当前位置: 仪器信息网 > 行业主题 > >

高分析仪

仪器信息网高分析仪专题为您提供2024年最新高分析仪价格报价、厂家品牌的相关信息, 包括高分析仪参数、型号等,不管是国产,还是进口品牌的高分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分析仪相关的耗材配件、试剂标物,还有高分析仪相关的最新资讯、资料,以及高分析仪相关的解决方案。

高分析仪相关的资讯

  • 290万!东北师范大学高分辨X射线薄膜分析仪采购项目
    1.项目编号:ZZ23632HW04310136。2.项目名称:东北师范大学物理学院高分辨X射线薄膜分析仪(进口)设备采购。3. 采购方式:公开招标。4.预算金额:39.7万欧元(人民币限额290万元)。5.采购需求:高分辨X射线薄膜分析仪;数量:1套(详见招标文件“第五章 项目需求”)。6.合同履行期限(供货期):合同签订之日起8个月内完成交付、安装及调试。7.本项目不接受联合体投标。公开招标(进口货物)-东北师范大学物理学院高分辨X射线薄膜分析仪(进口)设备采购11.13.pdf
  • 2125万!南方科技大学电子系高分辨定量阴极荧光分析仪采购项目
    项目编号:AOMC-2022-057(SZDL2022001503)项目名称:电子系高分辨定量阴极荧光分析仪采购预算金额:2125.7000000 万元(人民币)最高限价(如有):2125.7000000 万元(人民币)采购需求:详见原公告合同履行期限:签订合同后 270 天(日历日)内交货本项目( 不接受 )联合体投标。
  • 400万!南京大学大气氧化态有机物高分辨率质谱分析仪采购项目
    项目编号:0667-221JIBEP6050、ZH2022020186项目名称:大气氧化态有机物高分辨率质谱分析仪预算金额:400.0000000 万元(人民币)采购需求:大气氧化态有机物高分辨率质谱分析仪 1套简要技术要求:分辨率可调档数:不小于4档合同履行期限:交货时间:合同签订后180天本项目( 不接受 )联合体投标。
  • 预算655万 中国科学院过程工程研究所采购1台高分辨三维X射线显微分析仪
    p  日前,中国科学院过程工程研究所发布高分辨三维X射线显微分析仪采购项目招标公告,预算655万元采购1台高分辨三维X射线显微分析仪,允许进口。以下为招标公告主要内容:/pp  项目名称:中国科学院过程工程研究所高分辨三维X射线显微分析仪采购项目/pp  项目编号:OITC-G190331180/pp  项目联系方式:/pp  项目联系人:于峰/pp  项目联系电话:010-68290507/pp  采购单位联系方式:/pp  采购单位:中国科学院过程工程研究所/pp  地址:北京市海淀区中关村北二街1号/pp  联系方式:010-82545057/pp  代理机构联系方式:/pp  代理机构:东方国际招标有限责任公司/pp  代理机构联系人:010-68290507/pp  代理机构地址: 北京市海淀区西三环北路甲2号院科技园6号楼13层01室/pp  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/4237e55a-aad9-4fa6-a92d-ec1018642521.jpg" title="采购内容.jpg" alt="采购内容.jpg"//pp  二、投标截止时间:2019年09月27日 09:30/pp  三、开标时间:2019年09月27日 09:30/pp  四、开标地点:/pp  北京市海淀区西三环北路甲2号院科技园6号楼13层第1会议室/pp  附:strongimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "//strongstrong style="color: rgb(0, 102, 204) text-decoration: underline font-family: 宋体, SimSun font-size: 18px "span style="font-family: 宋体, SimSun font-size: 18px "a href="https://img1.17img.cn/17img/files/201909/attachment/25ce887b-0d47-4945-ad8d-d72f14975a88.docx" title="采购需求.docx" style="color: rgb(0, 102, 204) text-decoration: underline font-family: 宋体, SimSun font-size: 18px "采购需求.docx/a/span/strong/p
  • 高分文献年年有!盘点使用PR蛋白稳定性分析仪发布的国内外文献
    从应用方向上看,科研/生物医药领域的研究人员借助PR系列蛋白稳定性分析仪的多维度组合模块和功能,可实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息,为生物制品、结构生物学、蛋白表征以及Thermal Shift Assay(TSA)等研究提供强大助力,PR提供的组合方法及四种技术模块早已成为CNS必备的高分神器,也是您的理想之选! 👉 点击此处,查看详细文献列表👈 选择PR获取实验所需的多维度参数信息,您将看到其他技术所不能提供的稳定性数据。选择PR让您获得更可靠的、高分辨率的蛋白质稳定性数据,检测出不易被发现的稳定性行为,让您对检测结果充满信心!
  • 日立分析仪器发布新款高分辨率探测器SDD款XRF镀层测厚仪X-Strata920
    2018年6月19日,英国牛津:日立分析仪器公司(日立分析仪器),是日立高新技术公司(TSE:8036)旗下一家从事分析和测量仪器的制造与销售业务的全资子公司。今日,日立分析仪器拓展了XRF镀层测厚仪 X-Strata920 的功能,添置了新型高分辨率探测器和新型样品台配置。 日立分析仪器XRF镀层测厚仪系列在电子和金属表面处理行业已有超过40年镀层分析的成功经验。X-Strata920可确保镀层符合规格要求,并将镀层过量或过少镀层废料造成的浪费减至最少。随着X-Strata功能的扩展,用户可以通过该仪器进行更多工作。 这一款新型X-Strata意味着可选择高分辨率硅漂移探测器(SDD)或正比计数器定制仪器,以优化其性能。此外,它现在拥有四个腔室和基座配置,可处理各种形状和尺寸的样品,包括汽车行业中的复杂几何形状。 对于复杂的镀层结构,SDD可以提供优于正比计数器的优势,因为它更易分析具有类似XRF特征的元素,例如镍和铜。这扩大了可以用于分析的元素范围,包括磷 — 对于化学镀镍分析非常关键,并且可以更精确地测量较薄镀层,例如符合IPC-4552A的纳米范围的金。 日立分析仪器产品业务发展经理Matt KREINER表示:“X-Strata920以及日立分析仪器产品系列的其他XRF仪器因其未来前景、可靠性和易用性而闻名。SDD的加入以及多种配置选择能提高我们客户的分析能力和灵活性,以测量大量零件的复杂镀层。我们保留了高度直观的SmartLink软件,因此任何操作员(无论经验水平如何)都能够快速学会使用仪器并获得准确可靠的结果。我们的镀层产品,包括高级FT150微焦斑镀层测厚仪、手持式XRF光谱仪以及可进行快速便携式分析的CMI系列,40多年来在镀层测量领域一直深受信赖,我们很高兴能够提供这些改进成果。”
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!热重分析技术及其在高分子表征中的应用ThermogravimetricAnalysisTechnologyandItsApplicationinPolymerCharacterization作者:谢启源,陈丹丹,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生.博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师.自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员.曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项.编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点.近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究.本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战.在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetricanalysistechnology(TGA)isanefficientresearchtoolthatcharacterizestheweightofmaterialswithtemperatureortimeunderaprogramcontrolledtemperatureandacertainatmosphere.OneofitsadvantagesisthattheTGAresultscanbewellrepeatedwithhighsensitivity.Inaddition,itsheatingprocessisaccuratelyandflexiblycontrolledaccordingtorealthermalenvironmentofsamples.Inrecentyears,TGAispopularlyusedinthefieldofpolymermaterials,whichpromotesthedetailedanalysesontheirthermalstability,compositionanalysisandthermaldecompositionmechanismetal.ThisreviewwillcovermanyaspectsofTGA,includingbasicprinciples,calibration,schemedesign,curveanalysis,aswellasthosecommonerrorsduringsamplepreparationandexperiments,abnormaldatafiguringandthesolutionforthem.Additionally,thetypicalapplicationcasesofTGAinpolymerscience,aswellastheiropportunityandchallengesinfuture,arealsopresented.IntheapplicationsofTGAtechnology,moreinformationaboutthethermal-responsebehaviorofpolymersunderdifferentatmosphereandheatingconditionscouldberevealedbyTGAcoupledwithFTIR,DSC,GC/MStechnology.Inthiscase,notonlytheweightinformationofsampleduringaspecificheatingcondition,butalsotheendothermicandexothermicbehaviors,releasedgascomponentsatthesametimecanbeanalyzedtogether.Theyarehelpfulfornewpolymerdesign,thermaldecompositionmechanismandflamespreadmodelsdevelopment.   关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetricanalysistechnology  Curveanalysis  Thermalstability  Thermaldecompositionmechanism  Caseanalysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3].经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4].该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5].基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域.在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivativethermogravimetriccurve,DTG曲线)是TG曲线进行一次微商的结果.因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率.对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1℃时,样品的相对质量变化.而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到.与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性.图1给出了XLPE在10℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig.1TGandDTGcurvesofXLPEwiththeheatingrateof10℃/mininairatmosphere.    1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点.热重法可准确测量物质在不同受热和气氛条件下的质量变化特征.例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析.此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性.此外,热重法仅需微量样品.因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据.由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备.因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点.然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用.因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetricanalyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器.测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4].变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息.零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜.由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig.2SchematicoftypicalTGequipmentwiththesampleinaheatingfurnace,whosetemperatureiscontrolledwithaprogram.    根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig.3SchematicofTGequipmentwiththecrucibleatlowerpositionoftheverticalheatingfurnace.  Fig.4SchematicofTGequipmentwiththecrucibleathigherpositionoftheverticalheatingfurnace.  Fig.5SchematicofTGequipmentwiththehorizontal.    由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同.该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化.温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量.热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析.常用联用技术如下所述[4].  (1)同时联用技术.是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术.主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术.是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接.常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等.此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式.前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正.由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperaturecorrection)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程.通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别.例如:当使用熔融温度为156.6℃的金属In进行温度校正时,若所测熔融温度为154.1℃,则(6)  因此,在温度校正时,测量值应增加2.5℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正.在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:  (1)居里点法.居里点法是在磁场的作用下,将铁磁性标准物质加热到某一温度时,其磁性很快完全消失而引起质量变化的原理来对温度进行校正的方法[7,8].磁性消失时所对应的温度通常称之为铁磁性材料的居里温度(Tc).居里温度只与材料的组分有关.  通常使用具有确定居里温度值的纯金属或合金作为标准物质,该温度校正过程实质上为磁性温度的测量[9].图6为使用几种磁性标准物质进行校准时得到的TG和DTG曲线.此外,通过该方法可以在单次实验中测量多个磁性样品的转变过程.Fig.6TGandDTGcurvesofseveralmagneticmaterialsfortemperaturecalibrationofTGequipmentwiththeheatingrateof10℃/mininN2atmosphere.    (2)吊丝熔断法.吊丝熔断法通过将熔点已知的纯金属细丝固定悬挂在样品支撑系统附近位置,当温度升高至其熔点时,该金属丝发生熔化并从其支撑件滴落[10,11].通过确定在已知温度熔融而引起的表观质量变化对应的温度,从而校准仪器温度.  (3)特征分解温度法.特征分解温度法是通过结构已知物质的初始分解温度来进行仪器温度校正[12].此处所指的初始分解温度为失重速率达到某一预定值之前的试样温度.标准物质应具有以下特性:在温度达到其特征分解值前具有足够的稳定性 特征分解温度具有重现性 不同来源得到的同种标准物质,其初始分解温度差异较小.  当采用热重分析仪与差热分析或示差扫描量热技术进行联用时,也可利用试样在实验过程中随温度变化而引起的熔融、晶型转变等过程产生的特征热效应,对仪器进行温度校正[13~15].例如:通过一些具有可逆“固↔固”转变或“固↔液”转变过程的物质来进行温度校正.  2.4.3质量校正  常用的质量校正方法主要包括2种:静态质量校正和动态质量校正.  (1)静态质量校正法.在某一个设定的温度和气氛下,通过对已知质量为m0的砝码进行称重测量,确定测量值mi与m0之间的差值∆mc,即:(7)  在仪器的软件中分别输入mi与m0的数值,在之后的测量中,软件将自动扣除质量差∆mc.  (2)动态质量校正法.在实验过程中,质量基线可能随温度发生一定的漂移.质量基线是在不加任何样品的条件下得到的,理论上,该质量在不同的温度下应始终保持为0.为了使得到的质量更接近真实值,通常采用扣除空白基线法和用已知质量的砝码进行动态质量校正方法对不同温度下的质量进行整体校正.  在完成以上质量校正后,可用已知分解过程的标准物质,例如:高纯碳酸钙或一水合草酸钙样品,对校正结果进行验证,评价校正结果是否合理.  2.4.4仪器状态评价  仪器在长时间工作过程中,可能出现一些不易被察觉的状态变化,在这种“亚健康”状态下,所测得异常数据一般不易察觉,此时,实验数据的准确性和重复性往往明显较差.由于不同操作人员对仪器状态是否异常的判断标准不同,从而导致采取的措施之间也存在差异,进而对实验结果带来不同程度的影响.  在分别对热重分析仪的温度和质量进行校正之后,还需要按照相应的检定规程或者校准规范等的要求,对校正结果进行评价,以确认仪器的工作状态是否可以满足实验的要求.  1997年,原国家教委于发布了《JJG(教委)014-1996热分析仪检定规程》[16],其中对于新安装、使用中和修理后的热重分析仪(TG)等仪器的检定做了规范.此外,原国家质量监督检验检疫总局分别于2017年和2002年发布了热重分析仪检定规程《JJG1135-2017热重分析仪检定规程》[17]和《JJG936-2002示差扫描热量计检定规程》[18].  3热重分析实验方案设计  3.1实验方案设计的重要性  热重实验方案设计决定着实验成败.如前所述,热重仪具有多种结构形式,在实际应用中应首先根据实验需求,选择结构形式合适的热重仪[19].例如:当需要研究易氧化试样在惰性气氛下的热行为时,应选择具有较好密封性的热重仪.此外,对于一些重量变化不明显的过程,在选择仪器时,应考虑仪器的天平质量测量灵敏度和量程.  在选定合适的热重分析仪后,还需要选择合适的实验条件,主要包括以下几个方面:试样状态(粉末、薄膜、颗粒、块体等)、试样用量、试样容器的材质和形状、实验温度范围及控制方式、实验气氛的种类和流速,以及其他条件,包括湿度控制、光照等.  此外,在实验过程中所用试样的来源、前处理方式、试样容器以及实验所用仪器自身的差异等,也可能对最终的实验结果带来影响.如果忽视这些影响因素,往往很难得到较好的热分析实验结果,甚至可能得到错误的实验结论.  3.2实验方案设计的主要内容  3.2.1热重分析仪的选择  选择合适的热重分析仪是确定热分析实验方案的第一步.在进行实验之前,应根据实验目的和样品信息,选择合适的热重分析仪.这里所指的热重分析仪,不仅仅局限于独立式热重分析仪,还包括与热重分析仪联用的热重-差热分析仪、热重-示差扫描量热仪、热重/红外光谱联用仪、热重/质谱联用仪、热重/气相色谱/质谱联用仪等形式的热分析联用仪.  在实际应用中,对于下皿式、上皿式和水平式等不同结构形式的热重仪,其性能参数(如灵敏度、控温精度等)、气氛气体的流动方式、实验温度范围、温度变化速率范围等存在一定的差异.此外,有时需要根据特殊的实验目的,在真空、高压、还原气氛、强氧化气氛、腐蚀性气氛、蒸汽等特殊条件下进行实验,此时,更应关注所选热重仪是否满足实验要求.  如前所述,在一些应用中,除了需要得到样品在加热过程中的质量信息之外,还需测量其中的热效应、生成气体种类和含量等,此时,则应采用与热重分析仪联用的相关仪器.  关于商品化热重分析仪的选用,经过近几十年的发展,当前,国外主流仪器厂商如德国Netzsch、美国TA、美国PerkinElmer、瑞士MettlerToledo等均生产有适用不同温度范围的热重分析仪和TG-DSC同步热分析仪,各型号仪器的灵敏度与可重复等性能都可满足聚合材料的常规性能测试要求,且大多均可配置自动进样器等辅助配件,提高仪器工作效率.此外,上述仪器厂商所产热重分析仪可与红外光谱仪、气相色谱仪、质谱仪中的一种或者多种进行联用,对逸出气体组分等进行综合测量.各仪器厂商的联用技术与方式存在一定差异,以满足不同的领域需求.不同型号仪器的联用技术也各有优势,应根据实际需求,合理选用.其中,德国Netzsch公司的多级热分析联用仪可实现热重分析仪与红外光谱仪、质谱、气质联用仪的联用,可以分别实现红外光谱仪与质谱、气质联用仪串接式联用和并联式联用的连接形式 瑞士MettlerToledo公司的热重分析/红外光谱/气质联用仪可实现多段气体的采集与分析功能 美国PerkinElmer公司的热重分析/红外光谱/气质联用仪可以通过八通阀的灵活切换,实现在线分析和分离分析等多模式实验测量.  3.2.2实验操作条件的选择  由热重实验得到的曲线受操作条件的影响十分显著,在应用中,应针对影响热重曲线的因素,选择合适的操作条件.主要包括:试样状态、实验气氛、温度控制程序、实验容器或支架、环境特殊实验条件、采集软件参数等.  (1)试样量/试样形状的选择.由于热重分析仪器的种类、结构形式以及实验条件等因素的差异,不同的热分析仪器对试样量或试样形状的要求差别较大.  通常情况下,热重实验的样品用量为坩埚体积的1/3~1/2.对于密度较大的无机样品,试样质量一般为10~20mg 对于在实验过程中不发生熔融的样品,在确保仪器安全的前提下,可适当加大试样量.热分析串接联用的仪器对试样的要求,与该类热分析仪对试样的要求相同.  在实际应用中,大多数热重实验对样品状态没有严格的要求,液态、块状、粉状、晶态、非晶态等形式均可以进行热重实验.实验前,可以不进行专门的处理,直接进行测试.对于较潮湿的样品,一般在实验前需进行干燥处理,以避免因溶剂或吸潮而引起曲线失真.  此外,实验时,所用试样的粒度及形状也可能影响所得热分析曲线的形状.试样粒径的不同,往往引起气体产物扩散变化,导致气体的逸出速率变化,从而引起曲线形状的变化.一般情况下,试样的粒径越小,反应速率越快,对应曲线的起始分解温度和终止分解温度也降低,同时,反应区间变窄,分解反应也越彻底.  (2)实验气氛的选择.在热重实验中可选择的气氛通常为静态(真空、高压、自然气氛)或动态气氛(氧化性气氛、还原性气氛、惰性气氛、反应性气氛),实验时,应根据需要,选择合适的实验气氛和流速.实验气氛的流速一般不宜过大,过大的流速往往导致较轻试样来不及发生完全分解而被气流带离测量体系,从而影响热分析曲线的形状.另一方面,过低的流速也不利于分解产物及时排出,往往使分解温度升高,严重时可能影响反应机理.  在选择实验气氛时,应明确实验气氛在实验过程中的作用,这里给出几种常用选择原则:如果仅是通过气氛使炉内温度保持均匀、及时将实验过程中产生的气体产物带离实验体系,通常选用惰性气氛 如果需要研究试样在特定气氛下的行为时,应选择特定的实验气氛,此时的气氛的作用可以是惰性气氛,也可以是反应性气氛 当需要研究试样在自然气氛下的热行为时,样品室无需通入气氛气体,将流速设为0或者关闭气体开关,此时,若试样发生分解,可能污染检测器 对于相邻的2个过程,可通过改变实验气氛,实现相邻过程的有效分离 对于含有复合材料或含有有机物的混合物,可根据各组分在不同温度范围发生的热分解过程,确定热稳定性不同的组分的含量 当使用反应性气氛时,应充分评估气氛对仪器关键部件的安全性,某些反应性气氛如H2、纯氧等在高温下可能与仪器的关键部件发生反应,对仪器造成不可逆的损害.  (3)温度控制程序的选择.在热重实验中,所采用的温度控制程序主要包括加热、降温、等温以及这些方式的组合等形式,其中,主要包括温度扫描速度和温度范围的确定.  对于温度扫描速率,若采用线性加热或降温过程,采用较快的加热速率,可有效提高仪器的灵敏度,然而可能导致分辨率下降,从而使相邻的过程较难分离.一般情况下,在实际应用中,应综合考虑转变的性质和仪器的灵敏度,综合选择一个合适的温度扫描速率.对于热重实验,最常用的温度扫描速率为10℃/min.  对于温度范围,应根据样品的性质和实验目的,进行合适选择.大多热重实验从室温开始进行,最高温度基于实验中可观察到所关注变化过程进行设定.对于热稳定性较低的物质,最高实验温度以覆盖物质的分解过程即可,不设为仪器可达最高温度.  在进行等温实验时,从开始温度达到设定温度所需的时间越短越好,即热惯性越小越好,以避免所关注的变化在达到设定温度的过程中已经发生.  (4)实验容器或支持器的选择.对于热重分析仪,其测试对象主要呈粉末状,通常用坩埚盛装样品.无论是坩埚还是支架,在实验过程中均不能与试样发生任何反应.  一般来说,用于热重实验的坩埚主要有敞开式和密封式2类.常用坩埚的材质有铝、石墨、金、白金、银、陶瓷和不锈钢等,实验时,应根据样品的状态、性质和测量目的合理地选择坩埚的形状和材质.  对于剧烈分解的样品,在热重实验中,应尽量减少试样用量,且应多使用浅皿坩埚.同时,应增大气氛气体的流速,从而及时带离分解产物.当使用敞口坩埚时,若出现迸溅现象而使试样未完全分解却被带出坩埚的情形,可通过坩埚加盖扎孔的方法解决.即,在盖子中心位置扎一个圆形小孔,以便实验过程中产生的气体及时逸出.与不加盖时的结果相比,由加盖坩埚所得热分析曲线形状往往明显变化,相应特征温度也升高.  在选择坩埚材质时,还应考虑坩埚需承受的最高温度及其惰性特征,例如:铝坩埚的最高使用温度不超过600℃.如需进行更高温度实验,可选用金坩埚或铂坩埚.而分解反应的热重实验一般不用铝坩埚,常用氧化铝、陶瓷、铂、铜、不锈钢等材质.由于铂对棉纤维、聚丙烯腈等物质反应具有催化作用,因此,若样品中含磷、硫和卤素,则不可用铂坩埚.此外,陶瓷类坩埚通常不适用于碱性物质、含氟聚合物及硅化合物的热重实验.  (5)环境特殊实验条件的选择.进行热重实验时,有时还需根据实验目的和样品种类,选择是否需要控制环境湿度、磁场、电场、光照等条件.  在实际应用中,应结合具体的实验目的,判断所使用的热分析仪能否满足实验要求的特殊条件,仪器通常以附件的形式来实现上述的特殊实验条件.  (6)数据采集频率的设置.通常情况下,1数据点/s的采集频率足以准确记录试样质量变化信息.对于一些非常快的变化过程,仪器默认的数据采集频率无法实时记录下该过程中的变化信息,此时,应增大采集频率.而对于耗时较长的等温实验或较低加热速率的实验,则不宜使用1数据点/s的采集频率,应降低数据采集频率.  4热重实验过程  4.1样品准备  理论上,一切非气态的试样都可以直接通过热重实验,测量其质量在一定气氛和程序控制温度下随温度或时间的连续变化过程.待测样品,应根据实验目的,进行合理制样或取样,并标明相应信息.由于热重实验所需样品量极少,应避免样品局部取样和混合不均等问题.此外,由于由不同状态的试样所得热重曲线的差别往往较大,因此,选择合适的试样状态对能否得到合理的实验结果十分关键.一般来说,不同状态的试样需做一些相应的处理才可用于热重实验.  4.2实验测试  在完成样品准备和实验条件选择之后,即可开始进行热重实验测量.整个测量过程主要包括:仪器准备、样品制备、设定实验条件和样品信息、开始实验等过程[4].  4.2.1仪器准备  若实验室供电正常,热重实验仪一般24h开机,当重新开机时,应开起仪器使其至少预热平衡30min.若仪器虽在正常使用中,调整了气氛气体,也应使仪器在调整后气氛条件下,平衡至少30min,以使炉内气体浓度保持一致.  在仪器处于平衡稳定的状态下,正式开始实验前,还应对实验中使用的坩埚进行质量扣除,即,“清零”操作,具体做法如下:  (a)将一个洁净的空坩埚置于样品支架或吊篮上,若热重仪为水平式或上皿式,应在参比支架上放置一个质量相近的同类型坩埚.关上加热炉,使天平所测质量几乎不变,几分钟后,按下面板上或仪器控制软件中的“清零”按钮.完成这一操作后,若显示的质量变化很小,则表明实验中所用的坩埚的空白质量已经扣除,装入试样后,软件显示的质量即为试样绝对质量.  在热重实验过程中,若坩埚需使用扎孔上盖或坩埚内需加稀释剂,则坩埚盖或所加稀释剂质量也应扣除.  (b)打开加热炉,将坩埚取下,用于盛装待测实验样品.对于配置自动进样器的热重仪,可集中对多个空白坩埚依次进行清零操作,软件将对自动进样器中各编号坩埚清零过程中的质量差异进行分别记录,使用时,应避免混淆坩埚顺序.  4.2.2制样  将待实验的试样放入已扣除空白质量坩埚中,试样量一般不应超过坩埚体积的1/3~1/2.对于含能材料等在高温下易剧烈分解或可熔融样品,试样用量能覆盖坩埚底部即可.对于易剧烈分解样品,也可使用较大尺寸坩埚或加入稀释剂的方法,减少试样热分解过程对支架或吊篮的损害.  对于组成不同、结构相近的系列试样,为消除试样量对实验曲线的影响,同一系列实验中,各次试样用量应相近.  将适量试样加入至坩埚后,可用镊子夹住坩埚在桌面上轻敲几次,使试样均匀分布于坩埚底部.对于易挥发、不稳定的液体黏稠试样或易吸潮的粉末试样,应尽快加载和摇匀坩埚内试样,减少试样在空气中的变化.  之后,打开加热炉,用镊子将坩埚置于热重仪的吊篮或支架上,并及时关上加热炉腔体,待试样信息设置完毕和样品质量读数稳定后,即可开始实验.  对于一些较易挥发的液体试样,在天平清零操作后,应提前在控制软件中设定相应信息,从而缩短实验开始前的等待时间.  4.2.3设定试样信息和实验条件等信息  目前的商品化热重仪都配有相应的控制软件和数据分析软件,不同厂家的仪器的软件界面各不相同,但在软件中需输入的试样信息和实验条件等大多相似.在软件中所输入的信息,可在后期的数据分析过程中查看.  在正式实验开始前,控制软件中应输入的信息主要有:  (1)样品信息.包括样品名称、编号、送样人、实验人、批次、文件名等.目前大多数热重仪软件不支持中文输入,建议多用英文字母和数字,尽量避免使用“%、?、/”以及汉字等字符.  当使用自动进样器时,除以上信息外,还应输入坩埚所对应的位置序号.  (2)实验条件信息.主要包括试样质量、温度程序信息、坩埚参数、气氛种类及流速以及数据采集频率等其他信息.  4.2.4运行实验测量  信息输入后,待试样质量稳定,即可按下控制软件中的“开始”按钮开始实验,加热炉即按设定温度控制程序对试样进行加热、降温、等温等操作,数据将自动保存.实验结束后,包括试样参数、实验程序、实验数据等信息将各自单独生成文件,供后续数据分析与处理所用.  由于热重仪天平的灵敏度较高,实验过程中,工作台附近不可出现较大的振动,加热炉出口区域也不应有较大气流波动.  5热重实验曲线解析  5.1曲线解析概述  热重曲线解析是热重实验过程的重要环节,是获得所测式样热响应特性的关键步骤,曲线解析主要包括以下几个步骤[19]:实验数据导入与基本分析、运用作图软件进一步分析、热重曲线描述、热重曲线初步解析、热重曲线综合解析以及实验报告或科研论文撰写.  5.2在仪器分析软件中的基本数据处理  5.2.1仪器分析软件中实验数据的导入  各组热重实验完成后,在仪器附带的数据分析软件中,可导入数据文件并进行数据处理与分析,不同厂商的数据文件的格式可能存在一定的差异,但都可转化输出为Excel等通用软件可读格式文件,以便于后续数据处理与分析.  5.2.2仪器分析软件中的基本作图  为了便于分析,首先可在软件中对测得的热重曲线的纵坐标进行归一化处理,将纵坐标由绝对质量换算为相对质量.对于仅含一个线性加热程序的热重实验,热重曲线常以温度为横坐标.对于温度程序中含有一个或多个等温段的实验,则其横坐标常用时间,此时,在图中也可作出“温度-时间”曲线,以显示各时刻温度.  5.2.3仪器分析软件中的曲线数学处理  在仪器附带的数据分析软件中打开数据文件并进行基本作图之后,也可直接对数据进行换算、求导、积分、平滑等进一步的数学处理.  5.2.4仪器分析软件中确定曲线的特征物理量  热重曲线中质量变化反映了试样性质随温度的变化特性,对于一个变化过程,一般用温度和质量同时描述.常用的特征温度主要包括初始温度(initialtemperature,一般用Ti表示)、外推起始温度(extrapolatedonsettemperature,Tonset)、终止温度(finaltemperature,Tf)、外推终止分解温度(extrapolatedendtemperature,Tendset)、n%分解温度(n%temperature,Tn%)和最快质量变化温度(DTG峰值温度,peaktemperature,Tp),直接使用分析软件,即可在图种标出上述特征温度.  图7给出了热重曲线中各特征温度的位置示意图,具体确定方法如下所述:Fig.7CharacteristictemperaturesinTGcurves(PointA:Initialtemperatureaccordingtoacertainmassloss PointB:Initialtemperatureaccordingtoacertainmasslossrate PointC:Extrapolatedonsettemperature PointD:Extrapolatedendtemperature PointE:Initialtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointF:Endtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointG:Temperatureforthemaximummasslossrate).    (1)以失重数值达到最终失重量的某一百分数时的温度值作为反应起始温度(Ti,图7中A点) 此外,n%反应温度为质量减少n%时的温度,可直接由热重曲线标出(Tn%),常用的n%分解温度主要有0%、1%、5%、10%、15%、20%、25%、50%时的Tn%,其中,0%分解温度特指试样保持质量不变的最高温度.  (2)以质量变化速率达到某一特定数值时的温度作为反应起始温度(Ti,图7中B点).  (3)以反应到达到某一特征点(如:热重曲线斜率最大)时热重曲线的切线与平台延伸线交点所对应的温度作为“外推反应起始温度”(Ti,图7中C点)和“外推反应终止温度”(Tf,图7中D点) 与Ti和Tf相比,Tonset和Tendset受人为主观判断的主影响较小,常用来表示试样的特征分解温度,而Ti和Tf则常用来表示质量变化范围的起止温度.  (4)以反应达到热重曲线上某2个预定点的连线与平台延伸线交点所对应的温度作为反应的起始温度(Ti,图7中E点)和反应终止温度(Tf,图7中F点).  (5)由微商热重曲线中得到的最快质量变化温度也称最大速率温度或微商热重峰值温度(Tp),是指质量变化速率最大的温度(图7中G点),可直接由微商热重曲线的峰值获得,Tp对应是最大质量变化速率,常用(dm/dt)p表示.  在实际应用中,何种方法所确定的初始温度等特征值,往往都存在一定的特殊性和局限性.如图7所示,常用C点外推起始温度或A点预定质量变化百分比(通常为5%)温度来表征物质的热稳定性.  5.2.5专业绘图软件的绘图与处理  当前,大多商品化仪器所附带的数据分析软件都可进行多条曲线的对比分析,也可在软件中直接进行曲线上下移动和线型颜色等编辑.然而,为进行更专业和细致的数据分析与对比,往往将数据转化输出为Text、Excel等通用格式文件,从而采用Origin、Matlab、Tecplot等专业作图软件进行分析,尤其是对多工况、多样品复杂系列实验测量结果的综合分析,即可给出静态的2D和3D图,也可根据实验研究目标,重构特征参数的时空演化动态视频,以满足实验报告、科研论文以及现场交流视频等需要.  5.3热重曲线的解析  5.3.1热重曲线的初步解析  热重曲线的初步解析主要包括如下几点.  (1)结合样品信息解释曲线中发生的变化.曲线中各典型温度区间或时刻所发生变化与样品结构、成分、处理工艺等信息密切相关.  (2)结合实验条件信息解释曲线中发生的变化.实验时采用的实验条件对热重曲线的影响较大,应结合实验所采用温度控制程序、气氛等信息,初步解释热重曲线主要特征形成的主要原因.  5.3.2热重曲线的综合解析  进行材料热响应特性研究时,采用多种实验测试方法进行综合分析,有利于更加客观、全面地揭示其中的本质特性及其影响机制.综合解析主要包括如下几个方面.  (1)通过多种分析技术与热重曲线进行互补与验证分析.例如:通过热重曲线可以得到一定范围内的质量变化信息,对于结构较复杂的物质而言,仅通过热重曲线较难准确获得在实验过程中的结构变化信息.通常利用与热重仪联用的红外光谱、质谱和气相色谱/质联用技术,综合分析在质量减少过程中产生的气体产物信息,从而获得实验过程中样品结构变化特征.  (2)通过外推法对热重曲线进行分析.由于热重曲线大多是在动态温度条件下测得,对应特征量为非热平衡状态的测量值.因此,可进行不同温度扫描速率条件下的系列热重曲线分析,将所得系列特征转变温度对温度变化速率进行数据拟合,并进行0温度变化速率条件下的外推,获得准平衡状态下的特征值.  6在高分子科学中的应用进展  由于可准确地测量物质受热过程中的质量变化及其变化速率,热重法在高分子科学中得到了广泛应用,对于升华、汽化、吸附、解吸、吸收和气固反应等物理和化学过程,都可进行定量检测.近年来,主要应用包括以下几个方面.  6.1聚合物中添加剂的影响  高分子聚合物中添加各类改性物质,是高分子材料设计与性能提升的重要研究方向.聚合物中各添加剂含量的测定,是其性能分析与配方设计的关键环节,根据各物质热稳定性差异,可由TG曲线确定添加剂的含量[20~24].  Dorez等[25]基于TG方法,研究了聚磷酸铵(APP)、磷酸二氢铵(DAP)和磷酸(PA)3种阻燃添加剂分别对聚丁二酸丁二醇酯(PBS)/亚麻纤维(Tfl)复合高分子材料热解性能的影响.图8给出了不同阻燃添加剂条件下的复合高分子聚合物TG曲线和DTG曲线,可见,其热解过程主要分2个阶段.对于不含阻燃添加剂的PBS+Tfl,样品被加热到约370℃时,其TG曲线有一个与亚麻纤维热解对应的肩形失重,而由图8(b)所示的DTG曲线可见,PBS热解主峰在400℃位置.在该复合高分子材料中添加3%质量的APP、DAP和PA后,其热解行为主要呈现2个显著变化.首先,材料的初始热解温度更低,由图8(b)所示的各DTG曲线可见,添加APP、DAP和PA的PBS+Tfl复合高分子材料分别在277、309和259℃出现第一个热解峰,这些热解峰比亚麻热解峰更早.因此,亚麻纤维热稳定性的降低,主要归因于所添加阻燃剂分解产生的磷酸对纤维素的磷酸化作用,该反应改变了纤维素的热解路径,从而有利于亚麻脱水,并形成含碳残留物.此外,PBS+Tfl原复合高分子材料的Res600为7.0%,而添加了APP和PA的材料的Res600为11.7%,可见,阻燃添加剂的加入,使得样品热解后的残留物显著增多.其次,PBS+Tfl原复合高分子材料的DTG峰值温度为400℃,而添加阻燃剂后的DTG峰值温度范围为375~380℃,即,主要热解温度区间降低,主要归因于PBS的热水解反应.Fig.8TG(a)andDTG(b)curvesofPBS+TflandFPBS+Tflwith3wt%variedphosphorousadditives(APP:AmmoniumPolyphosphate DAP:Dihydrogenammoniumphosphate PA:Phosphoricacid)(ReprintedwithpermissionfromRef.‍[25] Copyright(2014)Elsevierpress).    6.2混合物中各组分含量分析  为增强高分子材料的强度、硬度及阻燃等性能,实际使用的高分子聚合物材料中常常包含各类无机和有机组分,TG法也常用于分析确定复合材料和天然高聚物中各组分含量分析[26~28].  Rego等[28]针对9种树木样品,采用热重分析法,基于纤维素、半纤维素、木质素和水分4组分模型,通过高斯方程优化拟合,给出了各树木样品的组成,如表1所示.Table1Lignocellulosicscontents(%mass,drybasis)inthesamplesofpoplargenotypes(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).  图9给出了其中一种木材样品(grimmingegenotype)的曲线拟合结果,如图所示,通过4组分热重曲线的叠加包络曲线,与实验测量的样品热重曲线吻合度高.  Fig.9ExperimentalanddeconvolutedDTGprofileforGrimmingegenotype.Curvesoffourcomponents(water,hemicellulose,celluloseandlignin)andthecombinedoneareshownforcomparisonwiththeexperimentalresults.(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).    图10为氧化石墨烯(GO)和聚丙烯/氧化石墨烯/四氧化三铁(PAA/GO/Fe3O4)纳米复合材料的TG曲线[29].由图可见,对于GO样品而言,由于样品中含氧官能团的分解,TG曲线在250~350℃范围内出现明显了的重量损失.另外,在425~625℃温度范围的质量损失是GO在空气中碳的燃烧引起的.因此,在水溶性的PAA/GO/Fe3O4纳米复合材料的热重曲线中:(1)在50~150℃范围的重量损失是在样品表面物理吸附的残余水引起的 (2)在150~250℃温度范围的重量损失是在合成时加入的有机溶剂和表面活性剂引起的 (3)在350~500℃之间的重量损失是PAA的氧化分解引起的 (4)500~630℃之间的重量损失是GO在空气中碳的燃烧引起的 (5)630℃以上,在实验的温度范围内,质量没有发生明显的变化.Fig.10TGcurvesoftheGO(a)andPAA/GO/Fe3O4(b)nanocomposites(GO:Grapheneoxide PAA:Polyacrylicacid).ForGO,aweightlossfrom250-350℃isascribedtothedecompositionofoxygen-containinggroupsofGO.Theothermasslossfrom425℃to625℃isattributedtotheburningofcarboninGO.ForPAA/GO/Fe3O4,thelossstepover50-150℃mightbeduetothelossofresidualwateradsorbedphysicallyinthesample.Theweightlossaround350-500℃wasduetotheburningofPAA.Theweightlossoverthetemperaturerangeof150-250℃isattributedtotheresidualorganiccompoundsinthesample.(ReprintedwithpermissionfromRef.‍[29] Copyright(2013)TheRoyalsocietyofChemistry).    综合以上分析,由TG曲线可以确定,在PAA/GO/Fe3O4纳米复合材料中PAA:GO:Fe3O4的重量比是1:1:3.基于PAA/GO/Fe3O4纳米复合物的重量和PAA的平均分子量分析,可以估算得到每2个PAA分子连接一个纳米颗粒.  6.3TG-FTIR联用分析案例  Plassauer等[30]针对聚氨酯丙烯酸酯(PUA)和添加了磷酸酯聚氨酯丙烯酸酯(PUA-FR),采用TG-FTIR联用技术,研究了其热解特性.图11中给出了2种样品的TG-DTG曲线,同时,可见,PUA的热解过程主要分为4个阶段,各阶段质量损失分别为4.3%、24.4%、15.9%和52.8%.此外,图12中给出了PUA和PUA-FR在典型温度下的热解产物FTIR吸收光谱.  Fig.11TG(solidlines)andDTGcurves(brokenlines)ofPUAandPUA-FRunderpyrolyticconditionswiththeheatingrateof10℃/mininN2atmosphere.PUA:polyurethaneacrylate PUA-FR:flame-retardantPUAtreatedwithtris(1-chloro-2-propyl)phosphate(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    Fig.12(A)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUAobtainedatdifferentpyrolysistemperatures:(a)200℃,(b)290℃,(c)350℃,(d)470℃ (B)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUA-FRobtainedatdifferentpyrolysistemperatures:(a)290℃ (b)350℃ (c)450℃ (d)510℃(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    综合其热解失重曲线和热解产物吸收光谱图,可见,第一阶段(135~200℃),主要是PUA中PMMA-PHEMA段的初始热解,然而,样品中残留溶剂的蒸发量更大,成为该阶段主要生成物.  在第二阶段(266~310℃),聚丙烯酸酯主链的随机断链更为显著,形成的丙烯酸酯单体是该阶段PMMA-PHEMA段分解的主要产物.  第三阶段(348~385℃),生成了较多的二氧化碳,表明MMA/HEMA单体的分解可能与丙烯酸酯的自由基脱羧有关.对于PUA-FR样品,由于TCPP对聚丙烯酸酯具有中断其释放自由基的作用,因此抑制了该阶段的热解反应,同时由于生成了具有更高热稳定性的含碳产物和聚磷酸盐,并通过酯侧链的脱羧释放出二氧化碳,从而达到阻燃效果.  第四阶段(456~506℃),发生了HDI异氰尿酸盐和少量含羟基部分的快速释放,可见该阶段主要发生氨基甲酸酯键的解离,而从PUA的气体分解产物红外数据,可进一步看出由于氨基甲酸酯键的脱羧和相关尿素的分解,形成了氨基己基异氰尿酸盐.此外,对气体和固体分解产物的红外光谱分析表明,当温度超过400℃时,异氰尿酸盐分解为三聚氰酸和异氰酸.  6.4TG-DSC/MS联用分析案例  Mas等[31]针对二氨基顺丁烯二腈(DAMN),通过TG/DSC-MS联用,研究了DAMN的热解特性,图13给出了氩惰性气氛和20℃/min的升温速率条件下的TG、DSC和MS实验曲线.Fig.13(a)TG,(b)DTGandDSCcurvesand(c)temperature-dependentioniccurrentvariationoftheDAMNattheheatingrateof20℃/mininargonatmosphere.DAMN:Diaminomaleonitrile(ReprintedwithpermissionfromRef.[31] Copyright(2021)Elsevier).    由图13(a)可见,样品受热升温至300℃时,质量损失18%,在温度升高至其熔融转变温度(约180℃)时,DAMN已经开始热解.由图13(b)中的DTG曲线可见,该曲线反映了若干个互有重叠的分解反应,针对DTG曲线的进一步分析表明,其中包含多个DTG峰值的叠加.通过反卷积法,对叠加包络曲线进行分离处理,结果表明,该DTG曲线至少包含2个同步反应.  进一步的耦合峰值反卷积法分析表明,曲线包含3个高斯峰值,其中,如图13(b)可见,前2个峰值较低,而在较高的温度215℃处,有显著更大的另一个峰值.此外,由图13(b)中的DSC曲线可见,在由于材料熔融相变引起的第1个吸热峰位置,存在明显的少量质量损失.  图13(c)给出了DAMN热解反应中的主要气体产物的质谱曲线,其中,由图中所示的m/z=27(HCN+)碎片吸收峰值所在温度可见,脱氢氰酸化反应主要发生于上述热失重曲线的后期,而16(NH2+)、17(NH3+)和18(NH4+)碎片的变化过程,反映的是热过程中的脱氨和脱质子反应.  上述4个碎片的离子电流随温度的变化分布曲线表明,它们在195~225℃温度区间形状相似,并与图13(b)中所示的质量损失速率曲线一致.此外,m/z=28(N2+)和26(CN+)的2个相对低强度质谱曲线,也表明在熔融聚合过程中发生了脱氨和脱氰过程.  6.5热解反应动力学分析  对于大多反应体系,其动力学模型可用式(8)描述.(8)  式中α为体系反应进度或转化率,无量纲 T为温度,K β为升温速率,K/min k(T)为温度对反应速率的影响函数,1/min f(α)为反应进程对反应速率的影响机理函数,无量纲.  转化率α可用式(9)进行计算.(9)  其中m0为样品初始质量,mg m为样品当前质量,mg m∞为结束时样品残余质量,mg.  对于式(8)中的k(T),主要可用2种模型,一是较为通用的阿伦尼乌斯公式[32],如式(10)所示 二是如式(11)所示的H-E模型[33],较不常用.(10)(11)  式中,A为指前因子,1/min E为活化能,J/mol.R为气体常数,J/(molK) C为常数 m为幂指数.  反应进程机理函数f(α)描述了样品反应速率与物质自身含量的关系,不同的反应机理存对应各自的反应进程机理函数形式.其中,最为通用的是n级反应模型,如式(12)所示.(12)  式中,n即为反应级数.  综合整理式(9)、(10)和(12),可得完整的反应动力学模型,如式(13)所示.(13)  可见,上式中主要包含3个动力学参数(A,E,n),它们综合表征了样品热解反应的详细进程,因此,样品热解动力学分析的核心,即为动力学三参数(A,E,n)的求解.在众多求解方法中,常用方法有3类:微分法、积分法和GE算法,其中,前2类为线性分析法,而GE算法为非线性求解法,以下分别介绍.  6.5.1微分法  微分法通常直接针对式(13)进行求解,对于样品仅在单一扫描速率条件下的热重过程进行动力学分析,可称为单扫描速率法.基于n级反应假设,常用的单扫描速率法包含如下3种.  (a)Freeman-Carroll公式[34],通过作图可以由斜率得到活化能,如式(14)所示.(14)  (b)当n=1时,可用Newkirk公式[35],如式(15)所示.(15)  取2个实验点T1和T2,则有:(16)  (c)Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.  针对不同扫描速率下测得的多条热重曲线,进行动力学分析的方法称为多重扫描速率法.实际应用中,基于微分形式的多重扫描速率法有以下几种.  (a)Kissinger-Akahira-Sunose公式[37],针对不同升温速率(β)下所测热重曲线峰值对应的温度Tp,可得到式(18),由该线性方程的斜率,可确定E,由截距可确定A.(18)  (b)Friedman公式[38],对于多条不同升温速率β下的热重曲线,选择等转化率α处,有式(19).(19)  由斜率可以求得E,截距为ln[Af(α)].  如果结合n级反应模型假设则可得:(20)  结合不同的α,由式(19)可得确定不同的截距,再基于式(20),由斜率可求得n,由截距可求得A.  此外,还有Vachuska和Vobril法[39]等,在此不再赘述.  6.5.2积分法  积分法则是通过对温度或者时间积分得到g(α)如式(21)所示.(21)  常用的积分法有如下几种.  (a)Horowitz-Metzger公式[40],如式(22)所示.  译(22)(23)  式中,Tr为满足1-α=1/e的参考温度,单位K.θ为当前温度和参考温度的差值,单位K.作lng(α)~θ图,即可由斜率确定活化能.该模型后来进一步修改为Dharwadkar-Karkhanavala公式[41],如式(24)所示.(24)  其中Ti,Tf分别为反应开始和结束的温度,单位K.  (b)Coats-Redfern公式[42],首先,采用Taylor展开取近似,得式(25)(25)  由于RT/E~0,所以,1−2RT/E≈1.式(25)可近似为式(26)(26)  即可基于斜率和截距值,算出E和A.  (c)Flynn-Wall-Ozawa公式[43~45],如式(27)所示.(27)  针对不同的升温速率β下的曲线,在等转化率α处的温度T,作lgβ~1/T图,由斜率可到E.  此外,还有Zsako公式[46]和Satava-Sestak公式[47]等,在此不赘述.  6.5.3非线性动力学求解  随着计算机科学技术的发展,可将动力学三参数的求解转化成一个迭代优化过程,即,将各参数代入反应动力学公式,根据所计算热重曲线和实际热重曲线的误差,调整参数,最终基于误差最小原则,给出最优动力学三参数值.  Tang等[48]针对PVC热解,基于3个平行反应模型,构建动力学计算公式,如式(28)所示.(28)  总的反应转化率则是3个平行反应的叠加,如式(29)所示.(29)  对式(28)中的3个平行反应进行独立求解,其显示差分格式如式(30)所示.(30)  具体计算过程中,可采用当前流行的优化求解方法:遗传算法(GeneticAlgorithm),基于该算法的不断“自然选择-繁殖”迭代,直至达到目标拟合精度.式(31)给出了评价优化参数好坏的误差函数Φ表达.(31)  其中,Φ为模型预测结果和实验值之间的误差 γ为实验和模型预测的反应进度速率(DTG)之间的误差占总误差的权重 α˙exp,i为实验测量的反应速率,1/K α˙cal,i为当前动力学三参数下计算出的反应速率,1/K α˙exp¯¯¯¯¯¯为实验测量的反应速率的均值,1/K αexp,i为实验测量的无量纲反应进度 αcal,i为该动力学3参数下计算出的无量纲反应进度.αexp¯¯¯¯¯¯为实验测量的反应进度均值.M为在特定升温速率下实验数据点的数目.  Tang等[48]基于遗传算法,进行XLPE热重曲线的拟合结果如图14所示,可见,各升温速率下,可算出与热重实验曲线吻合度很高的动力学三参数.Fig.14DTGcurvesforXLPE(Crosslinkedpolyethylene)pyrolysisinatmosphereatdifferentheatingratesandtheoptimaltheoreticalfittingbasedonsingle-scanmethod.TheoptimizationofpyrolysismodelingisbasedontheGA(Geneticalgorithm)method(ReprintedwithpermissionfromRef.[48] Copyright(2018)Elsevier).    7总结与展望  本文综述了热重分析技术在高分子表征领域的主要进展,旨在帮助大家全面掌握TGA技术的实验原理,提高实验操作与数据分析过程的有效性和准确性,进一步推动TGA技术在高分子表征领域的广泛应用.  TGA分析仪将样品精细加热调控技术与高精度质量测量技术联合,从质量变化角度,对高分子材料等受热过程中的物理与化学变化行为进行直接表征.当前,国内外相关仪器厂商的多款TGA分析仪具有的响应灵敏度、测量精度及操作方便性等各项性能已能满足大多高分子性能表征的需要.关于TGA分析仪的未来发展,主要包括如下几点:(1)进一步提高仪器准确度、灵敏度,以及稳定性 (2)不影响灵敏度的前提下,拓宽TGA分析仪的温度范围 (3)超快加热/降温速率的实现 (4)快速等温实验过程中的热惯性的进一步减小 (5)特殊实验过程所需的仪器附件研发,包括高压真空热解腔、温湿度综合控制器等 (6)与TGA分析仪联用仪器的校准方法及标准物质等方面的进一步发展 (7)仪器软件的功能拓展.  此外,关于基于TGA分析的高分子材料应用研究方面,未来机遇与挑战主要包括:(1)基于高分子材料微量样品的高精度热重数据及其计算参数,发展其对于实际工程的应用性模型,即,通过微量样品热分析参数与尺度放大(Scale-up)模型相结合,推动微量样品热分析结果在工程实际的更好应用 (2)在基于TGA分析的材料动力学模型与参数计算,进一步解决其中的动力学补偿效应(kineticcompensationeffect,KCE) (3)TGA分析技术与DSC、FTIR、GC/MS等仪器的无缝联用优化方案设计和联用数据精确、可靠分析.  最后,近年来,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破.同时,我国相关仪器厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地.  参考文献  1  SeifiaH,GholamibT,SeificS,GhoreishiaSM,Salavati-NiasaribM.JAnalApplPyrolysis,2020,149:104840.doi:10.1016/j.jaap.2020.104840  2  PeñalverR,Arroyo-ManzanaresN,Lopez-GarcíaI,Hernández-CórdobaM.Chemosphere,2020,242:125170.doi:10.1016/j.chemosphere.2019.125170  3  ChenYongxuan(陈咏萱),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2021,52(4):423-444  4  DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandTechnologyofChinaPress(中国科学技术大学出版社),2020.doi:10.3866/pku.dxhx202012012  5  GB/T6425-2008NomenclatureforThermalAnalysis(热分析术语).NationalStandardsofPeople’sRepublicofChina(中华人民共和国国家标准),2008.doi:10.1016/S1734-1140(13)71006-5  6  IHainesPJ,ThermalMethodsofAnalysis:Principles,ApplicationsandProblems.SpringerScience+BusinessMedia:Dordrecht,1995.Chap1.doi:10.1007/bf02548698  7  NoremSD,O’NeillMJ,GrayAP.ThermochimActa,1970,1:29-38.doi:10.1016/0040-6031(70)85026-2  8  GallagherPK,SchreyF.ThermochimActa,1970,1:465-476.doi:10.1016/0040-6031(70)85017-1  9  OzkanUS,KumthekarMK,KarakasG.JCatal,1997,171:67-76.doi:10.1006/jcat.1997.1793  10  McGhieAR.AnalChem,1983,55:987-988.doi:10.1021/ac00257a047  11  McGhieAR,ChiuJ,FairPG,BlaineRL.ThermochimActa,1983,67:241-250.doi:10.1016/0040-6031(83)80104-x  12  BrownME,BhenguTT,SanyalDK.ThermochimActa,1994,242:141-152.doi:10.1016/0040-6031(94)85016-x  13  GallagherPK,ZhongZ,CharsleyEL,MikhailSA,TodokiM,TanaguchiK,BlaineRL.JThermAnal,1993,40:1423-1430.doi:10.1007/bf02546906  14  WeddleBJ,RobbinsSA,GallagherPK.PureApplChem,1995,67:1843-1847.doi:10.1351/pac199567111843  15  GundlachEM,GallagherPK.JThermAnal,1997,49:1013-1016.doi:10.1007/bf01996788  16  JJG014-1996VerificationRegulationforThermalAnalyzer(热分析仪检定规程).NationalEducationCommissionofPeople’sRepublicofChina(中华人民共和国国家教育委员会),1996.doi:10.1007/978-1-349-24516-1_6  17  JJG1135-2017VerificationRegulationforThermogravimetricAnalyzer(热重分析仪检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2017.doi:10.2753/clg0009-4609390303  18  JJG936-2002VerificationRegulationforDifferentialScanningCalorimeter(示差扫描热量计检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2002.doi:10.1007/BF02856701  19  DingYanwei(丁延伟),ZhengKang(郑康),QianYixiang(钱义祥).IntroductiontoThermalAnalysisExperimentDesignandCurveAnalysis(热分析实验方案设计与曲线解析概论).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2020  20  GibertJP,LopezCuestaJM,BergeretA,CrespyA.PolymDegradStab,2000,67:437-447.doi:10.1016/s0141-3910(99)00142-1  21  SchindlerA,DoedtM,GezginS,MenzelJ,SchmolzerS.JThermAnalCalorim,2017,129:833-842.doi:10.1007/s10973-017-6208-5  22  VogelC,KrugerO,AdamC.JThermAnalCalorim,2016,123:1045-1051.doi:10.1007/s10973-015-5016-z  23  YuanY,MaC,ShiYQ,SongL,HuY,HuWZ,MaterChemPhys,2018,211:42-53.doi:10.1016/j.matchemphys.2018.02.007  24  WangFang(王芳),HaoJianwei(郝建薇),LiZhuoshi(李茁实),ZouHongfei(邹红飞),ActaPolymericaSinica(高分子学报),2016,7:860-870.doi:10.11777/j.issn1000-3304.2016.5329  25  DorezG,TaguetA,FerryL,LopezCuestaJM.PolymDegradStab,2014,102:152-159.doi:10.1016/j.polymdegradstab.2014.01.018  26  HatakeyamaH,JThermAnalCalorim,2014,118:23-30.doi:10.1007/s10973-014-3959-0  27  GerassimidouS,VelisCA,WilliamsPT,KomilisD,WasteManageRes,2020,38(9):942-965.doi:10.1177/0734242x20941085  28  RegoF,DiasAPS,GasguilhoM,RosaFC,RodriguesA.BiomassBioenerg,2019,122:375-380.doi:10.1016/j.biombioe.2019.01.037  29  ZhangWJ,ShiXH,ZhangYX,GuW,LiBY,XianYZ.JMaterChemA,2013,1:1745-1753.doi:10.1039/c2ta00294a  30  PassauerL.ProgOrgCoat,2021,157:106331.doi:10.1016/j.porgcoat.2021.106331  31  MasI,Hortelano,Ruiz-BermejoM,FuenteJL.EurPolymJ,2021,143:110185.doi:10.1016/j.eurpolymj.2020.110185  32  LaidlerKJ.JChemEduc,1984,61(6):494-498.doi:10.1021/ed061p494  33  HarcourtAV.PhilTransR.SocLondA,1913,212:187-204  34  FreemanES.CarrollB.JPhysChem,1958,62(4):394-397.doi:10.1021/j150562a003  35  NewkirkAE.AnalChem,1960,32(12):1558-1563.doi:10.1021/ac60168a006  36  SharpJH,WentworthSA.1969,41(14):2060-2062.doi:10.1021/ac50159a046  37  KissingerHE.AnalChem,1957,29(11):1702-1706.doi:10.1021/ac60131a045  38  FriedmanHL.JPolymSci:PolymSymp,1964,6:183-195.doi:10.1002/polc.5070060121  39  VachuskaJ,VoborilM.ThermochimActa,1971,2(5):379-392.doi:10.1016/0040-6031(71)85014-1  40  HorowitzHH,MetzgerG.AnalyChem,1963,35(10):1464-1468.doi:10.1021/ac60203a013  41  DharwadkarS,KarkhanavalaM.ThermAnal,1980,18(1):185-191.doi:10.1007/bf01909466  42  CoatsAW,RedfernJ.Nature,1964,201(4914):68-69.doi:10.1038/201068a0  43  OzawaT.BullChemSocJpn,1965,38(11):1881-1886.doi:10.1246/bcsj.38.1881  44  FlynnJH,WallLA.JResNatBurStand,1966,70(6):487-523.doi:10.6028/jres.070a.043  45  FlynnJH,WallLA.JPolymSci,PartC:PolymLett,1966,4(5):323-328.doi:10.1002/pol.1966.110040504  46  ZsakoJ.JPhysChem,1968,72(7):2406-2411.doi:10.1021/j100853a022  47  SatavaV.ThermochimActa,1971,2(5):423-428.doi:10.1016/0040-6031(71)85018-9  48  TangXY,XieQY,QiuR,YangY.PolymDegradStab,2018,154:10-26.doi:10.1016/j.polymdegradstab.2018.05.016原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21210&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21210
  • 元素分析仪的几种分析方法
    麒麟公司生产的元素分析仪是分析有机元素的自动化仪器。配备微计算机和微处理机进行条件控制和数据处理,方法简便迅速。 碳、氢、氮分析仪 测定方法有4种: ①示差热导法。又称自积分热导法。样品的燃烧部分采用有机元素定量分析的碳、氢、氮分析方法。在分解样品时通入一定量的氧气助燃,以氦气为载气,将燃烧气体带过燃烧管和还原管,二管内分别装有氧化剂和还原铜,并填充银丝以除去干扰物(如卤素等),最后从还原管流出的气体(除氦气外只有二氧化碳、水和氮气)通入一定体积的容器中混匀后,再由载气带入装有高氯酸镁的吸收管中以除去水分。在吸收管前后各有一热导池检测器,由二者响应信号之差给出水含量。除去水分的气体再通入烧碱石棉吸收管中,由吸收管前后热导池信号之差求出二氧化碳含量。最后一组热导池测量纯氦气与含氮气的载气信号之差,提出氮的含量。 ②反应气相色谱法。这种元素分析仪由燃烧部分与气相色谱仪组成,燃烧装置与上述相似,燃烧气体由氦气载入填充有聚苯乙烯型高分子小球的气相色谱柱,分离为氮、二氧化碳、水3个色谱峰,由积分仪求出各峰面积,从已知碳、氢、氮含量的标准样品中求出此3元素的换算因数,即可得出未知样品的各元素含量。 ③电量法。又称库仑分析法。 ④电导法。后两种方法都只能同时测定碳、氢,其应用不如前两种方法广泛。
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p span style="color: rgb(112, 48, 160) "(本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)  /span/pp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title="" style="width: 450px height: 503px " height="503" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong钱义祥老先生某次出差夜晚其学生拍摄/strong/pp  strong1.1 " 选择" 的哲理/strong/pp  人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。/pp  从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。/pp  1.1.1研究方法是一个不断发展的动态过程。/pp  科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。/pp  前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。/pp  1.1.2热分析方法选择的主体是人/pp  选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。/pp  热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。/pp  在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。/pp  热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。/pp  选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。/pp  选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。/pp  1.1.3高分子物理近代研究方法/pp  选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。/pp  “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。/pp  strong1.2热分析方法选择/strong/pp  “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。/pp  “热分析方法选择”有二层意思:/pp  第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。/pp  第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。/pp  1.2.1科学研究与方法的关系:/pp  每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。/pp  科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。/pp  方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。/pp  方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。/pp  1.2.2热分析仪器(方法)选择/pp  热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。/pp  在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。/pp  热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title="1.png"//pp  上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类/pp  方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一/pp  步细分,并选择相应的热分析方法。/pp  物理转变:/pp  涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。/pp  化学反应:/pp  涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。/pp  物质特性参数:/pp  比定压热容、纯度、膨胀系数、热导率等。/pp  热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。/pp  列举几个实例:/pp  1. 玻璃化转变测量方法的选择/pp  高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。/pp  DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表:/pp  DSC:检测的物理量是比热容 Cp 比热容变化约30%/pp  TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300%/pp  DMA:检测的物理量是模量 E 模量变化高达3个数量级/pp  由上表可知:仪器灵敏度DSC TMA DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。/pp  2. 高聚物次级转变的热分析方法选择/pp  为什么要选择DMA方法来研究次级转变呢?/pp  从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。/pp  用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。/pp  DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。/pp  高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。/pp  高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。/pp  DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的/pp  DMA曲线如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title="2.jpg"//pp style="text-align: center "strong均相非晶态高聚物的DMA曲线/strong/pp  3. 物理老化和化学老化研究的热分析方法选择/pp  高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。/pp  化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。/pp  物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。/pp  膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title="3.jpg"//pp style="text-align: center "strong分子链残留内应力和热焓松弛的MDSC曲线/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title="4.jpg"//pp style="text-align: center "strong  膜的物理老化涂层的应力-温度曲线/strong/pp style="text-align: center "strong  未物理老化涂层A/strong/pp style="text-align: center "strong  物理老化涂层B/strong/pp  涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。/pp  光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title="5 (2).jpg"//pp style="text-align: center "  strongPDC的结构示意图 光化学反应量热仪PDC/strong/pp  光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。/pp  4. 选用多种热分析方法,全面表征高聚物的热性能。/pp  为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。/pp  成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。/pp  5. 绝热材料的热分析方法选择/pp  温石棉是导热性极差的绝热材料。/pp  温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下:/pp style="text-align: center "  Mg(OH)2 → MgO + H2O↑-△H/pp  由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。/pp  由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH)sub2/sub的含量,数据准确,重复性好。/pp  6. 标准试验方法/pp  鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流/pp  和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。/pp  研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。/pp  借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。/pp  开发新的热分析方法和实验方法,适应研究的需要。/pp  7. 改造已有的方法以适应解决实际问题的需要/pp  外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。/pp  外加电场的DMA实验/pp  外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title="6.jpg"//pp style="text-align: center "strong拱形铜片的应变—应力曲线测试/strong/pp  选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。/pp  采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title="7.jpg"//pp style="text-align: center "strong夹具组合 —“蹦床夹具”实验/strong/pp  标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。/pp  用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。/pp  循环加载/下载应力,进行应力—应变循环实验。/pp  测定试样蹦床落点的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title="8.jpg"//pp style="text-align: center "strongDMA模拟蹦床实验示图/strong/pp  8. 移植方法/pp  移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方/pp  法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。/pp  固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。/pp  1.2.3选择实验条件,建立实验方法/pp  热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。strong见下图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title="9.jpg"//pp  列举几个实例:/pp  1. 含能材料的热分析方法和试验方法的选择/pp  热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。/pp  含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title="10.jpg"//pp style="text-align: center "  strong含能材料的TG/DTA曲线 含能材料的DSC曲线/strong/pp  含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。/pp  2. 聚丙烯玻璃化温度测定/pp  选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显strong,/strong如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title="11.png"//pp  3. 选择真空或加压条件解决热分析峰的分离问题/pp  热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。/pp  如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。/pp  4. 选择“强化影响因素”的实验条件/pp  有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。/pp  1.2.4热分析方法的取代和重新选择/pp  热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。/pp  批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。/pp  “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。/pp  实例1:选择热分析方法测定药物熔点/pp  热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。/pp  在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。/pp  选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。/pp  实例2:热分析方法自身在发展,方法选择也在演变。/pp  热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。/pp  TG方法的演变,促使高聚物热分解的研究不断深化,如下表:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title="12.jpg"//pp  表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分/pp  析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同/pp  步进行解析,追溯热变化的物理-化学过程。/pp  1.2.5方法选择中的创造性思维和批判性思维/pp  创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。/pp  热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思/pp  维和批判性思维将推动热分析方法和仪器的发展。/pp  实例1:骤冷PET初始结晶度测定/pp  选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。/pp  温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例/pp  创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title="13.jpg"//pp  温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。/pp  实例2:油品氧化诱导期测定/pp  常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。/pp  strong1.3“热分析方法选择”的编辑/strong/pp  全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。/pp  “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。/pp  1.3.1实验室编辑“热分析方法选用”/pp  热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。/pp  “热分析方法选用实例”示意如表1:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title="14.jpg"//pp  每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。/pp  某实验室绘制的“热分析方法选用”实例的表格,如表2示例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title="15.jpg"//pp  “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。/pp style="text-align: center "  strong表三 热分析应用的文本格式/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title="16.jpg"//pp  每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。/pp  1.3.2“热分析方法选择”的检索系统建立/pp  热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。/pp  以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。/pp  文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。/pp style="text-align: center "  strong表四 研究报告的文本转换/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title="17.jpg"//pp  “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。/pp  “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。/pp  1.3.3选择云端中“热分析”那朵云/pp  在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。/pp  耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美!/p
  • 根系分析仪可大批量全自动根系分析
    植物根系分析仪是一款用于洗根后的根系系统分析。它的性能稳定、操作简单易学,可以通过对植物根系的颜色分析,得出根系的存活数量,并得到根系的长度、直径、表面积、体积等参数。同时,该仪器还能自动剔除杂质,实时监测、统计、分析结果,避免了因杂质干扰和分析不精造成的误差,保障了结果的高精度。 根系分析仪报价参考→https://www.instrument.com.cn/netshow/SH104395/C363158.htm  植物根系分析仪一方面,它可以分析植物根系的形态,色彩、分级伸展分析及根系的整体结构分布等,便于运用在根系形态和构造研究等领域。另一方面,该仪器的检测过程和操作都很人性化,不会对植物本体造成破坏,保护了生物生态平衡,实现了人与自然的和谐相处。  植物根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。  本软根系分析软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加密狗解密的软件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数。从而满足研究者针对植物根系不同类别和层次的研究。  植物根系分析仪既为农业生产提供了可供参考的科学依据,也指导了根系形态和构造的研究,为实现人与自然的和谐相处贡献了力量。以现代科技的力量搭建了人与自然生物间的沟通桥梁,对于生态环境的保护具有重要意义。  根系分析仪标准配置:  1、植物根系分析系统软件U盘及软件锁1套。  2、光学分辨率4800×9600、A4加长的双光源彩色扫描仪1台。  3、根系成像盘3个。
  • 气相色谱分析仪改进计划成功
    油品分析仪在铁路内燃机上的监测应用己有相当长的历史,早期的油质分析仪只是对新进和运用中润滑油的理化指标做常规分析,非常简单,随着铁路的快速发展,铁路向重载、高速、自动化及率化方面发展,内燃机车的维修成本和停机损失也随之剧烈增加,传统的计划维修方式维修成本高,不能zui大限度发挥机车使用效率,早己不能满足现实需求,铁路系统逐步引进了色谱、光谱、铁谱等先进的油品分析仪器。 为满足客户使用需求,北京得利特科技有限公司在原来气相色谱分析仪的基础上进行改进,使其达到高灵敏度,高精确度,高分辨率,高分析速度,分析方法更加简单。气相色谱分析仪技术参数:开机稳定时间1.5小时显示精度0.1℃控温精度≤±0.3℃基线噪声TCD≤0.1mv FID≤1×10-12A/30min基线漂移TCD≤0.2mv/30min FID≤1×10-11A/30min灵敏度TCD≥1000mvml/mg (苯)检测限FID≤5×10-12g/s柱箱温度室温~200℃检测器(FID)温度室温~300℃甲烷化转化炉温度380℃超温保护任一路温度超限将自动报警并断电检测指标CH4 0.1PPmCO 1PPmCO2 1PPmH2 5PPmC2H2 0.1PPmC2H4 0.1PPmC2H6 0.1PPm外形尺寸620mm×445mm×485mm重量31.8kg升级点:采用一根色谱柱,分离效果好。一次进样,进样量少;全分析所用时间短。数据由色谱工作站自动处理。
  • 浅谈热分析技术与同步热分析仪的应用
    pspan style="color: rgb(0, 176, 240) font-size: 20px "strong浅谈热分析技术/strong/span/pp  热分析(Thermal Analysis),顾名思义,可以解释为以热进行分析的一种方法。/pp  在目前热分析可以达到的温度范围内,从-150℃至1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。/pp  通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。/pp  1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理性质与温度的关系的技术。/pp style="text-align: center "数学表达式为:P=f(T)/pp  其中:P代表物质的一种物理量 T为物质温度。/pp  所谓程序控制温度一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。也就是把温度看作是时间的函数:T=Φ(t),其中t是时间,则P=f(T或t)。/ppspan style="color: rgb(0, 176, 240) font-size: 20px "strong热分析的起源和发展/strong/span/pp  1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。/pp  1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC),美国PE公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。/pp  1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。/ppspan style="font-size: 20px "strongspan style="color: rgb(0, 176, 240) "热分析研究内容、方法及应用/span/strong/span/ppstrong热分析方法/strong/pp style="text-align: left "  通过对物质加热、冷却等反应实验,热分析可得到如下研究内容:br/img src="https://img1.17img.cn/17img/images/201809/uepic/90b4db0f-6c3a-4927-94b6-92d8ef1f996e.jpg" title="热分析研究内容.png" alt="热分析研究内容.png"//pp  应用最广泛的方法是span style="color: rgb(255, 0, 0) "热重法(TGA)/span和span style="color: rgb(255, 0, 0) "差热分析法(DTA)/span,其次是span style="color: rgb(255, 0, 0) "差示扫描量热法(DSC)/span,这三者构成了热分析的三大支柱,占到热分析总应用的span style="color: rgb(255, 0, 0) "75%/span以上。/pp  热分析只能给出试样的重量变化及吸热或放热情况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。目前,解释曲线最现实的办法就是把热分析与其它仪器串联或间歇联用,常用气相色谱仪、质谱仪、红外光谱仪、X射线衍射仪等对逸出气体和固体残留物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。/ppstrong热分析仪的应用/strong/ptable border="1" cellspacing="0" cellpadding="0" width="568"tbodytr class="firstRow"td width="568" colspan="5" valign="top" style="border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px "p style="line-height: 125% text-indent: 0em "span style="font-family:宋体"TGA/spanspan style="font-family:宋体"(热重分析仪)span DTA/span(差热分析仪)span DSC/span(示差扫描量热仪)/span/pp style="line-height: 125% text-indent: 0em "span style="font-family:宋体" TMA/DMA/spanspan style="font-family:宋体"(热机械分析仪)span EGA/span(复合分析联用)/span/p/td/trtrtd width="114" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"橡胶、高分子/span/pp style="line-height:125%"span style="font-family:宋体"塑料、油墨/span/pp style="line-height:125%"span style="font-family:宋体"纤维、涂料/span/pp style="line-height:125%"span style="font-family:宋体"染料、粘着剂/span/p/tdtd width="114" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"食品/span/pp style="line-height:125%"span style="font-family:宋体"生物体、液晶/span/pp style="line-height:125%"span style="font-family:宋体"油脂、肥皂/span/pp style="line-height:125%"span style="font-family:宋体"洗涤剂/span/p/tdtd width="119" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"医药、香料/span/pp style="line-height:125%"span style="font-family:宋体"化妆品/span/pp style="line-height:125%"span style="font-family:宋体"有机span//span无机药品/span/pp style="line-height:125%"span style="font-family:宋体"病理检测/span/p/tdtd width="108" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"电子材料/span/pp style="line-height:125%"span style="font-family:宋体"木材、造纸/span/pp style="line-height:125%"span style="font-family:宋体"建筑材料/span/pp style="line-height:125%"span style="font-family:宋体"工业废弃物/span/p/tdtd width="114" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"冶金、矿物/span/pp style="line-height:125%"span style="font-family:宋体"玻璃、电池/span/pp style="line-height:125%"span style="font-family:宋体"陶瓷、黏土/span/pp style="line-height:125%"span style="font-family:宋体"纺织、石油/span/p/td/tr/tbody/tablep  热分析具有试样需求量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。/pp  热分析仪已成为我国现阶段部分行业重要的质控分析方法:/pp  ①金行业里铁合金、保护渣检验等生产前期原料控制过程中,热分析已列为控制最终产品质量的重要分析方法之一 /pp  ②在我国申报新药中,热分析已列为控制药品质量的重要分析方法之一 /pp  ③在煤炭/焦碳行业,热分析已成为测定产品品级的重要分析手段 /pp  ④陶瓷行业的主要原料检测仪器。/ppspan style="color: rgb(0, 176, 240) font-size: 20px "strong恒久高温综合热分析仪器简介/strong/span/pp  HCT-4综合热分析仪是北京恒久实验设备有限公司根据国际热分析协会制定的热重分析法与差热分析法为理论标准,结合国际技术发展情况实现全部自主研发、生产,拥有自主知识产权的国内先进的热重法与差热法综合热分析仪器。该仪器具有温度高,恒温时间长,重复性高等特点。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/8fb6f84f-33a3-4142-8486-70c3f1e68ab6.jpg" title="HCT-4综合热分析仪.jpg" alt="HCT-4综合热分析仪.jpg" width="400" height="316" border="0" vspace="0" style="width: 400px height: 316px "/br/strongspan恒久HCT-4综合热分析仪/span/strong/pp  strong差热测量系统:/strong采用哑铃型平板式差热电偶,它检测到的微伏级差热信号送入差热放大器进行放大。差热放大器为直流放大器,它将微伏级的差热信号放大到0-5伏,送入计算机进行测量采样。/pp  strong热重测量系统:采/strong用上皿、不等臂、吊带式天平、光电传感器,带有微分、积分校正的测量放大器,电磁式平衡线圈以及电调零线圈等。当天平因试样质量变化而出现微小倾斜时,光电传感器就产生一个相应极性的信号,送到测重放大器,测重放大器输出0-5伏信号,经过A/D转换,送入计算机进行绘图处理。/pp  strong温度测量系统:/strong测温热电偶输出的热电势,先经过热电偶冷端补偿器,补偿器的热敏电阻装在天平主机内。经过冷端补偿的测温电偶热电势由温度放大器进行放大,送入计算机,计算机将自动计算出此热电势的毫伏值。/pp  HJ热分析工具软件使用微量样品一次采集即可同步得到温度、热重和差热分析曲线,使采集曲线对应性更好,有助于分析辨别物质热效应机理。对TG曲线进行一次微分计算可得到热重微分曲线(DTG曲线),能更清楚地区分相继发生的热重变化反应,精确提供起始反应温度、最大反应速率温度和反应终止温度,方便地为反应动力学计算提供反应速率数据,精确地进行定量分析。/pp  HCT系列热分析仪器应用范围涉及无机物、有机物、高分子化合物、冶金、地质、电器及电子用品、陶瓷、生物及医学、石油化工、轻工、纺织、农林等领域应用于物质的鉴定、热力学研究、动力学研究,结构理化性能关系的研究。广泛应用于科研所、设计院、高等院校等专业实验室、及应用在化工/安全/矿业等生产检测部门。/pp style="text-align: right "strong(供稿:北京恒久)/strong/p
  • 方科新品|根系分析仪参数介绍
    一、 根系分析仪用途:FK-GX02根系分析系统是一套用于洗根后专业根系分析系统,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。方科根系分析仪产品链接→https://www.instrument.com.cn/show/C363158.html二、 根系分析仪原理:FK-GX02根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。本软根系分析软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加密狗解密的软件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数。从而满足研究者针对植物根系不同类别和层次的研究。三、根系分析仪技术指标:1、配光学分辨率4800×9600、A4加长的双光源彩色扫描仪。根系反射稿幅面为355.6mm×215.9mm,透扫幅面为320.0mm×203.2mm,最小像素尺寸0.005mm×0.0026 mm。2、可分析测量:(1)根总长;(2)分支频率;(3)根平均直径;(4)根直径中值;(5)最大直径;(6)根总面积;(7)总投影面积;(8)根总体积;(9)根尖计数;(10)分叉计数;(11)交叠计数;(12)根直径等级分布参数;(13)可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积 等,及其分布参数。(14)能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。(15)能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度、面积、体积等,可单独显示标记根系的任意直径段相应各参数(可不等间距地自定义)。(16)能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。(17)大批量的全自动根系分析,对各分析结果图可编辑修正。(18)能做根系生物量分布的大批量自动化估算。(19)向地角分析、水平角分析、主根提取分析特性。(20)各分析图像、分布图、结果数据可保存,并输出至Excel表,可输出分析标记图。(21)仪器有云平台支持,可将分析数据保存到云端随时随地查看。四、根系分析仪图像扑捉系统参数扫描元件: 6线交替微透镜CCD最大幅面: A4接口类型: USB2.0光学分辨率(dpi): 6400x9600dpi最大分辨率12800×12800dpi最小像素尺寸≥0.005mm×0.0026 mm扫描光源白色冷阴极荧光灯CCFL、色彩位数48位扫描范围216×297mm扫描速度反射稿、A4、300dpi:单色11秒,彩色14秒胶片扫描、35mm,2400dpi:正片:47秒,负片:44秒五、根系分析仪标准配置1、植物根系分析系统软件U盘及软件锁1套2、光学分辨率4800×9600、A4加长的双光源彩色扫描仪1台3、根系成像盘3个六、根系分析仪其他1、本产品需使用电脑,推荐选配:品牌电脑(酷睿i5九代以上CPU / 16G内存/ 21.5”彩显/无线网卡,4个以上USB2.0口,运行环境Windows 10完整专业版或旗舰版)。2、可选配A3幅面双光源彩色扫描仪。反射稿扫描幅面305mm × 431.8mm,根系透扫幅面304.8mm × 406.4 mm。
  • 南京大展的同步热分析仪在中南大学完成调试
    同步热分析仪是一款热分析仪器,应用领域广泛,主要包括:陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑料高分子、涂料、医药等等,不仅很多制造型企业采购,还有国内的高校。相比于国外品牌,国产的同步热分析仪,优势在于性价比高,售后服务完善,同时从技术参数对比,也相差不大,因此,受到很多高校的欢迎。  中南大学采购的是南京大展的同步热分析仪,这款同步热分析仪可用于玻璃化转变温度、氧化稳定性、热焓、比热、结晶度和材料的氧化诱导期等热重与差热相关数据,用于不同材料的研究和实验。   同步热分析仪是将DSC和TG结合,一次测试可获得两种曲线,因此,大大节省了实验的时间。同时采用一体化的机型设计,仪器两路气体自动切换;进口的芯片,测量速度快;全新的炉体设计,保温性高。
  • 哈尔滨工业大学采购南京大展的同步热分析仪
    同步热分析仪是一款将热重分析仪与差热分析仪或差示扫描量热仪结为一体的热分析仪器,可以利用同一样品同步得出热重和差热两种信息,具备广泛的应用。尤其在高分子材料领域,本次哈尔滨工业大学的高分子材料与工程系采购了南京大展的同步热分析仪,想要借助同步热分析仪测量高分析材料的热稳定性、热分解反应、熔融与结晶的过程和氧化稳定性等等,从而为新型材料的开发、性能及其使用寿命等方面研究提供数据支持。   经过前期的沟通与对比,哈尔滨工业大学选择了南京大展的同步热分析仪,不仅看重了仪器的品质,同时对于我司的售后服务也感觉到满意。在仪器的调试现场,技术工程师对仪器的使用、参数设置,图谱分析等环节进行一一的培训,让使用人员对仪器更加的熟悉。   这款同步热分析仪测试范围广泛,DSC信号可以得到样品的熔融与结晶过程、结晶度、玻璃化转变、相转变、反应温度与反应热、比热、氧化稳定性、固化、纯度等信息;TGA信号则可以得到样品的热稳定性、热氧稳定性、分解过程、氧化还原过程、吸附与解吸、气化与升华、添加剂与填充剂影响、反应动力学等信息。   随着高校对于科研实验的重视,实验仪器的需求持续的增大,也使得热分析行业的竞争力度增强,为了满足客户的测试需求,除了不断提升仪器品质,同时完善售后服务,保障用户仪器的正常使用。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 日本分析工业株式会社产品被认定为分析仪器物质遗产
    日本分析工业株式会社产品被认定为&ldquo 日本分析仪器及化学机械&rdquo 物质遗产 近日,日本分析设备协会本着&ldquo 弘扬分析测试技术、仪器以及仪器发展史上最重要的成果,传承开拓精神&rdquo 的原则进行了分析仪器及化学机械的物质遗产认定评选,全日本总共有20台不同时代的设备入选。由日本分析工业株式会社在上世纪70年代生产的初代JHP-2型居里点式裂解仪被授予该项殊荣。 在上世纪70年代,裂解仪采用的设计主要是微炉式和热丝式,但是由于其温度稳定性、样品适应性和实验结果重现性的局限性等诸多问题,无法实现实验室之间的实验结果比对,无法满足实验结果可比对性的要求。为了解决这个问题,日本分析工业株式会社另辟蹊径,采用了居里点加热这种物理性的加热方式,将裂解温度的再现性提上到± 0.05%摄氏度,同时还具有样品适应性强的特点。同时由于该设备可以保证在同一设备以及同一机种之间的实验结果可重复性,得到了世界刑侦物证界的认可,并推进了刑侦物证理化实验室之间数据的网络化和共享化。同时,在该设备的帮助下,世界上领先的化工相关企业也实现了不同工厂实验室之间的实验结果的可比对性和网络化。在这种背景下,该设备上市之后成为了市场上裂解气相色谱分析的主流配置。同时得到了世界刑侦物证界的认可,并且该设备在上市10年内的时间内销售量达到了600台之多,这个记录直到其更新换代型号JHP-22型的出现之后才被刷新。 目前,日本分析工业株式会社的居里点式裂解仪已经成为了橡胶、涂料、刑侦物证等行业的行业标准,并且本着为客户提供性能更加稳定、操作更加简便的原则不断推陈创新,先后开发出了目前裂解仪市场上性能最佳的JHP-5型裂解仪和操作最为简便友好的JCI-22型裂解仪。其中JCI-22型便携式居里点裂解仪更是打破了以往裂解仪体积庞大且需要对联用设备进行改装的固有思路,为世界提供了一种全新的便捷裂解手段。相信随着时代的发展和人类对于高分子材料研究的进一步深入,日本分析工业株式会社将会继续秉承&ldquo 更好、更便捷&rdquo 的宗旨为人类未来的高分子研究提供更多优异的实验室解决方案。
  • 普今公司医药化工行业分析仪器专刊
    2009年药典新增分析仪器,特此普今公司开办医药化工分析仪器专刊,重点推荐了重金属检测、TOC分析的解决方案,以及自主研发用于青霉素药品中高分子杂质分析的聚合物测定仪。 本期刊物的主要内容如下: 一、原子吸收分光光度计,应对项目:微量重金属元素定量分析 二、TOC总有机碳分析仪,应对项目:总有机碳分析仪 三、聚合物测定仪,应对项目:青霉素药品中高分子杂质分析 四、岛津色谱工作站Lcsolution Lite & Chromato-Solution Light,应对项目:替代国产色谱工作站,符合GMP规范 五、色谱配件、消耗品优惠信息 详情请来电咨询,欢迎各位用户前来订阅,我们会及时给您邮寄过去! 普今公司真诚为您服务! 联系电话:0512-65684880、65684881、65684882 E-mail:sales@sp4s.com 苏州普今生物科技有限公司 2009-6-15
  • 国家重点研发计划“大视场生物成像分析仪”项目启动
    p  近日,国家重点研发计划“重大科学仪器设备开发”重点专项“大视场生物成像分析仪”项目启动会在中科院南京天文仪器有限公司举行,项目专家组成员、主管部门负责人、项目骨干等20余家单位的近50余人出席了本次会议。/pp  项目责任专家、中科院沈阳科学仪器研制中心有限公司董事长雷震霖代表科技部高技术研究发展中心介绍了国家重点研发计划“重大科学仪器设备开发”重点专项基本情况、项目部署情况,对项目过程管理、组织管理等重要节点进行了解读。他希望项目牵头单位和课题承担单位履行责任、加强管理、把项目各项工作做细做实。/pp  据项目负责人、中科院苏州医工所研究员董文飞介绍,稀有细胞和痕量病原微生物对疾病检测、生殖健康、环境卫生和国家安全等方面有十分重要的影响,“大视场生物成像分析仪”项目基于对稀有细胞快速检测的需求,通过攻克大视场高分辨离轴反射式光学系统设计技术、大面阵高分辨探测器和大面积单层细胞推片技术等三个关键技术,开发新型大视场高分辨生物成像分析仪。/pp  该项目仪器研制技术路线采用模块式结构,包括大视场高分辨光学成像系统、大面阵高分辨探测器、大面积单层细胞推片机、自动识别快速软件、样品前处理、大面阵多光谱光源和运动控制模块等模块,同时开展在稀有细胞快速检测方面的应用示范,为仪器的工程化产业化及大规模应用奠定基础。/pp  中科院南京天文仪器有限公司董事长严庆伟表示,此项目研制的大视场生物成像分析仪将填补国内市场空白,验收三年内预期年产值可达3000万元,极大带动科学仪器系统集成创新,有效提升我国高端生物成像仪器设备行业整体创新水平与自我装备能力。/pp  会上,严庆伟宣布了项目总体组、技术专家组、用户委员会名单,并颁发聘书,表示将做好项目管理和协调工作,确保项目顺利开展并按期完成。/pp  据悉,该项目由中科院南京天文仪器有限公司牵头,联合中科院苏州生物医学工程技术研究所、苏州国科医疗科技发展有限公司、中国人民解放军军事医学科学院微生物流行病研究所、中检国研(北京)科技有限公司、武汉大学、吉林师范大学、广东科鉴检测工程技术有限公司等8家单位共同承担。/pp/p
  • 日立热分析仪 诚招各区代理
    日立高新技术科学现诚招华北、华东、华南区域热分析仪产品代理商,欢迎有兴趣的经销商来电来信洽谈。  日立热分析仪拥有世界顶级的基本性能与丰富的扩展功能,在灵敏度,稳定性,操作性,可视性等方面拥有全球领先技术。  凭借优异的产品性能和技术,日立一直是日本国内热分析仪最主流的品牌,经过四十余年的考验,拥有压倒性的市场占有率和极佳的口碑。用户涵盖从高分子、无机材料到药品、食品等的生产、品控、研发等各个行业。  作为日立高新技术科学旗下知名产品,经过四十余年的生产不断推陈出新,目前有差示扫描量热仪DSC,热重-差热同步热分析仪TG/DTA,热机械分析仪TMA,动态热机械分析仪DMA四类产品。  为加快拓展中国市场,现诚招华北、华东、华南区域代理商,欢迎与我们有共同信念,并有强烈推广意识的公司加入。我们也将提供最完善的产品服务和技术支持。希望我们共同努力,共谋发展。 更多详情,请联系:杨杰 先生日立仪器(上海)有限公司电话:(021)-5027-3533邮件:jie.yang.zt@hitachi-hightech.com-----------------------------------------------------------关于日立高新技术科学日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。作为日立高新技术公司的子公司,以往的精工电子纳米科技有限公司得到了很多客户以及研究机关,学术机关的各位的支持,因此得以开发先进技术,并提供给广大客户能安心使用的仪器。
  • 从BCEIA 2021新品看分析仪器技术与市场
    我国各行业对分析检测技术需求的大幅提升,对分析仪器给予更加广泛的关注和更高的技术要求。同时,机械、信息技术等基础行业的快速发展和物理、化学、光学、生命科学等学科的加速创新,也为分析仪器技术快速发展提供了强有力的支撑。总体上看,分析仪器技术的发展在追求灵敏度、分辨率等性能参数进一步提升的同时,呈现智能化、小型化、在线、专用化等特点。分析仪器市场概况据一份报告显示,2015至2020年,全球科学仪器市场规模保持稳定增长,2020年全球科学仪器市场规模已达650亿美元。作为增长最快的市场之一——中国科学仪器市场,各方数据显示市场仍在稳步增长中。据海关统计数据显示,2020中国大陆进口科学仪器146.43亿美元,同比增长6.48%;出口科学仪器34.77亿美元,同比增长2.90%。据招中标统计数据显示,2020国内分析仪器公开招标采购总金额168.41亿元,同比增长8.35%。针对中国分析仪器制造业,据相关数据显示,从台套数来看,2020年我国实验分析仪器产量约为238.53万台。从销售额来看,2020年我国实验分析仪器行业主营业务收入285.17亿元,利润总额实现了49.7亿元。在分析仪器品类中,“热度”较高的质谱,随着其分析技术和应用逐渐成熟,如今已广泛应用在环境检测、地球科学、材料科学、食品安全、临床检验、药物与毒物、生物医学研究等领域。应用层面可以说是包罗万象、需求也日益增长,庞大的市场吸引越来越多的厂商加入到质谱供应商行列,质谱市场的竞争更加“如火如荼”。据相关数据显示,2020 年全球质谱仪市场规模已超72亿美元,国内质谱仪市场规模达 151 亿元。海关数据显示,2020年,我国质谱仪进口数量为13889台。分析仪器技术发展方向——BCEIA 2021新品从1985年开始,北京分析测试学术报告会暨展览会每两年举办一次,已经连续成功举办了十八届,成为国内外分析仪器厂商新产品、新技术发布重要线下平台,为广大分析测试工作者提供了现场了解、接触新仪器、新技术的机会。日前,第十九届北京分析测试学术报告会暨展览会(简称:BCEIA 2021)于2021年9月27日在北京中国国际展览中心(天竺新馆)隆重开幕。BCEIA 2021共有700余家国内外展商参展,展示了数千台技术领先的分析测试仪器和实验室设备及其先进应用解决方案,各家企业最新产品、应用方案充分表达了各企业对分析仪器技术、应用发展趋势的理解和把握。1、向“高端”发展,更低检出限、更高分辨率仪器厂商在研制新品时仍在努力地继续追求更低的检出限、更高的分辨率。谱育科技EXPEC 7910 ICP-TOF质谱谱育科技EXPEC TRACE 8000化学电离飞行时间质谱中国仪器企业在高端质谱仪器研发和产业化创新方面做出了一系列的突破。谱育科技带来了他们的首款电感耦合等离子体-飞行时间质谱仪(ICP-TOF-MS),将ICP电离特性与飞行时间质谱仪高分辨率、高灵敏、快速扫描等优点相结合,可实现75种元素及质量数范围1~260amu绝大多数同位素的分析。不仅如此,谱育还带来了一款化学电离飞行时间质谱仪,适用于VOCs走航和在线监测。安益谱1978 三重四极杆气质联用系统安益谱深耕质谱技术自主研发多年,2021年其推出了首款气相色谱串联三重四极杆串联质谱仪,系统搭载了轴向线性加速电压高效碰撞池;双涡轮分子泵真空结构,最大载气流速可达10ml/min,支持0.53mm大内径色谱柱;新产品拥有的非共轴双预四极离子导引有效降低中性粒子噪声等特点。2021年上半年,国内外各大质谱仪器公司有15款质谱产品推出。其中,赛默飞推出三款Orbitrap仪器,其中Orbitrap IQ-X Tribrid是超高分辨三合一质谱性能进一步提升。Waters推出全新加强版DESI XS,可协同新型MALDI源,配备在全新的20万分辨率的SELECT SERIES MRT新型四极杆飞行时间质谱产品上,将飞行时间质谱与成像技术推到新的高度。布鲁克瞄准单细胞蛋白质组学领域推出timsTOF SCP,同时也推出最新一代的timsTOF离子淌度质谱系列,进一步提升其高通量和高灵敏度的特性。2、自动化程度提升,向智能化发展如今,仪器用户对更高效地获得可靠结果的需求越来越迫切,因为实验室检测样品数量大幅增加、仪器操作人员经验还需要时间进行积累。当前在很多实验室中,因为缺乏样品前处理经验、方法建立、优化和仪器维护工具,经常使得样品因不当操作而需要重新测试,这不仅降低了实验室的产出也增加了检测成本。因此,相关仪器厂商在研制新产品的时候,越来越多的会关注或采用自动化技术、人工智能技术、物联网数据处理技术等来避免或减少仪器使用中常见的问题,让分析关注更加简化。宝德仪器BUI-60全自动碘分析仪BUI-60全自动碘分析仪分析水碘符合GB 5750《碘化物》的标准要求、分析尿碘则符合WS/T107.1-2016《尿碘的砷铈催化分光光度测定法》的标准要求。仪器采用三维机械手全自动操作、自动添加试剂,内置石墨消解,非接触式混匀,反应过程使用超级恒温水浴精确控制反应温度,仪器除取样外完全自动化运行,测试结果的准确度满足质控样品测定合格的要求,可实现自动对水碘、尿碘的检测分析。炫一科技M6物联网气相色谱分析仪M6物联网气相色谱分析仪是炫一科技于2021年9月刚刚推出的全新实验室气相色谱系统,具有模块化技术及物联网数据处理平台。吉天仪器AFS-10 间歇泵快速进样原子荧光光度计作为为数不多的具有中国自主知识产权的科学仪器,原子荧光光度计在实际应用中发挥了重要的作用。目前,各大厂商也在仪器的自动化、智能化等方面加大开发力度。吉天仪器在BCEIA上展出了AFS-10 间歇泵快速进样原子荧光光度计。AFS-10具备多种智能及自动化功能,仪器自动清洗、吹扫和系统维护,无人值守设计,可定时自动唤醒并执行预热程序;该款产品的推出着力于解决实际应用中的问题,可以简易快速地测定环境、食品、地矿、化工等样品中的As(砷)、Sb(锑)、Bi(铋)Hg(汞)等元素。海光仪器HGCF-200系列连续流动分析仪2021年9月,海光仪器推出新一代HGCF-200系列连续流动分析仪。该产品采用高度集成化、自动化和智能化设计,试剂与主机一体化设计,解决了管路凌乱、试剂对应繁琐与液位未知等问题。3、走向现场检测,小型化/微型化、车载多数情况下分析仪器的体积都比较大,因为在某些情况下,如果仪器体积变小,可能会影响分辨率等性能参数。如果能够切实减小仪器体积,研制出适合野外现场分析的、可车载、便携的小型分析仪器,避免了样品采集及运输过程中的二次污染,是应对突发事件的好帮手。可以说,随着现场检测对分析仪器的大量需求,便携式和小型化分析仪器已经成为发展趋势。而且,随着纳米材料、芯片、MEMS(微电子机械系统)器件和微流控等技术的出现,使得分析仪器的体积进一步减小,向微型化发展成为了可能。小型质谱(便携、车载)是最近几年快速发展的质谱仪器之一,作为质谱的一个重要领域,小型质谱在军事、反恐安检、公安刑侦、环境、食品安全、医疗诊断,包括航空航天领域上都有广阔的应用,具有巨大的发展前景。清谱科技Cell 系统清谱科技致力于小质谱技术的研发和产业化发展,继miniβ之后,清谱这次带来了更“小”的质谱产品,产品全部重量8.5kg,内含锂电池,可以测量分子量在50-1000之间的化学物质。博赛德走航监测系统HAPLINE多功能便携式气质联用仪博赛德作为全球众多知名前处理分析仪器生产厂商在华的独家代理专注于VOC监测解决方案,近年来其与INFICON公司联合研发走航监测系统,搭载了四极杆质谱技术,可以对烷烃、卤代烃、芳香烃、含氧烃等多种VOCs组分实时分析。4、质量控制,在线仪器市场潜力巨大大型实验室仪器测试费时较长,不能达到过程控制的目的。近十年来,过程/在线分析技术作为实现信息化和智能化基础之一,已发展成为当今科学技术、经济建设和服务民生中的最为活跃的技术之一,并且逐渐在制药、石化、食品、医疗和环保等领域得到广泛而深入的应用,在优化生产、节能减排、提升传统产业及环境保护等方面起到了重要作用,取得了可观的经济效益、社会效益和生态效益。鉴知技术RS2000PAT在线拉曼分析仪在BCEIA 2021上,鉴知技术展出的RS2000PAT在线拉曼分析仪是专门针对在线检测设计,无需进行复杂的取样工作即可实时监测反应体系中各成分的含量变化,以及结晶过程中的晶型转变,可用于化学合成、结晶过程、聚合反应等各类化学体系,帮助用户准确理解反应过程、缩短工艺开发周期和实时监控产品质量。5、应用为导向,专用化、定制化发展世界上不存在完美的仪器,每种仪器技术都会有自己的局限性,但是根据仪器的特点,总会在某一个领域的应用上具有优势。找到这个细分领域,开发合适的应用,就是一个成功的仪器。随着分析技术在各个领域应用研究的不断深入,以及仪器厂商的差异化布局,侧重开发特定应用领域和场景的专用化分析仪器,以满足通用仪器无法覆盖的市场需求,成为了分析仪器的一个主要发展方向。莱伯泰科ICP-MS LabMS 3000莱伯泰科带来了他们的第一款质谱产品ICP-MS LabMS 3000,仪器在整机设计、进样系统材料、锥接口、锥材料以及碰撞反应池、冷热焰模式等方面都做了改进,其稳定的冷热焰切换技术可满足半导体行业的测试需求,该系统的应用领域瞄准半导体和医疗行业。禾信康源 NucMass 2000核酸质谱系统制药和生物技术应用领域在近两年占据了分析仪最大的市场份额,这一趋势预计将在未来很长一段时间内持续下去。作为精准诊疗的高新技术平台,质谱技术在临床中的应用越来越受到关注,其中一些质谱仪器已经获得NMPA认证并取得相关医疗器械证件。此次展会禾信重点带来了第一款核酸质谱仪器,为其大举进攻医疗领域打下基础。安捷伦InfinityLab Bio LC生物液相色谱系统基于安捷伦久经考验的液相色谱技术,面向生物制药市场,2021年安捷伦推出了全新的InfinityLab Bio LC生物液相色谱系统,进行了全系列生物液相产品布局,该系统适用于生物制药及其他高盐和极端 pH 条件下的应用,生物兼容性可确保生物分子的完整性和系统的稳定性。 鉴知技术RS1000TC 中药有害残留快检仪鉴知技术展出的RS1000TC 中药有害残留快检仪,由甘肃省药品检验研究院与北京鉴知技术有限公司共同研发,是国内外首款三合一的中药现场快检设备,集成多种检测技术,对党参、当归、黄芪等药材中多种农药残留、二氧化硫、真菌毒素、重金属进行快速检测和筛查。据介绍,该产品可以在30分钟内快速完成一次检测,成本低廉。并且前处理简单,仅需粉粹样品,无需离心等操作,检测项目满足2020版《中国药典》要求,适用于中药材交易市场、企业以及检测机构,具有简单、快速、便宜、灵敏等特点,满足多样化现场快检需求。经过长期技术沉淀,分析仪器日臻成熟。随着新技术出现及应用需求的不断深入,自动化、智能化、专用化,小型化、微型化,在线,高灵敏度、高准确性等成为分析仪器创新的主要方向。而从市场角度来看,分析仪器市场一直以来竞争激烈,很多品类仪器长期以来被进口品牌垄断。而随着国内技术研发投入增加,国产厂商也逐渐崭露头角,并在某些细分市场中占据领先地位。随着国家以及行业对于国产仪器支持力度不断加大,整个仪器市场对国产呈现明显利好,如何在变化的市场环境中把握机会,找到新的增长点,也是目前摆在各个分析仪厂商面前的问题。
  • 日立全自动氨基酸分析仪测定生物胺
    生物胺(biogenic amine,BA)是一类具有生物活性、含氨基的脂肪族或杂环类低分子化合物,对动植物和微生物活性细胞有重要的生理作用。适量的生物胺有助于人体正常的生理功能,但是过量的生物胺会使人体中毒,其潜在毒性而引发的食品安全问题引起越来越广泛的重视,食品中生物胺的检测也成为评价食品品质的一个重要指标。日立超高速全自动氨基酸分析仪LA8080,采用日立独家的双柱技术使氨基酸的分析进入一个超高速全自动分析的时代。同时,LA8080也可用于生物胺的全自动分析,LA8080自动进行衍生,无需复杂的手动衍生,提供标准分析和快速分析两种分析方法。 PH色谱柱标准分析PH 60mm色谱柱是LA8080的标配色谱柱,可以在30min内分离26种氨基酸,且分离度大于1.2,如果LA8080用户同时有生物胺测定的需求,可以不用增加或者更换任何硬件配置,即可实现生物胺分析。七种生物胺分离度良好PH色谱柱快速分析如果需要更快的分析速度,提高分析速率,也可选择快速分析法,仅需35min即可实现7种生物胺的分离。35min内就可实现七种生物胺的分离分析,并且分离度良好。 日立超高速全自动氨基酸分析仪LA8080,不仅可以实现氨基酸的超高速全自动分析,同时也可以用于生物胺的全自动分析,为用户带来更多的便利和解决方案。
  • 获取复杂样品超高分辨图像及图形的分析统计数据
    现如今对材料进行微观形貌表征时,仅仅看到清晰的形貌是远远不够的,针对有重复结构的材料,如多孔,颗粒等结构的样品,还需对图片中的孔洞或颗粒进行统计与分析,比如统计总数,大小,尺寸等,获得量化结果,辅助研究。硫酸铝矿孔径分布测量当我们对多孔硫酸铝样品进行观察,孔径尺寸大约在10nm左右,由于孔径尺寸非常小,想要清晰的观察到孔的形貌,需要使用超高分辨场发射扫描电镜Regulus8200观察,利用其低加速电压下高分辨率的特点,轻松获取高倍清晰图片。由于图像里的孔与背景亮度对比度的不同,使用Image Pro图像分析软件对感兴趣区域框选,软件可通过信号的强弱分离孔洞并自动测量硫酸矾石的孔径分布(图2)及定量数据。图2中的图表是平均孔径的直方图。当我们分析数据时,可以选取一个孔(图2中的粉红色箭头)时,您可以看到它在直方图中的位置(红色圆圈)。或者在直方图中选择一个条柱(图 3 中的粉红色箭头)时,您可以看到所选条柱包含哪些孔(Brue 字符)。统计数据直方图如图4所示。高容量硬盘驱动器(HDD)中的,磁性颗粒粒度分析高容量硬盘驱动器(HDD)中的磁性颗粒会随着记录密度的提高而变小。然而,较小的磁性颗粒可能会产生较小的矫顽力,因此会妨碍稳定的记录。因此,评估晶粒尺寸和晶粒间距对于实现和保持稳定的HDD性能非常重要。图5(a)显示了配置高容量HDD的磁盘上磁性颗粒的BSE图像。通过使用YAG-BSE探测器拍摄70万倍的高分辨图像,并从中获取颗粒的形状。在对图像上的颗粒进行分析时,首先这些晶粒被识别为感兴趣区域(ROI),使用Image-Pro 10图像处理软件将晶界和背景进行分离,如图6(b)所示。尽管BSE图像因为通道效应导致每一个颗粒对比度和亮度不均匀,但依然可以稳定地对颗粒直径或面积定量分析,因为这些颗粒是通过信号强度提取的,另外还通过其形状和大小提取的。图7(c)是磁性晶粒直径的柱状图。超高分辨冷场扫描电子显微镜Regulus8200和图像分析软件Image-Pro 10的组合可实现HDD的高分辨率成像和定量图像分析,帮助HDD在增强记录密度的研究中。Regulus8200 "Regulus系列"扫描电子显微镜(SEM)被广泛应用于纳米技术,半导体电子行业,生命科学,材料科学等领域的材料结构观察。仅仅具有超高分辨率还远远不够。还要求能在低加速电压下对表面细微结构的观察和高灵敏度的元素分析。发挥高性能,高稳定性,轻松获取高倍清晰图片。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 新品 | 日立分析仪器推出新款DSC系列热分析仪,用于高级材料开发和质量控制
    英国牛津[2021年1月19日]:日立分析仪器公司(Hitachi High-Tech Analytical Science)是日立高新技术公司旗下的全资子公司,主要从事分析和测量仪器的制造与销售,现已推出全新DSC系列(一种用于高级材料开发和产品质量控制的差示扫描量热仪)。作为日立分析仪器高规格热分析系列的最*新产品,新款DSC可为实验室和制造商提供一个进行详尽和彻底DSC分析的新选择。RealView尖*端技术实现分析可视化RealView(选购件)样品装置可在DSC测量期间获取样品视觉信息,实时捕获与DSC直接相关的样品图像。这可帮助识别物理性质变化,而DSC输出中添加的视觉信息使结果解读变得更加容易,尤其是在进行失效分析、异物分析和调查异常结果时亦如此。RealView系统核心的高分辨率摄像机允许在-50ºC极端低温条件下观察样品。RealView系统包括颜色分析(RGB、CMYK和LAB)并可记录样品图片和视频,是使用新款DSC进行研究、教学、故障排除以及受影响区尺寸测量的理想之选。将储存相关结果(注明DSC输出时间和温度),以供日后分析与研究。检测最小热事件在复杂复合材料的开发和制造中,微量添加剂可对性能产生巨大影响,由此对热分析仪识别越来越细微的热事件的能力提出更高要求。新款DSC系列旨在提供当今高级材料热表征所需的最*高性能。新款DSC系列的两种型号均得益于独特的炉膛设计和新开发的传感器,可提供世界一*流的灵敏度和无与伦比的基线重复性。此类新技术可帮助检测和隔离最小热事件(即使是复杂材料中的微量热事件)。用于深度可靠分析的新开发的传感器新款DSC600采用新开发的热电堆型DSC传感器,可为更高级材料开发和失效分析提供最*高的灵敏度和分辨率。此外,新款DSC200型号也针对传感器进行重新设计,在提供高灵敏度和稳定性的同时具有低成本封装。两种型号均采用新型炉膛配置,可提供+/- 5 µW基线重复性。这可确保对痕量材料的可靠和精确检测,提供各种应用领域(包括研发和进出库成品的质量控制)所需的性能。内置安全装置的大容量样品分析除注重性能以外,新款DSC系列还具有许多其他功能,可支持高容量和深入的热分析。自动进样器选购件包括一个独特的四叉样品架,在同时分析多达50件样品时能具有出色的可靠性。此外,还增加创新的安全功能, 用户可以选配具有防夹功能的电动盖,其在加热炉未回落到安全温度前会保持锁定,以防烫伤用户。双重冷却系统可节省时间和成本新款DSC系列所含的双重冷却系统能简化-80ºC温度以下的分析,无需在需要液氮冷却时手动断开电气冷却系统,从而节省用户的时间。内置混合系统允许同时连接两个冷却系统。有三种冷却系统可供选择:空气冷却、电气冷却或液氮冷却。对于那些注重在室温和室温以上温度的条件下进行测量的用户而言,空气冷却系统是理想之选。大多数测量均使用电气冷却系统,这有助于降低成本,同时实现低于室温这一条件。只有在特定测量需要时,例如分析某些橡胶或弹性体的转变,才能选择液氮冷却系统。日立分析仪器产品经理Ashley-Kate McCann表示:“日立设计的新型新款DSC系列可满足研发实验室和质量控制部门在开发新材料方面的需求,并确保聚合物、化学品、陶瓷、金属、石化产品和食品在内的众多材料质量。除全新的传感器和炉膛设计以外,公司还改进了尖*端的RealView样品观察装置。此外,公司还纳入了能直接响应客户要求的新安全功能。这便是为什么我们可以说,在谈及热分析时,日立明显与众不同。”新款DSC600和新款DSC200正在热销中,有需求请联系日立分析仪器。
  • 现代露点分析仪发展简介
    肇始:1954年,随着马歇尔计划的顺利结束,二战期间饱受重创的欧洲的各个行当开始迎来复兴。像作为英国传统的羊毛生意也再度兴旺起来。但马上,羊毛商人们发现因为二战中壮年劳动力的损失造成了人力成本上涨,在挑选羊毛时不得不引入更先进的检测手段。在影响羊毛质量的各个环境参数中,湿度是一个比较关键的指标,直接关系到羊毛的细度、初始模量、断裂伸长率、弹性回复率和压缩回弹性能等等,所以羊毛商们开始寻找一个能够测量湿度的仪器。一个英国皇家空军退伍的前无线电工程师接下了羊毛商的这一任务,莱纳德肖恩(LEONARD SHAW)先生是个类似于发明电灯的爱迪生那样的,集理论和动手能力于一身的通才,与其他着迷于光学魔术和电磁感应的同行的不同,他的目光落到了最基本的电容上,简单的说,每种材料引起电容改变的介电常数不同,他所需要的就是找出一个最合适的材料,最终选定的是氧化铝,作为湿敏元件,氧化铝的反应非常迅速,当水蒸气浓度从10000微克/升降至10微克/升时,t63(量程的百分之63)?小于5秒钟。剩下就是并且解决设备体积的问题。电容类传感器的传统制作方法是是将铝等金属箔当成电极和塑料薄膜重叠后卷绕在一起,体积不会小,还沉。在花了几年功夫,肖恩先生依靠英国当时世界前茅的材料和理论指导,在氧化铝上面蒸镀上了一层很薄的金属以做为电极,省去了电极箔的厚度,缩小电容器单位容量的体积,不但实现了良好的测量性能还获得了小型化的传感器。 肖恩先生在反复试验后他弄出了一款能够稳定测量-60度以上湿度,重量轻,反应速度快的的分析仪,于是大名鼎鼎的肖氏分析仪在1960年开业了。羊毛商一用起来,发现肖氏的露点分析仪不单反应快,还皮实,马上大范围应用起来,为肖氏赢得了最初的用户和良好的口碑。同时随着苏格兰北海油田的开发,石化等其他行业也纷纷用起肖氏的露点仪,发现这款仪表的便携表尽管扔有些笨重(毛重7.5公交,中国女性长时间拎着够呛),受材料限制,肖氏氧化铝传感器的也有些缺陷,比如测-60°以下很吃力,但抛开这些缺点,肖恩先生发明的这款仪表无疑是划时代的作品,里面一些如干燥腔这样实用设计一直应用到了现在。 典型的肖氏分析仪,1960年到现在没怎么变过 干燥腔,可以提高便携露点分析仪的反应速度,合格便携露点的标配在肖氏崛起的同时,一直在英国剑桥大学的卡文迪许实验室工作的湿度的安德鲁密析尔(Andrew Michell)另辟蹊径,绕开了氧化铝电容法传感器的专利屏障,通过烧制等工艺,研究出了厚薄膜法的陶瓷电容法露点分析仪。 这家伙一下子能够测量到+20到-100度的露点了,而且由于是陶瓷材质,相对来说耐高温性能更好,缺点是比起氧化铝来反应速度是龟速… … 密析尔公司从这个技术起家,后来推出了各种工业露点产品,后来更是被跨国巨头PST收购,和掌握高湿度测量的罗卓尼克等公司成为队友,组成了分析仪表行业的一大阵营。除了这俩英国露点分析的两个代表企业,像希仕代(Systech)、阿尔法(ALPHA)等等一大波公司也都在以氧化铝传感器为主,也有做硅传感器的马纳里可(Manalytical)等以小众传感器为核心的公司。除了英国之外,美国是当时露点分析仪发展蕞快的国家,其中冷镜法露点分析仪是他们的强项。在1965年的时候,有一家EG&E(现在是世界五百强珀金埃尔默PERKINELMER)旗下的小公司,美国的爱迪泰克公司发明了冷镜式露点仪,比起靠间接转换得到数据量的电容法,直接测量得出读数的冷镜法无疑更受欢迎。原理很简单啦,大家见过镜子上的露珠吧,冷镜法就是测镜子上露珠的一种方法。一个镜面,配上使用冷凝器(发明的时候和老式冰箱的压缩机差不多)后,被冷却至被测气体的露点温度。当温度降低到样气露点时,镜面会形成冷凝。一个由光电探测器组成的电光回路检测冷凝的形成。镜面反射光强度减少量,作为仪表控制电路的冷却功率的反馈输入,这样镜面就被控制在平衡状态中。蒸发速度与冷凝速度以相同的速率发生。此时温度计测量的镜面温度就等于被测气体的露点温度。 除了爱迪泰克,美国仪表圈里几个巨头比如热电(Thermo Fisher Scientific赛默飞世尔)、阿美泰克、GE(通用电气)、cosaxentaur也都相继开发了冷镜、电容法的相关产品,并且依托美国的整体工业体系实现了对其他国家的碾压,但是大公司有大公司的问题,下面讲几个例子。以cosaxentaur举例,这家以热值仪为主打产品(客户遍及美国各大天然气和石油公司),在1996年的时候,一批出身NASA、格鲁曼等知名科研单位的工程师(很多都是双硕士学位的人才)带动下,开发了自己的深特(xentaur)牌子的氧化铝露点传感器,比起肖氏来涂层更薄,反应更快。 深特搭配了cosaxentau强大的营销体系,和GE所属的巴纳(panametrics)在20世纪末成为美国市场蕞大的两家露点分析仪表公司。但是正如老对手panametrics被GE收购后就沦为三线品牌,后来更转入GE合并后的贝克休斯(Baker Hughes)之下一样,丧失了自主能力。在21世纪初,风光一时的 cosaxentau也被PSI集团收购,成为这个分析行业巨头底下的子公司,而深特作为一个小众品牌在整个集团体系内相当于囊尾的角色,多一个不多少一个不少,自然就造成包括全球售后资源的分配等等问题,进而导致了公司内部人才的流失。这些从深特出来人才,属于冷战末期美国培育出来的科技精英的一份子(打了这么多年怪怎么说也是一身金装了),手底下自然是有两把刷子的,他们成立的菲美特(phymetrix)公司反而摆脱了之前的限制,在原有传感器基础上推陈出新,造出了目前工业领域实用化阶段能够做到的蕞高精度的氧化铝传感器。他们的秘诀就是四个字,更薄,更密。 传感器优化后,分析仪本身的重量也就下来了,菲美特便携表的重量只有肖氏的三分之一左右(2.85KG),比较适合逐渐老龄化且有大量女性职工的中国工业。 所以说大公司有大公司的好,小公司有小公司的优势,特别是科技主导型企业,小公司往往更有冲劲,像专精冷镜露点的瑞士MBW,还有芬兰的维萨拉都可以说是分析仪器厂家里面的小巨人。冷镜讲过了,就不多讲MBW了,给大家说说芬兰,大家知道芬兰靠近北极芬兰人对温度这些攸关小命的指标可是异常关注,随着二战的结束,维萨拉从无线电探空仪做起,很快就点满了大气温度、湿度测量的科技点,发明创造了很多独门武器,在高湿领域吊打无数巨头,像在湿度分析方面,他们在1973就开发出了世界上第一个高分子聚脂薄膜Humicap。采用高分子薄膜被放置于两个导电电极之中的结构。传感器表面被多孔隙的上电极覆盖以防止被污染,且能暴露在冷凝状态中。下电极典型材料为玻璃和陶瓷。 这种传感器好处是测量-60度以上的露点温度快而且准,也比较皮实,在各行各业都有应用。缺点是-60度以下没法用。至于石英晶体震荡,光腔衰荡,五氧化二磷,光纤等等测量原理相对来说用量和适用性限制比较大,就不专门介绍了,毕竟本篇是简史,大家有个这几样蕞大的毛病是“贵”这个概念就行。 博泰克HYGROPHIL HCDT水烃露点分析仪 总之,到了20世纪头十年,国外工业的露点分析仪最能打大概是以下这几家:冷镜式露点仪:爱迪泰克、MBW、密析尔氧化铝电容法:肖氏、深特、菲美特、巴纳陶瓷电容法:密析尔硅电容法:马纳里可光腔衰荡:泰格(TIGER)、米寇(MECCO)、光能高分子薄膜:维萨拉光纤:博泰克五氧化二磷:DUMAT、CMC激光法:DF 国内露点分析仪发展及问题 上世纪五十年代的“156项重点工矿业基本建设项目”是现代中国工业体的骨架,为了配套这些大项目,国内建立了北分、南分、川仪、成都厂等国企分析仪器厂,并完成了一些简单的露点分析仪器的研制。而随着上世纪70年代,合成氨和大量石化、天然气项目的建成,湿度、露点分析仪器的重要性就逼着国内仪表人寻求国外的资源。 早在1974年。由第一机械工业部技术情报所出版,北京分析仪器研究所等单位牵头的《分析仪表》一文中,对欧美日苏等国的分析行业及顶尖分析仪器公司做了分析,并在文章末尾,用一页篇幅提到了湿度计及水份计。 当时国企能够自产热磁氧、热导分析仪等仪表(现在还靠这些产品吃饭… … ),但一些高精尖的仪表如不分光红外分析仪和激光分析仪等,自产缺乏时间、金钱和人才,只能走进口全套技术的路线(日本在1970年代也是这么做的,日本吸收后二次开发很强,像横河和岛津就是青出于蓝了。),并随之建立了北分-麦哈克等合资企业。 相比其他分析仪器,湿度和露点上的分析仪,国内和其他国家在1970/1980年代差别还不是很大。 1979年出版的《痕量水分仪》上提到的国内电解法水分测定仪:我国生产的电解法水分测定仪型号生产厂家USI-21USI-1WS-1WS-2HS74-1北京分析仪器厂成都分析仪器厂兰州化学工业自动化研究所旅顺元件厂沈阳热工仪表厂在1982年,由兵器工业部和中国计量科学研究院研发的数字型冷镜露点仪SH-81就定型了。指标还挺不错:测量范围:+20°C~-80°C露点温度; 精度:≤±1°C;准确度:±1°C(-30°C~-70°C露点温度); 使用环境:0°C~+40°C、相对湿度≤30%;样气流量:400毫升/分(蕞大值不宜超过500毫升/分) 电源:交流220V±20V、50HZ;功耗小孩:300VA; 显示形式:三位数字显示,+-极性,固定小数点,°C;外形尺寸:420(长)×230(高)×210(宽)毫米; 重量:《12.5公斤同年,中国科学院上海冶金研究所研究的WS-Ⅰ型也完成了从氧化铝电容法传感器到仪表电路的一整套设计,并做了各项测试,向市场推出。诸种气体水含量测量结果(露点°C) 气体仪器WS-1型2WS-1型0WS-1型1露点仪高纯氢-分子筛-液氮冷冻-106.5-104.7——-103.0高纯瓶,氮-62.6-60.7——-63.7高纯瓶,氢-50.8-49.5——-49.0普通瓶,氮-28.2-29.8-29.3液氮冷冻纯氢与普氢混合气-74.4-72.3——-71.5高纯瓶,氢-50.8-49.3——高纯瓶,氩(68大气压)————-64.0——高纯瓶,氩(50大气压)————-68.0-69.2——普通瓶,氢——-36.7——-37.0但正如后来国产分析仪表都面临的问题一样,国内的露点分析仪器厂家面对的不仅仅是国外分析仪表厂家的竞争,而是一个工业体系的全方位碾压。 在低端市场,如-60°C以上领域,中国白城兵器实验中心人员写的《湿度测量体制历史和现状分析及建议》一文中就写到:“实验证明,氯化锂湿度传感器完全可以在低温条件下使用,以替代毛发湿度表。这就形成了新的湿度测量体制,0℃以上用电测通风干湿表,0℃以下用氯化锂湿度传感器。在总参气象局的支持下,长春仪器研究所利用这些电测温湿传感器研制成功了温湿遥测仪和机场自动观测系统并进行了设计定型试验,这2种自动观测的研究成功,使军队首先实现了地面气象观测的自动化和遥测化。后来的发展出人意料,芬兰的湿敏电容传感器逐步进入了中国气象局和军队的自动气象观测系统,原来形成的湿度测量体制被打破。” 国产直接出局,这就是维萨拉进入中国市场后迅速占领市场,80年代仪表市场进口品牌攻城略地的一个缩影。 像在天然气领域,华北石油管理局勘测设计院1986年时发表的文章,就指出:“… … 为确保上述要求,我们除在输气首站的轻油回收装置中严格控制脱水温度外,还在首都与门站设置了天然气水露点分析仪,在线连续检测外输天然气的露点。当天然气露点高于规定值时,仪器可自动报警,提醒操作人员及时调节有关参数。电容式水露点分析仪从英国肖氏公司引进… … ”。 可见1986年北京天然气管道就用肖氏了,从那时起国内能源行业进口仪表就占比巨大、上世纪80年代到90年代,大量的外资气体厂如AP、林德,石化如壳牌、美孚等进入国内,它们的工厂往往都是在国外选型,带来的仪表全部是进口品牌,根本没有国产仪表的空间。 利润丰厚的气体和石化领域做不了,国产做做低端也遇到了问题,问题,蕞突出的有四个:没人才,配不起鞍,良品率过低,简配过度。 很多厂子认为露点传感器没啥难度,道理书上都有,但是后来发现不行。首先国内仪表研发人员从根上就少,其次一个仪表研发人员起码要在行业里待十年左右才能独当一面,放到分析行业要求就更多了,流体、电路、机加、编程、工艺流程都要懂,要求极高。 剩下的少部分继续玩仪表的,也在21世纪中国的环保监测行业崛起后,转向红外分析和激光分析等赚钱的领域,只有屈指可数的院校、军工相关研究所和单位还有露点传感器的研发人才。 而添置设备的巨额资金,也是仪表厂商无法承受的,很少有厂商会购买冷镜露点仪、湿度发生器等设备。核心传感器需要的大量试错实验也打消了很多厂商的自研勇气。 同时自产传感器的良品率比较低,相比之下,国外品牌通过巨大的销售量(维萨拉的传感器是以万计的)抹平了制造中成本,而国内企业最大的几家湿度传感器制造商能有上千个销量已经不容易了。同时国外企业的积累经验多,品控比起国内好很多,起码很少发生货到现场一上电不能用的,售后成本比国内好很多。国内很多湿度传感器生产测试过了,现场一用就出问题,很容易导致口碑崩盘。 最后一个简配问题,实际上是国产仪表技术上落后,导致只有靠降低商业费用和产品质量、人工待遇和进口仪表竞争的通病,只不过露点分析仪器行业特别突出,加上很多用户不想掏钱,造成一直用低配仪表,没有各种补偿,更显得国内仪表不如进口的好了。 这四个问题直接导致了国产露点分析仪无法和进口同类产品竞争,尤其是像维萨拉、密析尔、GE等都在国内设立了露点传感器校准中心,缩短售后流程后就更是严重了。 当然,其实国产的露点分析仪事业也没到满盘皆输的地步。 首先,虽然自我造血能力差,但国内有着巨大市场(像国内气体行业大概是世界气体行业的百分之十几,要配很多很多露点分析仪),自然有懂行的介入,像光腔衰荡分析仪的领军人物,国家千人计划的特聘专家阎文斌博士就回国成立了内蒙古光能科技仪器有限公司,一下子让国内像光腔衰荡分析仪从无到有,直接进入世界*流水平。 第二,国内分析仪表毕竟有不弱的底子,除了欧美日外,基本处于第二梯度,靠必须用国产仪表的军工和航天等产业支持,这些年还是制造出了性能虽然和国外还是有差距,但相当一批可靠的仪表,(主要是冷镜分析仪,比如海军航空工程学院的YH98和约克仪器的DPT-8000)。随着市场的扩大和自身技术的进步,相信原本只见于军工科研单位的这些仪表会进入一般工业市场。 第三,借着国内大力发展环保监测行业的东风,聚光、雪迪龙、先河等公司崛起带动了整个分析仪器行业的人才流动、技术革新和资金积累(。直观体现在湿度和露点分析仪上,就是终于有企业肯砸真金白银弄个CNAS实验室(南京埃森、约克仪器成都分公司)了,起码能够保证自己校准自己的传感器,不像其他国内同行要是传感器坏了一般只能靠经验判断,弄不好就只能弄不明白了。 南京埃森实验室图,转载于南京埃森官网 约克仪器实验室图,转载于约克仪器官网 第四,国外对手也不是没有他们自己的问题,像热电、GE等巨头,分析仪表在他们集团公司内只是很小的部门,更别说露点传感器了,加上他们习惯在产品成熟后砍研发靠专利权过日子,导致产品几十年都不带换代的,很多上世纪七八十年代成熟的产品现在还在销售,跟一直在进步的国产仪表比起来差距越来越小(材料学上的短板克服后会更小)。市场占有率大的如肖氏、深特,因为没有自己国内的售后维修体系,只能依靠代理商,当代理商自己没有实验室的时候,售后就是个问题。还有个仿冒品的问题,像肖氏露点分析仪,从上世纪进入中国之后就没怎么变过外型,废旧外壳很多,有不少利欲熏心的商人就自己买传感器和壳子自己组装,导致市场上充斥大量假货,山寨水平还很高,从外形看简直以假乱真,直到用起来才会发现不对劲。并且因为最近贸易战的影响,外国品牌都在涨价,有的一年涨幅在35%左右,削弱了外国品牌的竞争力,也是国内品牌的一个好消息。 林林总总写了这么多,想必大家在阅读过程中都有这样那样的思考,作者就不越俎代庖做总结了。只有一个愿望,希望在不远的将来,看到仪表商TOP20这张图表上,有中国企业的一席之地。 注:在没有特别说明的情况下,上述结果是指公历年度。部分数据是根据2018年平均汇率换算得出的。a.公司对2019年3月31日结束的财政年度的估计。b.仅在该部门的仪器销售结果。 c.截至2018年10月31日止财政年度。d.截至2018年9月30日止财政年度。e.根据公司展望进行估算。来源:C&EN,公司数据
  • 天瑞仪器合金专用分析仪广州展会大放异彩
    6月23&mdash 25日,天瑞仪器参加广州琶洲展览馆举行的&ldquo 2011广州铜工业国际展览会&rdquo 。现场展出三款合金领域专用分析仪:P530手持式X荧光合金分析仪、EDX 3600H合金分析仪、EDX 2000H合金分析仪。 本次展会观众主要来自:钢铁冶炼、有色金属、贵金属检测等行业。别致的展台设计、精密的专业仪器吸引了众多用户咨询。 P530凭借其便携、轻巧的外形以及精准、快速的检测效果得到了客户的青睐。它是天瑞EDX-Pocket手持式系列中专用于合金成分分析的仪器,主要用于钢铁冶炼、有色金属、废旧金属材料回收、锅炉容器制造等行业。它可以检测硫(S)到铀(U)之间的所有元素。 EDX 3600H可满足对合金中微量轻元素的检测要求,采用全球领先的合金分析技术及智能真空系统,并结合低能光管配合真空测试,有效降低干扰,大大提高对Al、Si、P等轻元素的检测效果。 EDX 2000H采用下照式检测,可满足各种形状样品的测试需求,多种准直器和滤光片的电动切换,使得各种测试方式能灵活应用。高分辨率探测器和新一代的高压电源、X光管等核心部件的引入,有效提高检测的准确性和效率。展会现场P530手持式X荧光合金分析仪EDX 2000H合金分析仪 EDX3600H合金分析仪 了解天瑞仪器:www.skyray-instrument.com
  • 超越环保采购南京大展综合热分析仪
    什么是综合热分析仪?综合热分析仪又称之为同步热分析仪,它是一款可以同步测量热重与差热信号的仪器,广泛应用在塑胶高分子、涂料、医药、食品、金属和化工等行业。超越环保是一家从事环保行业,其采购的这款DZ-STA200高温同步热分析仪,可以进行高温测试,温度可升至1200℃,能够快速分解材料,并且对其数据进行分析。  DZ-STA200综合热分析仪具备哪些优势呢?  1.炉体加热采用贵金属合金丝双排绕制,减少干扰,更耐高温。  2.采用陶瓷杆作为连接杆,具有耐高温,抗氧化,耐腐蚀等优点。  3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。  4.采用上开盖式结构,操作方便,并且可根据客户需求,进行炉体更换。  5.主机采用隔热装置隔绝加热炉体对机箱及微热天平的热影响。  在仪器的调试现场,技术人员对其DZ-STA200综合热分析仪进行了安装和调试工作,并且进行了实际的测试实验,对其操作人员进行仪器实验和图谱分析培训工作。针对实验中,仪器使用问题进行解答,保证让其操作人员充分了解仪器。
  • 钱义祥——高分子物理与聚合物热分析
    高分子物理与聚合物热分析热分析老人钱义祥2018-05-10  « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。  一、高分子物理与聚合物热分析  1.聚合物热分析  热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有:  研究结构及动态变化   表征玻璃化转变和熔融行为   分析多组分高聚物体系的组成   研究高聚物链缠结及化学交联   研究高聚物的结晶行为   表征高聚物的微相结构   研究高聚物共混相溶性   反映共混高聚物中组分间的相互作用   研究聚合物的热历史和处理条件对高聚物结构的影响。  动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。  聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。  热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。  热分析方法是在不断发展的。如示差扫描量热仪DSC技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。  其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC所能提供的降温速率,因此很难利用常规DSC模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。  近年来,出现了商业化的闪速示差扫描量热仪FlashDSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪FlashDSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。  FlashDSC在高分子的结晶方面的应用有:FlashDSC可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,FlashDSC所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。  FlashDSC研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。  FlashDSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。  FlashDSC研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。  总之,FlashDSC在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1]  2.高分子物理  高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。  高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。  高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2]  高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3]  3.高分子物理与聚合物热分析  高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。  1)« 高分子物理» 关于高分子物理的研究方法的论述  何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。  « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。  2)高分子物理是一门理论和实验结合的精确科学  高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。  3)高分子物理理论解析热分析曲线  热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。  用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。  4)运用高分子物理和近代研究方法研发新材料  新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。  由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴,在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。  在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。  南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的FlashDSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了FlashDSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。  4.用高分子物理解析高聚物热分析曲线  论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。  下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。  用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。  为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。  下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示:典型非晶态聚合物的DMA曲线(温度谱)  由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。  玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。  当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4]  以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。  二.高分子物理著作  五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。  1.胡文兵« 高分子物理» 英文版Amolecularviewonthefundamentalissuesinpolymerphysicsisprovidedwithanaimatstudentsinchemistry,chemicalengineering,condensedmatterphysicsandmaterialsciencecourses.Anupdatedtranslationbytheauthor,arenownedChinesechemist,ithasbeenproventobeaneffectivesourceoflearningformanyyears.Up-to-datedevelopmentsarereflectedthroughouttheworkinthisconcisepresentationofthetopic.Theauthoraimsatpresentingthesubjectinanefficientmanner,whichmakesthisparticularlysuitableforteachingpolymerphysicsinsettingswheretimeislimited,withouthavingtosacrificetheextensivescopethatthistopicdemands.  该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是:  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  胡文兵教授最新研究:高分子结晶和熔融行为的FlashDSC研究。  2.何平笙编著« 新编高聚物的结构与性能» 科学出版社2009前言  自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的" 高聚物结构与性能" 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。  高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。  作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。  本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。  值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。  如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。  何平笙2009年4月内容简介  本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。  本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。  3.何曼君张红东陈维孝等.« 高分子物理» 第三版复旦大学出版社2007  是国内有代表性的高分子物理教材,为多所高校所选用。序  本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。  于同隐  2006年10月1990年修订版序  高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。  60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。  本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。  本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。  由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。  于同隐第三版前言  本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。  建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。  随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。  首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了deGennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。  本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。  在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。  何曼君  2006平10月1日内容提要  本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。  全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。  本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。  4.过梅丽赵得禄主编« 高分子物理» 北京航空航天大学2005序  处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。  与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。  自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。  本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下:  普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。  紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。  本书所涉及量的名称和单位符合国标规定,但有下列例外:  聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。  高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。  温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。  本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。  在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。  编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。  编者  2005年3月14日内容简介  本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。  本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。  5.过梅丽« 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。前言  著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(Ifyouareallowedtorunonlyonetestonapolymersample,thechoiceshouldbeadynamicmechanicaltestofasolidsampleoverawidetemperaturerange)”。  材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。  测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanicalthermalanalysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。  推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。  ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。  ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。  ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。  ④态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。  目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。  但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。  笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPontDMA982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了RheometricScientificDMTAⅣ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。  动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。  动态力学热分析能提供哪些信息?  这些信息的物理意义是什么?  如何处理与应用这些信息了?  为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。  在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。  但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。  在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。  在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。  在本书撰写过程中,美国RheometricScientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。  在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。  内容提要  本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。  6.朱诚身« 聚合物结构分析» 科学出版社2010该书用101页的篇幅介绍了热分析方法。第一版序  聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。  由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。  与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。  相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。  程镕时  中国科学院院士第一版前言  随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。  本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。  本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。  特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。  由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。  朱诚身第二版前言  本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。  参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。  与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。  修订较大的章节有:  第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。  第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。  第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。  全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。  本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。  鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。  朱诚身  2009年7月16日内容简介  本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。  本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。  7.现代高分子物理学(上、下册)殷敬华莫志深主编科学出版社2001内容简介:  本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。  8.张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。  序言  高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。  同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。  中国科学院院士  南京大学教授  2002年5月内容简介  本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。  9.刘振海« 聚合物量热测定» 化工出版社2002前言  自1963年差示扫描最热法(differentialscanningcalorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A.Turied.ThermalCharacterizationofPolymericMaterials.NewYork:AcademicPress,1981 2ndEdition,1997),该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T.Hatakeyama,F.X.Quin,ThermalAnalysisFundamentalsandApplicationstoPolymerScience,Chichester:JohnWiley&Sons,19942ndEdition,1999) 《高分子DSC》(V.A.Bershtein,V.M.Egorov.DifferentialScanningCalorimetryofPolymers.NewYork:EllisHorwood,1994) 国际刊物JournalofThermalAnalysisandCalorimetry于2000年第1期出版专辑AdvancesinThermalCharacterizationofpolymericMaterials。  尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulateddifferentialscanningcalorimetry,TMDSC),这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JThermAnal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。  作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社,1999 英文版,Chichester:JohnWiley&Sons,1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与" ThermalAnalysisFundamentalsandApplicationstoPolymerScience" (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。  这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由AcademicPress(NewYork)出版的学术专著:MacromolecularPhysicsVol3CrystalMelting(1980),ThermalAnalysis(1990)和ThermalCharacterizationofPolymericMaterials(2ndEdn,TuriEDed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger,H.J.Flammersheim所著DifferentialScanningCalorimetryAnIntroductionforPractitioners(Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。  本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。  借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。  受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。  刘振海(长春)畠山立子(东京)2001年9月内容提要  本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。  本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。  近年来,国内又出版了几本新的高分子物理著作,如马德柱主编« 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。华幼卿金日光2013,« 高分子物理» ,第四版,北京:化学工业出版社  焦剑主编2015高分子物理西北工业大学出版社  本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢!  参考文献  [1]« 高分子结晶和熔融行为的FlashDSC研究进展» 李照磊1,2周东山1胡文兵1  [2]何曼君张红东陈维孝.« 高分子物理» 第三版复旦大学出版社2007  [3]张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003  [4]朱诚身« 聚合物结构分析» 科学出版社2010  [5]何平笙编著« 新编高聚物的结构与性能» 科学出版社2009  附录  有关高分子物理的教学参考书(按出版时代排列)  Alfrey.1948.MechanicalPropertiesofHighPolymers.NewYork:IntersciencePublishers  是早期有关高聚物力学性能的专著、至今仍有参考价值。  FloryPJ.1953.PrincipleofPolymerChemistry.Ithaca:CornellUniversityPress  是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。  钱人元,1958,高聚物的分子量测定,北京:科学出版社  是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。  柯培可ⅡⅡ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社  介绍原苏联学者的研究成果和观点,对我国有相当影响。  MasonP.WookeyN.1958.TheRheologyofElastomers.Paris:PergamonPress  是为数不多专门讲授弹性体力学性能的著作。  徐僖,1960,高分子物化学原理。北京:化学工业出版社  为国内高校工科院校早期的高分子专业教科书,有一定影响。  TobolskyAV.1960.PropertiesandStructureofPolymers.NewYork:JohnWiley&Sonslnc  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。  TanfordC.1961.PhysicalChemistryofMacromolecules.NewYork:JohnWiley&SonsInc  是一本在高分子溶液方面写得较好的教材。  卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡  是前苏联学者的一本著作,对我国高分子物理起步有较大影响。  BuecheF.1962.PhysicalPropertiesofPolymers.NewYork:IntersciencePublishers  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。  NielsenL.E.1962.MechanicalPropertiesofPolymers.NewYork:ReinholdPublishingCorporation  也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。  VolkensteinMV.1963.ConfigutationalStatisticsofPolymericChains.NewYork:Interscience  是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值,  卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社  是一本较全面介绍原苏联学者成果的书。  高分子学会,1965,レオロジーハンドブック(流变学手册),东京:丸善株式会社  有很多早期的实验教据图。  MandelkernL.1965.CrystallizationofPolymers.NewYork:McGraw-HillBookCompany  AndrewsE.H.1968.FractureinPolymers.Edinburgh:Oliver&Boyd  是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。  AlexanderLE.1970.X-rayDiffractionMethodsinPolymerScience.NewYork:JohnWiley&.SonsInc  和田八三久.1971.高分子的固体物性,东京:培风馆  日本学者撰写的内容比较深的高分子物理著作。国内没有流行。  BillmeyerFW.1971.TextbookofPolymerScience.NewYork,:WileyInierscienceInc  这是一本在西方影响很大的教材,但一直没有再版,  PeebolsJJH.1971.MolecularWeightDistributionsinPolymers.NewYork,:JohnWiley&SonsInc  有不少关于聚合反应动力学统计理论的内容,  TobolskyAV,MarkHF.1971.PolymerScienceandMaterials.NewYork,:WileyInterscience  有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。  KakudoM.KasaiN.1972.X-rayDiffractionMethodsinPolymerScience.NewYork:WileyInterscience  JenkinsAD.1972.PolymerScience,Amaterialssciencehandbook,1and2.Amsterdam:North-HollandPublishingCompany  这是一本上下两册大部头著作,内容极为丰富。  TreloarLRG.1958.ThePhysicsofRubberElasticity.3rdEd.Oxford:UniversityPress  一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。  高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆  论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。  小野木重治,1973,高分子材料科学,东京:诚文堂新光社  是来自日本的一本教材,也有一定影响,  KauschHH,HassellJA,JaffeeRI.1973.DeformationandFractureofHighPolymers,NewYork:PlenumPress  内容较专一。  HawardRN.1973.ThePhysicsofGlassyPolymers.London:AppliedSciencePublishersLtd  对玻璃态高聚物的力学性能有详细介绍,  晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社  这是一本有管高聚物性能测试早期的著作,当时有相当的影响。  WunderlichB.1973.MacromolecularPhysics.Vol.Ⅰ,Ⅱ,Ⅲ.NewYork:AcademicPress  三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。  SamuelsRJ.1974.StructuredPolymerProperties.NewYork:WileyInterscience  莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译,  北京:科学出版社  该书有关“高聚物材料的本质" 和' ' 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。  ArridgeRGC.1975.MechanicsofPolymers.Oxford:ClarendonPress  是一本从力学观点讲述的高聚物力学性能的专著。  TagerA.1978.PhysicalChemistryofPolymers.Moscow:MIPPublisher  是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。  AndrewsEH.1979.DevelopmentsinpolymerFracture-1.London:AppliedSciencePublishers  是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。  TadokoroH.1979.StructureofCrystllinePolymers.NewYork:JohnWiley&.SonsInc  BlytheAR1979.ElectricalPropertiesofPolymers.Cambridge:CambridgeUniversityPress  是剑桥大学" CambridgeSolidStateScienceSeries" 系列中的一本书。  中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社  CherryBW.1980.PolymerSurfaceCambridge:CambridgeUniversityPress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。  WilliamsJG.1980.StressAnalysisofPolymers.2ndEd.NewYork:JohnWiley&SonsInc  是一本从力学观点讲述的专著,书中数学内容较深。  FerryJD.1980.ViscoelasticPropertiesofPolymers.NewYork:JohnWiley&SonsInc  是一本高聚物黏弹性的专著,有很好的参考价值。  林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社  由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。  施良和,1980,凝胶色谱法,北京:科学出版社  对普及凝胶色谱法有很好作用。  BaileyRT,NorthAM,PethrickRA.1981.MolecularMotioninHighpolymers.Oxford:Clar-  endonPress  YoungRJ.1981.IntroductiontoPolymers.London:ChapmanandHall  这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。  BassettDC.]981.PrinciplesofPolymerMorphology,Cambridge:CambridgeUniversitypress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。有中文译本,即1987  年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。  潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社  该书介绍的有关形变-温度曲线的论述仍有参考价值。  彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社  范克雷维伦DW.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社  至今仍有参考价值。  尼尔生LE.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜  赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社  是为化学纤维专业写的教材。  沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社  是我国学者写的较早的有关高分子物理的专著。  SeanorDA.1982.ElectricalPropertiesofPolymers.NewYork:AcademicPress  WardIM.1982.DevelopmentsinOrientedPolymers.London:AppliedSciencePublishers  BohdaneckyM,Ková rJ.1982.ViscosityofPolymerSolutions.NewYork:ElsevierScientific  BurchardW,PattersonGD.1983.LightcatteringfromPolymers.NewYork:Springer-Verlag  尼尔生LE.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。  WilliamsDJ.1983.NonlinearOpticalPropertiesofOrganicandPolymericMaterials.WashingtonD.C.:AmericanChemicalSociety  是一本以编著形式撰写的书。  WardIM1983.MechanicalPropertiesofSolidPolymers.2ndEd.NewYork:Wiley-Interscience  这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。  斯坦RS.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社  KinlochAJ,YoungRJ.1983.FractureBehaviorofPolymers.London:AppliedSciencePublishers  内容比较全面的有关高聚物断裂的专著。  北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社  WilliamsJG.1984.FractureMechanicsofPolymers.NewYork:JohnWiley&Sonslnc  塞缪尔斯RJ.1984.结晶高聚物的性质,徐振森译。北京:科学出版社  EliasHG.1984.MacromoleculesI,structureandProperties.2ndEd.NewYork:PlenumPress  韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社  AklonisJ.MacKnightWJ.1972.MinchelShen,IntroductiontoPolymerViscoelasticity.NewYork:Wiley-Interscience  这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。  冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社  其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯RM.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社  是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。  吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社  可供有关专业研究生阅读。  唐敖庆等,1985,高分子反应统计理论,北京:科学出版社  卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社  是一本专门讲述高聚物中自由体积的小册子。  钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社  是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。  考夫曼HS,法尔西塔JJ.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社  郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社  DoiM,EdwardsSF.1986.TheTheoryofPolymerDynamics.Clarendon:OxfordUniversity  Press  有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社  夏炎.1987.高分子科学简明教程,北京:科学出版社  是为师范生写的教材。  拉贝克JF.1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社  提供大量的高分子实验,是一本高分子实验方面的权威性著作。  何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社  斯珀林LH.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社  吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社  共十本书,其中与高分子物理有关的是:  (1)孙鑫,《高聚物中的孤子和极化子》,1987。  (2)吕锡慈,《高分子材料的强度与破坏》,1988。  (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。  (4)许元泽,(高分子结构流变学》,1988。  (5)古大治。《高分子流体动力学》,1988。  (6)江明,《高分子合金的物理化学》,1988。  (7)赵得禄,吴大诚,《高分子科学中的MonteCarlo方法》,1988。  (8)吴大诚,HsuSL,《高分子的标度和蛇行理论》,1989。  日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社  朱永群,1988,高分子物理基本概念与问题,北京:科学出版社  是第一本有关高分子物理习题的书。  鲁丁JA.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社  潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社  朱善农等,1988,高分子材料的剖析,北京:科学出版社  穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社  李斌才,1989,高聚物的结构与物理性质,北京:科学出版社  周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社  CampbellD,WhiteJR1989.PolymerCharacterization:PhysicalTechniques.London:Chapman&Hall  国内少有人拥有此书。  王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社  林师沛,1989,塑料加工流变学,成都:成都科技大学出版社  雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社  克里斯坦森RM.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社  杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社  胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司  是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。  FujitaH.1990.PolymerSolutions.Amsterdam:Elsevier  SchmitzKS.1990.AnIntroductiontoDynamicLightScatteringbyMacromolecules.SanDiego,AcademicPress  弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社  是弗洛里又一本大著,是高分予理论最重要的经典著作之一。  朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社  JoachimDE.1992,RelaxationandThermodynamicsinPolymersGlassTransition.Berlin:AkademieVerlag  郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社  周其凤,王新久,1994,液晶高分子,北京:科学出版社  有不少作者自己的研究成果。  GrosbergAY,KhokhlovAR.1994.StatisticalPhysicsofMacromolecules.Woodbury:AIPPress  黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社  是当年的一本进展性质的汇编。  左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社  谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社  薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社  GeddeUW.1995.PolymerPhysics.London:Chapman&Hall  叶成,习斯J.1996,分子非线性光学的理论与实践,北京:化学工业出版社  大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社  周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社  这是一本由力学专家写的书,对数学的推导有独特之处。  吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社  朱善农等,1996,高分子链结构,北京:科学出版社  DoiM.1996.IntroductiontoPolymerPhysics.Clarendon:OxfordUniversityPress  复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社  已出第二版。  Hans-GeorgE.1997,AnIntroductiontoPolymerScience.NewYork:VCHPress  刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社  2004年出了第二版。  何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  ShiLH,ZhuDB.1997.PolymersandOrganicSolids,Beijing:SciencePress  这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社  是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。  蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社  该书中有关聚乙烯热学性能的介绍很有参考价值。  邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社  江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社  是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。  吴人洁等,1998,高聚物的表面与界面,北京:科学出版社  吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社  沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社  托马斯EL.1999,聚合物的结构与性能,北京:科学出版社  是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。  朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社  介绍导电高聚物的专著,有许多我国科学家的研究成果。  王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社  梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社  是为合成纤维专门化的学生写的教材。  顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社  金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社  工科院校所用教材,2007年已出第三版。  闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社  是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。  杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社  何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社  平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社  是一本有关高分子科学的高级通俗读本。  SperlingLH.2001.IntroductionofPhysicalPolymerScience.3rdEd.NewYork:Wiley  布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社  殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社  名为研究生教材,实际上是一本很好的进展性专著。  韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社  既有高分子化学内容也有高分子物理内容。  BowerDI.2002.AnIntroductiontoPolymerPhysics.Cambridge:CambridgeUniversityPress  化学工业出版社2004年以”国外名校名著”系列影印出版了该书。  刘振海,2002,聚合物量热测定,北京:化学工业出版社  杨小震,2002,分子模拟与高分子材料,北京:科学出版社  附有软件光盘,很实用,其软件可利用来开设高分子物理实验。  过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社  是一本很好的有关高聚物动态力学测试的著作。  吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社  是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。  QianRY(钱人元),2002.PerspectivesontheMacromolecularCondensedState.Singapore:WorldScientific  这是钱人元院士把自己在' ' 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。  ColbyRB.2002.PolymerPhysics.Oxford:OxfordUniversityPress  TeraokaI.2002.PolymerSolutions:AnIntroductiontoPhysicalProperties.NewYork:John  Wiley&SonsInc  非常好的有关高分子溶液的专著,内容较深。  张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社  是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。  deGennes.1979.ScalingConceptsinPolymerPhysics.Ithaca:CornellUniversityPressGennes  Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让  摘自« 新编高聚物的结构与性能» 何平笙编著科学出版社
  • 清华大学拟2100万采购7套分析仪器设备
    11月24日,清华大学在中国政府采购网连续发布多份招标公告,拟以2101万人民币采购7套分析仪器设备,包含超高分辨率共聚焦显微镜、高分辨气质联用仪、蛋白稳定性多参数检测仪、光片显微镜、全自动磁性细胞分选系统、多功能离子电离源系统等。  详情如下:
  • 日立分析仪器推出全新FT160 XRF镀层分析仪:针对微电子纳米级镀层
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2月25日,日立高新技术公司(TSE:8036)的全资子公司日立分析仪器(HitachiHigh-Tech Analytical Science)推出strongspan style="text-indent: 2em color: rgb(0, 112, 192) "新型FT160XRF光谱仪/span/strong,该分析仪提供三种基座配置选择方案用于纳米级镀层分析。日立分析仪器主要致力于分析和测量仪器的制造和销售。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 451px height: 301px " src="https://img1.17img.cn/17img/images/202002/uepic/c29354c7-1547-456d-ac6a-6c7087db5a33.jpg" title="日立新品.png" alt="日立新品.png" width="451" height="301" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "FT/spanspan style="color: rgb(0, 176, 240) text-indent: 0em "160 XRF镀层分析仪/span/pp style="text-indent: 2em "随着新型FT160系列在日本率先推出,日立分析仪器目前已在中国、北美、欧洲、中东和非洲销售FT160系列镀层分析仪并提供相关服务。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "日立推出的该款最新一代镀层分析仪旨在应对测量小型部件上的超薄镀层所带来的挑战。/spanFT160是一种台式EDXRF(能量色散x射线荧光)分析仪,配有强大的软件和硬件,能实现高样品处理量,且任何操作员均能获取高质量结果。由于FT160系列专为在生产质量控制中发挥关键作用而设计,span style="color: rgb(0, 112, 192) "因此其可在半导体、电路板和电子元件市场中被广泛应用/span。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋/strong/spanstrong测量纳米级的镀层/strong/pp style="text-indent: 2em "FT160配置高端部件,可以提供精细结构上的超薄镀层的元素分析。毛细管聚焦光学镜能聚焦直径小于30μm的X射线束,从而在样品上集中更大强度且其可测量的部件尺寸小于传统准直器可测量的部件尺寸。高灵敏度、高分辨率日立分析仪器硅漂移探测器(SDD)充分利用光学系统测量微电子和半导体上的纳米级镀层。高精度样品台和具备数字变焦功能的高清摄像头可快速定位样件,以提高样品处理量。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "日立分析仪器产品经理Matt Kreiner表示/span:“在之前产品的成功基础上所推出的FT160能提供重新设计的照明布置以提高零件的可视性并便于定位,且新的配置选择方案可确保特定应用的最佳性能并为繁忙的测试实验室提供新的紧凑型基座配置要素。该产品系列硬件和分析能力的不断发展使我们的客户更容易在快速发展的微电子领域控制生产。FT160是对我们镀层仪器综合系列的补充,这归功于日立45多年的XRF镀层分析仪的开发经验。”/pp style="text-indent: 2em "FT160系列现已允许订购。可通过点击文末a href="https://www.instrument.com.cn/netshow/SH104100/product.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "日立分析仪器厂商展位/span/a联系日立分析仪器。/pp style="text-align: left text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋/strong/spanstrong关于日立分析仪器/strong/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 354px height: 80px " src="https://img1.17img.cn/17img/images/202002/uepic/db00c146-e659-42ad-b762-773a6727b57f.jpg" title="00.png" alt="00.png" width="354" height="80" border="0" vspace="0"//pp style="text-align: left text-indent: 2em "日立分析仪器是日立高新技术集团于2017年7月创立的全球性公司。其总部位于英国牛津,其在芬兰、德国和中国从事研发和装配业务并在全球多个国家开展销售和支持业务。其产品系列包括:/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span FT160、FT110和X-Strata微焦斑XRF光谱仪,能测量单层和多层镀层(包括合金层)的镀层厚度,可成为质量控制或过程控制程序以及研究实验室的专用分析仪。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span EA1000、EA6000和HM1000 RoHS(有害物质限制指令)分析仪适用于RoHS 1和RoHS 2测试,使用便捷,能够很好适应限制指令的变化。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span DSC7000X、DSC7020、NEXT STA、STA7000、TMA7100、TMA7300和DMA7100系列热分析仪已经过优化,可检测最小反应并使其可视化,同时具有坚固耐用、可靠且易于使用的特点。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span EA8000 x射线颗粒污染物分析仪用于锂离子电池生产中快速有效的质量控制。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span Lab-X5000和X-Supreme8000台式XRF光谱仪可为石油、木材处理、水泥、矿物、采矿和塑料等多种行业提供质量保证和过程控制服务。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span OE750、PMI-MASTER、FOUNDRY-MASTER和TEST-MASTER系列分析仪被世界各地的行业用于进行快速和精确的金属分析。该仪器采用直读光谱分析技术,可测定所有重要元素,能提供低检测限和高精度,包括钢中的碳和几乎所有金属中所有技术相关的主要和痕量元素。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span X-MET8000手持式光谱仪被成千上万的企业用于通过XRF精密技术进行简单、快速和无损的合金分析、废金属分拣和金属牌号筛选。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span 采用LIBS激光技术的Vulcan手持式光谱仪只需一秒即可识别金属合金,是世界上分析速度最快的分析仪之一。这对需要处理大量金属的企业而言非常有利。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制