当前位置: 仪器信息网 > 行业主题 > >

高分辨衍射仪

仪器信息网高分辨衍射仪专题为您提供2024年最新高分辨衍射仪价格报价、厂家品牌的相关信息, 包括高分辨衍射仪参数、型号等,不管是国产,还是进口品牌的高分辨衍射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨衍射仪相关的耗材配件、试剂标物,还有高分辨衍射仪相关的最新资讯、资料,以及高分辨衍射仪相关的解决方案。

高分辨衍射仪相关的资讯

  • 我国首台超高分辨中子粉末衍射仪成功出束!
    7月3日,中国散裂中子源(CSNS)高分辨中子衍射仪成功出束,开始带束调试,标志着高分辨中子衍射仪设备研制的成功。高分辨中子衍射仪是我国首台超高分辨中子粉末衍射仪,具备国际先进的超高分辨能力。谱仪样品位置处的中子飞行时间谱据悉,高分辨中子衍射仪由散裂中子源科学中心与北京大学深圳研究生院合作建设,也是CSNS第七台成功出束的合作谱仪。谱仪自2020年初开始设计建设,中国科学院高能物理研究所东莞研究部以及北京大学深圳研究生院相关部门通力协作,攻克设计、加工制备和安装调试等关键技术,解决设备研制、安装、调试和标定等技术难题,确保谱仪设计、研制、安装与调试工作按计划实施。高分辨中子衍射仪出束后,现场科研人员合影高分辨中子衍射仪将为基础研究以及应用研究提供一个突破传统结构分析极限的研究平台,为新材料、新能源、生物医药、电子信息等领域的研发提供支撑,推动并实现我国关键新材料研发的强有力发展。
  • 320万!南京理工大学高分辨X射线衍射仪采购项目
    项目编号:ZZ0140-G22HZ0309项目名称:分析测试中-高分辨X射线衍射仪采购预算金额:320.0000000 万元(人民币)最高限价(如有):320.0000000 万元(人民币)采购需求:高分辨X射线衍射仪 1套合同履行期限:签订合同后 300 日历天内本项目( 不接受 )联合体投标。
  • 400万!华东师范大学高分辨X射线衍射仪等设备采购项目
    项目编号:1069-224Z20223841(代理机构内部编号:招案2022-3841)项目名称:华东师范大学等离子体化学气相沉积(PECVD)、等离子增强原子层沉积系统、高分辨X射线衍射仪等设备采购项目预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:招标项目编号: 1069-224Z20223841/01包件五: 半导体综合测试系统-变温真空探针台合同履行期限:合同签订后 290 天交货本项目( 不接受 )联合体投标。华东师范大学等离子体化学气相沉积(PECVD)、等离子增强原子层沉积系统、高分辨X射线衍射仪等设备采购项目国际招标公告(1)包件1-招标采购详情-中国采购与招标网-必联网.pdf
  • 240万!复旦大学高分辨率晶体衍射仪采购项目(二次招标)
    项目编号:0705-2240 02028108项目名称:复旦大学高分辨率晶体衍射仪采购预算金额:240.0000000 万元(人民币)最高限价(如有):235.2000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高分辨率晶体衍射仪1套最大输出功率:3kW或更优;最大管流达到或优于:60mA,1mA/步,机柜同步数字显示。预算金额:人民币240万元。最高限价:人民币235.2万元。合同履行期限:签订合同后8个月内。 合同履行期限:合同履行期限:签订合同后8个月内。本项目( 不接受 )联合体投标。
  • 240万!复旦大学高分辨率晶体衍射仪采购项目
    项目编号:0705-2240 02028108项目名称:复旦大学高分辨率晶体衍射仪采购预算金额:240.0000000 万元(人民币)最高限价(如有):235.2000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高分辨率晶体衍射仪1套最大输出功率:3kW或更优;最大管流达到或优于:60mA,1mA/步,机柜同步数字显示。预算金额:人民币240万元。最高限价:人民币235.2万元。合同履行期限:签订合同后8个月内。 合同履行期限:合同履行期限:签订合同后8个月内。本项目( 不接受 )联合体投标。
  • 265万!吉林大学高分辨X射线衍射仪(含摇摆曲线测量组件)采购项目
    项目编号:JLU-WT22225项目名称:吉林大学高分辨X射线衍射仪(含摇摆曲线测量组件)采购项目预算金额:265.0000000 万元(人民币)最高限价(如有):251.7500000 万元(人民币)采购需求:货物名称:高分辨X射线衍射仪(含摇摆曲线测量组件)数量:一台主要技术参数:1.1最大输出功率:≥4 kW本项目允许进口产品进行投标。合同履行期限:收到信用证后300日内发货。本项目( 不接受 )联合体投标。公告 (3).docx
  • 189万!布鲁克中标华中科技大学高分辨X射线衍射仪采购项目
    一、项目编号:招案2021-4011(校内编号HW20210443)(招标文件编号:招案2021-4011(校内编号HW20210443))二、项目名称:华中科技大学高分辨X射线衍射仪采购项目三、中标(成交)信息供应商名称:武汉瑞德仪科技有限公司供应商地址:武汉市洪山区雄楚大道888号金地雄楚一号商2栋1002室中标(成交)金额:188.9871200(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 武汉瑞德仪科技有限公司 高分辨X射线衍射仪 布鲁克 D8 Discover 1台 188.98712
  • 220万!中山大学光电材料与技术国家重点实验室高分辨X射线衍射仪采购项目
    项目编号:中大招(货)[2022]459号项目名称:中山大学光电材料与技术国家重点实验室高分辨X射线衍射仪采购项目预算金额:220.0000000 万元(人民币)采购需求:1、招标采购项目内容及数量:高分辨X射线衍射仪,1台(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。2、项目预算及经费来源:项目预算 2,200,000.00 元人民币。经费来源为财政性资金。合同履行期限:合同签订后10个月内完成交货及安装。本项目( 不接受 )联合体投标。
  • 高通量、多信息通道、高分辨电子衍射成像技术获江苏省物理学会科学技术一等奖
    p  近日,第二届江苏省物理学会公布了江苏省物理杰出青年奖、获江苏省物理教育贡献奖、江苏省物理学会科学技术奖获奖名单。共有2人获江苏省物理杰出青年奖,4人获江苏省物理教育贡献奖,2项成果分获江苏省物理学会科学技术奖一等奖和二等奖。南京大学王鹏教授团队的《高通量、多信息通道、高分辨电子衍射成像技术》项目获江苏省物理学会科学技术奖一等奖,项目完成人为王鹏,丁致远,高斯,宋苾莹。/pp  strong王鹏教授简介/strong:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/d85fa0aa-54ab-4149-8421-31c1ec66e601.jpg" title="南京大学教授 王鹏.jpg" alt="南京大学教授 王鹏.jpg"//pp style="text-align: center "strong南京大学教授 王鹏/strong/pp  王鹏,现为南京大学现代工程与应用科学学院教授,博士导师,首批国家海外高层次人才计划入选者。2006年英国利物浦大学博士学位,先后在英国国家超高分辨率电镜室SuperSTEM和牛津大学电镜中心作博士后研究。2012年回国到南京大学任教, 组建南京大学亚原子分辨透射电镜中心,具有国际领先水平两台高分辨透射电镜(球差校正TITAN G2 60-300 Cubed和TF20)。/pp  主要从事以球差校正电子显微学和电子能量损失能谱学的研究,以及其在信息和能源存储等低维功能材料高分辨表征上的应用。已在SCI期刊上发表论文100余篇,包括Nature Electronics、Nature Catalysis、Nature Communications、Physical Review Letters、Advanced Materials、Nano Letter 和Nano Energy等。获得多项发明专利,包括10件中国专利,其中7件授权。主持科技部“973“项目和多项国家自然科学基金,参与国际合作项目以及其他国家和省部级项目的研究。/pp  strong研究方向/strong:/pp  高分辨成像与智能算法、信息和能源存储材料表征、二维材料原子结构研究/pp  strong电子衍射成像研究部分成果/strong:/pp  Song, Biying and Ding, Zhiyuan and Allen, Christopher S. and Sawada, Hidetaka and Zhang, Fucai and Pan, Xiaoqing and Warner, Jamie and Kirkland, Angus I. and Wang, Peng.(2018). Hollow Electron Ptychographic Diffractive Imaging .Phys. Rev. Lett., 121(14),146101.doi :10.1103/PhysRevLett.121.146101  /pp  Gao, S., Ding, Z., Pan, X., Kirkland, A., & Wang, P. (2019). 3D Electron Ptychography. Microscopy and Microanalysis, 25(S2), 1802-1803. doi:10.1017/S1431927619009747/pp  Song, B., Ding, Z., Allen, C., Sawada, H., Pan, X., Kirkland, A., & Wang, P. (2019). Electron ptychography using an ultrafast direct electron detector. Microscopy and Microanalysis, 25(S2), 20-21. doi:10.1017/S1431927619000837/pp  /ppbr//p
  • 突破传统光学衍射极限:新一代Nanoimager可轻松实现超分辨荧光成像
    近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司新推出的超分辨荧光显微镜—Nanoimager,由牛津大学Achillefs Kapanidis教授团队经过8年时间研发而成,是全球台大视野单分子FRET显微镜,将以超强的分辨率在单分子示踪、活细胞成像、蛋白互作、3D成像等研究领域发挥重要作用。Nanoimager主要技术特点? 横向分辨率20nm;纵向分辨率50nm ? 稳 定 性:1 μm/K的漂移;1 nm (1 Hz to 500 Hz)振幅 ? 支持同时双色成像和顺序四色成像 ? 采用1激光,使用安全 图1 Nanoimager 超分辨成像 Nanoimager采用PALM/dSTORM技术和光激活定位显微技术 (PALM) ,利用单分子定位算法并结合光学系统艾里斑的形状,以超高精度(纳米量)获得荧光分子的中心位置,然后用CCD将其信号进行采集转化终得到分辨率为20nm的超分辨图像。 Nanoimager主要应用案例1、单分子FRET FRET是一种两个荧光分子间非辐射性的能量转移方式,反映两者的分子间距(一般在2 – 10 nm的间距发生)。Nanoimager是台用于大视野单分子荧光共振能量转移(smFRET)的商业化仪器,其适用于smFRET的关键功能包括:同时双色成像;单分子散射光强度和总体平均的实时分析;视野中数千个单分子的高通量成像,以及用交替荧光激发 (ALEX) smFRET的功能来定量化学计量与FRET效率。图2是smFRET用于研究单个DNA霍利迪交叉的动力学。 图2 用smFRET检测霍利迪交叉(HJs)的实时构象变化 2、单分子示踪 Nanoimager可以在两个通道同时示踪细胞或者纯化物样品中的单分子 (图3),并计算扩散系数。细胞中分子的扩散系数可以被示踪,如酶或蛋白可以通过药物和抗生素的反应来示踪。低扩散率可以表示标记分子与另一分子或结构的相互作用或相结合。 Nanoimager可以直接反映纯化样品中荧光粒子的扩散率和预估大小,具有敏感性 (单荧光分子别) 和特异性 (双色标记可以显著降低检测杂质的可能性)。 图3 Nanoimager双色追踪单分子/粒子 3、更大视野的成像 Nanoimager的每个成像通道均有50 μm x 80 μm的大视野,且照明均匀,可以实现单分子或细胞的高通量成像并快速收集数据。图4显示了以10倍于其他技术的速度对突变的大肠杆菌细胞的不同表型进行成像。为了获得不同表型的可靠的结果,需要对大量细胞进行比较。使用具有大视野,能够自动对焦和自动获取数据的Nanoimager可以显著加快整个实验速度和通量。将大视野与超分辨成像结合是Nanoimager的特优势。 图4 Nanoimager的大视野可以在高分辨率下实现高通量成像 超分辨荧光显微镜以其特的优势,已成为生物医学研究的重要工具。如果您想了解更多关于Nanoimager的技术和应用详情,欢迎致电010-85120280咨询,我们会尽快给您满意的答复! 相关产品及链接 1、新一代超分辨荧光显微镜 (NEW):http://www.instrument.com.cn/netshow/SH100980/C273664.htm2、LaVision BioTec光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm3、双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm4、LVEM5 台式透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C157727.htm
  • 陈黎明教授团队成功研制一套飞秒时间分辨的X射线衍射系统
    在超快时间尺度上获得物质的动力学演化过程一直是人们努力的重要方向。基于激光等离子体相互作用产生的飞秒硬X射线源由于具有脉宽短、亮度高和源尺寸小等突出的优点,可广泛应用于瞬态微成像/相衬成像、时间分辨吸收谱学和X射线衍射等实验研究中。其中,激光泵浦--超快X射线衍射的手段能为我们提供飞秒级时间尺度、亚埃级空间尺度上材料的结构动力学信息。中国科学院物理研究所/北京凝聚态物理国家研究中心光物理实验室L05组博士研究生朱常青(指导教师为原物理所陈黎明研究员、现上海交通大学物理与天文学院教授),利用L05组的高脉冲能量(100mJ)、低重频(10Hz)激光器,研制了一套飞秒时间分辨的X射线衍射系统。该装置工作在相对论的激光强度(2×1019W/cm2)下,可以有效地激发高Z金属材料的Kα射线,并且能够通过优化X射线多层膜反射镜,进一步提高X射线的聚焦强度。利用该装置对SrCoO2.5薄膜样品的瞬态结构进行了探测,结果表明该装置不仅可以用来分析样品的超快动力学行为,并且和KHz等小能量装置相比对于不同的特殊应用具有高度的灵活性。该装置有望将来在物理、化学和生物领域的超快动力学探测方面发挥重要作用。相关成果以“快速通讯”的形式发表于最近的Chinese Physics B上,并被选为该期的亮点文章。这也是该团队利用激光超快X射线源在成像和衍射应用方面,最新获得的创新成果。前序成果包括Rev. Sci. Instrum. 85 113304 (2014)、Chin. Phys. B 24 108701 (2015)等。该实验室装置的建成,也为物理所怀柔综合极端条件用户装置中的超快X射线动力学子系统(XD3)的建设,提供了有益的经验。该成果的取得也得到了XD3研制团队成员鲁欣副研究员、李毅飞博士和王进光博士的大力支持。这项工作及相关研究得到了国家重点研发计划、科学挑战计划、国家自然科学基金和中科院先导专项的支持。文章链接:http://cpb.iphy.ac.cn/EN/10.1088/1674-1056/ac0baf 图1. 超快X射线衍射装置示意图图2. 在光泵浦下超快X射线衍射信号随延时的变化:(a)泵浦光作用20ps后劳厄衍射斑的角移;(b)不同的泵浦-探针延时,所对应的光致拉伸度。
  • 综述:太赫兹近场超分辨成像,不断突破衍射极限
    太赫兹(THz)辐射频率处于电子学和光学频率之间,因此具备多种光电子特性。THz成像作为THz辐射最重要的应用方面,在国防、通信、生物、医学和材料有着巨大应用潜力。THz 时域光谱系统(THz-TDS)被广泛用于角膜含水量测量、角膜瘢痕成像、蛋白浓度检测和细胞标志物检测等。然而受限于衍射极限存在,THz成像分辨率一般被限制在毫米量级。近场光学成像技术使用空间尺度极小探针直接探测样品表面亚波长尺度细节,可有效突破衍射极限,是实现THz超分辨成像的重要路径。目前,根据探针工作方式的区别,THz近场成像技术可分为孔径探针THz近场成像和散射探针THz近场成像。孔径探针THz近场成像方案需要平衡空间分辨率、截至频率和近场耦合效率之间关系,其成像分辨率仍无法突破至nm量级。散射探针THz近场成像分辨率与探针几何结构和探针-样品表面距离有关,截至目前其成像分辨率可以突破至0.3 nm。本文综述了THz超分辨成像的基本原理及最新进展,围绕孔径探针和散射探针两种主流的THz近场成像技术,详述其在成像原理、成像质量与成像分辨率等方面的突破,并对THz超分辨成像做出总结与展望。图1 THz近场成像及其应用场景孔径探针孔径探针THz近场成像主要利用亚波长结构形成THz辐射源或THz探测器在近场范围内扫描样品表面提升成像空间分辨率。依据孔径类型分类,孔径探针THz近场成像共有四种技术路线,分别是物理孔径、动态孔径、人工表面等离子激元和近场天线。物理孔径探针通常为锥形波导,可以将THz辐射局域成亚波长THz辐射源并扫描样品,提升空间分辨率。其优势在于:结构简单制备容易,可根据THz源设计波导几何结构提升THz耦合效率。图2 锥形物理孔径THz近场成像示意图动态孔径THz成像系统主要有两种实现方式。一种是基于光泵浦方案,该方案激发半导体材料形成特定分布的载流子,进而调制THz空间分布。另一种是基于飞秒激光成丝方案,该方案应用光丝对THz辐射强束缚作用,或是应用交叉光丝,形成动态微孔调制THz空间分布。动态孔径技术优势在于,一方面可以和压缩感知技术结合在保证空间分辨率情况下极大提升成像速度,另一方面基于飞秒激光光丝可以进一步提升成像分辨率至20 μm。图3 交叉光丝形成动态孔径实现THz近场成像人工表面等离子激元器件表面具有周期结构,通过改变材料表面等效介电常数实现THz波近场聚焦。常规调制方案包括金属锥形结构聚焦探针、金属周期结构THz超透镜和石墨烯THz超透镜等;其适用波长范围广、聚焦效率高具有一定的应用前景,尽管目前还处于实验室阶段,但是随着THz器件加工技术逐渐发展,相信在不久的将来其实用性会得到提升。图4 人工表面等离子激元器件实现THz近场成像近场THz天线这是一种微型近场THz探测器,优势为在提升空间分辨率同时能够保证时间分辨率,另一方面THz近场天线可以被集成至片上,拓宽了其使用场景。 图5 近场天线实现THz近场成像散射探针散射探针THz近场成像系统,是通过测量探针与样品表面在外场作用下的近场耦合效应反映样品表面信息。其适用于宽谱THz光源,成像空间分辨率与探针几何结构和探针-样品表面间距有关最高可以达到0.3 nm量级。由于背景散射信号强度远大于近场散射信号强度,散射探针THz近场成像系统主要技术难点在于信号收集与提取。目前,较为成熟的近场散射信号提取技术包括:自零差方案、正交零差方案、伪外差方案和合成光学全息方案等。在保障扫描时间的前提下,伪外差方案成像对比度高且具备相位分辨能力,因此被广泛采用。散射探针THz近场成像系统通常使用扫描隧道显微镜或者原子力显微镜作为提供近场条件的媒介,可将探针针尖与样品表面间距精确控制在20 nm范围内。基于扫描隧道显微镜的散射THz近场成像系统优势:1)其空间分辨率最高可以提升至0.3 nm;2)基于扫描隧道显微镜增强隧穿电流原理,可以增强近场散射信号。缺点:扫描隧道显微镜是通过测量针尖与样品表面隧穿电流实时反馈控制针尖与样品表面间距,故此种方案不适用于不导电样品。图6 基于扫描隧道显微镜搭建的近场成像系统及其一维扫描结果图基于原子力显微镜的散射THz近场成像系统原子力显微镜,因其和扫描隧道显微镜类似,具有卓越的空间分辨能力,是搭建散射探针THz近场成像系统的主力设备,同时能够通过检测针尖与样品之间相互作用反馈控制针尖和样品间距,故该系统可以适用于多种样品。图7 基于原子力显微镜搭建的近场成像系统及其扫描结果图散射探针THz近场成像不仅可以将THz成像分辨率提升至nm量级,还可以被应用于检测样品表面载流子运动。与光学波段和红外波段成像技术相比,有掺杂的半导体或者半金属材料对THz波段更加敏感,因此散射探针THz近场成像技术还被应用在nm量级表征载流子数目和分布情况。 总结与展望随着强THz产生技术和高灵敏THz探测技术的不断发展,超分辨THz成像技术得到了长足发展。孔径探针和散射探针THz成像方案各有侧重,在不同领域得到广泛应用。根据以上总结,从应用角度出发对近场THz成像技术作出展望:(1)成像速度。目前大多数超分辨THz成像方案都是采用逐点扫描模式,尽管成像分辨率得到很大提升,但是成像速度较慢。(2)装置集成化与轻量化。高效的桌面式近场THz成像系统能够助力此项技术得以推广。(3)样品多样性。目前,nm量级THz近场成像技术主要被应用于材料学研究,未来可以充分发挥THz辐射优势,将检测样品扩展至生物大分子甚至活体。(4)大范围成像。未来可以在平衡成像质量与成像速度前提下,实现nm量级大范围样品成像。综上所述,本文概括了超分辨近场成像技术的多个技术指标,分别是空间分辨率、时间分辨率、相位分辨能力、成像速度、成像对比度和装置复杂性。在保证空间分辨率的前提下,提升其他技术指标仍然任重而道远。
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片
  • ACS:膨胀显微法与STED结合新法,衍射极限分辨提高30倍
    p  strong仪器信息网讯 /strong在提高显微镜分辨率方面,两种方法结合往往比一种方法更好。近日,德国马克斯普朗克分子细胞生物学与遗传学研究所Helge Ewers博士及其同事发表论文(ACS Nano 2018, DOI:10.1021/acsnano.8b00776),文中介绍了一种新的提高显微镜分辨率的方法——ExSTED,即将受激发射损耗(STED)荧光显微术与膨胀显微镜法相结合的方法。STED显微术使用一个环形的激光束精确地控制在标记样本上的荧光团激活的位置。通常情况下,STED的分辨率可以将显微镜光学衍射极限提升10倍。膨胀显微镜法是将固定样品嵌入水凝胶中,将样品溶胀并拉伸至其原始尺寸的四倍,导致物理分辨率提高的方法。将这两种方法结合,Helge Ewers博士及其同事获得了比光学衍射极限提升30倍的效果。/pp style="text-align: center"img style="width: 450px height: 388px " src="http://img1.17img.cn/17img/images/201805/insimg/26d1f3ac-c39c-4d29-8d6b-f2cda2131146.jpg" title="01.jpg" height="388" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "ExSTED法观察细胞中微管的图像,色标表示三维空间中各种小管的深度(来自ACS Nano)/span/pp  文章中使用ExSTED方法对三维细胞的微管网络进行成像。 由于扩大样品扩散荧光标记,所有样品观察区域的信号都大大减少。 为了抵消信号减少,研究人员使用多种抗体来增加添加到微管中的荧光标记的数量。他们希望通过第二次扩展样本和寻找放大荧光信号的方法来进一步提高显微镜的分辨率。/p
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。  微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。  通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。  定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
  • Science:低成本的超高分辨率成像
    显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。  研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法非常简单成本也很低,能用普通共聚焦显微镜达到超越200nm的分辨率。这项发表在Science上的成果,能使更多科学家接触到超高分辨率成像。  &ldquo 你在常规显微镜下就可以实现超高分辨率成像,不需要购买新设备,&rdquo 文章的资深作者,MIT的副教授Ed Boyden说,Fei Chen和Paul Tillberg是这篇文章的第一作者。  物理放大  衍射极限曾经是光学显微镜的最大障碍之一,使其分辨率无法突破200nm,然而这个尺度恰恰是生物学家最感兴趣的。为了克服这个问题,科学家们开发了超高分辨率显微技术,该技术获得了去年的诺贝尔化学奖。  然而,超高分辨率显微镜最适合用于薄样本,成像大样本的时间比较长。&ldquo 如果想要分析大脑,或者理解肿瘤转移中的癌细胞,或者研究攻击自身的免疫细胞,你需要在高分辨率水平上观察大块的组织,&rdquo Boyden说。  为了使组织样本更容易成像,研究人员使用了聚丙烯酸盐制成的凝胶,这是一种高度吸水的材料,通常用于尿不湿中。  研究人员首先用抗体标记想要研究的细胞组分或蛋白,这种抗体不仅连有荧光染料,还能够将染料连到聚丙烯酸盐上。研究人员向样本添加聚丙烯酸盐并使其形成凝胶,然后消化掉起连接作用的蛋白,允许样本均匀膨胀。样本遇到无盐的水之后膨胀了100倍,但荧光标记在整个组织中的定位并没有改变。  人们一般用普通共聚焦显微镜进行荧光成像,不过它的分辨率只能达到几百纳米。研究人员通过放大样本,用共聚焦显微镜达到了70nm的分辨率。&ldquo 这种膨胀显微技术能够很好的整合到实验室已有的显微系统中,&rdquo Chen补充道。  大样本  MIT的研究团队用这种膨胀显微技术,在常规共聚焦显微镜下成像了500× 200× 100微米的大脑组织切片。而其他超高分辨率技术难以成像这么大的样本。  &ldquo 其他技术目前可以达到更高的分辨率,但使用起来比较难也比较慢,&rdquo Tillberg说。&ldquo 我们这个方法的优势在于,使用简单而且支持大样本。&rdquo   研究人员认为,这一技术对于研究大脑的神经连接非常有用。Boyden的团队将注意力放在大脑研究上,不过这一技术同样适用于肿瘤转移、肿瘤血管生成、自身免疫疾病等研究。
  • 1229万!哈尔滨工程大学超高分辨场发射扫描电镜等和新疆师范大学实验仪设备采购项目
    一、项目一(一)项目基本情况项目编号:2024-GFCG-126项目名称:哈尔滨工程大学超高分辨场发射扫描电镜及电子背散射衍射分析系统采购项目预算金额:829.000000 万元(人民币)最高限价(如有):829.000000 万元(人民币)采购需求:采购标的名称单位数量是否接受进口产品投标简要需求超高分辨场发射扫描电镜及电子背散射衍射分析系统套1是能够获取样品表面微观结构形貌信息、成分衬度信息,同时对样品表面微观区域内元素成分进行定性、定量分析以及晶体学取向等分析。 合同履行期限:合同签订后240天内完成交货、安装、调试并具备验收条件本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年05月20日 至 2024年05月24日,每天上午8:30至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:按本公告第三部分规定的方式方式:邮件获取售价:¥500.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:佟龙、王金丹、朱国凤、郑天琪 0451-55671212      2.采购代理机构信息名 称:宜国发项目管理有限公司            地 址:哈尔滨市道里区群力第四大道399号汇智广场中楼401            联系方式:佟龙、王金丹、朱国凤、郑天琪 0451-55671212            3.项目联系方式项目联系人:佟龙、王金丹、朱国凤、郑天琪电 话:  0451-55671212二、项目二(一)项目基本情况项目编号:SJX—2024-186项目名称:新疆师范大学生物技术与工程创新实验室建设项目(二期)采购方式:公开招标预算金额(元):4000000最高限价(元):1800000,1150000,1050000采购需求:标项一 标项名称:新疆师范大学新疆师范大学生物技术与工程创新实验室建设项目(二期)第一包:分子生化实验仪器和设备 数量:不限 预算金额(元):1800000 简要规格描述或项目基本概况介绍、用途:新疆师范大学生物技术与工程创新实验室建设项目(二期)第一包:分子生化实验仪器和设备采购,具体内容详见招标文件采购需求。 备注:标项二 标项名称:新疆师范大学新疆师范大学生物技术与工程创新实验室建设项目(二期)第二包:细胞生物学仪器和设备 数量:不限 预算金额(元):1150000 简要规格描述或项目基本概况介绍、用途:新疆师范大学生物技术与工程创新实验室建设项目(二期)第二包:细胞生物学仪器和设备采购,具体内容详见招标文件采购需求。 备注:标项三 标项名称:新疆师范大学新疆师范大学生物技术与工程创新实验室建设项目(二期)第三包:冰箱、培养箱、离心机和教学模具等设备 数量:不限 预算金额(元):1050000 简要规格描述或项目基本概况介绍、用途:新疆师范大学生物技术与工程创新实验室建设项目(二期)第三包:冰箱、培养箱、离心机和教学模具等设备采购,具体内容详见招标文件采购需求。 备注:合同履约期限:标项 1、2、3,合同签订之日起至质保期结束之日止。本项目(否)接受联合体投标。(二)获取招标文件时间:2024年05月18日至2024年05月24日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:政采云平台线上方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件),或者点击采购公告底部潜在供应商“获取采购文件”,页面跳转后登陆,直接获取采购文件。售价(元):0(三)对本次采购提出询问,请按以下方式联系1.采购人信息名 称:新疆师范大学地 址:新疆维吾尔自治区乌鲁木齐市水磨沟区观园路100号新疆师范大学资产管理处联系方式:0991-41122882.采购代理机构信息名 称:新疆世纪星工程咨询有限公司地 址:乌鲁木齐经济技术开发区二期黄山街一品九点阳光德港大厦B座20楼联系方式:0991-36783033.项目联系方式项目联系人:李梦媛、李航、杜萍、范艳娥电 话:0991-3678303
  • 1272万!超高分辨冷场发射扫描电镜、多场原位测试用扫描电镜等仪器设备
    一、项目基本情况1.项目编号:[350001]CCZB[GK]2023010项目名称:超高分辨冷场发射扫描电镜等仪器设备采购方式:公开招标预算金额:7,225,000.00元采购包1(超高分辨冷场发射扫描电镜):采购包预算金额:3,500,000.00元采购包最高限价: 3,500,000.00元投标保证金: 70,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02109900-其他仪器仪表超高分辨冷场发射扫描电镜1(套)是详见招标文件3,500,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。采购包2(旋转流变仪):采购包预算金额:900,000.00元采购包最高限价: 900,000.00元投标保证金: 18,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业2-1A02109900-其他仪器仪表旋转流变仪1(套)是详见招标文件900,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。采购包3(扫描探针显微镜):采购包预算金额:1,205,000.00元采购包最高限价: 1,205,000.00元投标保证金: 24,100.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业3-1A02109900-其他仪器仪表扫描探针显微镜1(套)是详见招标文件1,205,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。采购包4(凝胶渗透色谱):采购包预算金额:420,000.00元采购包最高限价: 420,000.00元投标保证金: 8,400.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业4-1A02109900-其他仪器仪表凝胶渗透色谱1(套)是详见招标文件420,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。采购包5(广角动静态光散射系统):采购包预算金额:1,200,000.00元采购包最高限价: 1,200,000.00元投标保证金: 24,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业5-1A02109900-其他仪器仪表广角动静态光散射系统1(套)是详见招标文件1,200,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。2.项目编号:OITC-G230311159项目名称:中国科学院金属研究所多场原位测试用扫描电镜采购项目预算金额:550.0000000 万元(人民币)最高限价(如有):550.0000000 万元(人民币)采购需求: 包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1多场原位测试用扫描电镜1套高分辨率成像观察,快速获取样品表面微观结构形貌信息、成分衬度信息,原位测试下进行高分辨观察样品。搭载X射线能谱仪附件,可同时对样品表面微观区域内的元素成分进行定性和定量分析;搭载高速高灵敏高分辨EBSD附件,能够对晶体材料进行空间分辨率亚微米级的电子背散射衍射,能够给出结晶学数据。合同生效后9个月550万元中国科学院金属研究所是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后9个月内交货。本项目( 不接受 )联合体投标。二、获取招标文件1.时间: 2023-06-27 至 2023-07-04 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费2.时间:2023年06月29日 至 2023年07月06日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录“东方招标”平台http://www.oitccas.com注册并购买。方式:1)登陆“东方招标”平台(http://http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://http://www.oitccas.com/pages/sign_in.html?page=mine)完成供应商注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的供应商无需重新注册。磋商文件售价:每包人民币600元。如决定购买磋商文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。(一)采购人信息名称:福建师范大学地址:福建省福州市闽侯县上街镇乌龙江大道18号福建师范大学旗山校区联系方式:郑老师136968399892.采购代理机构信息(如有)名称:福建省承诚招标代理有限公司地址:福州市鼓楼区梁厝路2号华雄大厦3号楼17层联系方式:李杰0591-87554016/87554653/邮箱:fjscczb@163.com3.项目联系方式项目联系人:李杰电话:0591-87554016网址: zfcg.czt.fujian.gov.cn开户名:福建省承诚招标代理有限公司(二)1.采购人信息地址:沈阳市沈河区文化路72号        联系方式:佟老师;024-23971066      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508;010-68290599;010-68290530             3.项目联系方式项目联系人:佟老师电 话:  024-23971066
  • 徕卡超高分辨显微技术-病毒学相关研究应用
    引言2020年注定是不平凡的一年,也将是载入史册的一年。一个不太热门的研究,一下子进入了公众视野,给我们上了一堂沉重的课。那么如何有效防范病毒传播,如何进行专业防控和疫苗研发,这都需要对病毒基本特征和机理深入研究。 然而,由于受到光学衍射极限的限制,普通光学显微镜分辨率只能达到200nm,而通常病毒和亚细胞结构的尺寸只有几十到200多纳米,远远小于普通光镜的分辨率。超高分辨显微技术的出现,为观测这类精细结构提供了可能,因此也得到了越来越广泛的应用。作为超高分辨技术的先驱,受激发射损耗(STimulated Emission Depletion, STED)技术更是在生命科学领域尤其是病毒学相关研究中发挥着重要作用。 本次为大家分享STED技术在病毒学研究中的应用和新进展,助力生命科学研究和发展。 STED基本原理2014年诺贝尔化学奖授予三位科学家,以表彰他们发明超高分辨显微技术。其中Stefan Hell发明了STED技术,而徕卡公司也是第一个将其商业化。从2007年开始,徕卡STED产品不断创新和优化,已经拥有近13年的STED技术积累。2014年首次推出SP8 STED 3X,即荣获当年的R&D100大奖。2019年更是创新性的推出了τ-STED,进一步在提升分辨率的同时降低了激光功率,更适合活细胞超高分辨成像。2014年诺贝尔化学奖获得者,左起分别是:Eric Betzig、Stefan W. Hell、William E. Moerner说了这么多,STED技术原理到底是什么呢?很简单。我们想象一下,一个点发射出的荧光信号,被检测后通常是一个衍射斑;如果我们同时使用一个甜甜圈样的激光将其周围的信号擦除掉,只允许中心很小的荧光信号发射出来,这样分辨率不就提高了吗。这个起擦除作用的激光便是STED激光,也叫损耗光,利用的是荧光的受激发射损耗原理。之后,通过对图像的扫描,即可直接呈现超高分辨图像,无需任何后续计算过程。同时,根据公式,可通过增加STED激光功率来提升图像分辨率。STED原理示意图:STED通过受激发射损耗去除衍射环上的荧光信号,大大缩小有效的激发区域,从而改写了分辨率公式,提高了光学分辨率 STED技术在病毒学研究中的应用实例 01第一个应用实例,是对病毒精细结构的观察。2012年发表在国际顶级期刊science上,标题为:荧光纳米显微镜(STED)揭示成熟依赖的HIV-1病毒表面蛋白的再分布特征【1】。图中绿色代表HIV-1病毒粒子,红色表示病毒表面的膜蛋白。可以看到,通过普通共聚焦无法分辨膜蛋白的具体定位位置,很模糊。包膜糖蛋白gp120(红色)与病毒粒子(绿色)90%共定位,信号模糊,分辨不出细节。而STED成像可以发现,大多数成熟病毒粒子表现出单一的包膜蛋白Env信号或焦点(图1B),而大多数未成熟粒子表现出两个或两个以上的包膜蛋白Env信号(图1D)。 02第二个应用实例,是对病毒成熟过程的观察。标题为:STED纳米显微镜揭示HIV病毒蛋白水解成熟的时间过程【2】。利用STED显微镜发现在HIV-1病毒成熟和未成熟条件下,可非常清晰区分其Gag蛋白的不同结构特征。未成熟病毒的Gag蛋白呈中空环状(图a),而成熟病毒中呈实心固缩状(图b)。作者巧妙的利用光控方法,进行STED时间序列成像。在400nm紫外光照后,PDI(光催化降解的蛋白酶抑制剂)降解,Gag蛋白能够被蛋白酶水解切割,进而病毒成熟。STED时间序列成像可轻松捕获病毒从未成熟到成熟过程,Gag蛋白重排的结构变化过程。03第三个应用实例,是对病毒基因组示踪。标题为:以单分子分辨率示踪宿主细胞中的病毒基因组【3】。腺病毒DNA通过AF594标记的叠氮点击反应显示,衣壳蛋白通过抗hexon的抗体识别,并且只有在脱壳后,病毒DNA才可以被反应检测到荧光信号。 通过gated STED超高分辨显微成像,可显著提高分辨率,清晰呈现病毒衣壳和DNA的真实尺寸大小。腺病毒衣壳实际大小约80nm,gSTED显示约110nm(包含一二抗尺寸),与实际一致。gSTED显示被衣壳蛋白包裹的病毒DNA尺寸略小于80nm,也与衣壳尺寸符合。 04第四个应用实例,是对病毒基因组复制的观察。标题为:利用STED超高分辨显微镜观察复制的HSV-1病毒【4】。值得一提的是,本文由中科院昆明动物所周巨民老师课题组与徕卡公司合作完成。病毒基因组复制是单纯疱疹病毒 1 (HSV-1) 溶解感染周期的重要事件。目前由于检测和观察方法的局限,病毒复制过程的细节仍难以捕捉。为了获得更加详细的 HSV-1 复制机制,本文使用了STED受激发射损耗显微镜,结合荧光原位杂交 (FISH) 和免疫荧光,对HSV-1 复制过程进行了精细观察。 作者设计了位于HSV-1病毒基因组两端的探针,分别以DIG(绿色)和Biotin(红色)进行标记,在病毒复制的早期和晚期,分别成像观察。STED成像发现,在复制的早期,红绿两色信号的共定位程度较高;而在复制后期,两个系数均发生了明显降低,表明HSV-1 基因组在复制过程中经历了从紧凑到松弛的动态结构变化,同时需要占用较大的空间进行复制。 05第五个应用实例,是对病毒侵染和传播过程捕获的研究。标题为:ARP2和病毒诱导的丝状伪足促进了人类呼吸道合胞体病毒的传播【5】。利用STED超高分辨显微镜进行成像,发现感染了RSV病毒的细胞(图A第一行,标记为A和C)外存在大量的丝状伪足(红色),且富集有大量病毒颗粒(绿色);暗示可通过丝状伪足将RSV病毒传递给邻近细胞。而在ARP2敲除的细胞中(图A第二行),即便感染了RSV病毒,细胞的丝状伪足数量都大量减少,病毒在细胞间的传播不明显。放大图像(图B),可观察到RSV病毒主要分布在丝状伪足的尖端,进一步验证了病毒可通过诱导丝状伪足的产生来促进其在细胞间的传播。 如何进一步提高STED分辨率?根据公式我们可以知道,通过增加STED激光功率就可直接增加图像的分辨率,这个方法最为简单;但问题是不利于活细胞成像。那么如何在不提高激光功率的前提下,进一步提高STED分辨率呢?有以下三种方法,分别是gated STED,gated STED + Lightning,和徕卡新推出的τ-STED。 01以两个距离76nm的DNA Origami为例,gated STED在不改变STED激光功率的前提下,逐步缩小荧光寿命的检测范围,可逐步提高分辨率,清晰地分辨两个点信号。02对中心粒的gated STED + Lightning成像结果,分辨率(半高宽)可达22nm!03新一代STED:τ-STED,即将STED和超快速的荧光寿命相结合,实时呈现超高清分辨图像。它在已有STED优势的基础上,可以更低激光功率获得更高图像分辨率,进一步拓展荧光染料的选择,非常适合长时间的活细胞成像。结语徕卡STED拥有13年的研发、技术和服务经验,也具有以下突出优势特点,是病毒学研究的绝佳利器:“纯光学”超高分辨显微技术,所见即所得全光谱、多色超高分辨成像,提供592nm/660nm/775nm三根 STED谱线专为STED设计的多款满足不同应用需求的物镜使用常规荧光染料及荧光蛋白,制样简单、方便τ-STED低光毒性,更适合活细胞超高分辨成像快速扫描头能够更好的保护样品LAS X Navigator能够轻松寻找目标视野 此外,整个STED是搭载在徕卡共聚焦平台上的,因此也拥有共聚焦的所有优点。相信徕卡STED超高分辨显微镜能够更多地贡献超高清图像结果,助力病毒学和生命科学研究发展。 参考文献:【1】Chojnacki J, Staudt T, Glass B, et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy.[J]. Science, 2012, 338(6106): 524-528.【2】Hanne J, Gottfert F, Schimer J, et al. Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation[J]. ACS Nano, 2016, 10(9): 8215-8222.【3】Wang IH, Suomalainen M, Andriasyan V, et al. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe. 2013 14(4):468–480. 【4】Li Z, Fang C, Su Y, et al. Visualizing the replicating HSV-1 virus using STED super-resolution microscopy[J]. Virology Journal, 2016, 13(1): 65-65.【5】Mehedi M, Mccarty T, Martin S E, et al. Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread[J]. PLOS Pathogens, 2016, 12(12).
  • 华中科技大学190.00万元采购X射线衍射仪
    基本信息 关键内容: X射线衍射仪 开标时间: 2022-03-16 14:30 采购金额: 190.00万元 采购单位: 华中科技大学 采购联系人: 李老师 采购联系方式: 立即查看 招标代理机构: 上海中世建设咨询有限公司 代理联系人: 王帆 代理联系方式: 立即查看 详细信息 华中科技大学高分辨X射线衍射仪采购项目公开招标公告 湖北省-武汉市-洪山区 状态:公告 更新时间: 2022-02-22 华中科技大学高分辨X射线衍射仪采购项目公开招标公告 2022年02月22日 15:36 公告信息: 采购项目名称 华中科技大学高分辨X射线衍射仪采购项目 品目 货物/通用设备/仪器仪表/分析仪器/射线式分析仪器 采购单位 华中科技大学 行政区域 湖北省 公告时间 2022年02月22日 15:36 获取招标文件时间 2022年02月22日至2022年03月01日每日上午:9:00 至 11:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 线上方式获取,无须现场领购 开标时间 2022年03月16日 14:30 开标地点 武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A座709室会议室 预算金额 ¥190.000000万元(人民币) 联系人及联系方式: 项目联系人 王帆、秦贝、王静雅 项目联系电话 027-86602235-803、027-86602235-806 采购单位 华中科技大学 采购单位地址 湖北省武汉市洪山区珞喻路1037号 采购单位联系方式 李老师;027-87540659;hustcgzx@hust.edu.cn 代理机构名称 上海中世建设咨询有限公司 代理机构地址 武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A栋709室 代理机构联系方式 王帆、王静雅;027-86602235-803、027-86602235-807;wangfan@cwcc.net.cn 项目概况 华中科技大学高分辨X射线衍射仪采购项目 招标项目的潜在投标人应在线上方式获取,无须现场领购获取招标文件,并于2022年03月16日 14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:招案2021-4011(校内编号HW20210443) 项目名称:华中科技大学高分辨X射线衍射仪采购项目 预算金额:190.0000000 万元(人民币) 最高限价(如有):190.0000000 万元(人民币) 采购需求: 采购1台高分辨X射线衍射仪(详见招标文件第三部分 采购需求); 合同履行期限:合同签订后5个月内完成供货; 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本次采购若符合政府强制采购节能产品、鼓励环保产品、扶持福利企业、促进残疾人就业、促进中小企业发展、支持监狱和戒毒企业等政策,将落实相关政策; 3.本项目的特定资格要求:(1)至投标截止时间查询,未被列入“信用中国”(www.creditchina.gov.cn)失信被执行人名单、重大税收违法案件当事人名单和“中国政府采购网”(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单;(2)不存在下列情况:单位负责人为同一人或者存在直接控股、管理关系的不同投标人;(3)本项目非专门面向中小企业采购;(4)若投标人提供的产品为进口产品,且投标人不是制造商的,则必须取得制造商/总代理出具的授权书。 三、获取招标文件 时间:2022年02月22日 至 2022年03月01日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:线上方式获取,无须现场领购 方式:投标人需先在微信上关注“中世建咨”微信公众号,在主界面右下角点击“投标报名 - 购买标书”填写好相关信息后完成微信报名登记。标书费缴纳渠道为“中世建咨”微信公众号,投标人进行报名登记后按提示进行缴费,电子发票将于报名成功后的第二个工作日自动推送至投标人报名邮箱。 报名时需要提供的资料:法定代表人身份证明书或授权委托书(含被授权人身份证),资料中需写明投标人名称、项目名称、项目编号、法人姓名、授权人姓名(如有)、授权有效期限(如有)。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月16日 14点30分(北京时间) 开标时间:2022年03月16日 14点30分(北京时间) 地点:武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A座709室会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本公告发布媒体:中国政府采购网(www.ccgp.gov.cn) 、华中科技大学采购与招标中心网站(http://cgzx.hust.edu.cn/)。 2、本项目(接受)进口产品投标(进口产品是指通过中国海关报关验放进入中国境内且产自境外的产品)。 3、投标文件的递交可采用邮寄或快递的方式,不要求投标人至现场递交,投标人须保证投标文件在递交截止时间前按时到达。 招标代理机构保留收到投标文件的原始包装直至投标截止时间。投标人可不参加开标会。招标代理机构将按照规定程序组织开标,并对全过程进行录音录像并留档。开标会一览表将于开标会结束当天17:00前送发至投标人邮箱。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:华中科技大学 地址:湖北省武汉市洪山区珞喻路1037号 联系方式:李老师;027-87540659;hustcgzx@hust.edu.cn 2.采购代理机构信息 名 称:上海中世建设咨询有限公司 地 址:武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A栋709室 联系方式:王帆、王静雅;027-86602235-803、027-86602235-807;wangfan@cwcc.net.cn 3.项目联系方式 项目联系人:王帆、秦贝、王静雅 电 话: 027-86602235-803、027-86602235-806 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:X射线衍射仪 开标时间:2022-03-16 14:30 预算金额:190.00万元 采购单位:华中科技大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海中世建设咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中科技大学高分辨X射线衍射仪采购项目公开招标公告 湖北省-武汉市-洪山区 状态:公告 更新时间: 2022-02-22 华中科技大学高分辨X射线衍射仪采购项目公开招标公告 2022年02月22日 15:36 公告信息: 采购项目名称 华中科技大学高分辨X射线衍射仪采购项目 品目 货物/通用设备/仪器仪表/分析仪器/射线式分析仪器 采购单位 华中科技大学 行政区域 湖北省 公告时间 2022年02月22日 15:36 获取招标文件时间 2022年02月22日至2022年03月01日每日上午:9:00 至 11:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 线上方式获取,无须现场领购 开标时间 2022年03月16日 14:30 开标地点 武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A座709室会议室 预算金额 ¥190.000000万元(人民币) 联系人及联系方式: 项目联系人 王帆、秦贝、王静雅 项目联系电话 027-86602235-803、027-86602235-806 采购单位 华中科技大学 采购单位地址 湖北省武汉市洪山区珞喻路1037号 采购单位联系方式 李老师;027-87540659;hustcgzx@hust.edu.cn 代理机构名称 上海中世建设咨询有限公司 代理机构地址 武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A栋709室 代理机构联系方式 王帆、王静雅;027-86602235-803、027-86602235-807;wangfan@cwcc.net.cn 项目概况 华中科技大学高分辨X射线衍射仪采购项目 招标项目的潜在投标人应在线上方式获取,无须现场领购获取招标文件,并于2022年03月16日 14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:招案2021-4011(校内编号HW20210443) 项目名称:华中科技大学高分辨X射线衍射仪采购项目 预算金额:190.0000000 万元(人民币) 最高限价(如有):190.0000000 万元(人民币) 采购需求: 采购1台高分辨X射线衍射仪(详见招标文件第三部分 采购需求); 合同履行期限:合同签订后5个月内完成供货; 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本次采购若符合政府强制采购节能产品、鼓励环保产品、扶持福利企业、促进残疾人就业、促进中小企业发展、支持监狱和戒毒企业等政策,将落实相关政策; 3.本项目的特定资格要求:(1)至投标截止时间查询,未被列入“信用中国”(www.creditchina.gov.cn)失信被执行人名单、重大税收违法案件当事人名单和“中国政府采购网”(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单;(2)不存在下列情况:单位负责人为同一人或者存在直接控股、管理关系的不同投标人;(3)本项目非专门面向中小企业采购;(4)若投标人提供的产品为进口产品,且投标人不是制造商的,则必须取得制造商/总代理出具的授权书。 三、获取招标文件 时间:2022年02月22日 至 2022年03月01日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:线上方式获取,无须现场领购 方式:投标人需先在微信上关注“中世建咨”微信公众号,在主界面右下角点击“投标报名 - 购买标书”填写好相关信息后完成微信报名登记。标书费缴纳渠道为“中世建咨”微信公众号,投标人进行报名登记后按提示进行缴费,电子发票将于报名成功后的第二个工作日自动推送至投标人报名邮箱。 报名时需要提供的资料:法定代表人身份证明书或授权委托书(含被授权人身份证),资料中需写明投标人名称、项目名称、项目编号、法人姓名、授权人姓名(如有)、授权有效期限(如有)。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月16日 14点30分(北京时间) 开标时间:2022年03月16日 14点30分(北京时间) 地点:武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A座709室会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本公告发布媒体:中国政府采购网(www.ccgp.gov.cn) 、华中科技大学采购与招标中心网站(http://cgzx.hust.edu.cn/)。 2、本项目(接受)进口产品投标(进口产品是指通过中国海关报关验放进入中国境内且产自境外的产品)。 3、投标文件的递交可采用邮寄或快递的方式,不要求投标人至现场递交,投标人须保证投标文件在递交截止时间前按时到达。 招标代理机构保留收到投标文件的原始包装直至投标截止时间。投标人可不参加开标会。招标代理机构将按照规定程序组织开标,并对全过程进行录音录像并留档。开标会一览表将于开标会结束当天17:00前送发至投标人邮箱。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:华中科技大学 地址:湖北省武汉市洪山区珞喻路1037号 联系方式:李老师;027-87540659;hustcgzx@hust.edu.cn 2.采购代理机构信息 名 称:上海中世建设咨询有限公司 地 址:武汉市洪山区欢乐大道1号德成国贸中心(岳家嘴地铁站D出口)A栋709室 联系方式:王帆、王静雅;027-86602235-803、027-86602235-807;wangfan@cwcc.net.cn 3.项目联系方式 项目联系人:王帆、秦贝、王静雅 电 话: 027-86602235-803、027-86602235-806
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(一)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期介绍第一部分。1. 背景介绍成像技术是推动生命科学几乎所有学科基础研究的核心平台。在神经科学领域,近几十年来,共聚焦显微镜技术已成为分析神经组织的标准荧光成像技术。激光扫描共聚焦显微镜对固定的神经元样本进行观察,在扫描水平上提供了三维和多色图像并使单个细胞达到树突结构的分辨率。作为补充,电子显微镜(EM)用于获取神经元和亚区室超微结构的信息,并用于大脑的连通性分析。EM非常适合于神经元突触和囊泡、细胞器和膜构象的结构分析。然而,由于靶向特异性标记方法的局限性,基于EM的复杂样品中蛋白质和特定电子密度特征的识别受到限制。为了进一步理解神经元功能,包括双光子显微镜在内的几种活体视频显微镜应用的发展使神经元细胞培养的活细胞成像、器官型切片培养和动物模型的活体成像成为可能。同时,新的荧光染料、功能探针和荧光蛋白以及光遗传学方法和光驱动(如笼状化合物)不仅可以表征神经元,还可以操纵神经元及其从单分子水平到整个神经系统的相互作用。然而,荧光显微图像中可见细节的水平,即图像分辨率,仍然受到衍射极限的限制。一个多世纪以来,由λ/2NA定义的阿贝衍射极限(λ为波长,NA为显微镜物镜的数值孔径)决定了光学显微镜的分辨率极限,限制了两个位置小于200纳米的细节分辨。在过去的二十年中,超分辨显微镜(SRM)已经发展成为一种非常有效的亚细胞水平荧光成像和分辨细胞器结构的研究手段。SRM现在可以提供远低于常规光学显微镜衍射极限的空间分辨率,从而能够深入了解神经元细胞和组织中蛋白质的空间结构和相互作用。本文综述了超分辨显微镜和荧光标记方法及其在神经科学中的成功应用。我们将首先详细介绍各种SRM方法的基本原理、新的功能型荧光探针和标记技术。接着,我们将回顾SRM如何有助于我们理解神经元亚细胞结构和功能以及神经元−胶质细胞相互作用。此外,我们将概述超分辨率成像方法如何帮助研究自身免疫和神经退行性疾病的病理生理学。最后,我们将介绍这些新的成像方法是如何应用于神经精神疾病相关的人类样本的分析。由于该领域持续快速发展,我们最多只能代表一份中期报告。进一步的创新和新的显微镜方法的发展将使人们对神经系统功能有更详细的了解。 2. 神经科学中的超分辨率成像方法2.1. 光学衍射极限及其对神经科学的影响人类大脑包含超过800亿个神经元,每个神经元由数千个突触连接。因此,它构成了复杂神经元网络。这些网络的主要组成部分,例如突触神经末梢,显示的空间维度接近于光学衍射极限分辨率∼200 nm。释放递质的突触活性区(突触前细胞基质的特化区)的直径通常约为300±150 nm。突触小泡作为递质运输和释放的关键元件,其尺寸平均小10倍,直径为40−50nm。这些递质被释放到宽度为20-50nm的突触间隙中−再结合突触后受体。由于衍射极限的尺寸限制,胞吐机制和跨突触信号在传统的光学显微镜下基本上是无法观测到的,因此需要用提高10倍分辨率的方法进一步研究。(图1)。图1. 兴奋性突触结构组成。左图为兴奋性突触的油画示意图,右图为左图的灰度图像,其中浅紫色圆圈为衍射极限光斑;玫红色圆圈为兴奋性突触囊泡,约40-50nm;绿色为突触后膜AMPA受体,尺寸小于10nm;黄色部分为突触间隙,约20-30nm。 此外,大量参与突触信号传导的不同的分子,位于极小的突触内,造成很高的分子分布密度,这对微观研究具有挑战性。例如,对于较小的突触,兴奋性突触可以包含数百个小泡,对于大型苔藓纤维束突触,可以包含数千个小泡,每个小泡包含多达1万到10万个递质分子。在这些囊泡中,约有10±5个与释放部位对接,释放的递质平均与0−20 个NMDA受体和0−200个AMPA受体结合,而这些突触后受体又被320±130个突触后PSD-95密度蛋白分子环绕。由于加速电子的波长要短得多,因此EM是唯一能够解析突触纳米级结构的方法。然而,虽然传统的EM产生的电子密度图像具有极好的超微结构分辨率,但需要进行固定和靶向特异性标记的制样方法在很大程度上限制了蛋白质识别和神经元追踪。荧光显微镜可以很容易地对蛋白质进行选择性标记,但是受制于可见光的衍射(400−700 nm)使生成的图像无法实现对纳米结构的分析。 2.2.绕开光学衍射极限的光学显微镜方法 20世纪后期,人们开发了新的策略,通过利用物理或化学手段来区分不同荧光团的发射或减少同一时间荧光分子的数量,以尽量绕过衍射极限。减少荧光团的点扩散函数(PSF)的重叠可以通过生成光图案在集合级别以确定性方式进行,或者通过减少同一时间荧光团的数量在单分子水平上以随机方式进行。在下文中,我们将从确定性集合方法开始介绍,该方法将激光扫描共聚焦显微镜(CLSM)的有效空间分辨率推到理论极限。2.2.1. 确定性集合超高分辨率成像方法(Deterministic Ensemble SR-Imaging Methods) CLSM用针孔探测器阵列替换单点探测器,空间分辨率可以提高√2倍。CLSM测量每个扫描位置探测器每个点的荧光信号。在应用适当的算法后,生成分辨率提升的图像。这些所谓的像素重分配方法包括图像扫描显微镜(ISM)、重扫描共聚焦(RSC)、光学光子重分配(OPRA)、AiryScan和即时结构照明显微镜(iSIM)。对于信号检测,使用了诸如CCD相机、光电倍增管阵列、单光子雪崩二极管阵列和六角光纤束等探测器阵列。结构照明显微镜(SIM)在光路中插入光栅,产生与样品干涉的相干光束,生成横向和轴向方向不同的新照明图案。然后可以使用傅里叶变换提取这种新照明图案的信息,从而在所有三维空间中实现空间频率分解和分辨率倍增。SIM对样品制备的要求最低,并且可使用所有常规荧光探针,这些探针具有最低的光稳定性,并且可以很容易地扩展到多色成像。然而,当记录三维或长时间成像时,强烈建议使用光稳定性更高的荧光团。此外,SIM使用更低的激发强度,因此是活细胞SR实验的理想选择。为了获得更高的分辨率,引入了通过图案化饱和或荧光激发或图案化耗损光开关染料的非线性SIM(NL-SIM)。然而对染料开关特性的苛刻要求限制了NL-SIM在常规生命科学实验中的适用性。非线性SIM单位时间内还需要采集更多的图像,因此实际上仅限于2D成像。另一方面,掠入射(GI)-SIM显示了高达每秒266帧的快速超分辨率成像以及100nm分辨率,揭示前所未有的细胞器动力学细节。结构照明的局限性在于其对波长的普遍依赖性、与其他SR成像技术相比的低分辨率以及对系统稳定校准的需要。最后,后处理需要进行先验质量检查以避免伪影,例如由于高背景信号或不充分标记产生的低对比度图像导致的人工蜂窝图案。通过受激发射耗损(STED)显微镜进行超分辨率成像是一种实现更高空间分辨率的成像方法。这里,高斯分布的激发激光束被中空的甜甜圈样的耗损激光束覆盖,使扫描点外围的荧光团返回基态,这导致纳米级焦点区的直径与耗损光束的强度成反比,耗损光束的强度直接转换为STED显微镜的分辨能力:上图公式中λ为波长,n为折射率,α为物镜的收集角,ISTED为STED光束的照射强度,IS为饱和强度。因此,可以通过改变损耗激光强度来调整分辨率,可定制设计分辨率达30−80nm 的显微镜。STED显微成像可通过连续或脉冲激光激发、门控检测。带有脉冲激光的STED显微镜会降低激发能量,从而减少实时成像中的光毒性效应。STED显微镜中的时间门控检测可以去除荧光团光子到达时间前的空间信息,并且可以在较低的平均功率下工作。商品化STED能提供用户友好的高分辨率成像,无需进一步的数据后处理。活体成像,例如活体树突棘动态成像已经很成熟,但快速动态成像仅限于小帧尺寸,因为它仍然是点扫描方法,高激光强度可能会导致光损伤。STED通过应用自适应照明方式Dymin和rescue技术,可以明显减少光损伤。在Dymin STED中,在共聚焦模式下扫描时确定最低可能的STED光束强度。根据样品的标记密度,这将使STED光束强度降低20到100倍。Rescue STED同样通过减少STED激光开放的区域,从而比普通STED减少光漂白接近8倍。STED的另一个限制是对荧光团光稳定性的依赖,因为在高激光强度下会发生明显的光漂白。这影响了动力学的研究和三维图像的获取。值得注意的是,最近通过使用荧光团标记的寡核苷酸(瞬时结合到连接靶蛋白结合探针的互补寡核苷酸)或非结合荧光团来进行细胞STED成像,从而绕过了STED光漂白问题。这两种方法中,基于DNA互补标记的STED成像和超分辨率阴影成像SUSHI分别通过荧光团标记的寡核苷酸和高浓度的非结合和自由扩散的荧光团不断交换来防止光漂白。SUSHI的方法已经成功地用于活体脑片中细胞外间隙和神经肽的结构解析及其动力学的STED成像。如果使用具有毫秒或更长寿命的两种稳定状态的可逆切换荧光团来代替标准荧光团,则STED强度可以显著降低。可逆饱和切换光学线性荧光转换方法(RESOLFT)已通过可逆可切换荧光蛋白(reFPs)实现,并成功应用于活体海马脑片树突棘的超分辨率成像。2.2.2. 随机单分子SR成像方法(Stochastic Single-Molecule SR-Imaging Methods)上述的确定性方法是通过改变激发模式或相位掩膜来暂时控制荧光发射达到超分辨成像,而基于单分子的定位SR显微镜则是随机地在时间上分离单个荧光团的发射。单分子定位显微镜(SMLM)基于单个荧光团的随机激活,使用配备高灵敏相机(EMCCD或sCMOS)的宽场荧光显微镜进行单分子检测,以及精确的位置测定。通过将理想PSF与实际测量的光子分布拟合来进行分子定位。只要信号来自单个发射区,且单个发射区之间的距离大于显微镜能分辨的最小距离,则通过收集更多光子和最小化噪声,定位的标准误差可以任意小。激活和定位过程重复多次,所有定位最终用于重建超分辨率图像。为了确保在成像的任何时候,只有稀疏的小荧光团以其活性荧光形式存在(开启状态),使用了光开关、光转换、光激活或自发闪烁的荧光团。由于定位精度和最终图像分辨率取决于每次检测到的光子数量,通常采用明亮且稳定的荧光团与1 kW/cm2的辐照强度相结合的方式。根据所使用的荧光团不同,SMLM可达到10−50 nm横向分辨率。光激活荧光蛋白(FPs),自2006年以来已用于光激活定位显微镜(PALM),例如在405 nm的激光照射下可从关闭状态不可逆地转换为打开状态的PA-GFP和PA-mCherry 以及可通过适当波长的激光照射从一种波长状态不可逆地转移到另一种波长状态的光转换FPs,例如MEO。此外,还成功地应用了诸如Dronpa之类的光开关FPs,其在不同激发波长的激光照射下可在非荧光和荧光状态之间可逆地切换。对于活细胞应用,使用荧光蛋白的PALM是首选方法。因为在理想情况下,每个感兴趣的蛋白质都可以用荧光蛋白进行计量标记。然而,荧光蛋白比有机染料表现出更低的光稳定性和光子计数,从而降低了定位精度,并且通常需要更长的采集时间。此外,对于PALM成像而言,融合蛋白通常会过度表达,这可能会导致不真实图像,而用转基因变体替代显示野生型表达和功能的自身蛋白仍然具有挑战性。对于细胞内源性蛋白质的标记,通常使用有机染料的免疫标记。SMLM适用的有机染料必须是光开关、光激活或自发闪烁的,以实现单个染料发射的时间分离,但化学计量标记要困难得多。有机染料通常表现出较高的光子计数和光稳定性,从而使定位精度达到5−10nm。花菁染料Cy5和Alexa Fluor 647可以在荧光开启状态(其典型寿命为10 ms)和非荧光关闭状态(寿命为几秒,利用光开关缓冲液,缓冲液包括PBS,10−100mM硫醇,如ß-巯基乙缅(MEA),酶促氧清除剂,可以有/没有激活染料)之间可逆切换,为随机光学重建显微镜(STORM)和直接型STORM(dSTORM)的发展铺平了道路。近年来,应用于(d)STORM的染料已大大扩展,除了菁染料外,还包括罗丹明和恶嗪染料。有趣的是,最近的研究表明,即使是多个标记的抗体在光开关缓冲液中也呈现出类似于单发射的表现,因此适用于dSTORM实验。光活化染料的作用与光活化荧光蛋白相似。也就是说,它们在被光照射或自发激活之前处于非荧光状态。罗丹明衍生物PA-JF549和PA-JF646以及桥环菁染料Cy5B是已成功用于SMLM的光活化染料。此外,在没有光开关缓冲液的水溶液中,硅罗丹明HMSiR等自发闪烁染料也能应用于SMLM。最近,通过图案化照明方式实现更高的定位精度,单个荧光发射区的定位得到了改进。定位精度取决于信号的大小和强度,可以通过测量的PSF标准偏差的平方除以收集的光子数来估计。然而,包括拟合性能、标记密度、标记误差和显微镜漂移在内的其它参数决定了高定位精度是否可以转化为低于10 nm的空间分辨率。此外,到目前为止,因为SMLM方法成像需要昂贵的仪器和成像者具备广泛的专业知识,这在一定程度上阻碍了其广泛应用。2.2.3. SMLM-点累计纳米成像技术(PAINT,Point Accumulation for Imaging Nanoscale Topography)第一代SMLM技术依赖于荧光团的光开关和光激活,其分辨率需要有效地利用荧光团发出的光子数,而PAINT(point accumulation for imaging nanoscale topography)方法使用活的,与目标区域结构短瞬结合的染料。在成像过程中,被漂白的荧光团可以被成像介质中充足的新鲜荧光团不断置换替补。由于游离染料在采集单个图像帧期间在多个像素上快速扩散,因此它们仅显示为模糊背景且不能准确定位,而结合染料显示为PSF且能准确定位。因此PAINT的第一种方法是将荧光染料(如尼罗红)与细胞膜进行非特异性结合,然后进行光漂白和新的结合。此外,基于蛋白质片段的探针被用于单分子定位标记。在最近的一个研究中,将这种方法与传统的基于phalloidin的肌动蛋白标记方法进行了比较。通过引入通用PAINT(uPAINT)使Ni-Tris-NTA与转基因蛋白质上表达的His-Tags更特异结合,并可用于突触间隙成像。uPAINT也可以应用于其它标记方法,如免疫标记(内源性蛋白抗体、纳米抗体如绿色荧光蛋白)或受体配体结合。为了提高PAINT的适用性和特异性,引入DNA-PAINT方法。它使用长度小于10个核苷酸的短的可控的寡核苷酸链(成像链)瞬时标记其靶结合互补寡核苷酸链(对接链)。成像链与对接链的瞬时结合产生明显的闪烁。因此,荧光团开-关状态之间的切换与其光物理性质不直接关联。DNA-PAINT首先在DNA折纸(DNA-origami)上得到验证。DNA折纸是一种自组装的DNA结构(具有已知的大小),通过侧链和荧光团进行结合,并通过宽场显微镜观察。总的来说,DNA-PAINT是一种易于实现的SR成像标记方法,无需特定光物理特性的荧光团。因为探针可以在一轮结合后,从成像介质中置换补充荧光团,从而避免了光漂白。DNA-PAINT的缺点是图像获取时间长,这是由成像链与对接链的结合和解离速率决定的,以及荧光成像链的纳摩尔浓度引起的背景信号。尽管通过使用优化的DNA序列和缓冲条件,以及使用串联的周期性DNA结构域或通过短肽的卷曲螺旋相互作用(称为“Peptide-PAINT”),可以加快采集速度,但还是要利用全内反射荧光(TIRF)(仅限于对靠近盖玻片结构进行成像的特点),才能更好地减少成像链的背景信号。另一方面,基于DNA的探针提供了序列成像复用的明显优势,如Exchange PAINT中所述,已成功用于小鼠视网膜切片中多个结构的成像(图2)。Exchange PAINT的概念也被推广到dSTORM、STED、SIM和更传统的衍射限制的宽场和共聚焦荧光显微镜。最近,通过一种称为PRISM(probe-based imaging for sequential multiplexing)的基于DNA-PAINT的成像方法,实现了高达10个神经元蛋白质的分辨率约为20nm的多通道成像。该方法使用了低亲和力成像探针,该探针与突触、肌动蛋白和微管一抗上的对接链结合。图2 原代神经元中多个神经元靶点的多标Exchange-PAINT成像。(A)DNA-PAINT顺序成像的四种突触蛋白的超分辨图像:圆圈表示漂移校正的基准点;(B)为(A)中不带*的感兴趣区域的高放大倍率图和超分辨图像。(C)为(A)中带*的感兴趣区域的超分辨结果及单通道图像。2.2.4. 定量SMLM如果每个目标分子都可以单独标记和定位的话,与所有其他超分辨率成像技术相比,SMLM还可以提供有关分子分布和分子绝对数的单分子信息。然而,内源性蛋白质的定量免疫标记仍然是一个挑战,并且多标记抗体的不同定位数目也会使数据解释复杂化。另一方面,达到内源性表达水平比较困难,另外FPs蛋白成熟缓慢也同样会令定量化困难。然而,可以通过设计专门的对照实验估计拷贝数,并提取出有关生物目标结构分子的真实信息。借助合适的算法,SMLM可以提供有关拷贝数、聚类、共定位和复杂化学计量的数据,用于定量模型的生成和模拟。此外,还可以通过将突触结构信息与其功能关联来实现量化,例如膜片钳神经元的生物细胞素标记。例如,通过对链霉亲和素标记后膜片钳神经元进行STORM成像,结合CB1受体的免疫标记,然后在GABA能的海马轴突终端内定量,研究了内源性大麻素信号。本研究发现,与树突投射型中间神经元相比,胞周投射型中间神经元具有更高的CB1受体密度和更复杂的活动区。通过免疫标记和dSTORM研究了黑腹果蝇神经肌肉连接处内源性Bruchpilot(Brp)分子的数量。利用抗体滴定实验,确定了野生型神经肌肉连接处活性区细胞基质中Brp蛋白的数量为137个,其中四分之三以约15个七聚体簇状排列结合从相同组织样本记录的电生理数据,研究Brp如何组织控制活动区功能。利用DNA纳米结构作为校准,每个活性区Brp蛋白的数量估计通过定量DNA-PAINT(qPAINT)实验证实。此外,定量dSTORM实验表明,每个活性区Brp蛋白的数量和分布受突触标记蛋白-1的影响,这说明突触活性区递质释放的复杂性。在最近的一项研究中,使用Alexa Fluor 532和Alexa Fluor 647免疫标记的双色dSTORM已用于小鼠小脑平行纤维活性区中代谢型谷氨酸受体4(mGluR4)的定量研究(图3)。该研究还使用抗体滴定实验估计每个活性区平均包含约35个mGluR4分子,并排列在小纳米结构中。此外,mGluR4通常在munc-18-1和CaV2.1通道附近被发现,这支持了mGluR4与这些蛋白质相互作用以调节突触传递的观点。图3小鼠脑片中代谢型mGluR4受体定位定量双色dSTORM。上图:mGluR4和Bassoon免疫染色的小脑冠状切片的dSTORM图像,作为活性区参考。与宽场显微镜结果的比较。(A)DBSCAN聚类算法定义了近距离的En face活性区表面积(灰色)和mGluR4信号(品红)。(B)活性区大小的频率分布直方图(C)mGluR4信号到突触和突触外区域的映射。(D)通过Ripley H函数分析评估Bassoon和mGluR4的聚集分布。与随机分布的分子(蓝色、灰色)进行比较。虚线表示Ripley分析的最大值。这些研究显示了定量SMLM在神经科学研究中的潜力。可以预见,定量SMLM的进一步发展将为突触前和突触后蛋白质的功能关系,及其组织和结构的研究提供更有价值的信息。2.2.5. 组织三维(3D)SMLM虽然SMLM方法实现了仅几纳米的非常高的水平定位精度,但它需要特殊的方法来打破图像平面上方和下方PSF的对称性,来实现高轴向定位精度。实现高轴向定位精度的两种方法是PSF重塑和多焦面检测,通常用于在3D中精确定位荧光团。在SMLM中最常用的方法是通过在成像路径中插入单个柱面透镜从而不对称地扭曲PSF,利用光学像散原理来实现三维定位。基于像散方法的3D dSTORM技术还可以与光谱拆分相结合,对COS-7细胞中的网格蛋白表面小窝成像。像散引起的畸变程度由荧光团的轴向位置决定,因此可用于轴向位置计算。例如,3D散光SMLM已用于确定抑制性突触后密度区gephyrin蛋白和受体复合物的分布和拷贝数,或突触前活动区和突触后密度区各种成分的空间关系。采用双物镜像散成像方案,通过3D SMLM研究组织中肌动蛋白、血影蛋白和其他相关蛋白的结构,发现这些蛋白在轴突中形成190nm的周期性环状结构。替代方法包括使用相位掩模、变形镜实现双螺旋、四足或鞍点PSF重塑,和双焦面成像方法实现更大的轴向范围,并已成功应用于不同的应用中。为了在2D和3D中定位单个荧光发射区,已经开发了不同的算法和软件工具。在最近的一次综述中,列出了不同3D SMLM方法获得的水平和轴向分辨率,以供比较。然而,到目前为止,大多数SMLM研究都是在培养细胞上进行的。培养细胞具有相对简单的样品制备和成像要求,例如焦平面上下荧光分子的背景信号较低或没有。而脑片更具挑战性,因为它们在焦平面上下表现出高密度的神经元结构和潜在的高荧光背景,由此产生的低信噪比对于成像来说是一个障碍,会直接影响单分子定位的精度和准确性。此外,脑片必须具有足够的渗透性,以实现有效的免疫标记,而不损害组织结构。除了超微结构保存外,对几十微米厚的脑片进行均匀标记也仍然是一个挑战。因此,最初的尝试是将组织切成薄片,以便于标记。然而,将多个切片进行三维重建也仍然具有挑战性。为了保存好抗原表位,在切割成超薄切片进行SMLM成像之前,需要对组织进行解剖、固定以及免疫标记、后固定、脱水并包埋在环氧树脂中。而且,3D SMLM只能对靠近盖玻片的脑片的一个轴向平面进行成像。如果背景信号和散射太强,也可以使用组织透明化方法和基于光片的照明方法进行SR成像。另一个导致较厚脑片的3D成像不可靠的原因是光学畸变引起的单个荧光团PSF变形和模糊。通常应用自适应光学恢复PSF,使各神经元能够更精确地成像。为了进一步提高基于自适应光学的SR成像的性能,需要将其与自适应PSF重塑相结合。例如,在30μm厚的阿尔茨海默病小鼠模型脑片中,通过同步校正样品引起的畸变并且生成一致的PSF,可以重建纤维淀粉样蛋白斑块的精细细节。荧光团的3D位置也可通过PSF内产生的自干涉精确确定,并已成功用于轴向深达50μm的 SMLM。 3.膨胀样品显微成像技术(EXM)2015年,Ed Boyden及其同事描述了另一种绕过荧光显微镜分辨率极限的创新策略,称为膨胀样品显微成像技术(ExM)。ExM的原理是将蛋白质连接到带电荷的聚丙烯酰胺凝胶中,然后使用蛋白酶进行轻微的机械破坏,然后让其在水中膨胀,从而实现样品的物理放大。最初的方法是将三功能连接体交联到凝胶基质上,将标签信息转移到凝胶上。图4 结合ExM和晶格光片显微镜(LLSM)可观察大量神经元分子组装细节。左上图:概图;右上部位:海马CA1锥体神经元的投射;右下部位:神经元胞体;中下部位:小鼠大脑,通过Thy1 EYFP信号和突触蛋白免疫组织染色进行皮质树突棘成像;左下部位:果蝇投射神经元(PN)束的多样性。左上部位:果蝇中枢复合体PN的神经元追踪。中心部位:果蝇多巴胺能神经元的全脑成像。下图:成年果蝇大脑所有33个脑区的多巴胺能神经元相关Brp信号(体积密度)定量图(nc82抗体免疫染色,绿色曲线=与多巴胺能神经元相关的nc82斑点百分比)。右上图:沿着皮质层I至VI(顶部,最小强度投影)的初级躯体感觉皮层中的Homer 1点密度和25μm×50μm×50μm跨皮质的Homer 1点累积数量。请注意,在第二层/第三层和第五层中,Homer 1的密度较高。三功能连接体含有甲基丙烯酰基团、荧光标记和寡核苷酸,它与连到蛋白质标记的抗体的互补寡核苷酸杂交。将免疫染色的细胞或组织包埋在单体溶液中后,添加含有丙烯酸钠(凝胶高吸水性树脂)的共聚单体丙烯酰胺和交联剂N,N′-亚甲基双(丙烯酰胺)。这些单体组分和位于目标上的甲基丙烯基在高温下聚合,使用四甲基乙二胺(TEMED)作为催化剂,过硫酸铵(APS)作为聚合引发剂。荧光标签通过锚定在凝胶中的特定位置而在空间中固定,并且其位置可以在蛋白酶的化学预处理和水中透析后延伸构象进行物理膨胀。最初使用ExM产生了一个100倍的体积膨胀和目标分子间的4−5倍距离的线性增加。使用常规共聚焦显微镜对其成像,SRM横向分辨率可达到70 nm,轴向分辨率可达200 nm。在随后的几年中,通过使用交联分子如MA-NHS和acryloyl-X将蛋白质锚定到凝胶基质上,开发了改进proExM方法,使用常规荧光团就可保留蛋白质表位。为了避免自由基起始剂对荧光团的影响,设计了新的方法如蛋白质组放大分析(MAP),与SDS结合热介导变性,实现膨胀凝胶的后标记。此外,通过引入三功能连接体,它们能够在聚合、消化和变性后存活,并能够将目标分子和官能团直接共价锚定到水凝胶中,以实现膜和细胞骨架的SR成像。有研究显示,一些荧光团与激动剂发生反应。例如,因为菁染料在样品制备过程中几乎消失,因此不适合用于ExM标记,而其他荧光团如Alexa Fluor 488、CF和Atto染料在ExM处理流程后仍然能发射足够的光子。此外,生物素−亲和素信号放大和交换反应信号放大免疫染色技术(Immuno-SABER)可以有效提高信噪比和对大量目标蛋白进行成像。最近的研究表明,可以通过优化Ultra(U-ExM)的流程保留中心粒的超微结构细节。U-ExM启发于MAP方法,该方法允许膨胀并使用低甲醛和丙烯酰胺浓度交联蛋白质(保留样品的超微结构细节)后进行标记。U-ExM已经成功地用于揭示以前只有电镜才能获得的中心粒的超微结构细节。通过使用不同的单体和引发剂组合,Truckenbrodt及其同事设计了一个对常规培养细胞甚至神经元进行10倍体积膨胀的方案,即通过二次凝胶进行迭代ExM制样,多次嵌入不同的单体(而这些单体又可以通过使用高摩尔氢氧化钠去除)从而达到高达53倍的膨胀系数。应用此方法,可以从突触后支架蛋白中清晰看到位于突触间隙内的膨胀13倍的蛋白,例如神经递质受体GluR1和GABAARα1/α2。如今,ExM已成功用于培养细胞、原代神经元和组织中的蛋白质、RNA、真菌、病理标本和细菌的超分辨率成像。4倍膨胀的ExM已经与晶格光片显微镜相结合,以60×60×90 nm的分辨率对整个果蝇大脑中多种蛋白质之间的纳米级结构进行成像(图4)。为了进一步提高分辨率,ExM已成功地与SRM方法相结合。例如,ExM与SIM相结合到达20nm的空间分辨率,观察果蝇中的联会复合体和小鼠精母细胞。在细胞培养样品中进行多表位标记后,与传统荧光显微镜相比,使用STED结合ExM可使分辨率提高30倍。此外,使用NHS染料对所有蛋白进行标记,然后进行迭代ExM,可以对高蛋白密度的结构或细胞器(如线粒体),实现与EM相比具有更高对比度的超微结构细节。为了在分子尺度上进行成像,ExM与SMLM方法(如dSTORM)相结合是一个理想的选择。然而在含有硫醇和盐的传统光转换缓冲液中,会发生荷电氢凝胶收缩。可通过使用低离子强度缓冲液或加入中性溶液使凝胶稳定以避免收缩。另一种策略是使用自发闪烁的荧光团(如HMSiR)在水中进行SMLM。通过Ex-dSTORM实现分子分辨率的关键是膨胀后标记,这增加了表位可及性,从而提高了标记效率并减少了标记错误。Ex-dSTORM超分辨成像已成功应用于原代细胞和神经元中微管和中心粒结构的解析。
  • 950万!中国科学技术大学X射线衍射仪采购项目
    一、项目基本情况项目编号:OITC-G230322025项目名称:中国科学技术大学X射线衍射仪采购项目预算金额:950.000000 万元(人民币)最高限价(如有):950.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)预算金额(万元人民币)是否允许采购进口产品1X射线多晶衍射仪1200是变温X射线衍射仪1400是高分辨薄膜X射线衍射仪1350是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年10月20日 至 2023年10月27日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:安徽省合肥市金寨路96号        联系方式:0551-63602706       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:(北京):北京市海淀区丹棱街1号互联网金融中心20层 ;(合肥):合肥市高新区创新大道2809号置地创新中心28层2815室            联系方式:(北京):窦志超、曹山、王琪 010-68290502 ;(合肥):李文海、郑文彬0551-66030322            3.项目联系方式项目联系人:窦志超、曹山、王琪、郑文彬、李文海电 话:  010-68290502/0551-66030322
  • 1450万!中国海洋大学高分辨透射电镜、高分辨光电子能谱仪采购项目
    一、项目基本情况1.项目编号:SDSHZB2023-731项目名称:中国海洋大学高分辨透射电镜采购项目预算金额:800.000000 万元(人民币)采购需求:高分辨透射电镜(接受进口产品),具体参数详见附件。合同履行期限:详见附件。本项目( 不接受 )联合体投标。2.项目编号:HYHAQD2023-0745项目名称:中国海洋大学高分辨光电子能谱仪采购项目预算金额:650.000000 万元(人民币)最高限价(如有):650.000000 万元(人民币)采购需求:采购高分辨光电子能谱仪一台,采购需求详见本项目招标公告附件。合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月22日 至 2023年11月28日,每天上午8:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:青岛市市北区敦化路138号甲西王大厦24楼23A01房间或邮件报名方式:以下方式二选一:(1)现场报名:须携带加盖单位公章的营业执照副本复印件及现金,按照上述时间、地点获取招标文件。(2)邮件报名:有意参加本次采购活动的投标人填写项目名称、项目编号、公司名称、联系人、联系电话、邮箱、营业执照扫描件及标书费汇款底单发送至shzbqdb@163.com,邮件名称命名为:中国海洋大学高分辨透射电镜采购项目-报名-“投标单位名称”。开户银行:兴业银行青岛市北支行,开户名:盛和招标代理有限公司,银行账号:522130100100053768,提交标书费须从投标人基本账户或一般账户转出,电汇时须注明2023-731、资金用途注明标书费。未按规定报名的投标人其报名无效,本项目实行资格后审,获取招标文件成功不代表资格后审通过,招标文件售后不退。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国海洋大学     地址:青岛市崂山区松岭路238号        联系方式:崔老师0532-66781979      2.采购代理机构信息名 称:盛和招标代理有限公司            地 址:青岛市市北区敦化路138号甲西王大厦24楼23A01房间            联系方式:孙萌、肖颖梦、孙伟0532-67737979            3.项目联系方式项目联系人:孙萌、肖颖梦、孙伟电 话:  0532-67737979
  • 国产超分辨iSTORM新品!力显智能于清华发布新品活细胞超高分辨率显微成像系统!
    2023年8月6日至12日,由清华大学蛋白质研究技术中心、生物医学测试中心、中国细胞生物学学会细胞器生物学分会联合主办的第四届活细胞与超高分辨成像高级研讨会在清华大学成功举办。众多领域专家学者、行业头部翘楚齐聚一堂,和来自全国各地的100余位青年学者一起见证了这场学术盛宴。研讨会邀请了北京大学席鹏教授、陈良怡教授、孙育杰教授,中科院生物物理所李栋研究员,中国科技大学唐爱辉教授,西湖大学章永登研究员、清华大学陈春来副教授等十数位在活细胞、超分辨、单分子成像等领域的知名专家进行报告,还邀请了尼康、徕卡、蔡司等公司就超分辨成像、一体化活细胞成像等仪器进行了专业介绍和体验展示。在本次研讨会上,力显智能科技联合创始人兼COO张猛博士就《单分子定位超高分辨率显微镜iSTORM在生物医学领域的应用》进行了相关报告分享。会议期间,力显智能科技研发的新品活细胞超高分辨率显微成像系统iSTORM VIVO在清华大学正式发布,更是为这场精彩盛宴增添了一抹亮色。现场,清华大学高级工程师王文娟老师与力显智能科技联合创始人兼COO张猛博士共同为活细胞超高分辨率显微成像系统iSTORM VIVO揭幕。揭幕仪式力显智能科技联合创始人兼COO张猛博士表示:非常感谢一路支持力显的各位朋友和老师,是大家的支持和帮助,促成了这次活细胞超分辨新品在清华大学的圆满发布,这是广大用户对力显超分辨的再一次肯定,也是力显智能科技自研国产超分辨之路的又一个重要里程碑。活细胞超高分辨率显微成像系统iSTORM VIVO作为目前国内唯一的商业化单分子超分辨显微系统,iSTORM成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及大分子复合物结构解析、生物大分子生物动力学等的研究成为现实。在原先标准版iSTORM的基础上,经光机系统、染料、算法协同开发,iSTORM VIVO在活细胞超分辨成像领域获得极大技术提高,提升原始图像拍摄速度,搭配高密度快速荧光定位算法,可以在维生条件下进行快速活细胞超高成像,以高精密度的成像能力解析活细胞的各种生命生理过程,极大弥补了传统STORM技术在活细胞超分辨成像领域的短板,给生命科学、医学等领域带来重大突破。
  • 蔡司推出新一代超高分辨率显微成像系统
    双倍提升结构光照明显微技术分辨率蔡司新一代超高分辨率显微成像系统Elyra 7 with Lattice SIM2蔡司推出了具有开创性的Lattice SIM²,可提高结构照明显微镜(SIM)的分辨率和光切质量。使用显微镜系统蔡司 Elyra 7上的Lattice SIM²,将传统的SIM分辨率提高一倍,生命科学研究人员现在可以以60nm分辨率区分出活的和固定的样品的最佳亚细胞结构。SIM是一种基于栅格的照明技术,可以以超出光学显微镜衍射极限的分辨率进行成像。两年前,随着蔡司Lattice SIM的推出,SIM成像技术迈入新的时代,蔡司将SIM的分辨率优势与成像速度和检测灵敏度的大幅提高相结合,使超高分辨率显微镜蔡司 Elyra 7成为活细胞成像的理想选择。借助Lattice SIM²,蔡司通过不懈努力将超高分辨率成像技术又向前推进一大步,使研究人员能够突破以往超高分辨率成像技术在分辨率,成像速度和光毒性等方面的限制。Lattice SIM2同时提升分辨率、光切性能和样品适用性Lattice SIM²在分辨率,光切性能和样品适用性方面均优于传统的SIM,而无需特殊的染色方案或复杂的显微镜技术的专业知识。Lattice SIM²不仅可以解析低至60 nm的结构,还可以同时进行超高分辨率和高动态成像——这是观察活细胞或生物体中快速生物过程的必要条件。以远低于100 nm分辨率进行活体生物样品成像借助Lattice SIM²,研究人员现在可以同时以低于100 nm的分辨率和高达255fps速度进行活体生物样品的细节成像。这种简单易用又能达到高时空分辨率的成像方式,将使发现新的亚细胞功能原理成为可能,并有助于更好地了解细胞器的分布和结构。发育生物学,神经科学,植物科学和相关学科的研究人员将通过揭示快速的细胞过程,以更深的成像深度解析3D结构并研究分子水平的结构变化,来获得对模式生物和标本的更多见解。参与产品测试的用户立即意识到Elyra 7 with Lattice SIM²的研究潜力,并对新的可能性表示了热情。约克大学影像与细胞计量学负责人Peter O’Toole:“我记得最初看到结果时,我惊讶的大笑。我的下一个反应是向可以立即受益的一些关键用户发送电子邮件。从组织神经生物学家到细胞和分子免疫学家,再到从事酵母和细菌研究的科学家,他们都已经从Lattice SIM²中受益。”随着Lattice SIM²的推出,蔡司Elyra 7将不断发展成为兼容活细胞的超高分辨率显微成像的主要平台。蔡司有着强大的动力,想为科学界提供可轻松使用先进的成像技术
  • 分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X
    分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X#NEWS超高分辨场发射电镜发布近日,国仪量子在2023全国电镜年会期间发布了全新的超高分辨场发射扫描电子显微镜SEM5000X,分辨率达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV,进一步夯实了国产高端电镜发展的基础。深度挖掘用户需求 全新升级实现超强性能国仪量子在服务客户时发现,传统的场发射扫描电镜在拍摄一些特殊样品时会出现成像质量不佳的问题。例如,纳米材料的导电性较差,样品的粒径通常也非常小,观测难度较高。但随着科研水平不断进步,对材料的观测尺度也将不断缩小,观测难度愈发提高。为解决这一难题,国仪量子显微镜研发团队在调研用户需求后,基于深厚的技术储备与产品工程化能力,推出了“挑战极限”的超高分辨场发射扫描电子显微镜SEM5000X。SEM5000X如何“挑战极限”?极限挑战一:挑战超高分辨率SEM5000X在15 kV下分辨率优于0.6 nm,1 kV下分辨率优于1 nm,成功挑战了热场发射扫描电镜的极限分辨率。国仪量子对SEM5000X电子光学系统中的物镜部分做了特殊的改进优化,电透镜和磁透镜的重合度进一步提高,使得色差减小了12%、球差减小了20%,整体上提升了电镜的分辨率。极限挑战二:不惧高难样品在SEM5000X产品设计中,增加了样品台减速模块,采用了高压隧道和样品台减速的组合,实现双减速技术,能够挑战极限样品拍摄场景。极限挑战三:适应复杂环境此外,我们自研了高精度的优中心样品台,采用了超稳定的机架,还额外设计了可屏蔽环境干扰的全包围式屏蔽系统,使SEM5000X能够轻松适应各种复杂环境。产品优势SEM5000X01超高分辨率成像,达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV02样品台减速和高压隧道技术组合的双减速技术,挑战极限样品拍摄场景03高精度机械优中心样品台、超稳定性的机架减震设计,可搭配整体罩壳设计,极大减弱环境对极限分辨率的影响04最大支持8寸晶圆(最大直径208 mm)的快速换样仓,满足半导体和科研应用需求如果您需要一台更高性能,更高分辨率的电镜,那您一定不能错过超高分辨场发射扫描电子显微镜SEM5000X。应用案例展示介孔二氧化硅/1 kV(Dul-Dec)/lnlens阳极氧化铝板/10 kV/Inlens芯片/5 kV/BSED-COM肾脏切片/5 kV/BSED-COMP泡沫镍/2 kV/ETD-SE蓝宝石衬底/5 kV/ETD-SE金颗粒/1 kV/Inlens光刻胶/2 kV/ETD-SE磁性粉末/10 kV/Inlens二氧化硅球/3 kV/ETD-SE催化剂/1 kV/ETD-SE波导/1 kV/ETD-SE
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制