当前位置: 仪器信息网 > 行业主题 > >

透过光谱分析

仪器信息网透过光谱分析专题为您提供2024年最新透过光谱分析价格报价、厂家品牌的相关信息, 包括透过光谱分析参数、型号等,不管是国产,还是进口品牌的透过光谱分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透过光谱分析相关的耗材配件、试剂标物,还有透过光谱分析相关的最新资讯、资料,以及透过光谱分析相关的解决方案。

透过光谱分析相关的耗材

  • Corning 96孔板,透明,紫外透过,平底
    PLT,96WL,UV,NT,NS,25/50透明,平底,紫外线可更好的透过。适用于蛋白和核酸定量。低背景,高一致性。无核酸酶。
  • 平均粒度仪费氏粒度仪空气透过法粒度测定仪
    AODE-305费氏粒度仪参数 一、仪器简介及应用范围 AODE-305系列为第四代透过法粒度测定仪法(平均粒度仪),是测定金属、非金属及其化合物粉末的比表面积和粒度的装置。可广泛应用于粉末冶金、精细化工、硅酸盐工业、食品、制药、核工业、以及表面技术的各种粉末粒度和比表面积的测定。本仪器结构简单,操作方便,仪器有快速计算板,不需要复杂计算,测定一次只需3~5分钟。本仪器运用的测定方法为“空气透过法”,该方法是测定金属及其化合物粉末比表面积和粒度的国家标准:GB11107-89 /GB 3249-82/GBT 11107-2018/GB3249-2009和国际标准:ISO10070-91.仪器带有快速计算板,无须复杂计算,可直接读出粒径值,使用操作非常方便。二、技术参数1、粒度测量范围:0.2μm(微米)─50μm(微米) 2、孔隙度范围:0.25-0.40、0.40-0.80、0.80-0.95 3、精度:3% 4、工作环境:相对湿度不大于80%,温度:25±10℃ 5、电源:∽220±22v50-60Hz 6、功率:2w 7、重量:12kg8、外型尺寸:755*400*260三、工作原理及结构 本仪器是基于稳定空气流动下,气体透过粉末压缩床,气体的透过率受粉末的粒度、形状和床的有效孔隙度的影响。当已知粉末形状、孔隙度并测出其透过率时,就可以计算出粉末的粒度和各种比表面积。仪器由空气泵、干燥器、水柱稳压器、垂直压力计、泄气阀、试样管、粉末压缩装置、试样管夹紧装置、U型压力计、精密阀、游标卡尺和仪器计算面板等组成。
  • BEEM高UV透过率胶囊托架
    22孔,可用于UV环境,使用高UV透过率塑料制成,使得低温聚合成为可能。尺寸:用于00尺寸胶囊(大) - 内径8mm;用于3尺寸胶囊(小) - 内径5.6mm
  • 透过材料接触传热性测试仪 ISO12127-2007
    产品介绍:泰思泰克透过材料接触传热性测试仪根据ISO12127-2007及EN702设计研发并制造;该仪器通过加热筒在一定载荷下接触试样及热量计,测定一定温度下试样的传热性能;该仪器操作简单,数据准确,安全可靠,广泛应用于消防防护服相关公司及检测部门; 产品型号:TTech-ISO12127符合标准:ISO12127-2007 EN702技术参数1、 该设备由控制箱及不锈钢试验架台构成;2、 试样架自动升降,升降时速度 5mm±0.2mm/s3、 K型铠装热电偶,直径2mm,测温精度0.1℃;4、 加热桶温度大于500℃ 试样接触表面直径25.2±0.05mm5、 加热桶载荷重量 49N,可调节;6、 计时器 计时范围9999s 计时精度0.1s 7、 热量计固定盘直径25mm,厚度5mm 并装配铂电阻温度传感器;8、 支撑架材料为尼龙66;直径40mm 高度50mm 9、 试样直径80mm 10、 PLC 及触摸屏智能控制系统;11、 升温PID智能控制,系统自动采集温度数据;12、 试验数据系统自动计算,自动存储;可自由打印;13、 试验台尺寸:650mm x 350 mm x 650mm14、 电源 220V 50/60Hz, 功率800w
  • 滤光片
    生化滤光片• 典型波长(nm):340、405、450、480、 492、505、510、546、578、620、 630、670、700、750 、其他可定制• 中心波长偏差:±1nm• 截止深度:6OD• 半带宽:3-10nm• 透过率:Tave90%• 特点:单片式(长时间使用无霉斑)• 应用:生化仪、酶标仪等PCR滤光片• 典型产品:5通道、7通道,其他可定制• 工作波长:可根据客户需求定制• 截止深度:6OD• 光谱范围:200-1200nm• 光谱陡度:95%• 特点:单片式结构• 应用:定量分析PCR仪天文3nm• 典型波长(nm):500.7、656.3、 671.6 其他波长可定制• 中心波长偏差:±1nm• 截止深度:5-6OD• 光谱范围:300-1100nm• 半带宽:3nm• 透过率:Tave≥88%• 特点:IBS技术消除光晕• 应用:天文无光晕深空摄影机器视觉• 典型波长(nm):580 其他波长可定制• 中心波长偏差:±1nm• 截止深度:4-6OD• 半带宽:10-40nm• 透过率:Tave95%• 特点:波长定位准确• 应用:科学研究、工业仪器紫外带通滤光片• 典型波长(nm):370其他波长可定制• 中心波长偏差:±1nm• 截止深度:4OD• 半带宽:40nm• 透过率:Tave90%可见光全通滤光片• 工作波长:可根据客户需求定制• 截止深度:4-6OD• 光谱指标:T90% 400-780nm T拉曼滤光片• 工作波长:可根据客户需求定制• 透过区:600-647nm• 截止深度:7OD• 上升沿带宽:5nm• 透过率:Tave93%(单面镀膜) Tave98%(双面镀膜)• 光谱陡度:≤0.5%• 特点:高透过率• 应用:拉曼光谱分析等CIE1931xyz响应特性曲线滤光片• 工作波长: CIE1931xyz(提供X、Y、 Z三片套件)• 波长范围:380-820nm• 标准偏差值:二向色镜• 工作波长:可根据客户需求定制• 使用角度:45°• 光谱指标:T98%@915nm R99.8%@975nm• 光谱范围:850nm-1030nm TP=TS• 特点:高穿透率、光能量损耗小• 应用:激光技术负滤光片• 中心波长(nm):532nm(根据客户需求定制)• 最小半带宽:20nm• 截止深度:3-6OD• 透过率:Tave90%• 特点:耐高低温、耐腐蚀• 应用:激光防护、激光荧光分析、拉曼光谱分析等
  • 恒创立达 红外气体池 其他光谱配件
    HF-11型气体池是红外光谱仪、红外分光光度计的专用附件,用于分析气体的红外吸收光谱测量。正常使用为一个大气压。该气体池采用窗片为KBR材料,透过波长为2.5-25MM,光程为50或100MM,如果有特殊需要,也可配备CAF2,NACL,KRS-5等窗片材料。
  • 高透射率激光窗口
    高透射率激光窗口透过镀增透膜提高透射率。高表面质量,低散射的光学窗口,具有一个或两个防反射涂层,用于高功率应用和输出最大光束。光楔选项:10 arc sec或30±5 arc min。标准直径从12.7-101.6mm,标准厚度从1.0-12.7mm,均支持定制。波段:193nm-1550nm,有单面镀膜和双面镀膜两种型号。 镜片材料:UVFS,表面质量10-5,高损伤阈值,脉冲激光15 J/cm2, 20ns, 20Hz at 1064nm,连续激光1 MW/cm2 at 1064nm。尺寸、基底和镀膜均支持定制。
  • 校准滤光器组
    校准滤光器组:用作二次标准,用于验证可见光吸收光谱仪的透射率和吸光度。Kron / Cousins UBVRI过滤器:用于滤除和测量由天文物体发射的特定光谱带。有Johnson/Bessel 和Kron/Cousins 两种类型,前者适用于光电倍增管,后者适用于硅CCD。校准滤光器组AC-930衰减片:三片衰减片透过率分别为10%、20%、30%AC-930衰减片:三片衰减片透过率分别为1%、3%、50%。拥有校准证明。
  • PID光离子化灯
    光离子化灯PID Lamp简介 光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。 贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理 将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号 用于设计制造小型化或手持式仪器灯型号PKR106-6填充气体Kr光离子强度(eV)10.6工作电流(mA)n/a起辉时间(ms)n/a长度×直径(mm)30×6产品优势 为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质 许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺 贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PAS118
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PAS 118填充气体Ar起辉电压(V)1500光离子强度(eV)11.8工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PAL118
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PAL 118填充气体Ar起辉电压(V)1500光离子强度(eV)11.8工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×35产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PXL084
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PXL 084填充气体Xe起辉电压(V)1500光离子强度(eV)8.4工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×35产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR100
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR 100填充气体Kr光离子强度(eV)10工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PXS096
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PXS 096填充气体Xe起辉电压(V)1500光离子强度(eV)9.6工作电流(mA)0.2 - 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 动态水分吸附仪-渗透率组件
    渗透率是薄膜类材料的重要特性,精确测量薄膜、纸张等的水分子渗透率对于评估其作为包装材料在不同水蒸汽分压环境下隔绝水分的功能有着重要的意义。 ProUmid公司生产的动态水分吸附仪可以选配一个渗透率组件,精确检测薄膜的渗透率。该渗透率组件有六个样品盘,可以同时测量5个薄膜(纸张)样品的渗透率,大大节省了试验时间。该仪器包括一个高灵敏度的天平和能够调节温湿度,气流循环的密闭空间。为渗透率的检测提供最理想的环境。 检测原理:将薄膜(纸张)覆盖在样品盘上,将盘内放置干燥剂、饱和食盐水溶液或水来制造一个与环境不同的水蒸汽分压,从而使水分子透过薄膜(纸张),迁移到达另一边。这种水分子的迁移可以通过称量样品盘的重量来检测。 这种方法结果非常准确,可以得到薄膜(纸张)材料的精确渗透率。特点:ProUmid公司生产的SPS和Vorp系列动态水分吸附仪能够精确的检测水蒸气透过薄膜的渗透率。仪器温湿度可调,可以模拟在范围非常广的环境条件下检测渗透率。仪器的称重精确度很高,可以检测低至0.05g/(m2 day)的渗透率。SPS和Vsorp系列动态水分吸附仪具备多样品高通量的特点,每次可同步检测5个样品,非常适合对比不同组成薄膜之间渗透性能的差异。
  • 直流激发光离子化灯PKS106
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PKS 106填充气体Kr起辉电压(V)1500光离子强度(eV)10.6工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR106
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR 106填充气体Kr光离子强度(eV)10.6工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PXR096
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PXR 096填充气体Xe光离子强度(eV)9.6工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PXL106
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PXL 106填充气体Xe起辉电压(V)1500光离子强度(eV)10.6工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×35产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PKS100
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PKS 100填充气体Kr起辉电压(V)1500光离子强度(eV)10.0工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PAR118
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PAR 118填充气体Ar光离子强度(eV)11.8工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 蓝色激光准直非球面透镜
    蓝色激光准直非球面透镜?为 405nm 和 488nm 激光二极管优化设计?适于生物医学仪器和数据储存应用?采用模压衍射非球面设计我们的蓝色激光准直非球面透镜旨在简化生物医学仪器激光系统的设计和制造,可用于流量和成像血细胞计数器、荧光检测和大容量数据储存系统。这些非球面透镜的设计和制造可满足上述高性能应用的严格光学标准。每个非球面透镜镀有在波长是350nm-500nm时有很好透过率的增透膜。用于制造这些蓝色激光准直非球面透镜的 L-LaL12 和 D-LaK6 玻璃材料具有优良的紫外线和蓝光透射特性。这些玻璃材料完全符合欧盟限制危险物质的 RoHS 指令。非球面透镜其中一个表面的半径随着与光轴的距离而改变。这种独特的属性使得非球面透镜与简单球面透镜相比能够消除球面像差并极大地减小其他像差,从而提供更优异的光学性能。这些模造玻璃非球面透镜在设计时考虑到了普通商用蓝色激光二极管的特定光束发散性、峰值波长和窗口材料,可保证蓝色激光器应用提供优异的光束质量和性能。Common Specifications直径容差 (mm):±0.015中心厚度容差 (mm):±0.05订购信息:数字孔径 NA直径 (mm)有效焦距EFL (mm)涂层产品号0.6642.54BBAR (350-500nm)#83-6770.622.751.42BBAR (350-500nm)#83-6790.616.3254BBAR (350-500nm)#83-6810.66.3254.02BBAR (350-500nm)#83-9900.521.41BBAR (350-500nm)#37-108
  • FluoroMax-4 吸收谱测量附件
    用于测定样品的吸收光谱,特别适合荧光样品的吸收谱。同样用于相对PLQY测量中寻找激发峰位置。用于荧光光谱仪样品仓内,入射光线被45度反射后,透过液体池后进入发射单色仪入口。操作者采用同步扫描操作(或零级光操作单侧单色仪),可以获得荧光样品的吸收谱。注意狭缝调整,S1在线性范围内。S1/R1c 250-800nm 最大范围。空白测量一次数据D1,样品测量一次数据D2, D2/D1为最后结果。结果纵坐标是透过率。本附件不包含比色池。维护:不要擦拭反射镜,灰尘采用吸耳球或压缩气体吹拂。反射镜角度可调整。
  • 气室透反射式光纤探头
    气室透反射式光纤探头产品简介:FlexiSpec系列包括可以用于任何光谱仪、光度计的新一代传输红外光纤探头。气体传输光纤探头的设计是基于一个分叉的光纤束。由于气体的准直光束设计,使得双通低的中红外衰减(或多通)气室需要增加光路长度10–40cm。本设计是由准直物镜和反射镜单元的平均来实现的。产品应用: 实时反应监测 / 特性分析 / 废气监测 / 溶剂蒸发监测 / 相关石油气监测产品特点:* 在液体中在线传输光谱;* 近红外/中红外光谱段透过率高;* 灵活稳定的工业应用;* 兼容各种光谱仪产品技术参数:探针类型双通道气相传输传输范围0,5 – 2,2μm1,6 – 5,5μm3 – 18μm光纤类型SiO2硫化物光纤CIR银化物光纤PIR温度范围-50°C +200°C-50°C +90°C-50°C +140°C灵敏度1ppm根据不同的光路,光谱仪性能,测试气体总长1,5 m (其它选项: 1 – 30m) *传输长度100mm (其它选项: 5 – 200mm) *传输直径25mm轴材料不锈钢, Hastelloy C22保护套材料不透液体的SS-导管, KOPEX-管输入/输出连接器长SMA **直径可以根据客户要求定制
  • 带通光学滤光片消杂滤光片滤波片双光子荧光显微
    带通光学滤光片消杂滤光片滤波片双光子荧光显微 上海屹持光电推出专用带通光学滤光片,性能好、性价比高,可根据用户需求定制。可用于双光子显微成像、荧光显微镜、拉曼光谱仪和激光系统等。 双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术,能记录组织深层最细微的内部结构。双光子显微系统中,由于激发光和发射荧光波段不同,且在双光子成像时有杂散光干扰,所以需要双光子显微专用滤光片选择合适的透过波段成像,反射不需要光波段。参考型号尺寸性能参数主要功能EBPF-40/68-L36W25T0125mmx36mmx1mm透射400~680nm90%反射710~1500nm90%反射红外激光,透过可见光EBPF-75/160-L36W25T0125mmx36mmx1mm反射350~720nm98%透射750~1600nm90%反射可见光,透过红外激光EBPF-39/55-L36W25T0125mmx36mmx1mm透射390~555nm=90%反射575~1000nm90%将可见光分成绿色通道和红色通道EBPF-39/69-D25T01D25mm x1mm透射390~690nm=95%截止波段730~1100nmod值=6~8滤除红外激光配备屹持光电双光子显微镜专用滤光片后,双光子下的花粉颗粒成像图。
  • 射频激发光离子化灯PKR106-6-14
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR106-6-14填充气体Kr光离子强度(eV)10.6工作电流(mA)n/a起辉时间(ms)n/a长度×直径(mm)14×6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR106-6
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR106-6填充气体Kr光离子强度(eV)10.6工作电流(mA)n/a起辉时间(ms)n/a长度×直径(mm)30×6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • TYDEX 太赫兹光谱分束器
    TYDEX 太赫兹光谱分束器Tydex提供光谱分束器,适用于必须反射近红外和中空光辐射而不会在太赫兹范围内传输衰减的应用。NIR-THz光谱分束器用于从Ti:蓝宝石激光器和MIR-THz光谱分离器的THz辐射中分离泵浦辐射(以波长范围790-800 nm为中心),用于分离泵浦辐射(9.6μm和10.6μm)太赫兹激光器中的太赫兹辐射。通用规格分光镜类型NIR-THz spectralsplitter基底材料- HRZF-Si - THz-grade crystal uarz尺寸公差,毫米+/-0.25通光孔径,%90表面质量,scr / dig60涂层High-reflectiondielectric coating (R90%) @ 730-860 n表面精度,毫米+/-0.01 deviation from ideal plane分光镜类型MIR-THz spectralsplitter基底材料- HRZF-Si - THz-grade crystaluarz尺寸公差,毫米+/-0.25通光孔径,%90表面质量,scr / dig60/40表面精度,毫米+/-0.01 deviationfrom ideal plane镀膜Hih-reflection dielectric coating (R90%) @9-11μm入射角,弧。45典型的反射和透射曲线如下所示图1 NIR-THz分束器的反射(两种基板)图2 NIR-THz分束器(两种基板)的透过率。图3 MIR-THz分束器(两种基板)的反射。图4 MIR-THz分束器(两种基板)的透过率。以下NIR-THz和MIR-THz光谱分束器有现货供应:No.直径厚度,毫米mminches125.41.01.0250.82.01.0
  • Tydex 太赫兹增透镀膜 THz AR Coatings
    Tydex公司专业订制生产THz光学镜片,可以提供太赫兹专用离轴抛物镜、滤波片、偏振片、窗片、透镜、棱镜、波片、分束片、反射镜和菲涅尔透镜等,同时还提供太赫兹衰减器、太赫兹宽带相位变换器。太赫兹这增透镀膜THz AR Coatings 众所周知高阻硅的透过率只有54%,石英晶体的透过率在50%左右,他们的反射损失都很大。为了减少反射损失,可以镀一层增透膜。 我们能提供聚乙烯和聚对二甲苯AR膜。聚乙烯膜只能用于窗片。聚对二甲苯适用于窗片,也适用于透镜。 AR膜的波长由客户决定,我们能提供60-1300μm。1. 两面镀膜两面镀膜适用于窗片和月牙透镜。镀膜的波长范围如下:聚乙烯:- 60-80 &mu m, 110-160 &mu m, 160-220 &mu m, 320-430 &mu m, 375-510 &mu m, 480-650 &mu m, 535-725 &mu m, 645-870 &mu m, 695-940 &mu m, and 965-1305 &mu m 聚对二甲苯:99-125 &mu m.聚乙烯和聚对二甲苯都能用于高阻硅,但是石英晶体只能镀聚对二甲苯。下图是高阻硅镀聚乙烯和没镀膜的透过率曲线图Fig. 1.高阻硅镀聚乙烯和没镀膜的透过率曲线图 镀膜波长范围160-220μmFig. 2. 石英窗片双面镀聚对二甲苯和没有镀膜的透过率曲线图 镀膜波长范围99-125μm2. 一面镀膜朝半头透镜只能做一面镀膜。镀膜的波长范围是99-125μm。透过率可以增加30%左右。镀膜是镀在球面上不是平面上。Fig.3. 超半球透镜球面镀膜的模拟传播光路。镀膜波长99-125μm
  • THz高透膜层
    THz高透膜层 众所周知,由于高反射损耗,晶体材料的THZ波投射率不高(HRFZ-Si的透过率只有54%,石英晶体的THZ波段透过率约70%)。而THZ高反膜可以用来降低反射损耗。我们提供聚乙烯(polyethylene)和聚对二甲苯(parylene)材料的膜层。我们提供针对平面镀的聚乙烯膜技术,通常只是用在窗口镜上。平面的聚对二甲苯(parylene)膜层在微电子领域是比较知名的。我们的聚对二甲苯(parylene)可以镀在平面或者球面上,因此,该技术可以用在窗口和透镜上。高透波段可以根据客户需要定制。我们定制从60μm到1300 μm.的高透膜。我们提供以下高透膜:1.两面高透通常用在窗口镜或者半月透镜上。下面的波段可以提供:- 聚乙烯膜层 - 60-80 μm, 110-160 μm, 160-220 μm, 320-430 μm, 375-510 μm, 480-650 μm, 535-725 μm, 645-870 μm, 695-940 μm, and 965-1305 μm- 聚对二甲苯膜层 99-125 μm.HRFZ-Si 可以镀聚乙烯膜层和聚对二甲苯膜层,而石英晶体只能镀聚对二甲苯膜层。镀了高透膜以后,上面提到的波长可达到≥90% 的透过率。镀聚乙烯膜层和没镀膜的HRFZ-Si 窗口镜,镀聚对二甲苯膜层和没镀膜的石英晶体窗口镜的透过率如下图: 镀聚乙烯膜层和没镀膜的HRFZ-Si 窗口镜. 高透膜是160-220 μm. 镀聚对二甲苯膜层和没镀膜的石英晶体. 高透膜是99-125 μm.2. 单面高透膜通常用在半球透镜上,平面不镀膜,该透镜通常用在THZ-TDS系统或者超导热辐射系统中光电导天线的THZ耦合中。99 um到125 um的高透膜一般是针对一些特殊应用的。高透膜可提高半球透镜30%透过率。测量半球透镜的透过率是很困难的,我们的透过率曲线是模拟出来的。 模拟的单面镀聚对二甲苯膜层和没镀膜的石英晶体. 高透膜是99-125 μm.我们的一个客户通过实验证实了镀膜后透过率的提高,111um的功率提高了30-50%。 未镀膜的HRFZ-Si半球透过率只有6%。这个是由内反射决定的,最大的内反射角大约是17度。由于硅材料的高折射率,球透镜的通光口径只有40%。聚乙烯高透膜以及聚对二甲苯膜的高透波段是不一样的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制