFM金属螺纹光纤帽。Stock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch CablesAR-Coated Patch Cables如果您在我们的库存中找不到适合您应用的跳线,Thorlabs公司还提供定制低插入损耗跳线服务。请联系技术支持了解报价。此外,点击下面表格中连接有标准跳线定制且当天发货服务。用我们的Centroc测试设备所测得的结果,显示了标准跳线(左)和低插入损耗跳线(右)的典型纤芯角度对准和同心度。规格:Item # PrefixP1-305P-FCP3-305P-FCP5-305P-FCAPCP1-405P-FCP3-405P-FCP5-405P-FCAPCConnector TypeFC/PCFC/APCFC/PC to FC/APCFC/PCFC/APCFC/PC to FC/APCFiber TypeSM300SM400Operating Wavelength320 - 430 nm405 - 532 nmCutoff Wavelength≤310 nm305 - 400 nmInsertion Loss (Max/Typ.)a1.5 dB / 0.9 dB1.0 dB / 0.5 dB (1 m and 2 m Long Cables)1.0 dB / 0.6 dB (5 m Long Cables)Mode Field Diameter2.0 - 2.4 μm @ 350 nm2.5 - 3.4 μm @ 480 nmKey Width2.0 mm (Narrow)Cable Length Tolerance+0.075/-0.0 mJacket Type?3 mm FT030-YCladding Diameter125 ± 1.0 μmCoating Diameter245 ± 15 μmNumerical Aperture0.12 - 0.14Max Attenuationb≤70 dB/km @ 350 nm≤50 dB/km @ 430 nm≤30 dB/km @ 532 nmOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C与另一根低插入损耗的光纤跳线配接时的插入损耗值。在405 nm波段下使用低插入损耗的跳线和一个ADAFCPM2匹配套管进行测试。zui大衰减度数据针对无端接头的光纤。Item # PrefixP1-460P-FCP3-460P-FCP5-460P-FCAPCP1-630P-FCP3-630P-FCP5-630P-PCAPCConnector TypeFC/PCFC/APCFC/PC to FC/APCFC/PCFC/APCFC/PC to FC/APCFiber TypeSM450SM600Operating Wavelength488 - 633 nma633 - 780 nmCutoff Wavelength350 - 470 nma500 - 600 nmInsertion Loss (Max/Typ.)b1.0 dB / 0.5 dB (1 m and 2 m Long Cables)1.0 dB / 0.6 dB (5 m Long Cables)0.8 dB / 0.3 dBMode Field Diameter2.8 - 4.1 μm @ 488 nm3.6 - 5.3 μm @ 633 nmKey Width2.0 mm (Narrow)Cable Length Tolerance+0.075/-0.0 mJacket Type?3 mm FT030-YCladding Diameter125 ± 1.0 μmCoating Diameter245 ± 15 μmNumerical Aperture0.10 - 0.14Max Attenuationc≤50 dB/km @ 488 nm≤15 dB/km @ 630 nmdOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C光纤经过手工挑选,以确保更高的截止波长。在截止波长附近的单模操作需要考虑发射条件。与另一根低插入损耗的光纤跳线配接时的插入损耗值。在488 nm(SM450跳线)或是630 nm(SM600跳线)波段,配合一个ADAFCPM2匹配套管利用另一根低插入损耗的跳线进行测试。zui大衰减度数据针对无端接头的光纤。衰减度是zui差值,针对zui短波长的情况。对比405 纳米跳线对比T上图包含了Thorlabs公司长1米、2米的低插入损耗(LIL)跳线和标准跳线之间的示例对比数据。上述数据下长1米的LIL跳线具有-0.37分贝的平均插入损耗,长2米的LIL跳线具有-0.39分贝的插入损耗,长5米的LIL跳线具有-0.59分贝的插入损耗,而长1米的标准跳线具有-2.48分贝的插入损耗,长2米的标准跳线具有-2.44分贝的插入损耗,长5米的标准跳线具有-2.42分贝的插入损耗。5米跳线所测得的插入损耗稍高,这是因为我们没有对光纤的损耗进行校准。我们的LIL跳线的平均插入损耗与标准跳线相比平均高~7倍。T在测试我们跳线的插入损耗时,我们将波长为405乃的光纤耦合激光光源耦合到精选的跳线中;跳线输出功率经过测试和调节,保证不同跳线的数值基本相同。每根待测光纤经过检查、清洁并连接到匹配套管上,然后记录下跳线的输出功率。这样一来,就可以进行光纤插入损耗的均匀性测量,并与其它跳线的插入损耗进行对比。测试过程如右图所示。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。320 - 430 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationbNAJacketLengthP1-305P-FC-1FC/PCSM3001.5 dB/0.9 dB320 - 430 nm≤310 nm2.0 - 2.4 μm @ 350 nm≤70 dB/km @ 350 nm0.12 -0.14FT030-Y1mP1-305P-FC-22mP3-305P-FC-1FC/APC1mP3-305P-FC-22mP5-305P-PCAPC-1FC/PC to FC/APC1ma. 与另一低插入损耗光纤跳线配接时的插入损耗值。将低插入损耗单模跳线在405 nm波长下,搭配ADAFCPM2匹配套管进行测试。b. zui大衰减度数据针对的是无端接头的光纤。产品型号公英制通用P1-305P-FC-1低插入损耗单模光纤跳线,1米长,320 - 430 nm, FC/PC接头P1-305P-FC-2低插入损耗单模光纤跳线,2米长,320 - 430 nm,FC/PC接头P3-305P-FC-1低插入损耗单模光纤跳线,1米长,320 - 430 nm,FC/APC接头P3-305P-FC-2低插入损耗单模光纤跳线,2米长,320 - 430 nm,FC/APC接头P5-305P-PCAPC-1低插入损耗单模光纤跳线,1米长,320 - 430 nm,FC/PC转FC/APC接头405 - 532 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationb,cNAJacketLengthP1-405P-FC-1FC/PCSM4001.0 dB/0.5 dB405 - 532 nm305 - 400 nm2.5 - 3.4 μm @ 480 nm≤50 dB/km @ 430 nm≤30 dB/km @ 532 nm0.12 -0.14FT030-Y1mP1-405P-FC-22mP1-405P-FC-51.0 dB/0.6dB5mP3-405P-FC-1FC/APC1.0 dB/0.5 dB1mP3-405P-FC-22mP3-405P-FC-51.0 dB/0.6dB5mP5-405P-FC-1FC/PC to FC/APC1.0 dB/0.5 dB1ma. 与另一低插入损耗光纤跳线配接时的插入损耗值。将低插入损耗单模跳线在405 nm波长下,搭配ADAFCPM2匹配套管进行测试。b. zui大衰减度数据针对的是无端接头的光纤。c. 所述的衰减度是zui差情况的值,针对的是zui短设计波长。产品型号公英制通用P1-405P-FC-1低插入损耗单模光纤跳线,长1米,405 - 532纳米,FC/PCP1-405P-FC-2低插入损耗单模光纤跳线,长2米,405 - 532 nm,FC/PC接头P1-405P-FC-5低插入损耗单模光纤跳线,长5米,405 - 532 nm,FC/PC接头P3-405P-FC-1低插入损耗单模光纤跳线,长1米,405 - 532纳米,FC/APCP3-405P-FC-2低插入损耗单模光纤跳线,长2米,405 - 532纳米,FC/APCP3-405P-FC-5低插入损耗单模光纤跳线,长5米,405 - 532纳米,FC/APCP5-405P-PCAPC-1低插入损耗单模光纤跳线,长1米,405 - 532纳米,FC/PC转FC/APC接头488 - 633 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationb,cNAJacketLengthP1-460P-FC-1FC/PCSM4501.0 dB/0.5 dB488 - 633 nm350 - 470 nm2.8 - 4.1μm @ 488nm≤50 dB/km @ 488 nm0.10 -0.10 -0.14FT030-Y1mP1-460P-FC-22mP1-460P-FC-51.0 dB/0.6dB5mP3-460P-FC-1FC/APC1.0 dB/0.5 dB1mP3-460P-FC-22mP3-460P-FC-51.0 dB/0.6dB5mP5-460P-FC-1FC/PC to FC/APC1.0 dB/0.5 dB1ma. 与另一根低插入损耗的光纤跳线配接时的插入损耗值。在488 nm波长下使用低插入损耗单模跳线和一个ADAFCPM2匹配套管进行测试。b. 手选光纤来保证更高的截止波长。对于截止波长附近的单模操作,需考虑发射条件。c. zui大衰减数据针对无端接头的光纤。产品型号公英制通用P1-460P-FC-1低插入损耗单模光纤跳线,长1米,488 - 633纳米,FC/PCP1-460P-FC-2低插入损耗单模光纤跳线,长2米,488 - 633 nm,FC/PC接头P1-460P-FC-5低插入损耗单模光纤跳线,长5米,488 - 633 nm,FC/PC接头P3-460P-FC-1低插入损耗单模光纤跳线,长1米,488 - 633纳米,FC/APCP3-460P-FC-2低插入损耗单模光纤跳线,长2米,488 - 633纳米,FC/APCP3-460P-FC-5低插入损耗单模光纤跳线,长5米,488 - 633纳米,FC/APCP5-460P-PCAPC-1低插入损耗单模光纤跳线,长1米,488 - 633纳米,FC/PC转FC/APC接头633 - 780 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationb,cNAJacketLengthP1-630P-FC-1FC/PCSM6000.8 dB/0.3 dB633 - 780 nm500 - 600 nm3.6 - 5.3 μm @ 633 nm≤15 dB/km @ 630 nm0.10 -0.10 -0.14FT030-Y1mP1-630P-FC-22mP1-630P-FC-55mP3-630P-FC-1FC/APC1mP3-630P-FC-22mP3-630P-FC-55mP5-630P-FC-1FC/PC to FC/APC1ma. 与另一低插入损耗的光纤配接时的插入损耗。在630 nm波长下将低插入损耗单模跳线搭配ADAFCPM2匹配套管进行测试。b. 波长范围是截止波长和光纤不再传输的边缘波长之间的光谱区域,它表示光纤以低衰减度传输TEM00模的区域。对于这种光纤,边缘波长通常比截止波长长200nm。c. 衰减度是zui差情况的值,针对的是zui短波长。zui大衰减度数据针对的是无端接头的光纤。d. 衰减度是zui差情况的值,针对的是zui短波长。产品型号公英制通用P1-630P-FC-1低插入损耗单模光纤跳线,长1米,633- 780纳米,FC/PCP1-630P-FC-2低插入损耗单模光纤跳线,长2米,633 - 780 nm,FC/PC接头P1-630P-FC-5低插入损耗单模光纤跳线,长5米,633 -780 nm,FC/PC接头P3-630P-FC-1低插入损耗单模光纤跳线,长1米,633 - 780纳米,FC/APCP3-630P-FC-2低插入损耗单模光纤跳线,长2米,633 - 780纳米,FC/APCP3-630P-FC-5低插入损耗单模光纤跳线,长5米,633 - 780纳米,FC/APCP5-630P-PCAPC-1低插入损耗单模光纤跳线,长1米,633 - 780纳米,FC/PC转FC/APC接头
  • 无尘擦拭布/6*6寸 防静电无尘布/无尘车间用无尘布/细纤维无尘布
    无尘擦拭布/6*6寸 防静电无尘布/无尘车间用无尘布/细纤维无尘布由上海书培实验设备有限公司为您提供,产品规格齐全,量多从优,欢迎客户来电咨询选购。产品介绍:规格:6*6寸包装:150张/包 10包/箱无尘擦拭布用途:产品用于:半导体生产线芯片、微处理器等、半导体装配生产线、碟盘驱动器,复合材料、LCD显示类产品、线路板生产线、精密仪器、光学产品、航空工业、PCB产品、医疗设备、.实验室、无尘车间和生产线。无尘擦拭布特点:1:高效吸水性。2:不易引起化学反应。3:柔软不会损伤物体表面。4:离子释出量低;不易引起化学反应。5:优良的除尘效果,配合有防静电功能。6:优良的除尘效果,配合有防静电功能,高效吸水性,柔软不会损伤物体表面。7:无尘布该产品的边缘是由最先进的切边机封边,擦拭后不会留下微粒和线头,除污能力强。8:优良的除尘效果,配合有防静电功能;高效吸水性,柔软不会损伤物体表面;提供足够的干、湿强度。
  • 电子厂防静电加湿机
    电子厂防静电加湿机 加湿器企业新闻资讯报道:现如今,有不少的电子厂在生产过程中对其车间、仓库等环境空气湿度的要求是非常苛刻的;这是因为电子厂经常会碰到因湿度过低而产生大量的静电,这也是电子厂普遍存在的问题;而静电放电往往都会对电子产品或电子元器件造成不同程度的损伤,甚至使受损伤的电子产品或元器件失效报废,给电子厂造成严重的经济损失;因此,电子厂在电子产品的生产过程中使用加湿机将环境空气湿度保持在40-60%RH之间对于静电防护是非常重要的。 一般情况下,越是精密的电子元器件及产品越是需要防静电,虽然有些可能当时看不出被静电点击,但是在后面的合成使用成为最终产品的时候就会显现出损害了。按目前的国际标准,一般都是要求要防止ESD的,包括洁净室、防静电手脚腕带、防静电服以及进入洁净室之前的静电检测等等,而最为关键的就是要保持生产环境湿度的恒定,正确合理的使用正岛ZS-40Z电子厂防静电加湿机及ZS系列超声波工业加湿器可以轻松实现对电子厂车间、仓库等环境空气湿度的调控!正岛ZS-40Z电子厂防静电加湿机及ZS系列超声波工业加湿器产品,对于其他加湿方式的加湿器而言,具有【雾化颗粒细】 、【使用能耗低】 、【雾化能效高】,【加湿速度快】的显著优势。正岛ZS-40Z电子厂防静电加湿机及ZS系列超声波工业加湿器是采用超声波高频振荡的原理,从而达到均匀加湿的目的;具有空气加湿、净化、防静电、降温、降尘等多种用途;既可以较大空间进行均匀加湿,也可对特殊空间进行局部湿度补偿,具有较高的使用灵活性。点击此处查看电子厂防静电加湿机全部新闻图片备注:该系列产品可与环境试验设备以及环境监测仪器等温湿度相关仪器设备配套使用,也可作为其中的一个配件!欢迎您来电咨询电子厂防静电加湿机的详细信息!电子厂防静电加湿机种类有很多,不同品牌电子厂防静电加湿机价格及应用范围也会有所不同,而我们将会为您提供全方位的售后服务和优质的解决方案。正岛ZS-40Z电子厂防静电加湿机及ZS系列超声波工业加湿器控制方式,技术参数:控制方式加湿量1.8kg/h加湿量3kg/h加湿量6kg/h加湿量9kg/h加湿量12kg/h加湿量18kg/h开关控制ZS-06ZS-10ZS-20ZS-30ZS-40ZS-F60时序控制ZS-06SZS-10SZS-20SZS-30SZS-40SZS-F60S湿度控制ZS-06ZZS-10ZZS-20ZZS-30ZZS-40ZZS-F60Z出雾方式单管单管单管双管双管三管消耗功率180W300W600W900W1200W1800W正岛ZS-40Z电子厂防静电加湿机及ZS系列超声波工业加湿器产品六大核心配置优势:【全不锈钢箱体】【集成式雾化器】【IP68级防水电源】【轴承式防水风机】【耐碱酸陶瓷雾化片】【高精度湿度传感器】 查看更多电子厂防静电加湿机的详细信息尽在:正岛电器 ■加湿器选型需要考虑的因素较多,比如室内空间体积大小、环境温度、设备发热量、通风情况、空调排风都会影响室内环境的湿度以及加湿效果,在计算加湿量时一般需留出一定余量,也就是相应的加大加湿量,而且要从最低湿度状态增湿到最理想湿度范围来综合计算该空间内所需的加湿量和相对应的加湿器型号。本站新闻记者核心提示:在工业生产中,静电放电所造成的危害是非常大的;尤其是在电子零部件及其制成品的生产制造过程中,如果车间生产环境湿度过低,就会导致大量静电的产生,静电放电往往会损伤器件,甚至使器件失效,造成严重损失,静电电放电对电子产品的损伤具有隐蔽性、潜在性、(损伤的)随机性和(失效分析)复杂性等特点。因此,电子厂在其车间、仓库等环境中采取行之有效的静电防护措施,减少静电放电对电子元器件及其制成品所造成的损害是非常有必要的。静电的产生往往不被人体感知,但稍有不慎而产生的静电却有着上万伏特的电压,当产生的静电遇到尖端(静电释放点例如人的手指)时就会瞬间释放全部能量,导致接触到的物品被电击,造成电容、IC、线路等被击穿烧毁,使生产出来的电子产品被严重损害,故要采取使用正岛ZS-40Z电子厂防静电加湿机及ZS系列超声波工业加湿器通过调节湿度的方法,从根源上预防和消除静电的隐患。 以上关于电子厂防静电加湿机的全部新闻资讯是正岛电器为大家提供的!
  • 临界点干燥仪 暂无 暂无
    CPD7501临界点干燥仪功能全面,操作简单、安全,广泛应用于SEM样品制备。性能介绍:方便的操作开关;温和的磁力搅拌,确保液体的有效置换;内置数字温控装置;气流的控制通过三个阀门实现进气、气体填充及放气;玻璃窗的设计使得液面高度直观可观,操作更方便,更安全;由热电装置控制系统的加热/冷却,不需要温水,降温速度快,节约操作时间;刻度话的排气阀控制,精确控制降压过程,避免了在自由释放压力过程中损伤样品;适用的干燥介质为二氧化碳或氟利昂;每台机器均通过压力测试,安全保证。
  • 降低荷电效应控温样品杯
    控温样品杯应用低真空技术,在控温的同时将样品周围相对湿度控制在高水平,显著降低样品中水分的蒸发、升华,延长敏感样品的观测窗口时间。控温样品杯可以对样品进行冷冻或加热,改变样品周围湿度、气压。同时利用低真空技术,减小电子束轰击造成的荷电效应和样品损伤。优点:阻止样品中水分的丧失,避免因脱水而造成的样品形变;保持样品原始形貌 ; 可以长时间观测生物、有机样品 ;降低电子束损伤。样品尺寸:直径25mm;高5mm控温范围:- 25℃ ~ + 50℃ 降温速率:20℃/min
  • 防静电竹镊子
    防静电竹镊子是采用优质楠竹或经竹为原材料生产,最大的特点是不会象不锈钢镊子那样划伤产品,又比塑料或纤维镊子耐有机溶剂。价廉物好,是晶片、石英、芯片等电子制造行业的首选产品。 另外竹镊子还有防静电作用,因为竹是不易带静电的物体,因此非磁性、绝缘性优良,不会损伤夹取物。经测试,竹镊子的防静电能力有10的9次方欧。防静电竹镊子的长度为15cm、200cm、250cm
  • 双极电凝
    双极电凝设计简单,操作方便的电凝系统。不带电极的长度是160.75mm,装入两节AA碱性电池后的重量仅为78g。使用标准AA碱性电池,易于更换。电极有5×1mm和10×1mm两种规格。外带模切泡沫硬塑料盒便于储存。凝血功能是通过双极镊子的两个尖端向动物机体组织提供高频电能,使双极镊子两端之间的血管脱水而凝固,达到止血的目的,作用范围仅限于镊子两端之间,对机体组织的损伤程度远比单极电凝为小
  • pull防静电竹镊子/夹子
    防静电竹镊子是采用优质楠竹或经竹为原材料生产,最大的特点是不会象不锈钢镊子那样划伤产品,又比塑料或纤维镊子耐有机溶剂。价廉物好,是晶片、石英、芯片等电子制造行业的首选产品。 另外竹镊子还有防静电作用,因为竹是不易带静电的物体,因此非磁性、绝缘性优良,不会损伤夹取物。经测试,竹镊子的防静电能力有10的9次方欧。防静电竹镊子的长度为15cm、200cm、250cm
  • 翔云K89-II型中频电疗仪
    K89-II型中频电疗仪K89-II型电脑中频电疗仪是用于物理治疗的一种医疗设备。本机采用微电脑控制技术,由中,大规模集成电路组成,设双通道输出,输出电流大小可以自由调节。医生可依据患者病况选择机内储存30个特定的系列程序一 翔云K89-II型电脑中频治疗仪 电疗仪主要技术参数: 1. 电疗机安全性能符合Q/STYS002--2001《超短波电疗机与五官超短波电疗机》符合GB9706.1-1995《医用电器设备部分:安全通用要求》的要求。按医用电器设备电击防护分类Ⅰ类设备和BF型设备。 2. 额定输出功率: 200W。 3. 工作频率:40.68MHz。 4. 电疗机应:5-60min连续可调。 5. 使用电源:a.c.2该治疗时(定时时间)20V±22V,50Hz±1Hz,消耗功率500W。 6. 外形尺寸:430mm×370mm×840mm。 7. 重量:3.3kg。 翔云K89-II型电脑中频电疗仪功能特点:机内存贮30个特定治疗处方。双路同步输出,数码显示。 K89-II型中频电疗仪处方表: 1 镇痛、各部位软组织损伤、颈椎病 2 消炎、消肿、盆腔yan、注射后硬结、肠梗阻 3 胃下垂 4 瘢痕疙瘩、术后粘连、慢性炎症等 5 功能性电刺激(FES) 6 电体操,用于周围神经损伤 7 消除运动后疲劳 8 局部软组织损伤及镇痛 9 急性疼痛(各部位肌肉、韧带急性扭挫伤、骨关节病等) 10 急性疼痛(各部位肌肉、韧带急性扭挫伤、骨关节病等) 11 慢性疼痛(神经、肌肉、关节、韧带损伤致慢性疼痛如肌劳损、增生性骨关节病等) 12 慢性疼痛(神经、肌肉、关节、韧带损伤致慢性疼痛如肌劳损、增生性骨关节病等) 13 改善血液循环,促进淋巴回流、消炎、消肿(如:闭塞性脉管炎) 14 改善血液循环,促进淋巴回流、消炎、消肿(如:闭塞性脉管炎) 15 废用性肌wei缩 16 部分失神经肌肉 17 松弛性瘫痪 18 瘢痕疙瘩、术后粘连等 19 颈椎病 20 颈椎病 21 急性肩周炎(以疼痛为主要症状) 22 慢性肩周炎(以关节受限为主要症状) 23 胃、十二指肠溃疡 24 胃、十二指肠溃疡 25 坐骨神经痛(慢性) 26 尿潴留 27 关节炎、急慢性疼痛 28 关节炎、急慢性疼痛 29 音频电疗法 30 音频电疗法
  • 全日康J48A型电脑中频治疗仪
    全日康J48A型电脑中频治疗仪(透热型)适用范围:对常见的颈椎、膝、脊柱、髋、踝等负重关节易产生的骨性关节炎和腰椎间盘突出症,具有止痛、改善血液循环和消炎的作用全日康J48A型电脑中频治疗仪【处方列表】处方1 镇痛、各部位软组织损伤、颈椎病;处方2 消炎、消肿、附件炎、注射后硬结、肠梗阻;处方3 胃下垂、胃肠功能紊乱;处方4 瘢痕疙瘩、术后粘连、慢性炎症等;处方5 功能性电刺激(FES)、偏瘫;处方6 电体操:用于周围神经损伤;处方7 消除运动后疲劳;处方8 局部软组织损伤及镇痛;处方9 急性疼痛(各部位肌肉、韧带急性扭挫伤、骨关节病等)-用正弦波进行治疗;处方10 急性疼痛(各部位肌肉、韧带急性扭挫伤、骨关节病等)-用方波进行治疗;处方11 慢性疼痛(神经、肌肉、关节、韧带损伤致慢性疼痛如骨劳损、增生性骨关节病等)-中波4K赫兹;处方12 慢性疼痛(神经、肌肉、关节、韧带损伤致慢性疼痛如骨劳损、增生性骨关节病等)-中波2.5K赫兹;处方13 改善血液循环,促进淋巴回流、消炎、消肿(如:闭塞性脉管炎、糖尿病导致周围神经管病等);处方14 改善血液循环,促进淋巴回流、消炎、消肿(如:闭塞性脉管炎、糖尿病导致周围神经管病等);处方15 废用性肌wei缩;处方16 部分失神经肌肉;处方17 松驰性瘫痪;处方18 瘢痕疙瘩、术后粘连;处方19 颈椎病(5K赫兹);处方20 颈椎病(3K赫兹);处方21 急性肩周炎(以疼痛为主要症状);处方22 急性肩周炎(以关节受限为主要症状);处方23 局部减肥;处方24 胃、十二指肠溃疡;处方25 坐骨神经痛;处方26 尿潴溜处方27 关节炎、急慢性疼痛(中频5K赫兹);处方28 关节炎、急慢性疼痛(中频4K赫兹);处方29 音频电疗法1;处方30 音频电疗法2技术参数:中频载波频率:2KHz~8KHz低频调制频率:0~150Hz调制波形:正弦波、方波、三角波、指数波、尖波、锯齿波、等幅波调制幅度:100%、75%、50%、25%Z大输出电流:0~100mA输出电流稳定度:≤5%输出通道:双通道工作电压:交流220V±22V、50Hz±1Hz使用环境:环境温度5℃~40℃,相对湿度≤80%输入功率:≤55VA安全分类:I类BF型
  • Altechna 低损耗HR镜
    低损耗HR镜直径公差+0/-0.1 mm厚度公差±0.1 mm通光孔径90%表面质量20-10 S-D表面厚度保护性倒角涂层附着力和耐用性Per MIL-C-675A激光损伤阈值的报告www.altechna.com/lidt由于离子束涂覆技术,低损耗HR镜也被称为IBS镜。 反射镜在特定的波长范围和一定的入射角(AOI)下提供zui大的反射率。IBS技术与其他涂层技术相比具有多重优势。 由于沉积过程涂层的全自动控制区分高重复性,更清晰的特点,更严格的公差。 IBS薄膜具有更高的密度,耐用性,高损伤阈值,不透水蒸汽,使其能抵抗诸如热,湿度和压力等环境条件。IBS涂料几乎所有的规格都与其他涂料技术所提供的规格相区别。 它允许zui小化作为限制因素的电介质层中的散射,然后以高于99.9%的反射率为目标。 我们选择的离子束溅射镀膜覆盖波长范围343 - 1550 nm。1 在特定波长范围和一定入射角(AOI)下提供zui大反射率2 离子束溅射(IBS)技术提供涂层3 耐受环境条件4 各种尺寸可根据要求提供5 批量生产能力:每月1000件6 高重复利用率7 反射率高于99.9%Altechna在标准,定制或客户提供的光学器件上提供各种高性能光学镀膜。我们的涂料覆盖从深紫外(193纳米)到远红外(25微米)的波长范围,涂层的zui大部分是在波长范围内最常见的266纳米到2微米的激光和照明光源。我们根据个人要求提供一套标准和定制涂料:?防反射涂层?高反射涂层?分束器涂层?部分反射涂层?偏光片涂层?过滤涂料?超快GDD补偿涂层?Gires-Tournois干涉镜(GTI)?可变反射镜?金属涂层在Altechna,我们的目标是以zui高的标准为不断增长的光子市场提供高损伤阈值,高质量涂层。每个涂层都是特殊的,多年来在光电领域,我们了解到灵活性是满足客户高要求的关键,因此我们的涂层采用不同的技术,分别选择不同的涂层。这里是我们在Altechna提供的涂层技术列表:?电子束蒸发?离子辅助沉积?离子束溅射?磁控溅射每种技术都是不同的,并根据光谱灵敏度,损伤阈值,硬度,表面质量等的要求使用。电子束蒸发离子辅助沉积离子束溅射磁控管溅射沉积速率10 ?/sec~10 ?/sec~3 ?/sec1-6 ?/sec每次涂布面积3000 cm23000 cm2500 cm22000 cm2导热系数LowMediumHighHigh涂层温度范围200 - 300°C20 - 100°C20 - 150°C20-100°C层数1-50~50200Up to 200密度和孔隙度PorousDenseNear bulkNear bulk粘连/耐久性LowGoodExcellentExcellent湿度敏感性YesYes, smallNoNo老化影响YesYes, smallNoNo内在应力~ 100MPaFew 100MPaFew 100 MPa尺寸,毫米基材材料AOI, deg反射率,%波长,nm产品编号?25.4 x 5UVFS099.9343 - 3551-OS-2-0254-5-[1B00-IBS]?25.4 x 5UVFS099.94001-OS-2-0254-5-[1C00-IBS]?25.4 x 6BK7099.9515501-OS-2-0254-6-[1V00-IBS]?25.4 x 5UVFS45Rs99.95, Rp99.84001-OS-2-0254-5-[1C45-IBS]?25.4 x 6BK745Rs99.98, Rp99.9315501-OS-2-0254-6-[1V45-IBS]?25.4 x 5UVFS45Rs99.97, Rp99.93515 - 5321-OS-2-0254-5-[1F45-IBS]?25.4 x 5UVFS099.94515 - 5321-OS-2-0254-5-[1F00-IBS]?25.4 x 5UVFS099.951030 - 10641-OS-2-0254-5-[1PR00-IBS]?25.4 x 5UVFS45Rs99.98, Rp99.931030 - 10641-OS-2-0254-5-[1PR45-IBS]?25.4 x 5UVFS45Rs99.9, Rp99.7343 - 3551-OS-2-0254-5-[1B45-IBS]?25.4 x 5UVFS45Rs99.98, Rp99.938001-OS-2-0254-5-[1K45-IBS]?25.4 x 5UVFS099.958001-OS-2-0254-5-[1K00-IBS]定制你可以根据您的需求定制这个产品。如果您没有找到适合您的应用,请与我们联系,以便定制解决方案。
  • 中镜科仪 100至400目国产铜网薄碳膜 透射电镜载网支持膜
    薄碳支持膜主要用于在100kV的电镜下,观察生物样品或纳米材料的形貌像。由于100kV电镜的电子束对样品的穿透能力弱,同时对样品和支持膜的损伤程度也小。碳支持膜的厚度可以更薄一些,以获取更高衬度的图像,同时,对样品的细节会表现的更加充分。因此,薄碳支持膜在这个方面的应用具有明显优势。总厚度:8-15 nm大包装100枚/盒,中镜科仪铜载网,中镜科仪生产,支持膜厚度8-15nm。产品编号Prod.No.载网材质Material载网目数Mesh载网产地Made in支持膜产地Made in支持膜厚度(nm)Thickness包装UnitBZ210205a铜50目中镜科仪中镜科仪8-15100枚/盒BZ2102075a铜75目中镜科仪中镜科仪8-15100枚/盒BZ21021a
  • 掺镱保偏光纤
    掺镱保偏光纤特性掺镱石英光纤,适用于~1000 nm- 1100 nm波段的光纤激光器和放大器提供单模光纤和大模场光纤包层泵浦设计,用于1mW- 100 W的输出功率下方出售匹配的LMA无源光纤几何形状符合有源光纤的行业标准,包层?125或?250μm熊猫型应力构材用于保偏操作Thorlabs提供高端保偏掺镱光纤,用于光学放大器、ASE光源和高功率脉冲和连续波激光器应用,工作功率范围从毫瓦到100瓦,发光波长1000 - 1100 nm。这种光纤由芬兰的nLight, Inc.生产,使用了zui先进的掺杂光纤生产技术:Liekki纳米粒子直接沉积(DND)。LekkiDND技术能够满足先进光纤应用的要求,比如短光纤、不损坏纤芯的平坦折射率剖面和较高的纤芯-包层比(大模场双包层光纤)。这些光纤采用熊猫型应力构材设计来实现保偏操作。Item #TypeAbsorption@ 920 nmPumpTypeCoreDiameterCladdingDiameterYB1200-6/125DC-PMSMa0.55 ± 0.1 dB/mCladding7.0 ± 0.5 μm MFD125 ± 2 μmYB1200-10/125DC-PMLMAb1.7 ± 0.3 dB/m10.0 ± 1.0 μm125 ± 2 μmYB1200-25/250DC-PMLMAb2.4 ± 0.5 dB/m25.0 ± 1.5 μm250 ± 5 μm单模大模场PM掺镱光纤带有包层泵浦(双包层)设计。与纤芯泵浦有源光纤相比,包层泵浦双包层光纤效率更高,输出功率更高。包层泵浦光纤为双包层,意味着光纤的镀层作为di二包层,允许di一包层具备波导功能。一般地,双包层光纤的纤芯为低数值口径单模光纤(SM)或者大模场(LMA)光纤,用于光的受激发射;di一包层为大的数值口径和多模,用于泵浦光。我们还提供纤芯泵浦和包层泵浦配置的非保偏标准掺镱光纤。掺镱保偏包层泵浦光纤的横截面。Active Fibers Selection GuideYtterbium-Doped SM and LMAYtterbium-Doped PMErbium-Doped SM and LMA包层泵浦、双包层SM和LMA保偏光纤Item #YB1200-6/125DC-PMYB1200-10/125DC-PMYB1200-25/250DC-PMCladding GeometryRoundMFD7.0 ± 0.5 μm11.1 μma20.0 μmaPeak Cladding Absorption @ 976 nm (Nominal)2.4 dB/m7.4 dB/m10.3 dB/mCladding Absorption @ 920 nm0.55 ± 0.1 dB/m1.7 ± 0.3 dB/m2.4 ± 0.5 dB/mCore Diameter-10.0 ± 1.0 μm25.0 ± 1.5 μmCladding Diameter125 ± 2 μm125 ± 2 μm250 ± 5 μmCoating (Second Cladding) Diameter245 ± 15 μm245 ± 15 μm350 ± 15 μmCore Numerical Aperture (NA)0.12a0.08 ± 0.0050.062 ± 0.005Cladding NA≥0.48≥0.48≥0.48Coating MaterialLow-Index AcrylateLow-Index AcrylateLow-Index AcrylateCore Concentricity Error≤1.0 μm≤1.0 μm≤1.0 μmProof Test≥100 kpsi≥100 kpsi≥100 kpsiBirefringence≥2.0 x 10-4≥1.4 x 10-4≥1.6 x 10-4Core IndexProprietarybCladding IndexProprietaryba. 标称值b. 很抱歉我们无法提供这个专利信息。匹配的无源LMA光纤Item #P-6/125DC-PMP-10/125DC-PMMatching Active FiberYB1200-6/125DC-PMYB1200-10/125DC-PMCladding GeometryRoundCore Diameter7 ± 0.5 μma10 ± 1.0 μmCladding Diameter125 ± 2 μmbCoating (Second Cladding) Diameter245 ± 15 μmCore Numerical Aperture (NA)0.120 (Nominal)0.08 ± 0.005Cladding NA≥0.48Coating MaterialLow-Index AcrylateProof Test≥100 kpsiCore IndexProprietarycCladding IndexProprietaryca. 纤芯直径规格是指在1060 nm处的远场模场直径。b. 包层尺寸是指平均包层直径;zui大包层直径≤128 μm。c. 很抱歉我们无法提供这个专利信息。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5μm)2= 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber:Area = Pi x (MFD/2)2= Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71mW(理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18mW(实际安全水平)SMF-28 Ultra Fiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW(理论损伤阈值) 8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210mW(实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / GlassInterfaceaTypeTheoretical DamageThresholdbPractical SafeLevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。包层泵浦的LMA掺镱保偏光纤,双包层应用低成本激光打标高平均功率脉冲放大器中高功率脉冲和连续激光器材料处理雷达(LIDAR)包层泵浦设计单模(SM)或大模场(LMA)操作高泵浦吸收、光暗化效应低高斜率效率(74 - 82%)这种掺镱双包层光纤非常适合高达20瓦的中高功率应用,包括光纤功率放大器。高效工作的典型斜率效率为74%到82%。用于LMA版本的匹配无源光纤在下面有售。每种光纤的斜率效率图请查看下表主要特性YB1200-6/125DC-PM远程通信几何形兼容光栅和组合器等标准组件YB1200-10/125DC-PM包层高吸收率和单模纤芯是基于光纤的功率放大器的理想选择YB1200-25/250DC-PM高包层吸收率和高效率用于高平均功率脉冲光纤放大器Item #CladdingGeometryAbsorption@ 920 nmCoreDiameterCladdingDiameterCoating(Second Cladding)DiameterCoreNACladdingNASlopeEfficiencyPlotCoreIndexCladdingIndexYB1200-6/125DC-PMRound0.55 ± 0.1 dB/m7.0 ± 0.5 μm MFD125 ± 2 μm245 ± 15 μm0.12a≥0.48ProprietarybProprietarybYB1200-10/125DC-PM1.7 ± 0.3 dB/m10.0 ± 1.0 μm125 ± 2 μm245 ± 15 μm0.080 ± 0.005≥0.48YB1200-25/250DC-PM2.4 ± 0.5 dB/m25.0 ± 1.5 μm250 ± 5 μm350 ± 15 μm0.062 ± 0.005≥0.48a. 标称值b. 很遗憾,我们无法提供这个已获专利的信息。产品型号公英制通用YB1200-6/125DC-PM掺镱单模双包层保偏光纤,芯径6 μmYB1200-10/125DC-PM掺镱LMA双包层保偏光纤,芯径10 μmYB1200-25/250DC-PM掺镱LMA双包层保偏光纤,芯径25 μ匹配的双包层无源保偏光纤经过优化以耦合有源掺杂光纤提供单模和大模场(LMA)选项行业标准结构,易于操作保偏这些无源PM光纤与上面出售的YB1200-10/125DC-PM和YB1200-10/125DC-PM双包层有源光纤的模场匹配。选择合适的纤芯直径和数值孔径匹配有源光纤,以维持通过光纤激光器或放大器的光束质量。这些无源光纤镀有低折射率的丙烯酸酯,用于泵浦有源光纤。如有特殊要求,也可提供高折射率丙烯酸酯镀膜;具体请联系技术支持。Item #CompatibleActive FiberCladdingGeometryCoreDiameterCladdingDiameterCoating (SecondCladding) DiameterCore NACladding NAProof TestCore IndexCladding IndexP-6/125DC-PMYB1200-6/125DC-PMRound7 ± 0.5 μma125 ± 2 μmb245 ± 15 μm0.120(Nominal)≥0.48≥100 kpsiProprietarycProprietarycP-10/125DC-PMYB1200-10/125DC-PM10 ± 1 μm0.08 ± 0.005很抱歉我们无法提供这个已获专利的信息。产品型号公英制通用P-6/125DC-PMNEW!无源PM单模双包层光纤,芯径6 μm,匹配YB1200-6/125DC-PMP-10/125DC-PMNEW!无源PM LMA双包层光纤,芯径10 μm,匹配YB1200-10/125DC-PM
  • 石墨垫
    产品特点:毛细管色谱柱密封垫圈和螺帽使用不当的或用旧的密封垫圈连接色谱柱,会导致色谱峰不一致,分析结果不可靠。使用不合适的密封垫圈,会使空气和其他污染物通过色谱柱密封处渗入仪器系统,严重地影响柱效和检测器性能。为保持仪器最佳性能,每更换一次色谱柱或对色谱柱维护处理时,都要更换密封垫圈。要减少问题的出现,请遵循这些安装密封垫圈的通用技术:? 不要拧得太紧— 先用手拧紧柱螺母,再用扳手拧紧? 保持洁净? 使用前烘烤密封垫圈(仅对于Vespel 和Vespel/石墨垫)? 防止污染,比如手指上的油? 在重新使用密封垫圈前,用放大镜检查密封垫圈是否破损,有无裂纹、碎片或其他损伤? 更换色谱柱或进样口/检测器部件时,要更换密封垫圈密封垫选择推荐密封垫/密封类型温度上限用途优点局限性石墨 (100%)450 oC?通常用于毛细管柱?容易使用的稳定密封垫?不用于MS或对氧灵敏的检测器?适合于FID和NPD?推荐用于高温和冷柱头进样分析?上限温度更高?质软、容易变形或破裂?易于取下?可能沾污系统Vespel/石墨350 oC?通常用于毛细管柱?机械稳定性好?不能重复使用(85%/15%)?推荐用于MS或对氧灵敏的检测器?寿命长?高温时产生流失?最可靠的无泄漏连接?必须经常重新拧紧Vespel (100%)280 oC?恒温操作?机械稳定性好?温度循环后可能泄漏?易于重复使用或取下?寿命长?高温时产生流失?是连接金属和玻璃的优异密封材料?易于重复使用或取下?必须经常重新拧紧订货号:MYL00768
  • 祥云佳友FK998-T电脑中频电疗仪
    FK998-T电脑中频电疗仪是用于物理治疗的一种医疗设备。本机采用微电脑控制技术,由中、大规模集成电路组成,设双通道输出,并具有各种显示功能。机内存贮90个特定的多步程序处方,它们是理疗专家根据不同用途而编制成的。医生依患者病况而选择。当处方选择好后,启动仪器,即可自动地按程序输出有特定治疗作用的系列中频电流。输出电流大小可自由调节。当处方程序运行结束时,仪器自动切断输出电流,并发出一声提示音响。二 主要技术参数1、正常工作条件1.1 环境温度范围:5℃~40℃;1.2 相对温度范围:≤80%;1.3 大气压力范围:860hPa~1060hPa;1.4 电源条件:220V±22V,50Hz±1Hz。2、技术性能2.1 设备分类:I类、BF型;2.2 治疗方式分类:D类设备;2.3 基波频率范围:2000~8000Hz±10%;2.4 调制频率范围:0~150Hz±10%;2.5 调制波种类:三角波、方波、指数波;2.6 差频频率范围:不窄于0~100Hz;2.7 调幅度:在0~100%调幅度范围内99连续设置,允差±5%;2.8 调制方式:连续调制、断续调制、间歇调制、变频调制、交替调制;2.9 输出电流调节方式:按键递增递减连续可调;2.10 输出电流:50mA≤输出电流≤100mA(负载500Ω);2.11 输出电流稳定度:双极输出方式电流变化率不大于10%;2.12 输出通道:五通道;2.13 存储容量:24K字节,内存处方90个;2.14 输入功率:60VA+6VA;2.15 熔断器:ф5mm×20mm 0.5A;2.16 外形尺寸:455×330×85mm3;2.17 净重:6kg。1.扭伤、挫伤、腰痛、颈椎病。2.关节肿痛、骨质增生、类风湿性关节炎。3.从骨神经痛、神经炎、股外侧皮神经炎、肌纤维质炎4.肩周炎、肱骨外上髁炎(网球肘)、腱鞘炎5.附件炎、盆腔yan、注射后硬结6.咽炎、喉炎、声带小结、声带麻痹7.胃下垂、胃功紊乱、便秘8.电体操(弱)、面神经麻痹、周围神经损伤9.消除运动后的疲劳10.电体操(强)、锻炼刺激肌肉、使肌肉发达11.镇痛、各部位软组织损伤12.镇痛、各部位软组织损伤13.消炎、消肿14.瘢痕疙瘩、术后粘连、慢性炎症15.功能性电刺激(FES)16.面部理疗17.乳房理疗18.腹部减肥19.臀部肌肉理疗20.脉动直流电离子导入
  • 磁电转速传感器 /
    磁电转速传感器 型号;HAD-xG-2技术参数 1、 输出波形:近似正弦波(≥50r/min时) 2、 输出信号幅值:50r/min时≥300mV 传感器铁芯和被测齿轮齿顶间隙 δ=0.5mm 被测齿轮模数 m = 2 齿轮 Z = 60 材料 电工钢     信号幅值大小,与转速成正比,与铁芯和齿顶间隙的大小成反比。 3、 测量范围:50~5000Hz 4、 使用时间:连续使用 5、 工作环境:温度 -20~+60?C 6、 输出形式:导线 7、外形尺寸:外径M16×1 总长120mm(总长可根据用户定制) 8、重量:约100g(不计输出导线)外形图:使用事项    1、安装时传感器M16×1螺纹不得损伤起毛,六角螺母并紧后,不得松动。   2、安装时传感器铁芯和被测齿轮齿顶间隙 δ=0.5mm,并希望能尽量减少间隙δ以提高输出信号幅值。
  • 掺镱光纤
    掺镱光纤特性掺镱石英光纤,用于约1000nm- 1100 nm光纤激光器和放大器提供单模光纤和大模场光纤纤芯泵浦或包层泵浦设计,用于1mW- 100 W的输出功率下面也出售匹配的无源光纤几何形状符合有源光纤的行业标准,包层?125、?250或?400 μmThorlabs提供zui先进的掺镱光纤,用于光学放大器、ASE光源以及高功率脉冲和连续波激光器应用,工作功率范围从毫瓦到100瓦,发光波长1000 - 1100 nm。这种光纤由芬兰的nLight, Inc.生产,使用了zui先进的掺杂光纤生产技术:Liekki纳米粒子直接沉积(DND)。LiekkiDND技术能够满足先进光纤应用的要求,比如短光纤、不损坏纤芯的平坦折射率剖面、以及较高的纤芯-包层比(大模场双包层光纤)。掺镱光纤可选纤芯泵浦或者包层泵浦(双包层)设计。纤芯泵浦光纤非常适合低功率应用,有源光纤长度很短,其类似远程通信的几何形状便于拼接和处理,并且兼容低成本泵浦二极管和标准无源单模(SM)光纤。与纤芯泵浦有源光纤相比,包层泵浦双包层的效率更高,输出功率更高。包层泵浦光纤为双包层,意味着光纤的镀层作为第二包层,允许di一包层具备波导功能。一般地,双包层光纤的纤芯为低NA单模光纤或者大模场(LMA)光纤,用于激发光;di一包层为高NA和多模,用于泵浦光。我们也供应保偏掺镱光纤。Item #TypeAbsorption@ 920 nmPumpTypeCoreDiameterCladdingDiameterYB1200-4/125SMa280 ± 50 dB/mCore4.4 ± 0.8 μm MFD125 ± 2 μmYB1200-6/125DCSMa0.55 ± 0.1 dB/mCladding7.0 ± 0.5 μm MFD125 ± 2 μmYB1200-10/125DCLMAb1.7 ± 0.3 dB/m10.0 ± 1.0 μm125 ± 2 μmYB1200-20/400DCLMAb0.6 ± 0.1 dB/m20.0 ± 1.5 μm400 ± 10 μmYB1200-25/250DCLMAb2.3 ± 0.3 dB/m25.0 ± 1.5 μm250 ± 5 μmYB2000-10/125DCLMAb2.0 ± 0.4 dB/m10 ± 1.0 μm125 ± 2 μm纤芯泵浦光纤横截面包层泵浦光纤横截面Active Fibers Selection GuideYtterbium-Doped SM and LMAYtterbium-Doped PMErbium-Doped SM and LMAYtterbium-Doped SM and LMAYtterbium-Doped PMErbium-Doped SM and LMAYtterbium-Doped SM and LMAYtterbium-Doped PMErbium-Doped SM and LMA纤芯泵浦单模光纤Item #YB1200-4/125Cladding GeometryRoundPeak Core Absorption @ 976 nm (Nominal)1200 dB/mCore Absorption @ 920 nm280 dB/mMFD4.4 ± 0.8 μmCladding Diameter125 ± 2 μmCoating Diameter245 ± 15 μmCore Numerical Aperture (NA) (Nominal)0.2Cladding NA0.46Cut-Off Wavelength1010 ± 70 nmCoating MaterialHigh-Index AcrylateCore Concentricity Error≤0.7 μmProof Test≥100 kpsiCore IndexProprietaryaCladding IndexProprietaryaa. 很抱歉我们不能提供更多信息。包层泵浦、双包层SM和LMA光纤Item #YB1200-6/125DCYB1200-10/125DCYB1200-20/400DCYB1200-25/250DCYB2000-10/125DCCladding GeometryOctagonalPeak Cladding Absorption @ 976 nm (Nominal)2.4 dB/m7.4 dB/m2.6 dB/m9.9 dB/m-Cladding Absorption @ 920 nm0.55 ± 0.1 dB/m1.7 ± 0.3 dB/m0.6 ± 0.1 dB/m2.3 ± 0.3 dB/m2.0 ± 0.4 dB/mMFD7.0 ± 0.5 μm11.1 μma16.6 μma19.3 μma-Core Diameter-10.0 ± 1.0 μm20.0 ± 1.5 μm25.0 ± 1.5 μm10 ± 1.0 μmCladding Diameterb125 ± 2 μm125 ± 2 μm400 ± 10 μm250 ± 5 μm125 ± 2 μmCoating (Second Cladding) Diameter245 ± 15 μm245 ± 15 μm520 ± 15 μm350 ± 15 μm245 ± 15 μmCore Numerical Aperture (NA)0.12a0.080 ± 0.0050.070 ± 0.0050.070 ± 0.0050.12 ± 0.02Cladding NA≥0.48≥0.48≥0.48≥0.480.46Coating MaterialLow-Index AcrylateLow-Index AcrylateLow-Index AcrylateLow-Index AcrylateLow-Index AcrylateCore Concentricity Error≤1.0 μm≤1.0 μm≤1.2 μm≤1.0 μmProof Test≥100 kpsi≥100 kpsi≥100 kpsi≥100 kpsi100 kpsiCore IndexProprietarycCladding IndexProprietaryca. 标称值b. 八边形包层相对平面的测量值。c. 很抱歉我们不能提供更多信息。匹配的无源LMA光纤Item #P-6/125DCP-10/125DCP-20/400DCP-25/250DCMatching Active FiberYB1200-6/125DCYB1200-10/125DCYB1200-20/400DCYB1200-25/250DCCladding GeometryRoundCore Diameter7 ± 0.5 μma10 ± 1.0 μm20 ± 1.5 μm25 ± 1.5 μmCladding Diameter125 ± 2 μm400 ± 5 μm250 ± 5 μmCoating (Second Cladding) Diameter245 ± 15 μm520 ± 15 μm350 ± 15 μmCore Numerical Aperture (NA)0.12 (Nominal)0.08 ± 0.0050.07 ± 0.005Cladding NA≥0.48Coating MaterialLow-Index AcrylateProof Test≥100 kpsiCore IndexProprietarybCladding IndexProprietaryba. 纤芯直径规格是指在1060 nm处的远场模场直径。b. 很抱歉我们不能提供更多信息。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5μm)2= 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber:Area = Pi x (MFD/2)2= Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71mW(理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18mW(实际安全水平)SMF-28 Ultra Fiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW(理论损伤阈值) 8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210mW(实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。纤芯泵浦单模掺镱光纤,单包层纤芯泵浦设计远程通信型光纤几何形便于处理、拼接和连接与HI1060-型无源单模光纤拼接良好应用低噪声、低功率前置放大器ASE光源连续波和脉冲激光器和放大器LiekkiYB1200-4/125是一种用于低噪声、低非线性前置放大器和激光器的高掺镱光纤。它是用于纤芯泵浦应用的单包层光纤。对于用双包层光纤做功率放大器的光纤放大器中,这种光纤是用作前置放大器的理想选择。这种光纤的远程通信几何形状使之兼容低成本泵浦二极管、标准单模无源光纤、以及标准远程通信接头和拼接技术。Item #CladdingGeometryAbsorption@ 920 nmMode FieldDiameterCladdingDiameterCoatingDiameterCore NACut-OffWavelengthCore IndexCladding IndexYB1200-4/125Round280 dB/m4.4 μm @ 1060 nm125 ± 2 μm245 ± 15 μm0.21010 ± 70 nmProprietaryaProprietaryaa. 由于保密协议,很遗憾我们无法提供更多信息。产品型号公英制通用YB1200-4/125掺镱单模光纤,模场直径4.4 μm包层泵浦SM和LMA掺镱光纤,双包层包层泵浦设计单模或大模场面积工作高泵浦吸收、光暗化效应低斜率效率高(75-84%)应用高平均功率的脉冲放大器中等和高功率脉冲和连续波激光器材料处理激光雷达距离测量这些掺镱双包层光纤是高达20瓦的中等和高功率应用的理想选择,包括光纤功率放大器。高效工作的典型斜率效率为75%到84%。用于LMA版本的匹配被动光纤在下面有售。YB1200-20/400DC典型光束质量每种光纤的斜率效率曲线请见下表主要特性YB1200-6/125DC远程通信几何形兼容光栅和组合器等标准组件YB1200-10/125DC包层高吸收率和单模纤芯是基于光纤的功率放大器的理想选择YB1200-20/400DC?400微米包层兼容工业标准的高功率泵浦激光器和传输光纤YB1200-25/250DC高包层吸收率和高效率用于高平均功率脉冲光纤放大器YB2000-10/125DC高掺杂浓度耐光暗化效应Item #CladdingGeometryAbsorption@ 920 nmCoreDiameterCladdingDiameteraCoating (SecondCladding) DiameterCore NACladding NASlopeEfficiencyPlotCoreIndexCladdingIndexYB1200-6/125DCOctagonal0.55 ± 0.1 dB/m7.0 ± 0.5 μm MFD125 ± 2 μm245 ± 15 μm0.12b≥0.48ProprietarycProprietarycYB1200-10/125DC1.7 ± 0.3 dB/m10.0 ± 1.0 μm125 ± 2 μm245 ± 15 μm0.080 ± 0.005YB1200-20/400DC0.6 ± 0.1 dB/m20.0 ± 1.5 μm400 ± 10 μm520 ± 15 μm0.070 ± 0.005≥0.48YB1200-25/250DC2.3 ± 0.3 dB/m25.0 ± 1.5 μm250 ± 5 μm350 ± 15 μm0.070 ± 0.005≥0.48YB2000-10/125DC2.0 ± 0.4 dB/m10 ± 1.0 μm125 ± 2 μm245 ± 15 μm0.12 ± 0.020.46a. 八边形包层相对平面的测量值。b. 标称值c. 由于保密协议,很遗憾我们无法提供更多信息。产品型号公英制通用YB1200-6/125DC大模场面积双包层掺镱光纤,模场直径6微米YB1200-10/125DC大模场面积双包层掺镱光纤,芯径10微米YB1200-20/400DC大模场面积双包层掺镱光纤,芯径20微米YB1200-25/250DC大模场面积双包层掺镱光纤,芯径25微米YB2000-10/125DC大模场面积双包层高掺镱光纤,芯径10微米匹配的双包层无源光纤经过优化以耦合有源掺杂光纤提供单模和大模场(LMA)选项符合行业标准的几何形状,便于处理这些无源光纤非常适合与上面出售的有源光纤拼接。选择合适的纤芯直径和数值孔径匹配有源光纤,以维持通过光纤激光器或放大器的光束质量。外包层直径设计环绕有源光纤,以使从无源到有源光纤的泵浦耦合损耗低。这些无源光纤镀有低折射率的丙烯酸,用于泵浦有源光纤。如有特殊要求,也可提供高折射率丙烯酸酯镀膜。Item #CompatibleActive FiberCladdingGeometryCoreDiameterCladdingDiameterCoating (SecondCladding) DiameterCore NACladding NAProof TestCore IndexCladding IndexP-6/125DCYB1200-6/125DCRound7 ± 0.5 μma125 ± 2 μm245 ± 15 μm0.12(Nominal)≥0.48≥100 kpsiProprietarybProprietarybP-10/125DCYB1200-10/125DCYB2000-10/125DC10 ± 1 μm0.08 ± 0.005P-20/400DCYB1200-20/400DC20 ± 1.5 μm400 ± 5 μm520 ± 15 μm0.07 ± 0.005P-25/250DCYB1200-25/250DC25 ± 1.5 μm250 ± 5 μm350 ± 15 μma. 纤芯直径规格是指在1060 nm处的远场模场直径。b. 很抱歉我们无法提供更多信息。产品型号公英制通用P-6/125DCNEW!无源单模双包层光纤,纤芯6 μm,匹配YB1200-6/125DCP-10/125DC无源LMA双包层光纤,纤芯10 μm,匹配YB1200-10/125DC(-PM)P-20/400DCNEW!无源LMA双包层光纤,纤芯20 μm,匹配YB1200-20/400DCP-25/250DCNEW!无源LMA双包层光纤,纤芯20 μm,匹配YB1200-25/250DC
  • AdlOptica foXXus 多焦点物镜
    AdlOpticafoXXus多焦点物镜沿着光轴将激光聚焦到1、2或4个焦点上数值孔径可选 0.38 或 0.80针对 515/1030Nm 和 1064nm 激光器的消球差设计另有AdlOpticaaplanoXX消球差物镜可选AdlOpticafoXXus多焦点物镜沿光轴将激光聚焦到多个焦点,增加了有效的焦深,使材料的高速多层切割具有极佳的质量。 这些物镜针对 515/1030nm 或 1064nm 进行了优化,旨在与超快固态和光纤激光器一起使用,如:Yb:doped光纤和Nd:YAG。通过手动旋转物镜的项圈,用户可以选择1、2或4个焦点。AdlOpticafoXXus多焦点物镜是微加工和材料加工应用的理想选择,可用于切割玻璃、蓝宝石、碳化硅或其他脆性材料。可更换的前置窗口片可以保护这些物镜在材料加工过程中免受损坏。通用规格有效孔径 CA(mm):12.9损伤阈值 脉冲:25mJ@ 5ns支架:C-MountBeam Diameter (mm):12.9 (maximum)视场 (°) :±1产品型号DWL (nm)NADia. (mm)长度 (mm)FL (mm)产品编码515, 10300.3834.0039.0017.00#19-49810640.8034.5039.608.10#19-499
  • 磁电转速传感器 配件
    磁电转速传感器 型号;HAD-xG-2技术参数 1、 输出波形:近似正弦波(≥50r/min时) 2、 输出信号幅值:50r/min时≥300mV 传感器铁芯和被测齿轮齿顶间隙 δ=0.5mm 被测齿轮模数 m = 2 齿轮 Z = 60 材料 电工钢     信号幅值大小,与转速成正比,与铁芯和齿顶间隙的大小成反比。 3、 测量范围:50~5000Hz 4、 使用时间:连续使用 5、 工作环境:温度 -20~+60?C 6、 输出形式:导线 7、外形尺寸:外径M16×1 总长120mm(总长可根据用户定制) 8、重量:约100g(不计输出导线)外形图:使用事项    1、安装时传感器M16×1螺纹不得损伤起毛,六角螺母并紧后,不得松动。   2、安装时传感器铁芯和被测齿轮齿顶间隙 δ=0.5mm,并希望能尽量减少间隙δ以提高输出信号幅值。
  • 德国仪力信ERICHSEN426划痕仪
    德国仪力信ERICHSEN426划痕仪测试原理: 用于在保护涂层表面产生特别的划痕,在腐蚀试验开始时及以规则的时间间隔用测试针在测试样板上划痕。这些划痕是水平的一根在另一根上方,第一根在样板短边一侧的底部,通过这种方法,可很容易的研究锈蚀的进程。 φ0.5mm(φ0.020”)的球形钨制划痕针坚固的安装在氧化硬铝制的笔形把手上,特别舒适设计保证在划痕操作中使用稳定? 球形测试点曾经以下耐久性测试: 一块在车床上的直径为φ1 00mm(φ4“)圆钢表面被划痕针以500px/s (8")的速度和50 N ( 11 Lbs)的压力划痕,在运转了450000px (600ft)后,球形测试点不出现损伤。这代表它可划2000条90 mm (31/2”)长的划痕而不受损伤。
  • 可塑金属密封垫圈,UltiMetal Plus,无孔,用于塞住微板流路控制技术的接头,10/包
    彻底解决气相色谱毛细管柱连接的问题!利用我们最新设计的专有 UltiMetal Plus 可塑金属密封垫圈,您可以充满信心地将无泄漏色谱柱两通接头连接到微板流路控制技术 (CFT) 装置以及进样口上。这些新型金属密封垫圈解决了其他金属密封垫圈在安装过程中存在的色谱柱断裂、匹配不当和接头损伤等问题,带来了新的优势 — 易用性和惰性!查看我们推荐的质谱接口和进样口连接。最新设计的不锈钢密封垫圈。 质量和硬度较低,可灵活地轻轻压住色谱柱周围,减少了其他金属密封垫圈常见的色谱柱断裂现象和对接头的损伤更严格的内径容差。 适用于更大范围的色谱柱管线,可减少浪费并实现一致的密封广口 — 新型表盘式包装设计可实现无接触安装,因为色谱柱可轻松穿过密封垫圈UltiMetal Plus 脱活。化学脱活为痕量活性分析物的分析提供了惰性表面。安捷伦惰性流路的组成部分:惰性流路分流/不分流进样口、超高惰性衬管和气相色谱柱以及新型超高惰性分流平板直观差异。产品系列中的每个型号均采用独特的外形设计,以防库存混淆,提高了可靠性密封垫圈系列 — 一系列密封垫圈,其孔尺寸适合所有安捷伦毛细管柱,包括 UltiMetal 色谱柱,以及无孔密封垫圈或塞入式密封垫圈,可满足所有应用需求兼容所有微板流路控制技术设备 — 推荐用于 CFT 反吹、流出物分流、保留间隙连接、气相色谱串联气相色谱、Dean switch 或 LTM 色谱柱连接。
  • 可塑金属密封垫圈,UltiMetal Plus,内径 0.5 mm,适用于 0.32 mm 内径熔融石英管,10/包
    彻底解决气相色谱毛细管柱连接的问题!利用我们最新设计的专有 UltiMetal Plus 可塑金属密封垫圈,您可以充满信心地将无泄漏色谱柱两通接头连接到微板流路控制技术 (CFT) 装置以及进样口上。这些新型金属密封垫圈解决了其他金属密封垫圈在安装过程中存在的色谱柱断裂、匹配不当和接头损伤等问题,带来了新的优势 — 易用性和惰性!查看我们推荐的质谱接口和进样口连接。最新设计的不锈钢密封垫圈。 质量和硬度较低,可灵活地轻轻压住色谱柱周围,减少了其他金属密封垫圈常见的色谱柱断裂现象和对接头的损伤更严格的内径容差。 适用于更大范围的色谱柱管线,可减少浪费并实现一致的密封广口 — 新型表盘式包装设计可实现无接触安装,因为色谱柱可轻松穿过密封垫圈UltiMetal Plus 脱活。化学脱活为痕量活性分析物的分析提供了惰性表面。安捷伦惰性流路的组成部分:惰性流路分流/不分流进样口、超高惰性衬管和气相色谱柱以及新型超高惰性分流平板直观差异。产品系列中的每个型号均采用独特的外形设计,以防库存混淆,提高了可靠性密封垫圈系列 — 一系列密封垫圈,其孔尺寸适合所有安捷伦毛细管柱,包括 UltiMetal 色谱柱,以及无孔密封垫圈或塞入式密封垫圈,可满足所有应用需求兼容所有微板流路控制技术设备 — 推荐用于 CFT 反吹、流出物分流、保留间隙连接、气相色谱串联气相色谱、Dean switch 或 LTM 色谱柱连接。
  • 量热仪氧弹
    氧弹技术参数:容量:300mL 充氧压力:2.8-3.0Mpa 耐压性能水压:20Mpa 重量:2.5Kg 外型尺寸:¢86.2×181mm氧弹主要性能:由镍铬或镍铬钼合金钢制成。1.不受燃烧过程中出现的高温和腐蚀性产物的影响而产生热效应;2.能承受充氧压力和燃烧过程中产生的瞬时高压;3.试验过程中能保持完全气密。弹筒容积为250ml-350ml,弹头上应装有供充氧和排气的阀门以及点火电源的接线电极。新氧弹和新换部件(弹筒.弹头.连接环)的氧弹应经20.0Mpa的水压试验,证明无问题后方能使用.此外,应经常注意观察与氧弹强度有关的结构,如弹筒和连接环的螺纹、进气阀、出气阀和电极与弹头的连接处等,如发现显著磨损或松动,应进行修理,并经水压试验合格后再用.氧弹还应定期进行水压试验,每次水压试验后,氧弹的使用时间一般不应超2年.当使用多个设计制作相同的氧弹时,每一个氧弹都必须作为一个完整单元使用.氧弹部件的交换使用可能导致发生严重的事故。氧弹弹头的拆卸方法:1 、拆下电极杆。 2 、拆下隔热板。 3 、用两把扳手,分别套住弹头两端,逆时针拧动充氧头,将其拆下。 4 、取出放气阀。 5 、用一字螺丝刀拧开密封题,可更换其密封胶圈。 6 、取出密封阀,可更换其密封圈。充氧头放气阀孔口处漏气:1.密封块上密封圈占有污物或密封圈老化,清除污物或更换密封圈。 2,密封阀上密封圈占有污物或密封圈老化,清除污物或更换密封圈。氧弹盖白色绝缘套处漏气:绝缘套表面占有污物或老化破损,清除污物或更换绝缘套。氧弹盖处漏气:弹头密封圈处沾有污物或密封圈老化,清除污物或更换密封圈。氧弹内气体放不出:1.放气阀内顶针短,接触不到氧弹内的放气阀,可用小铁棍代替放气阀,顶住氧弹内的放气阀放气。 2.氧弹密封阀上密封圈脱离位置,重新将密封圈安装好。 3.氧气充不进氧弹 4.充氧仪套口内密封圈老化,可往里涂上一层硅脂或更换密封圈。 5.密封阀装反,重新安装密封阀。氧弹日常维护和检查:除每次试验后对氧弹进行清洗和干燥外,对以下几点也应该注意和检查:(1)氧弹只能用手拧动,当手感到有阻力即应停止,切忌用工具硬拧,每天试验完毕后,应进行一次清洗。(2)弹帽和阀座,用完后应冲洗干净并擦干。(3)弹杯冲洗干净,擦洗螺纹,并检查弹杯上是否有机械损伤,注意不许将弹杯倒置。(4)检查密封圈是否磨损和燃烧时的损伤,如密封不严有漏气现象,则应更换 .(5)检查绝缘垫和绝缘套是否良好,有无破损,可定期作绝缘性能检查。(6) 定期对氧弹进行 20.0Mpa水压试验,每次水压试验后,氧弹的使用时间不得超过二年(或不得超过5000次试验)。
  • 可塑金属密封垫圈,UltiMetal Plus,内径 0.8 mm,适用于 0.53 mm 内径熔融石英管,10/包
    彻底解决气相色谱毛细管柱连接的问题!利用我们最新设计的专有 UltiMetal Plus 可塑金属密封垫圈,您可以充满信心地将无泄漏色谱柱两通接头连接到微板流路控制技术 (CFT) 装置以及进样口上。这些新型金属密封垫圈解决了其他金属密封垫圈在安装过程中存在的色谱柱断裂、匹配不当和接头损伤等问题,带来了新的优势 — 易用性和惰性!查看我们推荐的质谱接口和进样口连接。最新设计的不锈钢密封垫圈。 质量和硬度较低,可灵活地轻轻压住色谱柱周围,减少了其他金属密封垫圈常见的色谱柱断裂现象和对接头的损伤更严格的内径容差。 适用于更大范围的色谱柱管线,可减少浪费并实现一致的密封广口 — 新型表盘式包装设计可实现无接触安装,因为色谱柱可轻松穿过密封垫圈UltiMetal Plus 脱活。化学脱活为痕量活性分析物的分析提供了惰性表面。安捷伦惰性流路的组成部分:惰性流路分流/不分流进样口、超高惰性衬管和气相色谱柱以及新型超高惰性分流平板直观差异。产品系列中的每个型号均采用独特的外形设计,以防库存混淆,提高了可靠性密封垫圈系列 — 一系列密封垫圈,其孔尺寸适合所有安捷伦毛细管柱,包括 UltiMetal 色谱柱,以及无孔密封垫圈或塞入式密封垫圈,可满足所有应用需求兼容所有微板流路控制技术设备 — 推荐用于 CFT 反吹、流出物分流、保留间隙连接、气相色谱串联气相色谱、Dean switch 或 LTM 色谱柱连接。
  • 可塑金属密封垫圈,UltiMetal Plus,适用于 0.53 mm 内径 UltiMetal 色谱柱管,10/包
    彻底解决气相色谱毛细管柱连接的问题!利用我们最新设计的专有 UltiMetal Plus 可塑金属密封垫圈,您可以充满信心地将无泄漏色谱柱两通接头连接到微板流路控制技术 (CFT) 装置以及进样口上。这些新型金属密封垫圈解决了其他金属密封垫圈在安装过程中存在的色谱柱断裂、匹配不当和接头损伤等问题,带来了新的优势 — 易用性和惰性!查看我们推荐的质谱接口和进样口连接。最新设计的不锈钢密封垫圈。 质量和硬度较低,可灵活地轻轻压住色谱柱周围,减少了其他金属密封垫圈常见的色谱柱断裂现象和对接头的损伤更严格的内径容差。 适用于更大范围的色谱柱管线,可减少浪费并实现一致的密封广口 — 新型表盘式包装设计可实现无接触安装,因为色谱柱可轻松穿过密封垫圈UltiMetal Plus 脱活。化学脱活为痕量活性分析物的分析提供了惰性表面。安捷伦惰性流路的组成部分:惰性流路分流/不分流进样口、超高惰性衬管和气相色谱柱以及新型超高惰性分流平板直观差异。产品系列中的每个型号均采用独特的外形设计,以防库存混淆,提高了可靠性密封垫圈系列 — 一系列密封垫圈,其孔尺寸适合所有安捷伦毛细管柱,包括 UltiMetal 色谱柱,以及无孔密封垫圈或塞入式密封垫圈,可满足所有应用需求兼容所有微板流路控制技术设备 — 推荐用于 CFT 反吹、流出物分流、保留间隙连接、气相色谱串联气相色谱、Dean switch 或 LTM 色谱柱连接。
  • 侧孔针头
    侧孔针头 侧孔针头是特殊加工处理的针头,其出口在针头的侧面,而针尖是密封的,专门用于气相色谱气体进样,不堵针,不损伤顶空瓶进样口密封垫,也不损伤气相色谱仪进样口密封垫,延长密封垫寿命,提高分析成功率.
  • 可塑金属密封垫圈,UltiMetal Plus,适用于 0.25 mm 和 0.32 mm 内径 UltiMetal 色谱柱管,10/包
    彻底解决气相色谱毛细管柱连接的问题!利用我们最新设计的专有 UltiMetal Plus 可塑金属密封垫圈,您可以充满信心地将无泄漏色谱柱两通接头连接到微板流路控制技术 (CFT) 装置以及进样口上。这些新型金属密封垫圈解决了其他金属密封垫圈在安装过程中存在的色谱柱断裂、匹配不当和接头损伤等问题,带来了新的优势 — 易用性和惰性!查看我们推荐的质谱接口和进样口连接。最新设计的不锈钢密封垫圈。 质量和硬度较低,可灵活地轻轻压住色谱柱周围,减少了其他金属密封垫圈常见的色谱柱断裂现象和对接头的损伤更严格的内径容差。 适用于更大范围的色谱柱管线,可减少浪费并实现一致的密封广口 — 新型表盘式包装设计可实现无接触安装,因为色谱柱可轻松穿过密封垫圈UltiMetal Plus 脱活。化学脱活为痕量活性分析物的分析提供了惰性表面。安捷伦惰性流路的组成部分:惰性流路分流/不分流进样口、超高惰性衬管和气相色谱柱以及新型超高惰性分流平板直观差异。产品系列中的每个型号均采用独特的外形设计,以防库存混淆,提高了可靠性密封垫圈系列 — 一系列密封垫圈,其孔尺寸适合所有安捷伦毛细管柱,包括 UltiMetal 色谱柱,以及无孔密封垫圈或塞入式密封垫圈,可满足所有应用需求兼容所有微板流路控制技术设备 — 推荐用于 CFT 反吹、流出物分流、保留间隙连接、气相色谱串联气相色谱、Dean switch 或 LTM 色谱柱连接。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制