当前位置: 仪器信息网 > 行业主题 > >

填料式补偿器

仪器信息网填料式补偿器专题为您提供2024年最新填料式补偿器价格报价、厂家品牌的相关信息, 包括填料式补偿器参数、型号等,不管是国产,还是进口品牌的填料式补偿器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合填料式补偿器相关的耗材配件、试剂标物,还有填料式补偿器相关的最新资讯、资料,以及填料式补偿器相关的解决方案。

填料式补偿器相关的论坛

  • 波纹补偿器

    波纹补偿器的主要弹性元件为不锈钢波纹管,依靠波纹管伸缩、弯曲来对管道进行轴向、横向、角向补偿。其作用可以起到:   1.补偿吸收管道轴向、横向、角向热变形。   2.吸收设备振动,减少设备振动对管道的影响。   3.吸收地震、地陷对管道的变形量。   补偿器按是否能吸收管道内介质压力所产生的压力推力(盲板力),可分为无约束型波纹管补偿器和有约束型补偿器;按波纹管的位移型式,可分为轴向型补偿器、横向型补偿器、角向型补偿器及压力平衡型波纹管补偿器。北京天彩康拓http://www.bjtckt.com

  • 【求助】该电计温度补偿器引起的误差是-0.00还是0.00?

    各位同行: 昨天我在一环境监测站检定一上海精科的pHB-4便携式酸度计,该酸度计只能自动标定,标定后pH13和pH14示值误差-0.01pH,其余示值误差为0.00。检定电计温度补偿器引起的误差时,输入pH7+6pH,示值为pH12.99,那么该电计温度补偿器引起的误差应该是(pH12.99-pH13.00)/2=-0.00pH,还是(pH12.99-pH12.99)/2=0.00pH? 如果按(pH12.99-pH13.00)/2=-0.00pH计算,可该-0.00pH是示值误差造成的,它不是电计温度补偿器引起的误差。如果按(pH12.99-pH12.99)/2=0.00pH,又不符合规程规定。 我们该怎么办?

  • 【原创大赛】酸度计与电导率仪温度补偿器的原理与区别

    【原创大赛】酸度计与电导率仪温度补偿器的原理与区别

    [align=center][b]绪 论[/b][/align] 酸度计和电导率仪是广泛应用于科学实验、环境监测和生产环节的一种常用科学分析仪器。酸度计和电导率仪的使用和检定都离不开各自使用的溶液,而溶液的 pH 值和电导率都与温度密切相关,当温度发生变化时,pH 值和电导率会发生不同变化。在计量检定过程中我们发现对两种仪器温度补偿器的正确使用对测量结果有较大影响,而且部分仪器使用者,因对温度补偿器的原理和两者之间的区别理解不正确,使用不当,造成测得数据不准确,所以正确理解温度补偿器的原理和区别是至关重要的。[b]一、酸度计和电导率仪温度补偿器的原理 和作用1、酸度计温度补偿器的原理和作用[/b]在酸度计计量检定和使用中,我们发现 pH 值测量不准确的原因主要是未能正确使用温度补偿器造成的。下面就介绍一下酸度计温度补偿器的原理、对 pH示值的影响和产生问题的原因。对于酸度计来说,不同溶液的 pH 值的温度系数差别很大, 要将不同温度下的 pH 值折算到 25℃时的 pH 值是非常困难的, 也没有必要。所以酸度计的温度补偿器是将其电极在标定温度下得到的转换系数按能斯特公式换算到当前温度下的转换系数,从而得到当前温度下的 pH 值。其中酸度计是用电位相对测量法来测定溶液 pH 值的,其理论依据来自于能斯特方程式:[img=,616,457]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132315502479_8185_1638093_3.png!w616x457.jpg[/img] 通过对一台 PHS-3C 型号酸度计在 25℃条件下使用标准缓冲液校准后,对同一溶液在不同温度下的 pH 值进行测量实验,得到结果如下:[img=,633,249]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132316535212_6069_1638093_3.png!w633x249.jpg[/img] 由此表可看出温度补偿器固定在 25℃条件下时(即不启动酸度计的温度补偿器时),测量溶液的 mv 值是不随着温度变化而变化的,酸度计测得的 pH 值也永远是标定温度下的 pH 值;当酸度计启动温度补偿器时,测量溶液的 mv 值同样是不随着温度变化而变化的,但是测得的 pH 值是随温度的改变而变化的。根据实验数据我们可以发现,随着溶液温度的改变,由于溶液的 mV 值是不随温度的变化而变化的,所以被测溶液与标定溶液间的电位差也是不发生变化的,随着温度的变化实际发生变化的是每 mV 值变化量对应的 pH 值的变化量,通过公式(3)我们可以发现这就使得 K 值发生了变化,所以酸度计通过温度补偿调整转换系数K 来抵消温度变化引起的电动势差的变化。因此,为了适应各种温度状态下 pH 值的测量,酸度计中均设有温度补偿装置。[b]2、电导率仪温度补偿器的原理和作用[/b] 电导率的大小与电解质在水中的离解度及离子的迁移速度有密切的关系,而离解度及迁移速度又与溶液的温度有关。温度升高,溶液的电导率增加,反之,则电导率减小。溶液的电导率受温度的影响较大,实验数据见下表。通过对一台 DDS-307 型号电导率在溶液不同温度下进行温度补偿实验,得到结果如下:[img=,642,125]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132319228901_8338_1638093_3.png!w642x125.jpg[/img] 由此表可以看出不进行温度补偿,同一溶液的电导率随着溶液温度的增加而不断增大,使得测量结果没有参考价值,所以电导率的测量结果一般均折算到参考温度下(参考温度:20℃或 25℃,使用 25℃时较多)。如果把电导率仪的温度补偿器关掉,则需先测出溶液的温度及该温度下的电导率,再将测得的结果换算到参考温度的电导率。公式如下:[img=,609,213]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132320266973_5978_1638093_3.png!w609x213.jpg[/img] 通过式(4)可以看出当电导率仪不启动温度补偿器时,即温度校正系数为0.00%时,测得的电导率为溶液实际温度下的电导率,需要人工换算成参考温度下溶液的电导率值,否则测得值没有参考价值。电导率仪的温度补偿器的作用就是为了克服温度的影响,将溶液在实际温度下的电导率值转换为参考温度(一般为 25℃)下的电导率值,使得溶液在不同温度下的电导率具有可比性,以满足各行各业比对或控制指标的需要。因此,市面上越来越多的电导率仪具有温度补偿功能,在检定过程中,检定规程规定增加这一检定项目看来也是很有必要的。[b]二、酸度计与电导率仪温度补偿器使用过程中的注意事项1、酸度计温度补偿器使用中的注意事项[/b] 由于酸度计测量过程中溶液的 mV 值是不随温度的变化而改变的,实际上起到作用的是通过调节温度补偿器进而调整转换系数 K,进而改变每 mV 变化量引起的 pH 的变化量,所以在使用酸度计时需要注意的是用于标定仪器的标准参考溶液与被测溶液的温度差。[b]2、电导率仪温度补偿器使用中的注意事项[/b] 通过公式(4)我们发现,在将电导率修正为参考温度下电导率时,温度校正系数β是一个关键参数,且不同的溶液温度校正系数也不同,所以在使用温度校正系数不可调节的电导率仪时,温度校正系数会引入测量误差,所以在进行准确度要求较高的测量时,如果温度校正系数不能调整为溶液实际的温度校正系数,则应该关闭电导率仪的温度补偿功能,通过准确测量溶液温度后根据公式(4)计算出参考温度下的电导率值,或将被测溶液的温度严格控制在参考温度条件下测量,进而减小测量误差。[b]三、仪器使用中温度补偿器出现异常的快速判定方法1、酸度计温度补偿器出现异常的快速判定方法[/b] 先通过两点标定斜率,并测量第三种标准溶液示值误差合格。然后用酸度计测量第三种标准溶液在打开温度补偿器时的 pH 值及其温度,查找 JJG119-2018《酸度计检定规程》,规程中表 A.2 显示了标准溶液不同温度下对应的 pH 值,通过与测量的 pH 值进行对比,测量结果的示值误差应小于仪器对应等级的最大允许误差,否则酸度计的温度补偿器功能可能出现异常,应及时送检。[b]2、电导率仪温度补偿器出现异常的快速判定方法[img=,600,184]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132324000098_9238_1638093_3.png!w600x184.jpg[/img][img=,598,142]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132324411825_1524_1638093_3.png!w598x142.jpg[/img]结 论[/b] 综上所述,电导率仪温度补偿器,其作用就是为了克服温度的影响,将溶液在实际温度下的电导率值转换为参考温度(一般为 25℃)下的电导率值,使得溶液在不同温度下的电导率具有可比性。而酸度计的温度补偿器,其作用是将电极在标定温度下得到的转换系数按能斯特公式换算到实际温度下的转换系数,从而得到实际温度下的 pH 值。由此可见两种仪器的温度补偿作用是有所区别的,不能混淆,只有正确理解酸度计和电导率仪的温度补偿器对于仪器测量准确度的意义和作用,才能促进仪器的合理、正确使用,保证测量结果的准确性。同时通过文中温度补偿器出现异常的快速判定方法,使用者就可以自己合理判定温度补偿功能是否正常工作,当发现仪器温度补偿器可能存在异常时,需及时到计量检测机构对仪器进行检定。

  • PH计检定:温度补偿器引入的示值误差

    JJG 119-2005中检定PH计手动温度补偿器引起的示值误差时,在每一个检定点输入该温度下相当于PH等电位+6PH单位的信号,这个“该温度下相当于PH等电位+6PH单位的信号”怎么理解???

  • 关于对电导率仪的温度补偿器进行计量检定问题的探讨

    《计量技术》2012年第10期发表的文章: 关于对电导率仪的温度补偿器进行计量检定问题的探讨杨继光1 顾家钰2 刘朝阳3(1、3.宁夏计量测试院,宁夏银川,750001;2、北京计量科学研究院,北京,100013)摘要:论述了对电导率仪的温度补偿器进行计量检定的重要性,并对检定方法进行了探讨。关键词:电导率仪,温度补偿器,计量检定。0、 引言 温度对电导率仪的测量影响很大,一般在电导率的测量中,为了保证测量的准确,要进行温度补偿,还要对温度系数进行设定。JJG376-2007《电导率仪》计量检定规程,对温度系数的检定和温度传感器的检定作了规定,对温度补偿器的检定未作说明。随着科技的发展,国产及进口的电导率仪在设计上都有了温度补偿器的调节装置,这也是保证测量准确性的一个重要因素,所以对电导率仪的温度补偿器进行检定就显得非常重要了。1、 电导率仪的温度补偿 电导率仪中跟温度有关的器件有三个部分,它们分别是温度系数、温度补偿器和温度传感器。(1) 温度系数 当溶液的温度一定时,它的电导率随温度的升高而增加,在一般的测量中用下式计算被测介质在不同温度下的的电导率值,Kt = K25℃ (式1)式中:Kt为某一温度下的电导率值,K25℃为25℃时的电导率值,α为温度系数,t为被测溶液温度。 对大多数离子来讲,绝大部分溶液的温度系数在1.5﹪~3.0﹪之间,在这个范围内,它是呈线性变化的,如α值选择2%,既每增加1℃,电导率值就增加2%,则(式1)可以改写为: Kt = K25℃=K25℃=K 25℃(0.5+0.02t) (式2) 电导率仪的生产厂家在电导率仪出厂时,一般都把温度系数设定为2%,但是有些离子的温度系数可达4%-6%,呈非线性变化。如果用现行的这种检定电导率仪的温度系数的检定方法对该仪器进行检定,很可能判别该仪器为不合格。好在这类仪器数量很少,大多是进口仪器用于特殊用途,如何对其仪器的温度系数进行检定,还有待于探讨。 我们就温度、温度系数和电阻、电导率之间的关系,作了试验和研究,并作成了表格,供大家参考。(见表1)(2) 温度补偿器 大多数电导率仪的温度补偿器作在面板上,是一个温度调节旋钮。温度调节范围一般为(15-35)℃,也有做成(0-60)℃的仪器,分辨率为1℃。在电导率的测量中可以发现只要把温度补偿器的旋钮稍加转动,电导率值就发生变化,它的准确与否,对电导率的测量影响很大,所以必须对其进行计量检定。(3) 温度传感器温度传感器是电导率仪附带的一个配件,测量精度大多为0.1℃,可以比较准确的测量溶液的温度,它的检定方法在JJG376-2007中作了规定。 对电导率的测量来讲有两种方法,一种是温度补偿法,一种是温度不补偿法。温度补偿法,直观、快捷、对环境条件要求不高,所以大部分测量都是用温度补偿法。温度不补偿法不直观、费时、费力,对环境温度要求高,主要是对不了解溶液温度系数是多少的溶液用不补偿法测量。表1 电导率仪温度补偿对照表(有两种方法)方法一(不补偿法)方法二(补偿法)温度系数[/siz

  • 【原创大赛】电导率仪温度补偿器的原理、作用

    1、电导率测量过程中温度补偿器的作用 电导率仪是利用溶液成分和电导率之间的关系分析溶液成分的仪器,可有效用于检测水质状况,保证用水质量。而由于溶液的温度发生变化时,电解质的电离度、溶解度、离子迁移速度、粘度等都会发生变化,进而造成电导率的变化,所以电导率与温度密切相关。所以在对电导率进行测量时要进行温度补偿。为了统一比较水质,多将25℃(有时为20℃)作为测量电导率的基准温度,当水温不为25℃时,需要转换成25℃时的电导率。2、常用的温度补偿方法(1)恒温法。通过标准恒温槽将被测溶液恒温到25℃;(2)手动温度补偿法。这种方法需要先测的溶液的实际温度,再将电导率仪的温度补偿器调整到对应温度,如常见的DDS-11A、DDS-307均属于此类补偿方法。但采用这种补偿时,由于不同溶液的温度补偿系数不同,但仪器多将溶液的温度补偿系数默认为2.0%,所以会存在较大误差。(3)经验公式法。这种方法需要精确地测量溶液在不同温度下的电导率值,根据测量结果推导出经验公式,再根据公式进行补偿。3、电导率仪温度补偿器的基本原理电导率和温度之间的关系表示见下式:http://ng1.17img.cn/bbsfiles/images/2017/10/2015081310082139_01_1638093_3.bmp电导率仪的温度补偿器多采用此公式对电导率值进行温度补偿。4、电导率仪温度补偿和电导池常数补偿间的关系对大多数采用手动温度补偿方法进行温度补偿的电导率仪(如:DDS-307型),温度设置对电导池常数有着显著的影响,当在25℃条件下将电导池常数设为1.000cm-1时,如果温度旋钮调整到35℃和15℃,电导池常数将变为1.250 cm-1和0.833 cm-1左右。这表明温度补偿与电导池常数补偿是相通的。由于有http://ng1.17img.cn/bbsfiles/images/2017/10/2015081310091747_01_1638093_3.bmphttp://ng1.17img.cn/bbsfiles/images/2017/10/2015081310100116_01_1638093_3.bmp式中G为电导值;K为对应温度下仪器显示的电导值常数。http://ng1.17img.cn/bbsfiles/images/2015/08/201508131011_560389_1638093_3.bmp5、结论 电导率仪的温度补偿是将实际温度下的电导率值转换为参考温度的电导率值,使得不同温度下的电导率具有可比性,所以电导率仪的温度补偿功能的准确度对测量结果有着重要的影响,所以电导率仪使用过程中要经常关注温度补偿功能是否有效,一旦发现温度补偿功能失效,或存在故障,可通过调节电导池常数来实现温度的补偿。

  • 【求助】酸度计电计温度补偿器引起的示值误差的检定

    各位同行: 你们好! 我觉得只要细心,即使是传统的项目也会有值得思考的问题。今天下厂检定一台手动数字温度补偿、智能标定的上海精科pHS-25型酸度计,在25℃对电计标定后,检定温度补偿器引起的示值误差情况如下:检定的温度/℃输入0.00pH时的 输入6.00 pH时的 示值/pH 示值/pH 0 7.01 13.01 15 7.00 13.00 30 7.00 13.00 45 6.99 12.99 60 6.98 12.98 据上述情况可知:如果在进行不同温度下温度补偿器引起的示值误差检定之前,先在该温度下标定一下,再检定就不会有问题了。其实即使不在不同温度下重新标定,就从上述检定结果看,也看得出:在不同温度下给出的斜率是正确的。而内蒙检定仪的说明书指出:在电计被标定后,选定检定温度点之前,在电计示值为pH7.00情况下,将温度补偿器电位器在其上限和下限之间旋动,此时电计示值的变化应不超过分度值。而现在该被检电计示值变化为0.03 pH,理应判不合格,而且降级使用的余地都没有! 但我们的规程JJG119—2005没有该要求,又不能判该电计不合格,最多也只能说是该电计温度补偿器引起的示值误差为﹣0.01pH。不知内蒙说明书给出:“……温度补偿器电位器在其上限和下限之间旋动,……”的依据是什么?是否是JJG119—1984,因为我没有看过JJG119—1984,不得而知。 对于该电计我已向其用户告知了该情况,用户表示他们只会用到20℃~30℃之间,该电计不影响他们的使用。但是作为我们给出的检定结果,还是要考虑在这样的情况下我应该如何判该电计呢?你们说对吗?所以特向各位同行请教![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=183163]酸度计电计温度补偿器引起的示值误差的检定.rar[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=183164]酸度计电计温度补偿器引起的示值误差的检定.rar[/url]

  • 考考你:pH计电计温度补偿器引起的示值误差检定

    考考你:pH计电计温度补偿器引起的示值误差检定

    电计温度补偿器引起的示值误差检定(假设检定仪为手动且输信号为mV):“在每个检定点输入该温度下相当于pH等电位值+6pH单位信号”,这是指在检定仪上,在各个温度点上输入多少mV(以10度、20度、25度、30度、40度为例)?[img=,690,479]https://ng1.17img.cn/bbsfiles/images/2019/06/201906251034575865_7506_1626275_3.png!w690x479.jpg[/img]

  • 电计温度补偿器

    电计温度补偿器

    1在检定时手动补偿不需要恒温水浴槽?而自动温度补偿需要将温度探头被至于恒温水浴槽?为什么2诅度探头的测温误差分不分手动和自动[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/02/201902201548391288_6099_3467072_3.png[/img]

  • 【分享】无功补偿设备的几种类型

    1 同步调相机   同步发电机 低压同步发电机 既是有功功率源,又是最基本的无功功率源。当系统的无功功率比较紧张时,必须充分利用发电机供给无功功率。例如冬季枯水季节时,水库水源不多,水力发电厂不可能按装机容量发出额定设计的有功功率,此时应考虑将水轮发电机降低功率因数运行,使其多发无功功率,将发电机以调相机方式运行。同步调相机相当于空载运行的同步发电机,在过励磁运行时,它可作为无功电源向系统供给感性无功功率,以提高系统电压水平。在欠励磁运行时,它可作为无功功率负荷从系统吸收感性无功功率以适当降低系统电压水平,同步调相机欠励磁运行最大容量一般只有过励磁运行时的容量的5~60%。同步调相机一度发挥着重要的作用,被称为传统的无功动态补偿装置。同步调相机容量愈大,其单位容量设备费用就愈低。因此适用于补偿容量较大的集中补偿方式。然而,由于它是旋转电机,运行维护复杂,响应速度慢,难以满足动态补偿要求,现只在短路容抗很小的系统使用。 2 并联电容器   并联电容器是电力系统无功功率补偿的重要设备,主要用于正常情况下电网和用户的无功补偿和控制。由于它投资少,功率消耗少,便于分散安装,维护量小,技术效果也较好,但并联电容器只能减少无功电流损耗且不能减少电压变化下限。一般来说,每个变电站约安装1~4组电容器,对于负荷较大的110 kV变电站和220 kV变电站,则要装更多组数的电容器。我国有些电网高峰时电压过低,其主要原因是系统安装的并联电容器容量不足。有些电网低谷时电压过高,其原因之一是高峰时系统投入的并联电容器在低谷时没有去除或去除不够,造成系统在低谷时无功过剩、使电压过高。因此并联电容器不能平滑调节无功。电容器自动投切装置以主变无功的大小作为电容器开关投切的主要条件。 3 并联电抗器 限流电抗器XD1/2   并联电抗器的工作原理和并联电容器的工作原理正好相反,它属于负补偿,常用于补偿线路电容的作用。并联电抗器是高电压长线路的重要补偿方式,新建变电站的电容器装置中串联电抗器的选择要慎重,不能任意组合,一定要考虑电容器接入、撤出的谐波因素。电容器组容量变化很大时,可选用与电容器同步调整分接头的电抗器或选择串联电抗器混合装设,以便防止电容器组投切时产生的过电压。 4 变压器   有载调压变压器不能作为无功电源,相反消耗电网中的无功功率,属于无功负荷之一。有载调压变压器分接头的调整不但改变了变压器各侧的电压状况,同时也对变压器各侧的无功功率的分布产生影响。分接头上调时,变压器二次侧电压上升,同时流过变压器的无功功率增加;分接头下调后,变压器二侧次电压下降,流过变压器的无功功率减少。 5 无功电压综合控制   无功电压综合控制(VQC)装置是基于变电站自动化系统的。随着无人值守变电站的增多,在变电站中一般均有用于当地和远方监控的自动化系统或具有“四遥”功能的RTU装置,它们有完善的输入、输出功能,包括对测量量及信号量的采集。该装置也具有控制变压器分接头、无功控制设备开关动作的功能。因此在此装置的基础上把相应的电压无功控制模块添加到边远电站自动化系统软件上,即可实现VQC控制目的。根据设备运行需要或各单位运行方式不同,VQC可以有几种调节方式:分接头不调节,电容器按无功定值投切;分接头按电压定值调节,电容器定时投切;分接头按电压定值调节,无功不调节;电容器、分接头都不调节。 6 静止无功补偿器   静止无功补偿器(SVC)被用于输电系统波阻抗补偿及长距离输电的分段补偿,也用于无功补偿。有以下几种类型:晶闸管控制电抗器(TRC)、晶闸管投切电容器(TSC)、TCR/TSC混合装置、TCR与固定电容器(FC)或机械投切电容器(MSC)混合使用。SVC装置是通过改变电抗器来调节其输出的无功功率,它输出的无功电流与系统电压成正比,因此在电力系统电压降低时,SVC装置输出的无功功率会以与系统电压下降的平方的比例下降。要防止SVC装置接入后因改变系统阻抗特性而导致出现谐振。 7 静止无功发生器   随着电力电子技术的进一步发展,静止无功发生器(SVG)诞生了,它采用自换相变流电路,通过改变输出电压调节其输出的无功功率,会以与系统电压下降的比例而下降。他可等效为可控电流源,接入后不会改变阻尼特性。SVG采用门极可关断晶闸管或其他可关断器件,因此价格比较贵,目前还没有广泛应用。 8 静止同步补偿器   静止同步补偿器(STATCOM)是灵活交流输电系统(FACTS)的核心装置和核心技术之一,在电力系统中维持连接点的电压为给定值,提高系统电压的稳定性,改善系统的稳态性能和动态性能。STATCOM是基于瞬时无功功率的概念和补偿原理,采用全控型开关器件组成自换相逆变器 自动逆变电源QLN ,辅之以小容量储能元件构成无功补偿装置,与SVC相比,具有调节速度更快、运行范围更广、吸收无功连续、谐波电流小、损耗小、所用电抗器和电容器容量大为降低等优点。更多技术论文请详见:买电器网(MIDIQI.COM) 知识库[URL=http://]http://www.midiqi.com/Knowledge/Index.asp[/URL][URL=http://]http://www.midiqi.com[/URL]

  • 看图解读畅谈之五:色谱柱填料硅胶键合

    看图解读畅谈之五:色谱柱填料硅胶键合

    1:C18简称:ODS柱,即18烷基键合硅胶填料,由于C18是长链烷基键合相,有较高的碳含量和更好的疏水性,具有广泛的应用。C18柱选用的原则:选用经过烷基化封尾的填料,可以防止碱性化合物的拖尾现象。选用含碳量高的柱子,可以增加保留。选用较短的柱子可以提高分离效率。选用小颗粒度的填料可以提高分离度。对于分子量大的组分,选用大孔径填料的柱子。2:C8 C4 等短链烷基键合相适合做极性小,以减弱保留,缩小分析时间。3:苯基柱:柱上由于苯基的存在也属于反相柱,不过苯基有不同的物理特性是分析同时含极性和非极性复杂混合物的最佳选择。4:氰基柱属于中等极性基团,正相反相都能应用。其在用于正相色谱时,可使用如正己烷的低极性流动相,在用于反相色谱时,可使用甲醇或水的强极性流动相,适用于ODS上分离时间太长的组分的分离,以及在ODS上最优化色谱非常困难的场合。http://ng1.17img.cn/bbsfiles/images/2015/03/201503232046_539250_2960432_3.png请各位朋友根据以上的描述以及亲身的经历和体会,对上述几种不同类型的色谱柱发表自己的观点,找出它们的使用范围和使用的注意事项。

  • 气相色谱填充柱填料用量

    [color=#444444]实验室现在需要自己装填充柱,柱子3m长、内径2mm,填料为5A分子筛,现在不知道该填多少填料,有没有什么标准啊?既保证柱效,同时柱子稳定、使用寿命长。希望高手不吝赐教,谢谢![/color]

  • 填料对色谱行为的影响

    1、 粒径一般认为,基质的颗粒形状和大小,主要影响流体动力学行为,影响分离效率。填料的粒径决定了填充液相色谱柱的柱效。从VanDeemter方程可知,在优化的流动相线速度下,最佳理论塔板高度为: H min=2.48 dp根据这一公式,可以计算出不同力度填料填装的柱子可获得的最大理论塔板数。例如,3um粒子可获得13.4万理论塔板/米,5um粒子可获得8万理论塔板/米。但是,小粒子填料容易造成柱压高、易堵塞、寿命较短。为保证一定的流动相线速度就得提高输液压力,虽然,大多数高效液相色谱仪的压力上限可允许达到42Mpa,但因长时间工作在高压状态下肯定会缩短输液泵及进样阀的使用寿命。为此,小粒径的柱子一般较短。2、 填料形状现在,10um以下的分析型柱多使用球形填料,而制备型的柱子则多选用无定形填料,因为无定形填料较为便宜且大粒度填料的粒间孔较大,所填装的柱子并不需太高的压力便能很好的运行。3、 孔径及孔径分布填料粒子的孔径及孔径分布,主要从三个方面影响反相色谱的色谱行为。首先,是孔径影响了粒子必表面积的大小,从而对配基的数量,即碳含量造成影响,它涉及到样品的负载量。其次,孔径的大小,从空间上必然对溶质的分子量大小有所限制。此外,孔的不均一性,及孔径分布,也会带来尺寸排阻效应。4、 比表面积 填料的多孔性,极大地增加其比表面积。对于无孔的小球,其比表面积是很小的。但是一旦具多孔性,则多孔微球的比表面积为球 外比表面积与孔内表面积之和。比表面积不同,其键合配基的量亦有所不同。所以,即使是以相同的反应条件制备的同样配基的反 相填料,也会有不同的保留行为。特定溶质的保留值随比表面积的增大而减少。 5、 基质硅胶的纯度硅胶基质上残存的硅羟基和杂质金属离子,共同造成了以硅胶为基质的反相填料的“次级保留行为”。较多的杂质金属离子,会使具有螯合作用的样品被吸附在柱子上。在生物医药体系的分离、分析中,经常会遇到强极性的溶质,他们在制造不良的反相色谱柱中,经常会因强烈的非特异性吸附而难以获得良好分离。究其原因,除孔径大小的因素外,最大的可能是硅胶表面的覆盖率低和基质含金属离子太多所致。

  • 综述:色谱柱及填料技术最新进展和发展趋势

    高效液相色谱(HPLC)是一种现代分离、分析方法。20世纪60年代以来,HPLC作为一种分析技术在生命科学、环境科学、药物分析等领域的应用日益普遍。其中色谱填料可谓是色谱技术的核心,它不仅是色谱方法建立的基础,而且是一种重要的消耗品。色谱柱作为色谱填料的载体,当之无愧被称为色谱仪器的“心脏”。高性能的液相色谱填料一直是色谱研究中最丰富、最有活力、最富于创造性的研究方向之一。  近年来,液相色谱填料技术呈现二大趋势。 第一个趋势是快速液相,利用亚 2um小粒径硅胶、核壳型硅胶;第二大趋势是越来越丰富的选择性。下面就这二大趋势做一个简单介绍。  (一)快速液相色谱填料技术  硅胶基质的色谱填料因为其优异的色谱性能是目前应用最为广泛的液相色谱填料,尤其是针对有机小分子的分离和分析,硅胶基质的色谱填料占据绝大多数的市场份额。最近10年,这个领域最激动人心的进展是基于以下二个方向的快速液相技术的发展。  1、超高效液相色谱(UHPLC)填料技术  从2004年Waters公司推出UPLC仪器,超高效液相色谱技术以其快速、高分离度和高灵敏度的优势得到了广泛的应用。而这种技术的核心是基于亚 2um小粒径硅胶的色谱填料。当填料颗粒小于2um时,不仅柱效明显提高,而且随着流速的增加,分离效率并不降低。采用高流速可将分离速度和峰容量扩展到一个新的极限,但同时柱压也显著升高。小粒径填料需要使用压力更高的超高效液相色谱仪系统,对色谱柱的生产工艺也有更高的要求,必须解决色谱柱的装填难度大、柱头容易漏液、填料容易堵塞等问题。目前,除了国际知名色谱仪器和色谱柱公司(如Waters、Agilent、Phenomenex)生产UHPLC色谱柱,国内的色谱柱厂家也陆续推出此类产品。虽然UHPLC仪器还是国际知名品牌垄断市场的情况, 但是国产的UHPLC色谱柱已经可以取代进口品牌。 图1为月旭公司Ultimate® XB-C18 UHPLC色谱柱(2.1×100 mm, 1.8um)对奶制品中黄曲霉毒素M 1、M 2测定的色谱图。http://bimg.instrument.com.cn/show/NewsImags/images/2014699042.jpg  2、核壳型色谱填料  核壳型(core-shell)色谱填料是由著名色谱科学家 Jack Kirkland 在2006年研制成功的一种新型色谱填料。它是将多孔硅壳熔融到实心的硅核表面而制备的。这些多孔的“光环”状颗粒具有极窄的粒径分布和扩散路径,可以同时减小轴向和纵向扩散,允许使用更短的色谱柱和较高的流速以达到快速、高分辨率分离。并且,核壳型色谱柱所产生的反压明显低于UHPLC色谱柱,低反压可以使仪器承受压力降低,使得在常规的液相仪上就能够实现超高效液相仪的分离效果。但是,核壳型色谱柱对仪器的柱外死体积要求高、且柱容量小于全多孔色谱填料,因而并不适用于大规模的制备液相分离需求。  过去3-5年全球的色谱研究人员发表了大量的有关核壳型色谱填料的学术文章,但是其在工业界的应用是一个渐进式推进的过程,不会一下子大面积被采用。国内还没有报道有国内厂家生产核壳型填料。http://bimg.instrument.com.cn/show/NewsImags/images/2014699116.jpg  (二)具有丰富选择性的色谱填料  液相色谱技术的广泛应用也得力于近年来各种色谱填料技术的发展为色谱分离提供了越来越多样的选择性。近年来人们制备了大量的含有不同键合基团的色谱填料以增强色谱柱的选择性,从而满足实际样品分离的需要,例如亲水作用色谱(HILIC)填料、立体保护键合色谱填料、极性嵌入反相色谱填料、有机-无机杂化色谱填料、亲水性体积排阻色谱填料、混合模式色谱填料、手性色谱填料以及聚合物基质色谱柱填料等。  1、HILIC色谱填料。它采用极性固定相和含有一定水的水溶性有机溶剂为流动相,不仅克服了正相色谱和反相色谱对极性化合物分离的不足,而且提供了与反相色谱截然不同选择性,在强极性和离子型化合物如氨基酸、碳水化合物和多肽等的分离中发挥着重要作用。并且,由于其流动相含有高浓度的有机溶剂,有利于增强电喷雾离子源质谱的离子化效率,进而提高其灵敏度,与质谱具有很好的兼容性。过去5-6年HILIC模式色谱柱的应用增长非常快。目前商品化的HILIC色谱填料种类繁多,基于硅胶基质的HILIC填料包括裸硅胶、氨基、氰基、二醇基、酰胺型以及两性离子型等。目前生产HILIC色谱填料的国内公司主要有月旭、艾杰尔、迪马以及赛分等公司。http://bimg.instrument.com.cn/show/NewsImags/images/2014699132.jpg  2、极性嵌入反相色谱填料。它通过在硅胶键合烷基链的中下部镶嵌一些极性基团,如烷基胺、酰胺、季铵或者氨基甲酸酯等极性基团来降低未反应硅醇基活性和改善对极性化合物的保留能力。这种填料具有的最大优势是减少了填料表面游离硅羟基与碱性化合物间的“次级保留”作用,从而改善碱性化合物峰型的拖尾,而且由于极性基团的嵌入,增强了对极性化合物的保留,提供和普通C18很不一样的选择性。月旭公司的Ultimate® Polar-RP色谱柱装填的即为该类型色谱填料。  3、立体保护键合相。它是在硅胶的烷基链侧链键合含异丙基和异丁基的C18固定相。由于在C18烷基链上引入了较大的基团以及立体效应,阻碍了硅醇基与分析物的相互作用,因而对碱性化合物的分离呈现出对称的峰型并具有良好的柱效,防止碱性化合物在色谱柱上的拖尾,并且在低pH值时有较高的水解稳定性。月旭Ultimate® LP色谱柱填充的即为此类型的色谱柱填料,特别适合在极低pH条件下(例如pH=0.8)分离极性化合物。此款色谱柱可以很好地取代市场上广泛应用的安捷伦 Zorbax SB 色谱柱。  4、有机-无机杂化色谱填料。它是在超高纯全多孔硅胶微球基质表面涂覆一层厚度均匀的有机-无机杂化层,进而提高填料的pH耐受范围和应用能力的一种填料(其填料结构示意图如图4所示)。这种类型的填料能够耐受pH值很高的流动相,并且具有很好的pH值稳定性,它的pH耐受范围可以达到1.5-12,而常规的硅胶基质色谱填料pH值范围一般仅为2-8;它能够耐受各种缓冲液体系,柱寿命长。目前,月旭科技的Xtimate®反相填料、菲罗门公司的Gemini NX®均是属于此类有机-无机杂化硅胶色谱填料。Waters 公司的X-Bridge 色谱填料采用的是其专有的有机-无机整体杂化技术,不是表面涂覆。http://bimg.instrument.com.cn/show/NewsImags/images/201469920.jpg  5、亲水性体积排阻(SEC)色谱填料。它是在超高纯全多孔硅胶表面包覆一层具有良好稳定性的亲水性聚合物的体积排阻色谱填料,其填料的作用基团为二醇基(填料结构示意图如图5所示)。其填料表面因受二醇基官能团保护而不与蛋白质相互作用。使得蛋白、生物酶、多肽等样品的非特异性吸附极小;因而广泛应用于生物大分子的分离。月旭Xtimate® SEC填料即为此类型的色谱填料。目前已有120 Å、300 Å、500 Å和1000 Å等四种孔径尺寸规格的SEC色谱柱产品。国内外也有一些色谱柱厂家成功研发了该类型产品,例如TOSOH公司的TSK gel SW-型色谱填料、安捷伦公司的ZORBAX GF色谱填料。http://bimg.instrument.com.cn/show/NewsImags/images/2014699221.jpg[size

  • c18色谱柱是什么填料?c18柱的填料对色谱柱的影响

    c18色谱柱是什么填料?c18柱的填料对色谱柱的影响

    色谱柱采购请前往恒谱生网站:https://www.hplcs.cn/ [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/05/202305291406214905_2223_5503226_3.jpg!w690x690.jpg[/img] 柱填料的物理性能对填料色谱行为有重要影响。填料主要的物理性能包括如下:颗粒度、孔径、孔体积、键合相化学、含碳量及烷基化处理。    (1)颗粒度是指柱填料的颗粒直径的大小。实际上色谱柱上所标的粒径是一个平均值。如粒径“5μm”并不是柱中填料所有的颗粒直径都是5μm,实际上有一个颗粒分布度。这种分布度对柱反压及柱效有重要作用。一般来说,平均颗粒度越小,颗粒分布度越小,色谱柱效越高,反压亦越高。目前C18柱填料粒径在4~10μm之间。    (2)孔径是指填料颗粒间的孔间隙。一般所说的孔径是指填料的平均孔径。球形填料装柱后平均孔径分布比较窄,柱床结构均匀,柱效高,重现性好;无定形填料平均孔径分布较宽,柱床结构不均匀,流动相线性速度不均匀,谱带扩宽。平均孔径的大小对分离大分子化合物有较大的影响,在分离含有较大分子的样品时可能会有分子排阻效应,或产生吸附效应从而影响定量的回收率及准确度。    因而在用反相色谱分离诸如蛋白或多肽样品时应考虑选用大孔径(如30 nm)的反相柱填料。孔体积作为硅胶多孔性的参数,在分离分析较大分子化合物时可作参考,选用较大孔体积的反相柱填料。    (3)化学键合相填料在高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法中占有极重要的地位。它可以键合极性较大的有机基团,采用极性较小的溶剂作流动相。亦可键合极性较小的有机基团,选用极性较大的溶剂作流动相。    C18色谱柱是以硅烷化键合型(Si-O-Si-C)存在的,这类键合反应目前应用最为普遍。如以十八烷基三氯硅烷与全多孔型硅胶M-Porasil-C18反应生成烷基化学键合相,商品名为M-Bondapak-C18。    (4)碳含量即填料中的含碳量。传统的测量技术是将填料加热到碳氢键断裂,然后通过测定损失的重量或形成的二氧化碳来计算碳含量。可以通过增加碳键的长度或增加键合密度来增加碳含量。    碳含量增加,柱子的保留值增加。键合相的色谱行为与键合密度有关,也与硅胶的密度及填料的表面积有关,填料的密度越高,填柱所需的硅胶量越多,柱子的含碳量也越高。如果用2种不同密度相同碳含量的填料填充柱子,其保留行为将明显不同。因此,单独以碳含量来预测色谱行为是不够的。    (5)C18硅烷化试剂是一个大于2 nm大分子,因此会与已键合在相邻的硅醇基上的C18硅烷化试剂产生严重的立体位阻。其结果导致在硅胶表面有大量的残留硅醇基没有与硅烷化试剂反应,这些极性的硅醇基在一定色谱条件下会与碱性化合物相互作用引起峰形拖尾,从而可影响定量分析结果。    这些问题在一定程度上可以通过烷基化处理加以克服。烷基化处理是在键合相上完成的独立反应,以减少在硅胶表面的硅醇基。烷基化处理采用小分子(如三甲硅烷)的试剂,其空间位阻远小于C18基团。大多数固定相仅有30%可覆盖的键合位置。据报道,通过某些极活跃的化学试剂及特殊的反应条件,最高的覆盖量可达50%。    很好地了解硅胶键合相的物理特性将有助于在高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的反应中选择合适的色谱柱。表面上看C18柱虽然化学官能团相同,而实际上不同品牌的C18柱性能可能有很大差别,从而产生不同的分离结果。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/05/202305291406214905_2223_5503226_3.jpg!w690x690.jpg[/img]

  • 捕集氧气的填料是什么呢?

    气相特别是气质所用载气要纯度很高并且要除去水分、氧气、烃类等物质。水可以用分子筛、变色硅胶。那除去氧气用什么填料?什么填料可以出去氧气?

  • 【求助】什么是填料

    今天遇到一个题目,是相关于担体、填料、固定相的关系一直搞不懂填料的概念,也没有找到请教各位大侠什么是填料,最好有专业概念的解释

  • 色谱柱填料有没有保质期?

    我们经常讨论或者关注色谱柱的使用期限,但很少人能关注色谱柱的填料,这些色谱柱的填料是否有保质期呢?如果有一般保质期多长呢?

  • 液相色谱柱常用的填料是什么

    [color=#333333] 第一,正相色谱硅胶基质填料。正相色谱柱的固定相是由硅胶和其他具有极性官能团组成的键合相填料。其物质分离特点是极性较弱组合zui先被色谱柱冲洗出来。而且正相色谱所使用的流动相其极性要低于固定相,流动相通常使用正乙烷和二氯甲烷等。[/color][color=#333333] [/color][color=#333333] 第二,反相色谱硅胶基质填料。反向色谱柱的填料是以硅胶材料为主要物质,并与极性相对较弱的官能团组成的键合相。其物质分离特点是极性较强组合zui先被色谱柱冲洗出来,而极性弱的组分则会更强的保留在柱子上。反向色谱的流动相的极性相对较强,常配制有机缓冲液作为流动相。目前较为常用的反相色谱填料有C4(B)、C8(MOS)以及C18(ODS)等。[/color][color=#333333] [/color][color=#333333] 第三,聚合物填料。这种聚合物的填料一般是由聚甲基丙酸酯或者聚苯乙烯-二乙烯基苯组成。其特点是这种色谱柱的酸碱度适用范围相对较广,且疏水性很强,但它的柱效相对于硅胶基质的填料要低一些。一般将这种大孔的基质填料用于蛋白质的分离。[/color][color=#333333] [/color][color=#333333] 第四,其他无机填料。如石墨化碳对于酸碱度和温度没用严格的限制范围,一般可对一些几何导构体进行分离。此外还有氧化铝以及氧化锆等无机填料的应用。[/color]

  • 液相色谱仪填料的发展史

    高效液相色谱(HPLC)不仅是一种有效的分析分离手段,也是一种重要的高效制备分离技术。色谱柱是HPLC系统的核心,不同性能的填料是HPLC广泛应用的基础。液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。  正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3—10 μm的范围内。另一类正相填料是硅胶表面键合—CN,-NH2等官能团即所谓的键合相硅胶。  反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。  常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3—10 μm之间。1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。  1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法(HPLC)正式建立。在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在医`学教育网搜集整理有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。高效液相色谱同时还极大的刺激了固定相材料、检测技术、数据处理技术以及色谱理论的发展。  1960年代前,使用的填充粒大于100μm,提高柱效面临着困境,后来的研究人员便采用微粒固定相来突破着一瓶颈。科克兰、荷瓦斯制备成功薄壳型固定相,这种在固定相在玻璃微球表面具有多孔薄壳,实现了高速传质,为高效液相色谱技术的发展奠定了稳固的基础。随着填料粒径的降低,更高的柱效也得以实现。  1960年代研制出气动放大泵、注射泵及低流量往复式柱塞泵,但后者的脉冲信号很大,难以满足高效液相色谱的要求。1970年代,往复式双柱塞恒流泵,解决了这一问题。1970年代后科克兰制备出全多孔球形硅胶医`学教育网搜集整理,平均粒径只有7μm,具有极好的柱效,并逐渐取代了无定形微粒硅胶。之后又制造出的键合固定相使柱的稳定性大为提高,多次使用成为可能。1970年后,适合分离生物大分子的填料又成为研究的热点。1980年后,改善分离的选择性成为色谱工作者的主要问题,因此改变流动相的组成提高选择性是关键。如今利用基于亚2μm填料的超高压液相色谱技术、基于核-壳型填料的快速分离技术、基于杂化硅胶填料的高温液相色谱技术等。硅胶经表面化学键合、聚合物包覆等有机改性可制得先进的大分子限进填料、温敏性填料、手性填料等,大大扩展了HPLC的应用范围,随着科学技术的进步填料的发展朝着多样性多功能的综合型方向发展。

  • [求助]装凝胶柱出现的填料不易进柱管的问题

    在装填凝胶填料——TSK的G200SWxl的时候出现下列情况:本计划装一根长150*0.32mm的凝胶排阻柱;使用压力8MPa。装填过程中发现,填料进入柱管十分困难,而且较松动,不紧密。与装填其他填料(反相、离子交换)差别很大。我个人认为不是压力的问题,同种条件其他柱子装填的都很好,请教高手——为什么填料不容易被压进柱管呢?

  • 【月旭产品】之填料:Ultimate系列硅胶基质填料全面推出

    【月旭产品】之填料:Ultimate系列硅胶基质填料全面推出

    前言: 随着月旭公司的不断发展,在推出Ultimate系列、Xitmate系列、Welchrom系列色谱柱,welchrom系列SPE小柱,以及刚刚推出的Topsil系列色谱柱后,月旭公司现全面推出极限(Ultimate)系列液相色谱填料。此系列填料可以应用在分析、制备等方面,以高纯硅胶为基质,加上独特的键合工艺、封尾技术,将给您的分离、纯化带来无与伦比的效果。 Ultimate系列硅胶基质填料介绍【特点介绍】1.超纯全多空球形硅胶,纯度大于99.999%2.均匀的孔径大小和粒径分布3.以独特的表面修饰方法确保硅胶表面的惰性和均一性4.独特的键合技术,键合相覆盖率高5.独特的完全双封尾技术,最大限度的消除了残余硅羟影响,对碱性和强极性化合物的分离具有良好的峰形6. 键合相选择性范围广,选择性多7.机械稳定性好,耐压强度高,使用寿命长硅胶颗粒电镜图:http://ng1.17img.cn/bbsfiles/images/2011/03/201103222042_284478_1622024_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/03/201103222043_284479_1622024_3.jpg

  • 【讨论】填料...

    有根废柱子想拿来练下手填下料,是不是要填料柱必须跟要填的色谱柱的硅胶一样才能填料。表面积和孔径是不是有影响。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制