当前位置: 仪器信息网 > 行业主题 > >

高速光探测器

仪器信息网高速光探测器专题为您提供2024年最新高速光探测器价格报价、厂家品牌的相关信息, 包括高速光探测器参数、型号等,不管是国产,还是进口品牌的高速光探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高速光探测器相关的耗材配件、试剂标物,还有高速光探测器相关的最新资讯、资料,以及高速光探测器相关的解决方案。

高速光探测器相关的资讯

  • 非制冷势垒型InAsSb基高速中波红外探测器
    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。材料生长、器件制备和测试通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。结果与讨论材料质量表征图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片器件的变温暗电流特性图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线器件暗电流的尺寸效应由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ωcm。图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线器件的结电容图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。器件的射频响应特性通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。结论通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ωcm,对照的nBn器件的表面电阻率为3.1×10³ Ωcm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ωcm²和5.27 Ωcm²。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 研究人员在二维材料光电探测器研究方面取得新进展
    光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。   为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。   具有宽带探测能力的光电探测器在我们日常生活的许多领域中发挥着重要作用,并已广泛应用于成像、光纤通信、夜视等领域。迄今为止,基于传统材料的光电探测器如:GaN 、Si 和 InGaAs占据着从紫外到近红外区域的光电探测器市场。   然而,相关材料复杂的生长过程和高昂的制造成本阻碍了这些探测器的进一步发展。为了应对这些挑战,人们一直在努力开发具有可调带隙、强光-物质相互作用且易于集成的二维材料光电探测器。   如今,许多二维材料如石墨烯、黑磷和碲等已经表现出优异的宽带光探测能力。尽管如此,目前基于二维材料的高性能宽带光电探测器数量仍然有限,特别是许多基于二维材料的光电探测器虽然表现出较高的光响应度和探测率,但响应速度较慢,这可能归因于其较长的载流子寿命,这种较低的响应速度限制了二维光电探测器的实际应用。   最近,石墨烯、黑磷和部分过渡金属二硫属化物(TMDs)范德华异质结器件已经展现出二维材料在高速宽带光电探测领域的潜力。然而,石墨烯是一种零带隙材料,黑磷在环境条件下并不稳定,TMDs异质结的制造工艺相对复杂,这些问题同样限制了这些材料在光电探测领域的应用。   鉴于此,中科院合肥研究院固体所纳米材料与器件技术研究部李广海研究员课题组李亮研究员与香港理工大学应用物理系严锋教授合作,开发了一种基于层状三元碲化物InSiTe3的光电探测器,合成出高质量的InSiTe3晶体,并通过拉曼光谱分析了其拉曼振动模式。InSiTe3的间接带隙可以从1.30 eV(单层)调节到0.78 eV(体块)。   此外,基于InSiTe3的光电探测器表现出从紫外到近红外光通信区域(365-1310 nm)的超快光响应(545-576 ns),最高探测率达到7.59×109 Jones。这些出色的性能价值凸显了基于层状InSiTe3的光电探测器在高速宽带光电探测中的潜力。   论文第一作者为纳米材料与器件技术研究部博士生陈家旺。该工作得到了国家自然科学基金、安徽省领军人才团队项目、安徽省自然科学基金、安徽省先进激光技术实验室开放基金和香港理工大学基金的支持。
  • 上海交大张月蘅课题组在新型超宽谱光电探测器方面获进展
    近日,Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。A. 量子棘轮探测器结构. B. 探测器能带结构. C. 器件PL光谱. D.探测器微观机制示意图. 近年来,红外(IR)/太赫兹(THz)光电探测器已经引起了极大的关注。然而,设计高性能的宽带红外/太赫兹探测器一直是个巨大的挑战。在宽谱探测器领域,一直是热探测器占据主要地位,但热探测器难以实现高速探测。光子型探测器具有可调节的响应范围、良好的信噪比和非常快的响应速度。量子阱探测器(QWP)响应速度快,灵敏度高,光子响应范围灵活可调,是性能优异的光子型红外/太赫兹光电探测器。但窄带特性使其覆盖波段十分有限。内光发射探测器(IWIP)由于其正入射响应机制、宽谱响应以及可调的截止频率,一直被认为是极具竞争力的宽带红外/太赫兹光电探测器。但其激活能低,导致较大的暗电流,需要在极低的温度(液氦温区)下工作。量子点探测器可以在高温下实现太赫兹探测和正入射响应,但可靠性和可重复性仍然是一个巨大的挑战。光泵浦热空穴效应探测器(OPHED)基于热-冷空穴的能量转移机制进行探测,可以突破带隙光谱的限制,实现超宽谱的红外/太赫兹探测。其探测波长可调,同时能够抑制暗电流和噪声。然而,依赖于外部光学激励的热空穴注入是太赫兹探测的前置条件,这大大增加了OPHED的复杂性。A.暗电流随温度变化 B. 暗电流与常用太赫兹探测器对比 C. 零偏压下微观响应机制 D. 量子棘轮探测器光响应谱. 应用物理与计算数学研究所白鹏与上海交通大学张月蘅、沈文忠研究组提出了一种基于GaAs/AlxGa1-xAs量子棘轮新结构的超宽谱光子型探测器。该探测器能实现正入射响应,响应范围覆盖4-300THz,远超其他光子类型的探测器的覆盖范围。此外,该器件即使在零偏置电压下也能产生明显的光电流。其峰值响应率达7.3 A/W,比OPHED高出五个数量级。由于量子棘轮能带结构的不对称性,器件的响应在正负偏压下也表现出明显的差别。在温度低于 77K时,由于量子棘轮效应,探测器表现出明显的整流行为,器件暗电流比现有的光子型探测器低得多,噪声等效功率低至3.5 pW·Hz−1/2,探测率高达2.9 × 1010 Jones,展示出其在高温下工作的潜能。 该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz),快响应速度,低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。 该工作近日发表于Science Advances (Sci. Adv. 8, eabn2031 (2022))上。共同第一作者北京应用物理与计算数学研究所助理研究员白鹏和张月蘅课题组博士研究生李晓虹,共同通讯作者为应用物理与计算数学研究所楚卫东研究员、上海交通大学张月蘅教授和清华大学赵自然教授。研究工作得到了国家自然科学基金、上海市科技自然科学基金、博士后基金和上海交通大学“人工结构及量子调控”教育部重点实验室开放课题的经费支持。上海交通大学张月蘅课题组承担并参与了器件设计、器件性能测试表征及论文写作方面的工作。
  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路
    陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同
    Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同 ADVACA近日签下了AGIDP模块的倒接合同。AGIDP是增益自适应、积分、像素探测器的缩写,是一种为欧洲X射线自由 电子激光设计的X射线成像探测器,该X射线自由电子激光器位于德国汉堡的DESY。我们可以将AGIDP探测器系统理解为超高速的相机,而这一相机的时间分辨率为数百纳米秒。 “AGIPD是一种高速,低噪的积分探测器,并且在每一像素上都拥有自适应增益放大器。当它探测单个光子事件,并调节增益状态使动态范围优于10^4(@12KeV)时,其所产生的等效噪音是小于1keV的。在Burst模式下,该系统可在运行频率高达6.5 MHz的同时储存352张图像的,完全能够适用于帧频为4.5MHz的欧洲X光自由电子激光器。点击了解更多” 制作过程包括倒装焊接技术制成162个2×8多芯片硅模块,以及在25个传感器晶片上加工,大小为10.77 cm x 2.8 cm,厚度为500um的的单片硅传感器。目前使用硅传感器的混合像素探测器的发展趋势是生产更大的模组,而这些传感器已经是Advacam采用基于步进光刻技术所制造的最大的传感器了。在过去的两年里,硅传感器的制造工艺已经得到了完善,并有望获得高质量的图形和高的电产量。最终,该模块将被用于研究待测样品在7至15 keV的散射花样。(图1 对于首批AGIDP2×8硅模块中某一样品进行的辐射测试。可看出凸点键合成品率近乎完美。) 将项目授予Advacam公司,意味着公司将被视为一个值得信赖的像素探测器装配和传感器制造的合作伙伴。类似的倒装焊接技术曾在过去被成功使用过,但Advacam是首个将倒装焊接技术和传感器制造服务结合的公司。该产品是对小型R&D活动的一个成功延续,这一活动是为DESY和工业领域的客户所设计的。AGIDP业务预计将会创造该公司2019年25%至35%的营业额。图二 一批2x8 Si AGIPD模块准备运往DESY
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 从光到电的转换!新型光电探测器能模仿光合作用
    美国密歇根大学研究人员在《光学》期刊发表论文称,他们使用被称为极化子的独特准粒子开发了一种新型高效光电探测器,其灵感来自植物用来将阳光转化为能量的光合复合物。该设备将光能的远程传输与电流的远程转换相结合,有可能大大提高太阳能电池的发电效率。在许多植物中发现的光合复合物由一个大的光吸收区域组成,该区域将分子激发态能量传递到反应中心,在那里能量转化为电荷。极化子将分子激发态与光子结合在一起,赋予它类光和类物质的特性,从而实现远距离能量传输和转换。这种新型光电探测器是首次展示基于极化子的实用光电设备之一。  为了创建基于极化子的光电探测器,研究人员必须设计允许极化子在有机半导体薄膜中长距离传播的结构。此外,他们必须将一个简单的有机检测器集成到传播区域中,以产生有效的极化子到电荷的转换。  研究人员使用特殊的傅里叶平面显微镜来观察极化子传播,以分析他们的新设备。结果表明,新的光电探测器在将光转换为电流方面比硅光电二极管更有效。它还可从大约0.01平方毫米的区域收集光,并在0.1毫米的“超长”距离内实现光到电流的转换——这个距离比光合复合物的能量传递距离大3个数量级。  到目前为止,观察的大多数极化子为封闭腔中的静止准粒子,顶部和底部都有高反射镜。这项新研究揭示了极化子如何在单个镜子的开放结构中传播,新设备还允许首次测量入射光子转换为极化子的效率。
  • 合肥研究院高性能紫外光探测器研究取得进展
    p  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李广海课题组在高性能紫外光探测薄膜器件方面中取得进展,相关结果发表在ACS Applied Materials & Interfaces上,并申请国家发明专利2件。/pp  紫外探测器在空间天文望远镜、军事导弹预警、非视距保密光通信、海上破雾引航、高压电晕监测、野外火灾遥感及生化检测等方面具有广泛的应用前景。在实际应用时,由于自然环境的不确定性,待测目标的紫外光强度通常不高,环境中存在着大量对紫外光具有强吸收和散射能力的气体分子或尘埃,导致最终到达探测器可检测的紫外光信号非常弱。因此,提高紫外探测器对弱光的探测能力至关重要。探测率(detectivity)是衡量探测器件对弱光检测能力的重要指标,探测率由响应度(responsivity)和暗电流密度共同决定。响应度越高,暗电流密度越低,器件的探测率越高。高探测率更有利于弱紫外光的探测。然而,对于大部分半导体光导探测器而言,响应度高的器件常伴随着较高的暗电流 提高材料质量,减少缺陷可降低器件暗电流,但响应度随之减小。因此,器件探测率难以提升,限制了光导探测器在弱紫外光检测方面的应用。/pp  针对上述问题,李广海课题组的副研究员潘书生等在前期透明高阻薄膜的研究基础上,提出以中间带半导体为核心材料构筑紫外探测器的新方法。中间带具有高态密度,能够有效俘陷本征缺陷在导带上产生的电子,从而降低器件暗电流 另一方面,光照时,中间带上储存的载流子能补充到价带上,并被光激发至导带贡献光电流,因此中间带半导体材料紫外探测器能够实现在降低暗电流的同时,保持器件较高的响应度。采用磁控反应溅射技术,沉积Bi掺杂SnO2薄膜,并通过优化实验设计和参数,构筑出了基于中间带半导体薄膜的光导型紫外探测器件。性能测试结果显示,器件暗电流降低至0.25nA,280nm波长紫外光响应度达到60A/W,外量子效率为2.9× 104%,探测率达到6.1× 1015Jones,紫外—可见光抑制比达103量级。器件的动态范围高达195dB,这说明Bi掺杂SnO2薄膜光导探测器可检测极其微弱的紫外光(等效每秒300紫外光子),对较强的紫外光也可探测。/pp  该研究工作得到了国家自然科学基金与合肥研究院固体所所长基金的支持。/pp style="text-align: center "img width="450" height="349" title="W020170907540355593507.jpg" style="width: 450px height: 349px " src="http://img1.17img.cn/17img/images/201709/noimg/1086db54-ce3a-4a29-b90b-ed2b9dbbf2f4.jpg" border="0" vspace="0" hspace="0"//pp  Bi掺杂SnO2薄膜光导探测器件性能:(a) 响应度,(b) 外量子效率,(c) 探测率和 (d) 噪声等效功率。/pp/pp/p
  • 投资7000万元 国内首个光电探测器研发平台开建
    航展期间记者获悉,中航工业航电系统公司与电子科技大学将共同投资7000万元,联合建设“光电探测集成器件及应用实验室”,建设国内第一个全状态光电探测器研发平台。  根据协议,中航工业洛阳电光设备研究所以3500万元现金投资,建设非制冷红外探测器封装测试线,与电子科技大学已建成的6英寸MEMS加工线合并。这将成为国内第一个集MEMS设计、MEMS加工、器件封装与测试的全状态光电探测器研发平台。该平台将具备年产3000只非制冷红外探测器的生产能力,通过10-15年的努力,将打造成一个年经营规模100亿元,国际一流的光电探测器供应商。  据了解,光电探测器是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。  中国航空工业集团公司副总经理张新国表示,光电探测器的研发、生产是光电产业核心价值环节,本次合作将从根本上打破国外公司的产业垄断,对加速我国光电产业核心器件的自主创新进程有着重要战略意义 通过校企创新,将全面实现我国光电产业的产业链延伸与价值链延伸。
  • 投资7000万元 国内首个光电探测器研发平台有望建成
    记者获悉,中航工业航电系统公司与电子科技大学将共同投资7000万元,联合建设“光电探测集成器件及应用实验室”,建设国内第一个全状态光电探测器研发平台。  根据协议,中航工业洛阳电光设备研究所以3500万元现金投资,建设非制冷红外探测器封装测试线,与电子科技大学已建成的6英寸MEMS加工线合并。这将成为国内第一个集MEMS设计、MEMS加工、器件封装与测试的全状态光电探测器研发平台。该平台将具备年产3000只非制冷红外探测器的生产能力,通过10-15年的努力,将打造成一个年经营规模100亿元,国际一流的光电探测器供应商。  据了解,光电探测器是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。  中国航空工业集团公司副总经理张新国表示,光电探测器的研发、生产是光电产业核心价值环节,本次合作将从根本上打破国外公司的产业垄断,对加速我国光电产业核心器件的自主创新进程有着重要战略意义 通过校企创新,将全面实现我国光电产业的产业链延伸与价值链延伸。
  • 超快高敏光电探测器问世 用于安检及生化武器探测
    据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然纳米技术》杂志上。  科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。  而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。  通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。  研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。  新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。  虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。
  • Timepix3 |易于集成的多功能直接探测电子探测器
    混合像素探测器技术最初是为了满足欧洲核子中心-CERN大型强子对撞机LHC的粒子跟踪需求而开发的。来自欧洲核子中心-CERN 和一些外部合作小组的研究人员看到了将混合像素探测器技术转移到高能物理领域以外的应用的机会。于是Medipix1 Collaboration 诞生了。Medipix系列是由Medipix Collaborations 开发的一系列用于粒子成像和检测的像素探测器读出芯片。Timepix系列是从 Medipix系列开发演变而来的。其中Timepix芯片更针对于单个粒子的探测以获得时间、轨迹、能量等信息。 目前基于Timepix和Timepix3的探测器,由于其单电子灵敏、高动态范围及独特的事件驱动模式被广泛地应用于电子背散射(EBSD),4维电子显微(4D SEM)等领域。捷克Advacam公司是一家涵盖传感器制造、微电子封装、混合像素探测器(Timepix,Medipix)及解决方案的全产业链公司,致力于为工业和学术需求开发成像解决方案。ADVAPIX TPX3F与 MINIPIX TPX3F系列是基于Timepix3芯片的多功能探测器,其探测器与读出采用软排线连接,整个设计非常小巧,性价比高,非常适用于电子显微镜厂家将其二次开发并集成到现有系统中,以提升系统性能。▲ MINIPIX TPX3F探测器实物展示▲ ADVAPIX TPX3F探测器实物展示▲ 使用MINIPIX TPX3F探测器鉴别电子、质子,Alpha粒子及μ介子ADVAPIX TPX3F与MINIPIX TPX3F主要规格参数MINIPIX TPX3FADVAPIX TPX3F芯片类型Timepix3像素尺寸55 x 55 μm分辨率256 x 256 pixels传感器100µm,300µm,500µm硅,1mm CdTe 暗噪声无暗噪声接口高速USB 2.0超高速USB 3.0事件驱动模式最大读出速度*2.35 x 10^6 hits/s40 x 10^6 hits / s帧模式速率16fps30fps事件时间分辨能力1.6ns1.6ns*受限于Flex软排线实际长度测量模式类型模式范围描述帧读出模式(曝光后读出所有像素信息)Event+iToT10 bit + 14 bit每次曝光输出两帧数据:1. Events:每个像素中的事件数量2. iToT:每个像素中所有事件的过阈总时间iToT14 bit输出一帧:每个像素中所有事件的过阈总时间ToA18 bit输出一帧:ToA+FToA3 =第一个到达像素事件的到达时间像素/事件驱动模式(在曝光过程中,连续读出被击中像素信息)ToT+ToA10 bit + 18 bit每个像素的每个事件可同时获得: Position, ToT, ToA and FToAToA18 bit每个像素的每个事件可同时获得: Position, ToA and FToA.Only ToT10 bit每个像素的每个事件可同时获得: Position and ToTADVAPIX TPX3F与MINIPIX TPX3F像素/事件驱动模式最大读出速率测试:主要特点单电子灵敏零噪声耐辐射高动态范围无读出死时间主要应用(4D)STEM in SEM/TEMµED(microelectron diffraction)EBSDEELSPtychography应用案例ThermoScientific' s™ Helios™ 5 UX DualBeam采用了Advacam的探测技术新一代 Thermo Scientific Helios 5 DualBeam 具有 Helios DualBeam 产品系列领先业界的高性能成像和分析性能。经过精心设计,它可满足材料科学研究人员和工程师对各种聚焦离子束扫描电子显微镜 (FIB-SEM) 的需求—即使是最具挑战性的样品。 Helios 5 DualBeam 重新定义了高分辨率成像的标准:高材料对比度、快速、简单和精确的高质量样品制备(用于 S/TEM 成像和原子探针断层扫描 (APT))以及高质量的亚表面和3D 表征。新一代 Helios 5 DualBeam 在 Helios DualBeam 系列成熟功能的基础上改进优化,旨在确保系统于手动或自动工作流程下的最佳运行状态。参考发表文章Jannis, Daen, et al. "Event driven 4D STEM acquisition with a Timepix3 detector: microsecond dwell time and faster scans for high precision and low dose applications." Ultramicroscopy 233 (2022): 113423.Foden, Alex, Alessandro Previero, and Thomas Benjamin Britton. "Advances in electron backscatter diffraction." arXiv preprint arXiv:1908.04860 (2019).Gohl, S., and F. Němec. "A New Method for Separation of Electrons and Protons in a Space Radiation Field Developed for a Timepix3 Based Radiation Monitor."Mingard, K. P., et al. "Practical application of direct electron detectors to EBSD mapping in 2D and 3D." Ultramicroscopy 184 (2018): 242-251.ADVACAMAdvacam S.R.O.源自捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。同时我们也在国内有数台Minipix样机,Widepix 1*5 CdTe的样机可免费借用,我们也非常期待对我们探测器感兴趣或基于探测器应用有新的idea的老师联系我们,我们可以一起尝试做更多的事情。
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 新型自由电子激光X射线探测器 ePix10k,每秒可获1000张图像
    新型自由电子激光x射线探测器 ePix10K,每秒可获1000张图像同步辐射与自由电子激光通常都用于研究自然界中一些肉眼无法观察到的超快现象。这些装置可产生的超亮且超快的x射线,就像巨大的频闪灯一样,“冻结”了快速的运动,它们可以捕捉到分子、原子的动态影像,研究人员就能够拍出清晰的快照,探究看不见的微观世界的秘密,为人类对自然的研究工程服务。美国能源部SLAC国家加速器实验室开发出了新一代的x射线探测器ePix10K,新的探测器每秒最多可获1000张图像,速度约是上一代的10倍。这大大提高了光源的有效利用率,即每秒可发射数千次x射线。相比于旧款ePix及其它探测器,ePix10K可以处理强度更高的x射线,同时灵敏度提高了3倍,且像素高达200万。SLAC的直线加速器相干光源(LCLS)x射线激光器上安装了一个16模块,220万像素的ePix10K x射线探测器1ePix10K概述epix10k 是由SLAC开发的一种用于自由电子激光装置(FEL)的混合像素探测器,可通过自动调节增益提供超高探测范围(245 ev至88 mev)。它具有三种增益模式(高,中和低)和两种自动调节增益模式(高至低和中至低)。首批ePix10K探测器围绕模块构建,该模块由与4个Asic结合的传感器倒装芯片组成,从而产生352×384个像素,每个像素100 μm x 100 μm。 ePix10K由两个主要的核心部分组成:感光传感器和专用集成电路(Asic)。后者处理传感器采集的信号,赋予epix10k独特的性能。以前的探测器(例如LCLS科学家使用了几年的ePix100)经过定制,可以在x射线激光每秒120脉冲的发射速率下最大化性能。SLAC的探测器团队进一步开发了该技术,现在它每秒可以捕获1,000张图像。2epix10k的主要规格specification 135k,2mof pixels/module 384 x 352pixel size100μmactive area dimensions38.4 x 35.2mm2max signal(8 kev photons equivalent) 11000frame rate (hz) 120 hz (or up to 1khz)sensor thickness (μm) 5003ePix10K的应用SLAC的ePix 旨在满足使用强大x射线光源研究化学、生物和材料的原子细节的科学家的特定需求。它们速度快,长时间运行稳定并且对大范围的x射线强度敏感,这意味着它们可以处理非常明亮的x射线束以及单个光子。ePix10K将成为SLAC的直线加速器相干光源(LCLS) x射线激光器中x射线科学的新主力,它也将使其他设备受益。美国能源部的Argonne国家实验室的先进光源(APS)和欧洲XFEL已经在使用该技术。4具体案例去年,研究人员把ePix10K带到了APS的Biocars光束线站,这是一个研究生物学和化学过程的实验站。该线站使用了一种被称为时间分辨串行晶体学的技术,研究人员用激光照射微小晶体,并使用APS 的x射线探究晶体的原子结构如何响应激光刺激。“我们将这种方法应用于蛋白质,例如,了解酶如何催化重要的生物反应,”芝加哥大学的Biocars运营经理Robert Henning说,“原则上,我们可以在APS上以每秒1,000个x射线脉冲的速度进行这些实验,但是大多数探测器无法处理与该速率相关的全部强度。”新的探测器将使科学家充分利用x射线源的能量,节省大量时间。Henning说:“要获得完整的数据,我们通常需要拍摄数千张x光照片,能够利用到APS的每一个脉冲,将减少完成这一任务所需的时间。”5ePix10K系列前景SLAC的探测器团队目前已经在开发新一代的探测器ePixHR,它将能够每秒拍摄5,000到25,000张图片。SLAC的最终目标是每秒能得到10万张图片。”此外,该团队正在研究一种革命性的新型探测器SparkPix,它将能以LCLS-II发射x射线脉冲的高速率采集图像并实时处理数据。参考资料【1】g. blaj, a. dragone, c. j. kenney, f. abu-nimeh, p. caragiulo, d. doering, m. kwiatkowski, b. markovic, j. pines, m. weaver, s. boutet, g. carini, c.-e. chang, p. hart, j. hasi, m. hayes, r. herbst, j. koglin, k. nakahara, j. segal and g. haller,“performance of epix10k, a high dynamic range, gain auto-ranging pixel detector for fels.”aip conference proceedings 2054, 060062 (2019) ,submitted.【2】p. caragiulo et al., "design and characterization of the epix10k prototype: a high dynamic range integrating pixel asic for lcls detectors," 2014 ieee nuclear science symposium and medical imaging conference (nss/mic), seattle, wa, 2014, pp. 1-3, doi: 10.1109/nssmic.2014.7431049.【3】https://www6.slac.stanford.edu/news/2020-08-20-new-x-ray-detector-snaps-1000-atomic-level-pictures-second-natures-ultrafast
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 基于真正单像素探测器的非相干X光“鬼”成像首次实现
    p style="text-align: justify text-indent: 2em "X光透射成像/CT作为非侵入式的诊断方式,是目前医学领域最重要的临床检测手段。但由于电离效应X射线对于蛋白质、细胞等会造成相当程度的辐射损伤,每年X射线的医学诊断就会导致相当数量的癌症和白血病患者,因此如何降低诊断所需的剂量至关重要。/pp style="text-align: justify text-indent: 2em "而自1895年伦琴发现X射线以来,成像的方法并没有根本上的改变,都是采用直接投影到面探测器,通过累计带有物体信息的光子来展现出一定灰度分布的技术,因此这种方式的成像效率很低,不仅难以大幅度地降低成像所需剂量,而且分辨率受光源尺寸及探测设备分辨力的限制,成为制约传统成像方法的两大相互牵制的瓶颈问题。/pp style="text-align: justify text-indent: 2em "针对辐射剂量的瓶颈问题,2018年中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员吴令安和陈黎明合作,首次利用随机调制光强度的简单方法实现了台面式X光“鬼”成像,这种间接的成像方式是基于光场的二阶关联,成像质量取决于探测信号的涨落而非强度的绝对值。span style="text-indent: 2em "以此为基础,团队完成了单光子量级的超低剂量成像,成果发表在Optica 以后受到了广泛关注,被Science 在深度栏目中报道。在Science的报道中,同领域的专家给予了高度评价:“如果应用于医学成像领域,这将是一项革命性的进步”,与此同时也对该工作提出希望:“提高成像的分辨率与质量,以适应医学成像的要求”。/span/pp style="text-align: justify text-indent: 2em "基于上述实际需求,物理所研究员吴令安与现上海交通大学教授陈黎明再次合作,开启了解决成像分辨率瓶颈问题的探索。/pp style="text-align: justify text-indent: 2em "近期研究团队中的博士生何雨航和张艾昕(共同一作),利用自主研制的Hadamard金掩模振幅调制板,首次实现了基于真正单像素探测器的非相干X光鬼成像。相比于随机调制的方案,该方法利用了Hadamard矩阵的正交完备特性,因此即使在稀疏采样下也能重构出较好的图像。在此基础上,通过引入压缩感知以及卷积神经网络对原有算法进行了升级,最终利用37 μm源尺寸的X光源,在仅18.75%的采样率下就得到了10μm分辨率的成像结果,实现了突破源尺寸限制的超分辨成像,足以对癌变组织进行直接判断,达到了临床医学精细成像的分辨率要求。在计算鬼成像的框架下,高性能的算法以及调制板的精细结构保证了超分辨下较好的图像质量,而更低的采样率意味着更短的曝光时间以及更低的剂量,因此有望利用该技术进一步降低剂量。整个实验布局简单,使用方便,单像素探测器的应用也可极大地降低成本。另一方面,应用该方法极大地降低了对放射源的空间相干性和强度的要求,可以大大推进X光鬼成像的实用化进程。/pp style="text-align: justify text-indent: 2em "strong文章链接:/strong/ppa href="https://aip.scitation.org/doi/abs/10.1063/1.5140322" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector/span/a/ppa href="https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-4-374" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "Tabletop x-ray ghost imaging with ultra-low radiation/span/a/ppa href="https://science.sciencemag.org/content/359/6383/1452" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "X-ray ‘ghost images’ could cut radiation doses/span/a/ppimg src="https://img1.17img.cn/17img/images/202005/pic/d53291aa-a690-41f5-b8e9-7de2a156552e.jpg" style="text-align: center text-indent: 0em font-family: sans-serif font-size: 16px max-width: 100% max-height: 100% "/br//ppbr//pp style="text-align: justify text-indent: 2em "(a) 物体的3D示意图;(b) 金掩模板扫描电镜图像;(c) 样品的X光透射成像图,曝光时间为5s;(d) 经过4096次曝光后利用TVAL3算法重构的图像,对比度/噪声比(CNR)为0.27;(e) 经过768次曝光后利用CH-MWCNN算法重构的图像,CNR为2.65。/ppbr//ppbr//p
  • 高性能InGaAs单行载流子探测器芯片取得重大进展
    中国科学技术大学王亮教授和韩正甫教授课题组研发的InGaAs单行载流子探测器芯片取得重大进展。该研究团队通过设计优化表面等离激元结构,开发成功低暗计数、高响应度、高带宽的单行载流子探测器芯片,为近红外探测器性能提升提供了开创性的方法,相关研究成果以“Plasmonic Resonance Enhanced Low Dark Current and High-Speed InP/InGaAs Uni-Traveling-Carrier Photodiode”为题,发表在电子工程技术领域的知名期刊ACS Applied Electrical上。   基于等离基元结构的InGaAs材料的单行载流子探测器芯片具有极高带宽,低暗电流和高响应度,为近红外高速垂直光电二极管的设计提供了一种新型的方法。为应用于数据中心的光接收模块提供了核心芯片,突破未来更高速光模块开发的关键硬件技术壁垒   王亮教授研究团队通过调整MOCVD的温度、V/III比、掺杂浓度等生长参数实现低缺陷密度和高掺杂精度的外延结构生长。在单行载流子器件结构的基础上提出并设计了新型的表面等离激元增强单行载流子探测器,利用光在金属表面的局域表面等离激元效应,增强吸收区对于光信号的吸收。研究团队的所制造的器件具有0.12A/W的高响应度,在-3 V偏压下具有2.52 nA的暗电流,当芯片结区面积小于100 μm2时3dB带宽超过40 GHz。相比于同类器件,响应度增强了147%,具备更高的信噪比,为高速光互联网络提供优质国产化芯片。 图1表面等离激元增强单行载流子探测器示意图   中国科学技术大学光学与光学工程系王亮教授为该论文的通讯作者,博士研究生张博健为该论文的第一作者。本项研究得到国家科技部、国家自然科学基金和安徽省科技厅的资助,也得到了中国科大物理学院、中国电子科技集团第13研究所、中国科大微纳研究与制造中心、中国科学院量子信息重点实验室的支持。
  • 合肥工业大学研发新型深紫外光电探测器 光谱选择性优异
    目前,我国深紫外光电探测技术由于受传统器件结构等限制,仍存在易受环境影响、光电性能较差、器件响应速度和信号利用率难以兼顾等问题。  近日,合肥工业大学电子科学与应用物理学院科研团队,成功研发出新型深紫外光电探测器,开创性地将透光性好、电子迁移率高且电阻率低的电子材料石墨烯和高质量β -氧化镓单晶片引入深紫外光电探测器中,并提出一种全新的器件MSM结构,实现了对半导体与金属电极接触性能的大幅提升。器件光谱响应分析结果表明,该器件具有优异的光谱选择性,在深紫外光区域响应非常明显。器件性能分析结果则显示,该器件能够在深紫外光区域的光电转化效率及探测率大幅度提升。该深紫外光电探测技术将在刑侦检测、电网安全监测、森林火灾告警等领域应用前景广阔。
  • “活字印刷式”光电探测器阵列,实现多通道超构红外成像
    受神经形态计算并行处理能力的启发,多通道超构成像(meta-imaging)在成像系统的分辨率增强和边缘识别方面取得了相当大的进步,甚至扩展到中远红外光谱。目前典型的多通道红外成像系统由分离的光栅或合并的多个相机构成,这需要复杂的电路设计和巨大的功耗,阻碍了先进的类人眼成像器的实现。近期,由成都大学郭俊雄特聘研究员、清华大学Yu Liu、电子科技大学黄文教授和北京师范大学张金星教授领导的科研团队开发了一种由铁电超畴(superdomain)驱动的可打印石墨烯等离子体光电探测器阵列,用于具有增强边缘识别能力的多通道超构红外成像。通过直接重新调整铁电超畴而不是重建分离光栅,所制造的光电探测器在零偏压下表现出多光谱响应。与单通道探测器相比,研究人员所开发的多通道红外成像技术表现出更强和更快的形状分类(98.1%)和边缘检测(98.2%)。研究人员开发的概念验证光电探测器阵列简化了多通道红外成像系统,并为人脑型机器视觉中的高效边缘检测提供了潜在的解决方案。相关研究成果以“Type-printable photodetector arrays for multichannel meta-infrared imaging”为题发表在Nature Communications期刊上。基于“活字印刷式”多通道光电探测器阵列的红外成像使用铁电超畴打印的光电探测器的多通道超构红外成像技术方案如上图所示。与多个相机的合并不同,所提出的超构成像的像素点被设计为使用通过“活字印刷式”探测器实施的单个孔径实现并行多通道。通过将单层石墨烯和具有纳米级宽度条纹超畴的BiFeO₃ (BFO)薄膜集成,研究人员开发了一种简单的双端零偏压多通道阵列(MCA)探测器,用于超构红外成像。基于拉曼信号的载流子密度空间监测表明,通过重新调整铁电超畴可以实现石墨烯导电性的非均匀图案化。当工作在零偏压和室温下时,所开发的器件阵列在中红外区域表现出可调谐的透射光谱和选择性响应。“活字印刷式”等离子体光电探测器的制造和架构为了验证这种可打印架构的性能,研究人员通过重新调整铁电畴宽度(对应于活字印刷技术的排版过程)在同一BFO薄膜上制作了一个器件阵列。研究人员重点研究了石墨烯/ BFO超畴(不同宽度)混合结构的光谱响应。所开发的光电探测器实现了约30 mA W⁻ ¹ 的增强响应度和10⁹ Jones数量级的比探测率(D*)。“活字印刷式”光电探测器阵列的表征重要的是,研究人员展示了MCA光电探测器在红外成像应用中的集成,与单通道阵列(SCA)探测器相比,显示出对整体目标形状和边缘检测的更高识别精度,以及更快的训练和识别速度。“活字印刷式”探测器在手势红外成像和识别中的应用总而言之,通过将单层石墨烯和具有纳米级宽条纹超畴的BFO薄膜集成,研究人员开发了一种可打印的光电探测器阵列,证明了这种类型的器件阵列是为多通道超构红外成像应用而设计的,并实现了增强的边缘检测。所开发的可打印光电探测器在零偏压下工作,在室温下表现出约30 mA W⁻ ¹ 的高响应度。这可以归因于石墨烯等离子体与入射光的共振耦合。此外,器件阵列在中红外区域表现出选择性响应,这是通过在环境条件下直接重新调整BFO超畴宽度实现的。这项研究证明,通过在纳米尺度上改变铁电畴可精确控制石墨烯载流子密度。与依赖复杂纳米制造技术的传统器件相比,石墨烯片与不同衬底的兼容性提供了多种优势。此外,该研究还证明了MCA探测器可以增强红外成像中的形状和边缘检测。这些特性使得未来具有简单的电路设计和低功耗的集成光电子平台成为可能。论文链接:https://www.nature.com/articles/s41467-024-49592-4
  • 国内科研机构开发出超高灵敏响应非铅钙钛矿光电探测器
    p  眼睛是心灵的窗户,是人体最重要的器官之一。同样,在光电子器件中,最重要的部件之一就是它的“眼睛”——光电探测器。近日,中科院大连化物所韩克利研究员团队采用溶液法制备了一种基于非铅钙钛矿的高灵敏度光电探测器。相关研究成果发表在《物理化学快报杂志》(The Journal of Physical Chemistry Letters)上。/pp  光电探测器在信号处理、通讯、生物成像等诸多领域发挥着重要作用。目前高性能的钙钛矿光电探测器大多基于含铅钙钛矿。研究人员前期曾制备了一种超级灵敏的铅基钙钛矿光电探测器。发现其中含有的重金属元素铅对环境和人类会造成危害,限制了其商业化应用。目前已有报道的非铅钙钛矿光电探测器性能要远低于含铅钙钛矿光电探测器,因此制备高性能非铅钙钛矿光电探测器成为当下研究热点。/pp  近日,该团队成功合成了一种含锑(Sb3+)元素的钙钛矿单晶。通过研究其载流子动力学,发现该单晶具有载流子寿命长、迁移率高、扩散长度长等优点。利用该材料构建的微米尺度光电探测器能达到高效的电荷收集率,可实现在弱光下的高灵敏响应(40A/W),该灵敏度为目前已有报道的非铅钙钛矿光电探测器最高值。此外,研究还发现该光电探测器具有小于1毫秒的快速响应时间,表明Sb基钙钛矿是一种很好的光电探测材料,在取代含铅钙钛矿方面具有较大优势。/p
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 长春光机所等研制出高灵敏度垂直结构光电探测器
    p style="text-align: justify text-indent: 2em "近日,中国科学院长春光学精密机械与物理研究所光子实验室的于伟利与罗切斯特大学郭春雷研究团队合作,针对基于钙钛矿多晶薄膜的光电探测器性能易受晶界和晶粒缺陷的影响问题,采用空间限域反温度结晶方法,合成了具有极低表面缺陷密度的MAPbBr3薄单晶,并将该高质量的薄单晶与高载流子迁移率的单层石墨烯结合,制备出了高效的垂直结构光电探测器。/pp style="text-align: justify text-indent: 2em "近几十年来,光电探测器受到学术界和工业界的广泛关注,并被广泛应用到光通信、环境监测、生物检测、图像传感、空间探测等领域。甲基铵卤化铅钙钛矿(CH3NH3PbX3, X=Cl,Br,I)是近年来兴起的一种钙钛矿材料,因其具有直接带隙、宽光谱响应、高吸收系数、高载流子迁移率、长载流子扩散系数等优点,逐渐成为制备光电探测器的前沿热点材料。目前,基于钙钛矿多晶薄膜的光电探测器性能距预期仍有一定距离,一个主要原因在于载流子在界面的传输易受晶界和晶粒缺陷的影响。许多研究组尝试将钙钛矿多晶薄膜与高迁移率二维材料相结合来提高器件的性能,并取得了一定的效果,但钙钛矿多晶晶界带来的负面影响尚未解决。/pp style="text-align: justify text-indent: 2em "该研究团队利用空间限域反温度结晶方法生长出的MAPbBr3薄单晶具有亚纳米表面粗糙度且没有明显的晶粒界畴,可以结合高质量钙钛矿单晶合成技术和单层石墨烯转移技术制备高性能的垂直结构光探测器。所制备的垂直结构光电探测器在室温下具有较高的光电探测率(~ 2.02× 1013 Jones);在532 nm激光照射下,与纯钙钛矿MAPbBr3单晶薄膜的光电探测器相比,钙钛矿-石墨烯复合垂直结构光电探测器的光电性能(光响应度、光探测率和光电导增益)提高了近一个数量级。载流子超快动力学研究证明,该器件性能的提高主要归因于高质量钙钛矿单晶的钙钛矿载流子寿命增长和石墨烯对自由电荷的有效提取及传输。相关结果已发表在Small(DOI: 10.1002/smll.202000733)上。    /pp style="text-align: justify text-indent: 2em "该研究将钙钛矿单晶材料和二维材料石墨烯有效结合在一起,利用二者在载流子产生、输运方面的协同优势,实现了器件性能的提升,展现了器件结构及能带设计对器件性能的调控能力,为制备高性能钙钛矿光电探测器提供了新思路。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/48f51961-fad3-4042-8faa-7cbd8255f9d8.jpg" title="高灵敏度钙钛矿单晶-石墨烯复合垂直结构光电探测器.jpg" alt="高灵敏度钙钛矿单晶-石墨烯复合垂直结构光电探测器.jpg"//pp style="text-indent: 0em text-align: center "strong高灵敏度钙钛矿单晶-石墨烯复合垂直结构光电探测器/strong/ppbr//p
  • 15年攻关,国产微光探测器的突破与产业化——访中科院大连化物所关亚风研究员
    微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。  长期以来,我国民用微光探测器处于“国外品牌独秀,国内依赖进口”的被动局面。针对这种“卡脖子”现象,中国科学院大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  近期,该产品通过了由中国仪器仪表学会组织的新产品成果鉴定,获鉴定委员会一致认可:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平。  微光探测器研制成功的背后,有哪些鲜为人知的故事?产品在替代进口器件方面有何优势?团队接下来还有哪些产业化计划?带着疑问,仪器信息网特别采访了团队的核心人物——中国科学院大连化物所关亚风研究员。中国科学院大连化物所关亚风研究员  Q、首先祝贺关老师团队研发的“微光探测器(光电放大器)”通过中国仪器仪表学会组织的新产品成果鉴定。据了解,您团队研制该技术已经有15年的时间了,请您介绍该项目的研制背景?  关亚风:说来话长,我本人是从上世纪90年代初开始从事微型色谱的研究,开始时就是研制微型色谱仪的关键器件与部件。  2003年,团队承接了“十五”科学仪器攻关专题“液相色谱激光诱导荧光检测器(LIF-D)的研制与技术开发”,当时为激光诱导荧光检测配套的是进口光电倍增管(PMT)。由于背景光的存在,光电倍增管用在激光诱导荧光检测器时的信号增益只能用在5,000~30,000区间,但实际上光电倍增管的增益可以达到百万以上,也就是说我们只使用了光电倍增管的低增益区。由此,我想到了使用雪崩光电二极管,但试验结果显示雪崩二极管的灵敏度无法达到要求,而且当时雪崩二极管的价格加上辅助电路价格达到PMT价格的2/3,只能放弃这条技术路线。  2005年,我开始尝试用光电二极管来检测荧光,尽管选择了当时性能最好、自带前置放大器的光电二极管(都是日本、英国公司的产品),但距离理想的灵敏度还有2个数量级的差距。从那时起,我开始构思如何提高光电二极管的检测灵敏度。借鉴我在气相色谱微型热导检测器研制上的成功经验,将思路放在降低噪音和漂移上,而不是提高增益上。我在研制气相色谱的热导检测器时,国际上都是通过提升其热敏丝的温度来提高检测器的灵敏度。但我反其道而行之,不去提升它的响应值,而是通过降低检测器的噪音,优化信噪比,再配合一个低噪音低漂移前置放大器来提升灵敏度。所研制的微池热导检测器的灵敏度在当时可以比肩国外公司的产品。我当时的实验室条件无法提高光电二极管的响应值,很自然地想到通过降低噪音来提高信噪比。  我首先考虑了光电材料界面以及连接导线界面的热电偶和接触电阻对噪音和温度漂移的影响,后来想出了抵消这个影响的方案。经过数年努力,到2012年时对弱光的检测下限达到了雪崩二极管的检测灵敏度,同时线性范围达到了5个数量级,比雪崩二极管宽2个数量级。这时我决定启用团队力量,集中力量攻关,2013年达到用PMT的进口名牌荧光检测器灵敏度的1/4水平,也就是PMT增益在4千左右的水平。耿旭辉2013年博士毕业后加入我们团队继续研制荧光检测器并加入微光探测器攻关。到2014年底,我们的微光探测器噪音、漂移比常规光电二极管降低了两个数量级,不仅检测灵敏度达到PMT增益在2万的而水平,而且动态范围延申了2个数量级,达到近6个数量级。2015年底实现了微光探测器产业化并开始推广销售。团队用简单、低成本的方式实现了弱光信号的高灵敏检测,解决了卡脖子难题,使国内微光探测器不再单纯依赖于进口光电器件,同时也克服了光电倍增管和雪崩二极管线性范围窄的问题。  Q:您刚才提到了微光探测器攻克的技术难点以及取得的成果,我们想追问,AccuOpt 2000系列微光探测器(光电放大器)相比进口器件而言有哪些优势,未来还有哪些需要提升的地方?  关亚风:我先讲一下优点,首先它性能长期稳定、不漂移 其次它对强光免疫,AccuOpt 2000受强光照射后秒级恢复,不影响性能 第三它抗强烈震动和冲击,抗电磁干扰,可以放在手持式仪器上,摔地上也不怕 第四是它不需要高压模块,且功耗低 第五是开机3分钟即能达到稳定状态 第六是使用寿命长,达15年 再有就是价格便宜,不需要调理电路,拿来就能直接用。  缺点是响应速度比较慢,10毫秒级。不过90%的应用对于响应速度没有要求,只有10%的高端应用追求响应速度快,需要高速调制,这点我们无法满足。另一个即可以说是缺点也可以说优点,就是光谱响应范围较宽,为300~1150 nm,但在深紫外区间没有响应。目前国内ICP等发射光谱的重点在紫外区,这是AccuOpt 2000所欠缺的,也是未来重点拓展的一个方向。AccuOpt 2000系列微光探测器(光电放大器)  Q:AccuOpt 2000系列微光探测器应用有哪些?其中实际应用效果最好的案例是哪个?解决的最大问题是什么?  关亚风:最牛的应用是高端,我们团队采用小型、廉价的激光二极管替代激光器为光源,用自主研制的硅基微光探测器替代进口光电倍增管探测荧光,由耿旭辉博士负责研制出“紧凑式”共聚焦激光诱导荧光检测器,我们分析了单个白血病细胞中的active caspase3蛋白,检测限达7个分子(91 pL检测体积内)。研究成果在Analytical Chemistry这一分析化学的国际顶级期刊上发表。  我们最欣喜的、量大的应用是黄曲霉毒素荧光检测器。我们放了一台在一家知名国外仪器公司的实验室,他们自己测了一年,证明灵敏度比他们现有仪器高一倍,漂移少一倍。另外一家知名国外仪器公司买了我们一台,与它最新型号相比我们的灵敏度高两倍,比它老的型号高5~6倍。进口品牌荧光检测器的功耗在75瓦~150瓦之间,而我们的产品总功耗只有4瓦,其中3瓦消耗在了交流-直流变换器和直流-直流变换器上。  2019年和2020年,团队与中国科学院深海科学与工程研究所共同研制的4500米级多种型号深海原位荧光传感器搭载深海勇士号/探索一号和二号在某海域科考航次中多次海试成功,均获得了有效数据。AccuOpt 2000就是我们荧光传感器中的荧光探测器件,取代进口PMT得到优于国外同类传感器的灵敏度和更宽的动态线性范围。  眼下新冠肺炎疫情来袭,团队也探索AccuOpt 2000在PCR等设备上的应用。不过,检测器灵敏度过高,而国内试剂的使用量又太大,限制了该部件在国产仪器中的使用。当前团队正与企业展开合作,希望能突破这一关键问题。  Q:AccuOpt 2000系列微光探测器目前产业化情况如何?与哪些仪器企业进行了合作?下一步有哪些产业化计划?  关亚风:AccuOpt 2000系列自2014年研制成功,2015年已着手推进量产工作。五年来,器件的性能不断优化,团队基于ISO9000质量管理体系来管理生产全流程,短时间内完成了960支成品的生产,面向市场售出约140支,自用了200多支。  我们是专业的研发团队,生产装配不在话下,难点反而在于市场销售。以新冠检测为例,国内所有做荧光检测、生物检测的都是我们的潜在用户,但问题卡在哪?就是刚才说的国内试剂使用量太大,检测器的高灵敏度反倒成了问题。一些灵敏度比我们低得多、售价七百元以下的光探测器反而能卖出去。我们必须介入到更早期的研发中才能培育市场需求。后续我们也会加大宣传,推进它的市场销售。  Q:核心零部件/器件对科学仪器至关重要,光电探测器更是影响仪器整体性能提升的关键一环。关老师您从事光电器件的研究近二十年,据您观察,当前国内光电探测器的发展情况如何,国产光电探测器面临哪些关键问题,您有哪些发展建议?  关亚风:国产光电器件的品种相对较少,有些特殊应用领域的做得不错,但是民用的、工业用的相比国外差距还很大。卡脖子问题往往是“叫好不叫座”,都知道关键器件很重要,但落实到具体层面做的人反而很少。我认为有两方面的原因:  首先对企业来说,别看光电器件重要,但研制难度大,实际的产值低、做出的产品卖不出去多少,所以利润薄。如果没有政策引导和项目扶持,企业自然不愿意投入经费与人力,最后成了公益事业,产业发展举步维艰。需要政策倾斜,例如企业根据销量享受相应的退税优惠,或者科技攻关项目给予经费支持,企业才有动力去啃这块“硬骨头”。  其次对于科研院所而言,现有基层的评价体系侧重于论文、专利、产值等评价指标,而研发光电器件的有效成果又不能去发论文或申请专利,原因是很容易被他人或竞争对手复制 但不发论文又意味着与提职称、评奖基本无缘,这就导致了真正潜下心来研究能实际应用的光电器件的人才越来越少。评价体制要落地,而非悬在半空中。这些问题不解决,关键器件的研制很难往下走,就会永远被别人卡着脖子。  光电器件的研制需要理论基础扎实、知识面广的复合型人才,这样的人很容易在热门领域发光发热,能潜心去坐这张“冷板凳”的人才不多。  话说回来,我最初也不是专门研究光电器件的,而是光电器件的用户。当初进入这个领域,是受越来越高的进口器件价格和日益严苛的进口限制所迫。把一个学化学的人逼着去搞光电器件并取得成功,这也是个小概率事件吧。
  • 重庆研究院在势垒可光调谐的新型肖特基红外探测器研究中获进展
    近日,中国科学院重庆绿色智能技术研究院微纳制造与系统集成研究中心在《创新》(The Innovation)上发表了题为“Schottky Infrared Detectors with Optically Tunable Barriers Beyond the Internal Photoemission Limit”的研究论文,报道了突破内光发射限制的势垒可光调谐肖特基红外探测器。内光发射效应作为光电效应的重要分支,阐明了光照射至金属-半导体界面时热载流子如何被激发并跨越肖特基势垒,最终进入半导体以完成光电转换的物理过程。1967年以来,研究人员致力于基于内光发射效应的肖特基光电探测器研究,并在拓展响应光谱范围以及开发与硅工艺兼容的红外探测器方面取得了进展。然而,相关探测器的性能受制于截止波长与暗电流之间的矛盾,且通常需要在低温条件下运行。该团队提出了势垒可光调谐的新型肖特基红外探测器(SPBD),有效解耦了光子能量与肖特基势垒之间的关联,使得SPBD能够在保持高肖特基势垒以抑制暗电流的同时,还能够探测到低于肖特基势垒能量的红外光。在室温背景下,SPBD实现了对黑体辐射的探测,并获得了达7.2×109Jones的比探测率。该研究制备的原型器件展现出低暗电流、宽波段响应以及对黑体辐射敏感的性能。制备流程与硅基CMOS工艺具有良好的兼容性,为低成本、低功耗、高灵敏硅基红外探测器的研制提供了新方案。研究工作得到国家重点研发计划等的支持。论文链接 传统肖特基探测器和势垒可光调谐的肖特基红外探测器的对比
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制