当前位置: 仪器信息网 > 行业主题 > >

石墨烯导定仪

仪器信息网石墨烯导定仪专题为您提供2024年最新石墨烯导定仪价格报价、厂家品牌的相关信息, 包括石墨烯导定仪参数、型号等,不管是国产,还是进口品牌的石墨烯导定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨烯导定仪相关的耗材配件、试剂标物,还有石墨烯导定仪相关的最新资讯、资料,以及石墨烯导定仪相关的解决方案。

石墨烯导定仪相关的论坛

  • 石墨炉测Ag,吸光值不稳定的现象

    今天用耶拿650P石墨炉测化探Ag,最高的标准点吸光值有下降趋势,从开始的0.11到0.08、0.07、0.06.我找不出原因,又开始清理石墨炉体,石墨管重新格式化,再测,吸光值变了一次后稳定在0.08了,虽然这个值有点小,但还算稳定,所以就这样测了。结果也还行。到现在还是想不出吸光值为什么不稳定,那我测样过程中是不是也有吸光值变化(跟样品中Ag含量无关)的情况。请各位前辈老师指点,这种现象出现的原因是什么?该怎么解决?谢谢了

  • 关于东西分析原吸石墨管的寿命判定

    10-15%,且重复出现。(4)根据使用次数来判断:如果分析样品较单一,且分析频率较固定,可以根据石墨管的使用次数来初步判断石墨管的使用寿命。可以根据以往使用情况的经验值来初步判断是否接近石墨管使用寿命。(5)根据分析结果的峰形判断:如果分析结果中原子化阶段的峰形有拖尾现象,说明石墨管内壁的热解涂层有损坏,样品渗透到石墨管壁内,影响分析结果的准确性。出现这种情况,可结合前面所述的标准来判断是否需要更换新的石墨管。二、石墨管使用寿命的影响因素通过查阅相关资料并结合作者的工作经验,认为石墨管使用寿命的影响因素有下面几个方面:(1)石墨管的种类不同,使用寿命也会不同:石墨管分热解石墨管和普通高密度石墨管,同样条件下,热解石墨管比普通高密度石墨管的使用寿命要长。因为石墨管具有多孔的特性,普通高密度石墨管中,液体样品易渗透到石墨管壁中,造成待测元素与碳之间有较大的接触面积,石墨管易高温氧化损伤;热解石墨管是对高密度石墨管进行热解,而具有金属般光泽的表面,样品在管壁渗透较少,由于接触面积小,不仅使石墨管表面不易高温氧化,且抑制了碳化物的形成,提高了灵敏度,使用寿命也得到了延长,分热解涂层石墨管和全热解石墨管。热解涂层石墨管是在高密度石墨管的表面进行热解;全热解石墨的石墨管,即使不使用惰性气体保护仍有较长的使用寿命。(2)测定样品不同,石墨管使用寿命也会受影响:针对不同的分析样品,升温过程及温度设定也不同,石墨管的使用寿命就会有较大差异。当测定低温元素的时候,例如Pb、Zn、K、Mg等元素,石墨管升温的温度较低,石墨管的损耗较小;当测定高温元素的时候,例如Mn、Cu、Ag等元素,石墨管升温的温度较高,石墨管的损耗较大。(3)样品浓度和进样量对石墨管使用寿命的影响:如果测试样品的浓度较高,进样量较大,高温条件下,会在石墨管、石墨锥中产生沉积杂质碳化物,影响石墨管的电阻率,导致石墨炉升温电流增大,加速石墨管的老化,大大缩短石墨管的使用寿命。所以,对于未知样品或者高浓度的样品,要先稀释后再测定,尽量使用火焰法试测其浓度,不可贸然使用石墨炉法进行测定,否则易损坏石墨管和原子吸收光谱仪。(4)样品中酸的含量及种类对石墨管寿命的影响:首先,同种酸的含量增高,会引起石墨管寿命的缩短。应保持样品里合适的酸度,例如对热解管而言,一般1.5%的酸介质为最佳酸度,如果使用3~5%的酸介质势必会对热解石墨管内壁涂层的破坏。另外,不同种类的酸对石墨管寿命的影响也是不同的。同样浓度的不同种类的酸,氧化性强的酸对石墨管的损害较大,例如高氯酸的氧化性教强,如果分析含高氯酸的样品,会明显缩短石墨管的使用寿命。(5)进样针位置偏移所致进样异常对石墨管寿命的影响:进样针位置的准确性直接影响到分析过程的顺利准确的进行,同时也会对石墨管的使用寿命造成影响。如果进样针位置偏移,导致进样针进样的时候不能够准确插入石墨管的进样孔,而把样品注射到石墨管外面,就会造成石墨管外表面的损坏,尤其是只有内壁有热解涂层的石墨管。(6)排风抽取系统的流量对石墨管寿命的影响:排风抽取系统的流量控制是石墨管使用寿命的一个基本因素。太低的流量导致在灰化阶段残留的蒸汽损坏石墨管;太高的吸取流量会将空气吸到石墨炉中,导致石墨管的氧化损坏。(7)温度监测异常:石墨炉在使用过程中,会有杂质沉积在温度探测孔上或者导致控温系统的滤光片上,减弱了探测效率,使石墨管的实际温度高于升温程序设定的温度,致使石墨管过快的老化损坏。检测探头的位置与探测孔不对中,也会引起同样的问题。(8)升温程序的合理性:不合理的升温程序将直接影响石墨管的使用次数,有时还可能造成石墨管突然断裂等情况,特别是在石墨管空烧的时候。应严格按照各元素测试条件设定测试过程的升温程序。(9)电极导轨卡涩对石墨管使用寿命的影响:一般石墨炉分左右两个电极,每个电极内镶嵌一个石墨锥,石墨管是被两个石墨锥夹持着;而两个电极大多是一个为固定的,另一个是可以左右移动的。石墨管在受热后一般比常温下可延长一毫米,如果电极导轨变涩不能滑动,石墨管的热应力就会作用在石墨管上,引起石墨管裂纹、破碎,解决方法很简单,在可移动的电极滑轨上加点润滑油即可。(10)石墨管安装的好坏对其使用寿命的影响:如果石墨管安装后不与石墨锥在同一轴线上,或者与石墨锥的接触不好,会增加石墨管与石墨锥间的电阻率,导致升温电流加大,从而加速了石墨管的老化,缩短了石墨管的使用寿命。更换石墨锥后,如果安装不对,导致夹石墨管太紧,石墨管加热膨胀后,也会造成石墨管裂纹、破碎。石墨炉要经常清洗,石墨管有断裂、破碎情况时更是需要进行清洗。清洗时用沾有酒精的脱脂棉对炉体内部、石墨锥、进样口擦拭干净,并用保护气吹干后再进行使用。(11)冷却系统异常石墨炉测定过程中会升温,需要进行冷却到平衡温度(接近室温)才能进行下个测定,同时也可以保护石墨管和石墨锥免于高温下的氧化损坏。太冷或者流速太快会引起石墨锥、石墨管的冷凝,损坏石墨管和石墨锥,减少其使用寿命;冷却不充分时也会造成石墨管及石墨锥以教高的温度与空气接触,致使过多的氧化。(12)保护气体对石墨管使用寿命的影响:由于石墨管高温下易氧化,故需进行惰性气体的保护,一般选用氩气作为石墨炉的保护气。氩气不纯、流量小均会引起石墨管的老化,降低使用寿命。氩气不纯:氩气的纯度需大于等于99.9%。气瓶压力低于10bar时剩余氩气杂质气体较多,需更换;更换气瓶后应吹扫干净管线中的空气。氩气流量小:设定不当或者电磁阀卡涩等均可能引起流量小,保护不充分导致石墨管使用寿命下降。更换石墨管时未清洁石墨锥,造成石墨管与石墨锥接触不良,会引起石墨管端部漏气,导致

  • 石墨炉不稳定!!

    我用岛津的AA-6800石墨炉做铅、镉有时会很不稳定,同一个标准重复做吸光值变化很大。比如第一次是1.5625的吸光值,再做一次就变成0.9587。这是什么原因?这种情况是偶尔有,一般过几天仪器会自动正常。

  • 石墨烯的性质

    [font=&]石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。[/font][font=&]化合物[/font][font=&]氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35?增加到7~10?,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。[/font][font=&]石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。[/font][font=&]氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。[/font][font=&]生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。[/font][font=&]氧化性:可与活泼金属反应。[/font][font=&]还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。[/font][font=&]加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。[/font][font=&]稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质[/font]

  • 石墨烯的应用有哪些?

    随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动手机 、航空航天、新能源电池领域。[b]基础研究[/b]石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质--因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。零能隙的半导体主要是单层石墨烯,这种电子结构会严重影响到气体分子在其表面上的作用。单层石墨烯较体相石墨表面反应活性增强的功能是由石墨烯的氢化反应和氧化反应结果显示出来的,说明石墨烯的电子结构可以调变其表面的活性。另外,石墨烯的电子结构可以通过气体分子吸附的诱导而发生相应的变化,其不但对载流子的浓度进行改变,同时可以掺杂不同的石墨烯。[b]传感器[/b]石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。 石墨烯独特的二维结构使它对周围的环境非常敏感。 石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。[b]晶体管[/b]石墨烯可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的尺度上依然能稳定地工作。相比之下,目前以硅为材料的晶体管在10纳米左右的尺度上就会失去稳定性 石墨烯中电子对外场的反应速度超快这一特点,又使得由它制成的晶体管可以达到极高的工作频率。例如IBM公司在2010年2月就已宣布将石墨烯晶体管的工作频率提高到了100GHz,超过同等尺度的硅晶体管。[b]柔性显示屏新能源电池[/b]新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。[b]海水淡化[/b]石墨烯过滤器比其他海水淡化技术要使用的多。水环境中的氧化石墨烯薄膜与水亲密接触后,可形成约0.9纳米宽的通道,小于这一尺寸的离子或分子可以快速通过。通过机械手段进一步压缩石墨烯薄膜中的毛细通道尺寸,控制孔径大小,能高效过滤海水中的盐分。[b]储氢材料[/b]石墨烯具有质量轻、高化学稳定性和高比表面积等优点,使之成为储氢材料的最佳候选者。[b]航空航天[/b]由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。2014年,美国NASA开发出应用于航天领域的石墨烯传感器,就能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测。而石墨烯在超轻型飞机材料等潜在应用上也将发挥更重要的作用。[b]感光元件[/b]以石墨烯作为感光元件材质的新型感光元件,可望透过特殊结构,让感光能力比现有CMOS或CCD提高上千倍,而且损耗的能源也仅需原本10%。可应用在监视器与卫星成像领域中,可以应用于照相机、智能手机等。[b]复合材料[/b]基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能, 具有广阔的应用前景。目前石墨烯复合材料的研究主要集中在石墨烯聚合物复合材料和石墨烯基无机纳米复合材料上,而随着对石墨烯研究的深入, 石墨烯增强体在块体金属基复合材料中的应用也越来越受到人们的重视。 石墨烯制成的多功能聚合物复合材料、高强度多孔陶瓷材料,增强了复合材料的许多特殊性能。[b]生物[/b]石墨烯被用来加速人类骨髓间充质干细胞的成骨分化 ,同时也被用来制造碳化硅上外延石墨烯的生物传感器。同时石墨烯可以作为一个神经接口电极,而不会改变或破坏性能,如信号强度或疤痕组织的形成。由于具有柔韧性、生物相容性和导电性等特性,石墨烯电极在体内比钨或硅电极稳定得多。 石墨烯氧化物对于抑制大肠杆菌的生长十分有效,而且不会伤害到人体细胞。

  • 石墨烯化学性质

    石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。化合物氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35Å 增加到7~10Å ,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。氧化性:可与活泼金属反应。还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质

  • 石墨烯的应用范围

    [font=&]随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动手机 、航空航天、新能源电池领域。[/font][b]基础研究[/b][font=&]石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质--因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。[/font][font=&]零能隙的半导体主要是单层石墨烯,这种电子结构会严重影响到气体分子在其表面上的作用。单层石墨烯较体相石墨表面反应活性增强的功能是由石墨烯的氢化反应和氧化反应结果显示出来的,说明石墨烯的电子结构可以调变其表面的活性。另外,石墨烯的电子结构可以通过气体分子吸附的诱导而发生相应的变化,其不但对载流子的浓度进行改变,同时可以掺杂不同的石墨烯。[/font][b]传感器[/b][font=&]石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。 石墨烯独特的二维结构使它对周围的环境非常敏感。 石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。[/font][b]晶体管[/b][font=&]石墨烯可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的尺度上依然能稳定地工作。相比之下,目前以硅为材料的晶体管在10纳米左右的尺度上就会失去稳定性 石墨烯中电子对外场的反应速度超快这一特点,又使得由它制成的晶体管可以达到极高的工作频率。例如IBM公司在2010年2月就已宣布将石墨烯晶体管的工作频率提高到了100GHz,超过同等尺度的硅晶体管。[/font][b]柔性显示屏新能源电池[/b][font=&]新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。[/font][b]海水淡化[/b][font=&]石墨烯过滤器比其他海水淡化技术要使用的多。水环境中的氧化石墨烯薄膜与水亲密接触后,可形成约0.9纳米宽的通道,小于这一尺寸的离子或分子可以快速通过。通过机械手段进一步压缩石墨烯薄膜中的毛细通道尺寸,控制孔径大小,能高效过滤海水中的盐分。[/font][b]储氢材料[/b][font=&]石墨烯具有质量轻、高化学稳定性和高比表面积等优点,使之成为储氢材料的最佳候选者。[/font][b]航空航天[/b][font=&]由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。2014年,美国NASA开发出应用于航天领域的石墨烯传感器,就能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测。而石墨烯在超轻型飞机材料等潜在应用上也将发挥更重要的作用。[/font][b]感光元件[/b][font=&]以石墨烯作为感光元件材质的新型感光元件,可望透过特殊结构,让感光能力比现有CMOS或CCD提高上千倍,而且损耗的能源也仅需原本10%。可应用在监视器与卫星成像领域中,可以应用于照相机、智能手机等。[/font][b]复合材料[/b][font=&]基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能, 具有广阔的应用前景。目前石墨烯复合材料的研究主要集中在石墨烯聚合物复合材料和石墨烯基无机纳米复合材料上,而随着对石墨烯研究的深入, 石墨烯增强体在块体金属基复合材料中的应用也越来越受到人们的重视。 石墨烯制成的多功能聚合物复合材料、高强度多孔陶瓷材料,增强了复合材料的许多特殊性能。[/font][b]生物[/b][font=&]石墨烯被用来加速人类骨髓间充质干细胞的成骨分化 ,同时也被用来制造碳化硅上外延石墨烯的生物传感器。同时石墨烯可以作为一个神经接口电极,而不会改变或破坏性能,如信号强度或疤痕组织的形成。由于具有柔韧性、生物相容性和导电性等特性,石墨烯电极在体内比钨或硅电极稳定得多。 石墨烯氧化物对于抑制大肠杆菌的生长十分有效,而且不会伤害到人体细胞。[/font]

  • 【原创】石墨烯---不闻则已,一鸣惊人

    石墨烯--对于这个概念今天是第一次听说,但不闻则已,一鸣惊人下面我给大家简要介绍下石墨烯的主要应用前景哦2008年4月,权威的美国《科学》杂志发布,英国曼切斯特大学科学家开发出世界最小的晶体管。有业内人士认为,摩尔定律也许能借此延续下去。 众所周知,根据半导体业著名的摩尔定律,芯片的集成度每18个月至2年提高一倍,即加工线宽缩小一半。人们普遍认为,这一定律还能延续10年。提出该定律的摩尔本人也曾公开表示,10年之后,摩尔定律将很难继续有效,因为采用目前的工艺和硅基半导体材料来延长摩尔定律寿命的发展道路已逐渐接近终点。世界上最小的晶体管 硅材料的加工极限一般认为是10纳米线宽。受物理原理的制约,小于10纳米后不太可能生产出性能稳定、集成度更高的产品。然而英国科学家发明的新型晶体管将延长摩尔定律的寿命。该晶体管有望为研制新型超高速计算机芯片带来突破。值得一提的是世界最小晶体管的主要研制者也是于2004年开发出石墨烯的人,他们就是英国曼切斯特大学物理和天文学系的安德烈K海姆(Andre Geim)教授和科斯佳诺沃谢洛夫(Kostya Novoselov)研究员。正是因为开发出了石墨烯,他们获得了2008年诺贝尔物理奖的提名。由上述两人率领的英国科学家开发出的世界最小晶体管仅1个原子厚10个原子宽,所采用的材料是由单原子层构成的石墨烯。石墨烯作为新型半导体材料,近年来获得科学界的广泛关注。英国科学家采用标准的晶体管工艺,首先在单层石墨膜上用电子束刻出沟道。然后在所余下的被称为“岛”的中心部分封入电子,形成量子点。石墨烯晶体管栅极部分的结构为10多纳米的量子点夹着几纳米的绝缘介质。这种量子点往往被称为“电荷岛”。由于施加电压后会改变该量子点的导电性,这样一来量子点如同于标准的场效应晶体管一样,可记忆晶体管的逻辑状态。另据报导,英国曼切斯特大学安德烈海姆教授领导的科研团队,除了已开发出了10纳米级可实际运行的石墨烯晶体管外,他们尚未公布的最新研究成果还有,已研制出长宽均为1个分子的更小的石墨烯晶体管。该石墨烯晶体管实际上是由单原子组成的晶体管。神奇的半导体材料 石墨烯开发者之一的曼切斯特大学诺沃谢洛夫博士指出,石墨烯是研究领域的“金矿”,在很长一段时间内,研究人员将会陆续“开采”出新的研究成果。 那么石墨烯又为何物呢?石墨烯(Graphene)是一种从石墨材料中剥离出的单层碳原子薄膜,是由单层六角元胞碳原子组成的蜂窝状二维晶体。换言之,它是单原子层的石墨晶体薄膜,其晶格是由碳原子构成的二维蜂窝结构。这种石墨晶体薄膜的厚度只有0.335纳米,将其20万片薄膜叠加到一起,也只相当一根头发丝的厚度。该材料具有许多新奇的物理特性。石墨烯是一种零带隙半导体材料,具有远比硅高的载流子迁移率, 并且从理论上说,它的电子迁移率和空穴迁移率两者相等,因此其n型场效应晶体管和p型场效应晶体管是对称的。还有,因为其具有零禁带特性,即使在室温下载流子在石墨烯中的平均自由程和相干长度也可为微米级, 所以它是一种性能优异的半导体材料。此外,石墨烯还可用于制造复合材料、电池/超级电容、储氢材料、场发射材料以及超灵敏传感器等。因此科研人员争先恐后地投入到如何制备和表征其物理、化学、机械性能的研究。

  • 最近石墨炉很不稳定,吸收值忽高忽低

    我们的仪器是岛津aa7000,带的石墨炉,做铅和铬的时候,一开始是发现吸收值前几针很低几乎没有,到后面还算正常,最后我注意看了下,样液打入石墨管之后,开始升温程序那一下,样液全从石墨管的孔里崩出来了,而且是有一下正常有一下就崩,找不到原因,给工程师打电话,一个说是调整进样位置,一个说电源有问题,现在我也不知道怎么解决了,希望有大神帮忙解决。

  • 石墨烯的化学性质及特点

    石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。化合物氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35?增加到7~10?,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。氧化性:可与活泼金属反应。还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质

  • 近期石墨炉分析Ba、Be遇到的问题。

    近期实验室准备过评审,在做元素的方法验证。前两天做Ba和Be,Ba配制到100ppb,10,20ppb没有吸光度,40ppb才开始有吸光度,而且不稳定;Be配制到2ppb,原子化设到2500 5s,2ppb的吸光度跟空白一样。石墨管是一般的涂层石墨管。求大神们赐教赐教。

  • 【求助】新石墨管怎样处理才会稳定?

    请各位大虾赐教:仪器为日立Z-2000,新石墨管总是要烧几十次后才趋于平稳,普通石墨管越烧吸光度越高,热解涂层石墨管越烧吸光度越低,大概要烧50次左右才趋于平稳!大家有什么方法可以让新石墨管一开始用就在平稳状态?仪器软件有个“空烧”程序,温度2800度,时间可以自己设定!是不是这个程序就是用来解决新石墨管不稳定的问题?因为温度太高,小弟不敢乱用!各位大虾帮帮我!

  • 岛津原子吸收AA-6880,石墨炉空烧时候吸光度一直在0.02左右

    在用岛津6880做石墨炉法时候,空烧吸光度一直在0.02左右下不来,要求是降到0.01以下才行。空烧了差不多20次,吸光度到了0.01,勉强开始做曲线,曲线的0浓度点习惯度直接0.1,之后就不不用说线性了,以前从来没有过的!求高手前辈帮助啊!

  • 石墨炉加热报错 岛津的高手请进

    不知道大家用石墨炉的时候,手头一台岛津的原子吸收,平时挺好用的,但是换了一次石墨管,突然就不好用了。 换完第一次还能加热,第二次的时候就听到炉头噼噼啪啪的响,赶紧关了仪器问工程师,工程师说你们看看是不是两个石墨炉中间烧一次有空隙了,让调一下,我看了一看,果然是烧一次,再用手夹一下,二者果然有缝隙,这怎么办啊,是不是必须花钱请他们来?

  • 岛津石墨管大小是不是一样的啊?

    请问,各个型号的岛津石墨管的大小(孔径)是不是一样的啊?我现在买了一批岛津AA6800的国产石墨管,和我原装的比了下,发现长度差不多,但是国产的孔径却比原装的大好多,我怀疑厂家给我的不是AA6800的,难道是岛津其他型号上的?又或是就不是岛津上用的石墨管?

  • 石墨烯:新材料王者之路有多长?

    石墨烯:新材料王者之路有多长?去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。  中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。  牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。”  超级材料  石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。  2004年,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。  他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。  据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。  常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。  石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。  另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。  石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带  性能改良  这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。  由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。  牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。”  当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。  “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。  牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg显微镜下的石墨烯“单晶”  目标驱动  他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。  “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。  因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。  围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。  目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。  牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。”

  • 导电材料--石墨烯

    石墨烯是一种二维晶体,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。 发展简史。第一:石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂;第二:石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂 石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。 因此,两人在2010年获得诺贝尔物理学奖。 石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。

  • 【求助】石墨炉原子吸收测量铅

    最近做一个茶叶的标准品,标准品铅的含量是1.5mg/kg±0.2。称样量为0.58g。定容25ml,采用压力微波消化。加硝酸10ml消化。一个消化后赶酸定容,一个直接定容。用50ug/L的标准溶液作母液仪器自动配置标准溶液梯度。测量值应该为30~39ug/L,但是用石墨炉测量后,赶酸的测量值为10ug/L,未赶酸的为23ug/L。而用ICP测量,赶酸的为23ug/L,未赶酸的为32ug/L。请问什么情况会造成石墨炉测量值偏低(1、测量值均已经扣除试剂空白;2、标准溶液浓度值没有问题。)?请各位高手帮忙分析下。消化升温程序是常温15min到120℃保持10min,再10min到150℃,保持10min,再15min到180℃,保持30min。

  • 石墨烯制备交流

    这两天一直在制备石墨烯,想请教大家一些问题:很多文献上都说氧化石墨制备完成后要用HCl洗涤和二次水反复洗涤至中性,可是我洗了好多次发现一直是酸性呀?后来一想这氧化石墨本来就是酸性的,怎么能洗到中性呢?大家说的中性是不是离心后的上清液是中性的呀?还有用水洗涤后为什么都要干燥后再超声剥离呀,洗涤完成后直接超声剥离可以吗?可以剥离后再经过低速离心除去为氧化充分的石墨,高速离心得到氧化石墨烯的固体吗?问题比较多,希望高手指点呀?

  • 我的石墨炉为什么不稳定?

    我用的是日本岛津的AA6800,火焰还不错,但近期石墨炉数值很不值定。还有氢化物发生器法测定汞、砷等也出现测定结果不稳定的情况。致使我现在都没有法做样了。请高手指教一二。否则我只有等原子荧光了。

  • 原子吸收—石墨管纵向加热与横向加热的分析比较

    自原苏联科学家 LOV`V 发明石墨坩埚分析方法并经马斯曼改为石墨炉以来,一直采用的是纵向加热的石墨管,这种方法已发展到高级阶段,使石墨炉方法成为元素分析最灵敏的检测方法。  到 1980 年以后,美国 P-E 公司发明了纵向 Zeeman 效应的扣背景方法,由于需要在纵向即沿光轴方向产生高强度的磁场,空气隙一般只有 25 -30mm ,很难安装石墨锥,所以不得已只能将石墨锥改为横向,就产生了石墨管的横向加热技术,为了商业上的需要, P-E 公司就对横向加热技术大加赞扬,根据其宣传由于采用了计算机辅助制造技术,使横向加热的石墨管温度均匀背景吸收降低等诸多优点。但经过近二十年的发展,这一技术并不完善。事实证明使用横向加热石墨管完全是在纵向 Zeeman 校背景时不得已而为之的技术,横向加热并不具备当初设计的诸多优点。所以美国 P-E 公司自己生产的原子吸收,有纵向 Zeeman 校正时使用纵向加热石墨管,而使用D 2 灯背景校正时仍然使用纵向加热石墨管。即使到现在为止,世界上除中国以外没有其他国家在使用D 2 灯背景校正时使用横向加热石墨管。在中国有的厂家没有 Zeeman 校正,却使用横向加热石墨管,实在是很奇怪的事情。  从无火焰技术的原理来分析,纵向加热石墨管具有一系列优点,是当前发展成熟、性能优良的技术。  • 根据石墨炉的分析原理,由于背景干扰的影响石墨炉分析时信号的峰面积分很难稳定,所以目前仍然采用峰高计量方法。  • 信号的峰高与石墨炉分析时石墨管的加热速度快慢有关,加热速度越快,分析灵敏度越大,反之则灵敏度降低。  • 实践与理论均证明,石墨管的重量(尺寸)越小其加热速度越快,反之石墨管越大,其加热速度就会降低。  • 目前横向加热的石墨管其重量为纵向加热石墨管的五倍左右,所以其加热速度大大降低,造成分析灵敏度下降。  • 由于横向加热石墨管的重量、尺寸加大,达到所需温度需要相当大的功率,最少要达十千瓦以上,这样大的瞬时功率将对实验室的电源造成很大的干扰,会影响其它仪器设备的稳定性。  • 横向加热石墨管由于其结构较复杂,很难制造出性能一致的石墨管,更不可能达到温度均匀,所以实际应用时每支石墨管性能均不一致,给用户造成很大麻烦。由于石墨管为消耗材料,寿命有限,每换一次石墨管均需要重新摸索*作条件,实在不是明智之举。  • 纵向加热石墨管,呈桶形,容易加工制造,能保证其一致性,因而性能稳定,且具有互换性,分析数据一致,使用方便。  综上所述,纵向加热石墨管技术仍然是分析灵敏度最高、便于更换、使用方便、重复性好的分析技术。

  • 石墨烯制备方法

    [b]机械剥离法[/b]机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构。2004年,英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法,这种方法一度被认为生产效率低,无法工业化量产。 虽然这种方法可以制备微米大小的石墨烯,但是其可控性较低,难以实现大规模合成。[b]氧化还原法[/b]氧化还原法是通过使用硫酸、硝酸等化学试剂及高锰酸钾、双氧水等氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨(Graphite Oxide)。然后将反应物进行水洗,并对洗净后的固体进行低温干燥,制得氧化石墨粉体。通过物理剥离、高温膨胀等方法对氧化石墨粉体进行剥离,制得氧化石墨烯。最后通过化学法将氧化石墨烯还原,得到石墨烯(RGO)。这种方法操作简单,产量高,但是产品质量较低。氧化还原法使用硫酸、硝酸等强酸,存在较大的危险性,又须使用大量的水进行清洗,带大较大的环境污染。使用氧化还原法制备的石墨烯,含有较丰富的含氧官能团,易于改性。但由于在对氧化石墨烯进行还原时,较难控制还原后石墨烯的氧含量,同时氧化石墨烯在阳光照射、运输时车厢内高温等外界每件影响下会不断的还原,因此氧化还原法生产的石墨烯逐批产品的品质往往不一致,难以控制品质。[b]取向附生法[/b]取向附生法是利用生长基质原子结构"种"出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,最终镜片形状的单层的碳原子会长成完整的一层石墨烯。第一层覆盖后,第二层开始生长。底层的石墨烯会与钌产生强烈的相互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。[b]碳化硅外延法[/b]SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。[b]赫默法[/b]通过Hummer法制备氧化石墨 将氧化石墨放入水中超声分散,形成均匀分散、质量浓度为0.25g/L~1g/L的氧化石墨烯溶液,再向所述的氧化石墨烯溶液中滴加质量浓度为28%的氨水 将还原剂溶于水中,形成质量浓度为0.25g/L~2g/L的水溶液 将配制的氧化石墨烯溶液和还原剂水溶液混合均匀,将所得混合溶液置于油浴条件下搅拌,反应完毕后,将混合物过滤洗涤、烘干后得到石墨烯。[b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法即(CVD)是使用含碳有机气体为原料进行[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制得石墨烯薄膜的方法。这是目前生产石墨烯薄膜最有效的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。由于石墨烯薄膜的厚度很薄,因此大面积的石墨烯薄膜无法单独使用,必须附着在宏观器件中才有使用价值,例如触摸屏、加热器件等。[b]低压[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]是部分学者使用的,其将单层石墨烯在Ir表面上生成,通过进一步研究可知,这种石墨烯结构可以跨越金属台阶,连续性的和微米尺度的单层碳结构逐渐在Ir表面上形成。 毫米量级的单晶石墨烯是利用表面偏析的方法得到的。厘米量级的石墨烯和在多晶Ni薄膜上外延生长石墨烯是由部分学者发现的,在1000℃下加热300纳米厚的Ni 膜表面,同时在CH4气氛中进行暴露,经过一段时间的反应后,大面积的少数层石墨烯薄膜会在金属表面形成。

  • 岛津石墨炉原子吸收扣背景问题

    岛津石墨炉原子吸收扣背景问题

    [img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/08/201908281819035200_3378_2987177_3.jpg!w690x920.jpg[/img]如图,岛津石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]7000。测cd,氘灯扣背景。直接把样品峰扣成负的了。打电话给工程师,观察了光路重合,光路基本重合没问题,测其他元素也背景扣得干净。就只有Cd有问题。已经换了新灯,新石墨管了。听说论坛有岛津工程师。来求助下。

  • 【分享】原子吸收常见故障及排除方法(石墨管)

    我搜集到的一点资料,希望对大家有帮助。石墨管易断故障的原因及排查(1)原 因:没有保护气提供或供给量不足排 查:①外观检查石墨管整体表面呈现蜂窝状且粗糙,并且管壁明显变薄。(这是氧化所致)②将转子流量计(量程一般在0-5L)旋钮旋到全开位置,串接在保护气管路中,检查是否符合仪器指标要求;这是最准确的检查方法。③将石墨炉干燥阶段温度尽量设置在最低温度并延长升温时间,取出保护气管路一端并插入到有水的烧杯中,启动石墨炉,观察气泡的大小。此种方法较为粗略仅能判断保护气有无并不能判断气流量大小。④即使上述②③步骤正常,由于保护气出口被堵塞(这是最常见的原因)尽管有气体供给,但并不能到达石墨炉腔体内;用吸耳球从保护气入口吹通时凭借手感阻力大小便知,一般几乎感觉不出阻力。(2)原 因:没有载气提供或供给量不足(此种原因几率最大)排 查:①外观检查石墨管表面没有明显蜂窝状,仅是管壁变薄。②使用量程为0-300ml的转子流量计,串接在载气管路中,按照仪器指标检查流量是否正常。③同样将载气管路易断插入水中观察气泡大小以判断载气有无,但此种方法仍为粗略。④即使上述②③步骤正常,由于载气出口非常小(一般为针尖大小),极易被堵塞;取下石墨电极,用吸耳球从载气入口吹通凭借手感便知,但值得注意的是,由于载气出口很小,即使管路正常阻力也比保护气管路阻力大。另外、此故障一般是堵塞一侧,有时可用肉眼观察石英窗便知;当某一侧载气被堵塞时,有问题一侧的石英窗表面有附着物。(3)原 因:加热电流失控排 查:①目前绝大多数[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器的石墨炉电源为恒流源形式,即某个温度对应一个恒定的电流值;仪器说明书一般均给出最大升温时的电流值,根据此值用钳型交流电表嵌套在一根加热电缆上,启动石墨炉后立即便可判断石墨炉电源正常否。②此种因加热电流失控的现象凭借肉眼也可直接观察出,当加热电流失控时,石墨管升温时的亮度极大、超出正常状态、很刺激眼睛。(4)原 因:使用了非仪器要求的正规石墨管排 查:①综上所述,石墨炉电源为恒流源,根据功率公式:P=I² • R 来看,当温度一旦确立下来后,加热电流也就确立下来,剩下的就是石墨管的阻值了,从公式可以看出,阻值越大石墨管做功越大;由于不同厂家电路设计的不同,故随机配备的石墨管的阻值也不尽相同;有的用户为了省钱,常常购买非正规厂家生产的廉价石墨管,当所购的石墨管阻值大于原厂的阻值时,由于做功过大,往往石墨管极易因过载而烧断。②此种原因凭借肉眼,通过石墨管发光异常便可判断出。(5)原 因:样品的酸度过高排 查:①由于样品的酸度过高,尤其在测高温元素时(测铝最为明显),样品中的酸对石墨管的损坏最为严重,使管壁迅速变薄,从而加速管子断裂。②如果使用了涂层管,取下石墨管,用肉眼可以观察到管内壁涂层爆裂起皮,此时仪器的零点往往飘忽不定。③石墨管进样孔周围颜色较其他部位异样。(6)原 因:石墨管的夹具过紧排 查:①一般来说,石墨管在室温到最大升温时,管子长度有一毫米的延展;不同厂家的仪器,石墨炉设计的也不同,但有一个宗旨是一致的,那就是绝对要保持石墨管与石墨环接触紧密(原理此处不详述),因此各种固定措施应运而生,即要保证石墨管与石墨环接触良好又要保证石墨管灵活延展,这是兼顾的问题,否则固定保障了可是延展不能保障,那管子在膨胀时一定断裂无疑。②由于机械故障或夹具不灵活(如滑轨生锈),往往造成夹具过紧,致使石墨管断裂;此种原因往往被使用者忽略。[B]这个贴似曾相识!期待您自己的大作——raoqun20[/B]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制