当前位置: 仪器信息网 > 行业主题 > >

面粉蛋白质仪

仪器信息网面粉蛋白质仪专题为您提供2024年最新面粉蛋白质仪价格报价、厂家品牌的相关信息, 包括面粉蛋白质仪参数、型号等,不管是国产,还是进口品牌的面粉蛋白质仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合面粉蛋白质仪相关的耗材配件、试剂标物,还有面粉蛋白质仪相关的最新资讯、资料,以及面粉蛋白质仪相关的解决方案。

面粉蛋白质仪相关的资讯

  • 凯氏定氮法测定谷物中的氮和蛋白质
    谷物含有8-15%的不同种类的蛋白质,如白蛋白、球蛋白、脯氨酸、麦胶蛋白、谷蛋白和谷蛋白。它们的化学成分不仅具有营养价值,而且对面团及其烘焙过程也很重要。麦胶蛋白和谷蛋白与水接触形成谷蛋白,谷蛋白是一种脂蛋白物质,它赋予面团粘度、弹性和凝聚力,帮助面团发酵并保持形状 它存在于小麦和其他谷物中,包括大麦和黑麦。目前,人们对谷蛋白的兴趣主要集中在它的技术应用上,但也包括它的健康问题(腹腔疾病)。麸质并非天然存在于玉米、大米或燕麦中,但可能会被加工小麦、大麦或黑麦产品的设施交叉污染。从法律的角度来说,了解谷物面粉中蛋白质的含量是很重要的,因为一般来说,它们的商业质量取决于这一点。 采用意大利VELP使用DKL 20和udk159的凯氏定氮法测得结果与期望值一致,重复性好,相对标准偏差低(RSD 1%),重复性好。
  • 纯牛奶、奶粉蛋白质快速检测仪面世
    新华网长春2月17日电(记者宗巍)由中国计量科学研究院和长春吉大小天鹅仪器有限公司联合自主研发的纯牛奶奶粉蛋白质快速检测仪近日面世,该检测仪能够快速、有效地检测出纯牛奶和奶粉中真实蛋白质的含量。   据介绍,这种检测仪通过特异显色剂与蛋白质氮反应后浓度的变化,测定纯牛奶和奶粉中蛋白质,  它的优点在于检测结果不受三聚氰胺、尿素等非蛋白质氮的干扰,能真实反映出样品中蛋白质的含量。与传统的检测方式相比,它的测定时间也大大缩短,测定一个样品只需10分钟左右。  该仪器适用于乳品质检站、畜牧水产品检测站、出入境检验检疫局、工商、卫生等部门。目前已投放市场,下一步计划将检测范围从奶制品扩大到饲料等领域。
  • 云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量
    【山东云唐*新品推荐YT-Z12T】云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量  随着科技的不断发展,食品蛋白质检测仪在食品安全检测领域发挥着越来越重要的作用。其中,对于奶粉中蛋白质含量的快速准确检测,食品蛋白质检测仪更是扮演着至关重要的角色。本文将详细介绍食品蛋白质检测仪的工作原理、优势及其在奶粉蛋白质含量检测中的应用。  食品蛋白质检测仪在奶粉蛋白质含量检测中具有显著的优势。首先,它大大提高了检测效率。相较于传统的检测方法,如Kjeldahl法、Lowry法等,食品蛋白质检测仪能够在短时间内完成大量样品的检测,从而满足现代化生产线上对奶粉质量监控的需求。其次,仪器具有高度的准确性。通过精确的光电测量和荧光检测技术,食品蛋白质检测仪能够确保测量结果的准确性,避免因人为因素或操作不当导致的误差。此外,食品蛋白质检测仪还具有操作简便、自动化程度高等特点,使得检测过程更加便捷高效。  在奶粉蛋白质含量检测中,食品蛋白质检测仪的应用具有重要意义。奶粉作为婴儿成长发育的重要营养来源,其蛋白质含量直接影响到婴儿的健康状况。因此,对奶粉中蛋白质含量的准确检测显得尤为重要。食品蛋白质检测仪能够快速、准确地检测出奶粉中的蛋白质含量,为奶粉生产厂家提供及时、可靠的质量监控手段。同时,对于消费者而言,了解奶粉中蛋白质的含量有助于他们选择合适的奶粉产品,为婴儿的健康成长提供保障。  此外,食品蛋白质检测仪还可以用于奶粉生产过程中的质量控制。在奶粉生产过程中,通过定期对原料、半成品和成品的蛋白质含量进行检测,可以及时发现生产过程中的问题,采取有效措施进行调整和改进,确保奶粉产品质量的稳定性和可靠性。同时,食品蛋白质检测仪还可以用于奶粉产品的批次管理和追溯,确保产品的质量和安全可追溯。  总之,食品蛋白质检测仪在奶粉蛋白质含量检测中发挥着重要作用。它不仅能够提高检测效率和准确性,为奶粉生产厂家提供及时、可靠的质量监控手段,还能为消费者选择合适的奶粉产品提供有力支持。随着科技的不断进步和食品安全意识的提高,食品蛋白质检测仪将在食品安全检测领域发挥更加重要的作用,为保障人们的饮食安全贡献力量。
  • CEM 世界食品博览会推出全新的蛋白质检测系统
    CEM 世界食品博览会推出全新的蛋白质检测系统 &mdash &mdash 蛋白质标签技术比标准方法更准确 (Matthews, North Carolina) CEM公司,创新性微波实验仪器的杰出全球供应商,在芝加哥举办的世界食器展上,很高兴向大家宣布Sprint TM快速蛋白质分析仪的诞生。Sprint TM蛋白质分析仪采用的iTAG TM蛋白质标签技术可以在两分钟内得到准确的测量结果。准确的蛋白质检测结果在食品及宠物食品行业非常重要,这些行业由于一些添加剂中含氮水平估算而导致的错误的蛋白质测量结果。这种错误的测量是由于在面粉和米中添加三聚氰胺而引起。 &ldquo 在全球化资源化和经济发展的时代,好的食品生产商已经意识到保证食品的安全和纯正比以往更为重要&rdquo ,Michael J. Collins, CEM公司CEO说。&ldquo Sprint TM将蛋白质组学应用到食品科学,为公司提供最准确地蛋白质的检测。通过给真正的蛋白质贴上标签,Sprint TM可以进行准地区分,而不会由于氮的干扰而受到欺骗,这在食品科学领域是一项不可思议的重要突破。&rdquo 凯氏定氮法和杜马斯法现在常常用来食品行业中进行蛋白质检测,测量样品中的总氮含量,然后依据氮含量来计算蛋白质含量。如有添加剂,这就会产生一个问题,这些添加剂和污染物产生的蛋白质检测结果高于事实上的蛋白质。Sprint TM的蛋白质标签技术根本不测氮,而是直接找到蛋白质,产生一个准确的蛋白质测量结果。 这个方法已经得到了AOAC和AACC的认证,对食品和添加剂等广大行业非常有用。 这套系统操作简便,自动均匀化样品,添加标签溶剂,轻轻一触键,便可得到检测结果。 除此之外,整套系统相比较凯氏定氮和杜马斯方法更安全、快速、有益于环境。凯氏定氮法要采用硫酸加热到高温,在员工检测过程中,检测完以后处置上都会产生安全和健康问题。 &ldquo CEM的优势在于其优秀的研发能力和强大的研发队伍,尤其在非常重要的实验应用方面提供解决方案&rdquo ,Collins继续说道,&ldquo 我们在成分检测及生物科学方面的专长使得我们在扩大产品线的同时,使我们的知识成一种资本,这种机会并不是很多。从我们目前得到的各行业的反馈来看,这些反馈都是相当积极并令人鼓舞的。&rdquo 真蛋白质测定仪 蛋白质分析仪详情请浏览我们的中文网页:www.pynnco.com,或英文网站:www.cem.com, 或来电咨询:010-65528800,感谢您对我们CEM的关心和支持。
  • 蛋白质工程:跨学科研究揭神奇面纱
    在基因工程基础上发展起来的蛋白质工程,被称为“第二代基因工程”。在亚太地区蛋白质学会主席、北京大学跨院系蛋白质科学中心主任昌增益教授看来,蛋白质工程不仅蕴涵着人类攻克癌症等生命难题的重大契机,其在产业化上的巨大发展空间也是不言而喻的。  近年来,蛋白质工程研究和应用已遍及医疗、工业、农业等领域。目前,分子生物学家们已经能够通过对蛋白质进行修饰、加工、改良,使蛋白质“升级换代”。例如,人们对药物蛋白进行PEG(聚乙二醇)修饰,可以延长药物蛋白的作用半衰期 葡萄糖异构酶在工业上有着广泛的应用,人们对其基因进行定点诱变,将第138位的甘氨酸(Gly138)替代为脯氨酸(Pro)后,可显著提高葡萄糖异构酶的热稳定性,有利于其在食品工业上的应用 转入多拷贝串联的金属硫蛋白α-结构域编码基因的转基因植株,有着比野生植株更高的对重金属的抗性等等。  然而,昌增益认为,对蛋白质工程这座“金矿”的开发才刚刚开始。“尽管几十年来人们在蛋白质基础研究方面有了很大进步,但是我们对蛋白质这类结构和功能极其多样的神奇生命分子的认知还很有限,对蛋白质功能机制的研究方法和手段还远不够完善。”  他表示,如何揭示蛋白质分子发挥作用的规律,是一个复杂而艰深的难题。“借助其他学科平台,通过跨学科研究对蛋白质工程提出新的理论、新的方法,从不同的层面揭示蛋白质运作的机制,将是一个新的挑战和机遇。”  据了解,蛋白质工程研究的触角已经延伸到了各个高科技领域,包括生物、化学、物理、医学、工程以及计算机等。  “多学科、多角度、多层次的系统研究,能够帮助人们更深刻地揭示蛋白质‘神奇’的面纱,同时也能促进各学科的发展。”昌增益说。
  • 案例分享[高光谱成像技术]面粉无损检测
    应用案例分享[高光谱成像技术]面粉无损检测 背景面粉(小麦粉)是中国北方大部分地区的主食,用面粉制成的食物品种多样,如:面条、馒头、水饺等。生活中我们都是依据外包装上的高筋粉、中筋粉、低筋粉、全麦面粉等信息进行采购。很多人在购买面粉的时候会误以为"高筋面粉=高精面粉",其实"高精"的意思简单说就是高级精制,它只表示小麦的加工工艺,并不能说明面粉的筋度,其蛋白质的含量,决定面粉的“筋度”,即高筋、中筋、低筋。同时,面粉中蛋白质、淀粉、脂肪、矿物质的含量会直接影响面粉的等级。高光谱成像技术不仅有样品图像的信息,并且还可以获得图像上每个点的光谱数据,光谱可以反映特定波长的特征信息,从而获得更全面、更可靠的结果,以及更精确的信息,如糖、脂肪和蛋白质等等。随着生活水平的提高及食品产业规模化,食品品质的提高和改良倍受关注。传统的化学检测手段、精度、效率都不高。亟需建立一种新的能够应用于面粉质量分级的快速无损检测方法。实验设置基于漫反射方式采集面粉的高光谱数据,我们用Camlin型号VNIR-HR(光谱范围400-1000nm)和NIR-HR+(光谱范围900-1700nm)范围内反射光谱,建数学模型,分析面粉种类、颜色、淀粉、蛋白质、脂肪含量等指标,实现对面粉品质的无损检测。(1)VNIR高光谱相机下的测试结果主成分分析图像通过测试用的是VNIR高光谱相机(波长范围400-1000nm)从光谱图中可以看到在580nm附近有特征峰。(2) NIR高光谱相机下的测试结果主成分分析图像通过测试用的是NIR高光谱相机(波长范围900-1700nm)从光谱图中可以看到在970nm、1300nm附近有特征峰。高光谱成像技术在本应用中的独特优点:可以同时获取样品图像和光谱信息,该方法具有不破坏样本原貌,不使用化学试剂、检测快速等优点,避免了人工鉴别方法易受主观因素影响,属于在线快速检测和全检,实用性强,性价比高。1. 无损快速检测2. 全波段测试3. 支持集成、二次开发下表中涂黄部分是此次测试过程中使用的高光谱相机的产品参数:SpectralVNIR-SVNIR-HRNIR-HRNIR-HR+UnitsSpectral Range400 to 1000900 to 1700nmSpectral Resolution835nmSpectral Dispersion10.731.5nmSpectral Bands*892 / 446 / 223830 / 415 / 208250500-Spatial pixels14001600320640pixMaximum line frame rate120120344300lf/sSmile and Keystone errorSub-pixel across the spectrograph output field-InterfaceGiGe- 结论:通过采集面粉的高光谱图像和可见-近红外光谱信息,进一步建模型可分析出面粉中的蛋白质、淀粉、脂肪等的含量,跟国标和常规化学检测方法对比,结果可靠,可实现快速无损检测,且成本低。这能减少整个供应链的浪费,并提高消费者对产品感受的一致性。
  • 奶粉里的蛋白质含量,你了解吗?
    近日湖南郴州永兴县“大头娃娃”事件一经爆出引起了社会的广泛关注,问题奶粉再次被推向了风头浪尖。孩子是祖国的未来,孩子的健康成长关乎国家的命运,所以严控奶粉质量事关重大。奶粉中的蛋白质是供给机体的重要营养成分,同时根据标签法,在奶粉的包装中,蛋白质含量也是其中一项重要指标。目前大部分客户主要采用传统的凯氏定氮法,投资成本低,但是操作流程冗长且繁琐、需要使用大量化学试剂等。杜马斯燃烧法测是近来一直备受广大用户所青睐的全自动、简单快速、绿色环保的氮/蛋白质含量测定方法。德国元素Elementar作为世界上第一台杜马斯测氮/蛋白质分析仪的发明者,具有非常丰富的经验。德国元素最新款的rapid N exceed与rapid MAX N exceed 氮/蛋白质分析仪,具有操作简单、测量快速、结果准确、维护简便等多重优势。 rapid N exceed rapid MAX N exceed专为精确测定氮/蛋白质含量而设计60、80或120位自动进样转盘或90位机械臂坩埚进样专利EAS REGAINER 和 REDUCTOR 还原技术,确保使用寿命更长可采用CO2 作为载气,使用成本更低燃烧炉与热导检测池10年质保
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K, et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel J V, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 蛋白质分子检测技术取得突破
    据德国卡塞尔大学网站报道,近日,该校科学家研制的一种带磁场的微型传感器获得突破,样机在年内即能完成。该传感器通过遥控牵引磁化纳米生物分子,可将检测液中极少量的蛋白质分子检测出来。该技术有望革新医疗诊断方式,其中利用磁性纳米粒子运送生物分子的方法已申请了专利。  一般情况下,病人体内某些蛋白质组分会“泄露”病情,因此,医生有时可以通过检测体液中的某些蛋白质来及时确诊疾病。不过,由于有的疾病,例如阿尔茨海默氏症(老年痴呆症),其在血液中只含有少量这种蛋白,进行血液检查时蛋白质不一定能够到达传感器表面,所以往往需要用含较多这种蛋白的脊髓液来检查。而穿刺抽取脊髓液不仅需要麻醉,还给患者带来了手术的风险。  现在,德国卡塞尔大学物理研究所和多学科纳米结构科学与技术研究中心(CINSaT)阿诺埃雷斯曼博士领导的科研小组提出一个新的传感器概念,通过遥控牵引磁化纳米生物分子,可将血液中极少量的特定蛋白质分子检测出来,从而通过正常的血液分析取代脊髓液检查。  科学家们首先在表面覆盖受体分子的磁性纳米粒子的帮助下,从检测液体中捕捉特定的蛋白质分子。为此,磁性纳米粒子在回旋磁力场作用下穿过检测液体,并因此产生一个分子漩涡,这在一定程度上起了“搅拌器”的作用。随后,捕获了生物分子的纳米粒子会被磁力场牵引至可识别磁性粒子的传感器上。这个回旋磁力场通过部分磁化材料制成的水平堆积纳米层来产生。科学家们还克服了结构上的障碍,找到了避免纳米粒子通常在检测液体中会相互吸引而产生凝聚的方法。  研究人员认为,除了在医学诊断上的作用,该新型粒子运输概念还可在化学工业中得到应用,可能会迅速给医疗诊断和生物技术带来革命性影响。
  • 固液界面(SLIM)蛋白质结晶方法及新型结晶板研制
    成果名称固液界面(SLIM)蛋白质结晶方法及新型结晶板研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com合作方式□技术转让 □技术入股 &radic 合作开发 □其他成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:在结构生物学领域,晶体学是获得蛋白质原子结构的最普遍方法。近年来,尽管人们对蛋白质结晶原理的认识逐步深入,并且在方法研究方面不断有新的突破,但是国际上尚没有一个通用的可以获得蛋白质晶体的方法,蛋白纯化及晶体生长是一个劳动密集、成功率比较低的工作。在这种情况下,蛋白质晶体制备技术的自动化、并行化、小型化创新将大大简化蛋白晶体生长步骤,从而提高工作效率,十分必要。在此背景下,苏晓东课题组提出一个新的蛋白质结晶概念,即固体液体界面方法(SLIM),该方法可降低蛋白结晶筛选时对蛋白质浓度及量的要求。SLIM主要基于提前滴加池液使其干燥便于储存运输,而后在&ldquo 干滴板&rdquo 上生长晶体时滴加蛋白溶液到&ldquo 干池液&rdquo 中,这为蛋白晶体生长提供了不同的动力学途径。这个方法的一个突出优点是可以利用自动化的多通道的移液设备大批量的准备许多&ldquo 干滴板&rdquo ,从而大大简化蛋白结晶过程并增加通量。为了使这个方法能够实用化,课题组需要尝试及采用各种高通量、自动化移液系统来制造大量低成本&ldquo 干滴板&rdquo ,同时还要设计并制备合适的结晶塑料板材。作为&ldquo 仪器创制与关键技术研发&rdquo 基金首批支持的项目,在项目资金的支持下,通过结晶&ldquo 干滴板&rdquo 制备仪器的购置,以及结晶板材生产模具的试制,苏晓东教授这一新型蛋白质结晶板的研制工作得以顺利推进。目前,苏晓东课题组已经成功制备了蛋白质结晶&ldquo 干滴板&rdquo 样品,并已获得良好的效果,相关专利申请已进入国家阶段。接下来,课题组将继续与相关公司及厂家合作,进一步研制&ldquo 干滴板&rdquo 的大批量、高通量生产技术,实现该技术成果的转化。应用前景:蛋白质晶体制备技术的自动化、并行化、小型化创新将大大简化蛋白晶体生长步骤,从而提高工作效率,应用前景广阔。
  • 单个蛋白质分子检测技术取得新突破
    中国科学技术大学研究人员领衔的一个团队最近利用钻石中的一种特殊结构做探针,首次在室内温度空气条件下获得单个蛋白质分子的磁共振谱。该成果使利用基于钻石的高分辨率纳米磁共振成像诊断成为可能。  这一发现5日发表在新一期美国《科学》杂志上。负责该研究的中国科学技术大学教授杜江峰说,通用的磁共振技术已被广泛用于基础研究和医学应用等多个领域,但其研究对象通常为数十亿个分子,单个分子独特的信息无法观测。基于钻石的新型磁共振技术在继承传统磁共振优势的同时,将研究对象推进到单个分子,成像分辨率由毫米级提升至纳米级,但其主要难点是源自单分子的信号太弱。  为此,杜江峰的团队利用碳-12富集的钻石为载体,注入氮离子使其产生一种名为&ldquo 氮-空位点缺陷&rdquo 的结构,并使该结构发挥探针作用,在纳米尺度上靠近被探测的蛋白质。此外,他们利用一种名为&ldquo 多聚赖氨酸&rdquo 的物质保护蛋白质,确保其在研究过程中的稳定性。  研究人员选取了细胞分裂中的一种重要蛋白质MAD2为研究对象。经过两年多的努力和逾百次尝试,最终他们成功在室内温度及空气条件下首次获取了单个蛋白质分子的磁共振谱,并通过谱形分析,获取了其动力学性质。  关于这项技术的用途,杜江峰表示,最直接的用途是在不影响蛋白质性质的前提下检测其结构和动力学性质,直接在细胞膜上或细胞内研究蛋白质分子,&ldquo 这对生命科学研究来说有极大吸引力&rdquo 。  总之,该技术拓宽了单个分子领域的研究范围,在分析化学、结构生物学、高分子、磁性材料等领域具有重要应用前景和实用价值。以此为基础,结合扫描探针、高梯度磁场等技术,未来可将该探测技术用于生命及材料领域的单个分子成像、结构解析、动力学监测,甚至直接深入细胞内部进行微观磁共振研究,为获得科学新发现孕育可能。  《科学》杂志的审稿人评价该工作是&ldquo 单个蛋白质分子检测的突破性成果&rdquo ,开启了利用&ldquo 氮-空位点缺陷&rdquo 进一步研究&ldquo 自旋标记&rdquo 蛋白质的可能,有重要应用前景。参与这项研究的还有来自中国科学院强磁场科学中心和德国斯图加特大学的研究人员。  原文检索:Single-protein spin resonance spectroscopy under ambient conditions
  • 遗传发育所在植物磷酸化蛋白质组学技术研发方面获进展
    蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷酸化靶点的有效手段。然而,与动物相比,植物磷酸化蛋白质组的深度解析在技术上更具挑战性。这是由于植物细胞具有致密的细胞壁和大量的色素以及其他次生代谢物。前者增加了蛋白质提取的难度,而后者干扰了磷酸肽富集的效率和特异性。 中国科学院遗传与发育生物学研究所汪迎春研究组通过探索一系列的实验条件,研发出高效的植物磷酸化蛋白质组学新技术。该技术的主要特点是利用脱氧胆酸钠高效抽提植物蛋白,同时消除常规方法中导致样品损失和灵敏度降低的两个步骤,即在蛋白酶消化前的样品净化和在磷酸肽富集前的脱盐处理,在色素与其他干扰分子共存的情况下进行高特异性、高灵敏度地磷酸肽富集。 科研人员应用这一方法,在拟南芥、水稻、番茄和衣藻等绿色生物的组织中高效纯化磷酸化蛋白质组(单针质谱可鉴定约11,000个磷酸位点)。由于该技术主要面向高等植物及其他绿色生物(如衣藻),且操作简便,降低了实验所需的人力和试剂费用,因此命名为GreenPhos。GreenPhos可定量分析不同植物的磷酸化蛋白组,分析深度深、定量重复性高,有望成为植物磷酸化蛋白组学的通用技术。研究人员应用该技术,深度解析了拟南芥响应不同时长盐胁迫的差异磷酸化蛋白质组,发现了包括剪接体蛋白和一些激酶响应盐胁迫的磷酸化事件。 11月27日,相关研究成果在线发表在《分子植物》(Molecular Plant,DOI:10.1016/j.molp.2023.11.010)上。研究工作得到国家重点研发计划与中国科学院战略性先导科技专项的支持。中国科学院植物研究所的科研人员参与研究。GreenPhos工作流程及多种绿色生物磷酸化蛋白质组鉴定结果
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。
  • 凯氏定氮法检测脱脂奶粉中蛋白质的含量
    蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长链从数纳米至100nm,它们由20种氨基酸通过酰胺键以一定的方式结合,并具有一定的空间结构,所含的主要化学元素为C、H、O、N,在某些蛋白质中还含有P、Cu、Fe、I等元素,但氮的相对丰度基本稳定,是区别于其它有机化合物的主要标志。不同蛋白质的氨基酸构成比例及方式不同,所以各种蛋白质其含氮量也不同。一般蛋白质含氮量平均为16%,即1份氮素相当于6.25份蛋白质,此即蛋白质系数。 意大利VELP凯氏定氮仪在环保节能方面具有性能, 的蒸汽发生器和钛冷凝器,蒸馏滴定同步进行,分析速度快,冷却水用量仅0.5升/分钟,降低能耗从而节约了成本。因此该仪器被广泛应用于各类蛋白质检测的实验研究。 测定脱脂奶粉中蛋白质的含量,对掌握其营养价值和品质的变化,保障人体健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定作用,所以测定具有深远意义。
  • 《美国化学会志》报道固体NMR新方法探测蛋白质的界面
    在4月30号出版的《美国化学会志》(JACS, 2008, 130, 5798)上报道了中科院武汉物数所杨俊博士在美国University of Delaware 用固体NMR新方法研究蛋白质界面的研究工作。 一些生物大分子,如膜蛋白,蛋白质复合体,蛋白质纤维等,在生命过程中起着极为重要的作用,但是由于难于得到这些生物分子的单晶以及它们在溶液中的低溶解度, 用X-ray和液体NMR很难得到它们的结构。一个典型的例子是膜蛋白质。膜蛋白约占与人类基因编码有关的蛋白质的30%,一些重要的生命活动如能量转换、信息识别与传递、物质运送和分配都与膜蛋白密切相关。但是到目前为止,只有157种(总共约3万种)膜蛋白的三维结构结构是已知的。对于这些“困难”的生物大分子,固体NMR被认为是最有前途的研究手段之一。自从2002年德国科学家首次用魔角旋转NMR得到固体蛋白质的三维结构以来,这几年这个领域飞速向前发展。随着高磁场NMR仪器的使用,魔角旋转NMR探头技术的发展,固体蛋白质样品制备技术的成熟和一批两维到四维固体NMR脉冲序列的使用,魔角旋转NMR研究蛋白质的能力大大提高,魔角旋转NMR已经能够对25-30 KDa的蛋白质进行NMR信号全归属和相应的结构和动力学研究。 在这个研究中,杨俊和University of Delaware 的同事Tatyana Polenova设计了一组新脉冲序列,他们用这组脉冲序列研究了用不同同位素标记的thioredoxin蛋白质组装体的分子内和分子间的界面。首先他们用理论模拟和NMR实验证实了固体NMR中的REDOR技术可以用来消除13C,15N全富集的蛋白质主链上的15N信号,实现了用一个蛋白质样品同时进行NMR信号归属和蛋白质界面研究。借助于对远程相互作用敏感的1H/13C REDOR和PAIN-CP技术, 他们设计了两个脉冲序列,用不同核自旋对的相关性观察到了蛋白质界面上空间相近的残基对。另外,他们还设计了两个脉冲序列对蛋白质另外一段的主链上的15N信号进行了归属。这组固体NMR的脉冲序列和相应的同位素标记方法将可以在更大的蛋白质复合体的界面研究中使用。
  • 大咖面对面|高友鹤:尿液蛋白质组学 实现更早期的诊断
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼生物标志物是与机体生理及病理状态相关的可监测到变化的生化指标,蛋白质组学是精准医学中生物标志物研究至关重要的一环,其最终目的也是为了指导临床,服务精准医学。尿液可以被连续、大量、重复收集并便捷、稳定地保存,且组分相对简单,易于分析,是理想的标志物研究样本。我们邀请了20余年来一直从事尿液蛋白质组学研究、北京师范大学生命科学学院的高友鹤教授,他分享了课题组应用尿液蛋白质组学技术进行的相关研究及重要成果、尿蛋白质组面临的机遇与挑战。北京师范大学生命科学学院 高友鹤教授尿液生物标志物 实现更早诊断✦ ✦ ✦ ✦ 尿液可以更早期、更敏感地发现生理病理的线索。近年来,高友鹤教授团队不断拓展尿蛋白质组在医学上的应用边界,从最开始的大器官、弥漫的病变,到更小的、更不容易被发现的疾病研究。甚至一些需要越过很多屏障的生理病理研究,如血脑屏障、胎盘屏障等。结果都很令人兴奋。甚至正常人的生理变化都能反映出来,比如说有没有运动,有没有打疫苗等等。假如疾病发现得早,医学工作者就有更多的机会能够阻止疾病的发展,或者让病程发展减慢,或者减少并发症等。在医学上,早期诊断至关重要,甚至比治疗更重要。尿液样本保存新方法✦ ✦ ✦ ✦ 尿液组成简单,细胞较少,尿里蛋白足够多而且都是水溶性的。因此从技术上来说,尿液检测比血液检测更简单。尿液研究的难点在于样本保存。高友鹤教授指出,尿液里占大量体积的其实是无效的水分,所以只需去除水分,富集包含信息量的“干货”即可。//团队使用特殊的膜来吸附有效成分,滤除水分并吹干膜,再用真空袋密封。这种保存方法隔绝了氧气和水分,可使尿液样本保存得更好,成本更低。这项规范化的尿液样本方法为尿液标志物的研究奠定了基础。尿液蛋白质与中药整体化研究✦ ✦ ✦ ✦ 高友鹤教授团队也开展了中药的相关研究,以往大多数中药研究思路都是将单个中药材分离纯化,再寻找其中的有效成分,然后再开展药效研究。这种研究方式对中医的一些理论可能受到影响,无法反映中药成分之间的协同作用和互相抵消作用。利用尿液蛋白质组,可开展研究中药的整体研究效果。团队最近开展了相关探索,用中成药饲喂动物后,观察其尿液蛋白质组的整体变化。这是一个很好的整体化研究中药的方式。与赛默飞的不解之缘✦ ✦ ✦ ✦ 超高分辨液相色谱-质谱联用仪是尿液蛋白质组学研究的主要分析平台。高友鹤教授说:“我从美国回来的时候了解到,赛默飞的质谱仪更适合做蛋白质组,所以我们开始尝试买了最早的版本LCQ。从那时起,我们实验室从最早的LCQ、LTQ、到现在的Orbitrap Fusion Lumos三合一质谱,基本上都是用的赛默飞的系列质谱仪。”赛默飞质谱仪“质谱仪是一类高端的精密分析仪器,因此很多单位都有专人负责,而我们实验室至今从未有过专人负责。”高友鹤教授表示,“这意味着仪器的大部分使用者是我们的研究生,并没有专门的仪器维护经验。在这种情况下,赛默飞的质谱仪能够陪伴我们到现在还能持续工作,这说明赛默飞的仪器非常皮实稳定。”“希望未来的质谱仪器能更好用,像傻瓜相机一样简单易用,最理想的是,仪器公司能够做更多的配套设备,比如在临床检测中,尿液能通过自动化处理得出蛋白质组数据,把分析出的临床相关信息反馈给医生,描述出病人的病理及生理学状态。”尿液检测应得到更多重视✦ ✦ ✦ ✦ 从疾病到健康的转变,实际上就是从相对晚期到相对早期的转变。在这个转变的过程中,尿液能起到的作用,超过了其他的体液,应该受到更多的重视。希望现阶段的研究能够更多更快地应用到临床领域,造福人类。同时,希望能够产学研多方合作,实现低成本、自动化等满足临床的分析需求的标准流程。人物简介1990年,高友鹤获中国协和医科大学医学博士(MD),后赴美获美国康涅狄格大学生物医学博士,并在美国哈佛医学院工作;2001年起获聘中国医学科学院特聘教授,任基础医学研究所病理生理学系教授。2014年12月获聘北京师范大学生命科学学院教授。曾获全国优秀博士论文指导教师,国家杰出青年基金,新世纪百千万人才国家级人选。现任《Urine》杂志创始主编,中国生化分子生物学会蛋白质组学分会理事等。如需合作转载本文,请文末留言。
  • 食品奶粉蛋白质检测仪维护周期是多久
    食品奶粉蛋白质检测仪维护周期是多久,食品奶粉蛋白质检测仪的维护周期并不是固定的,因为它取决于多种因素,如设备的使用频率、环境条件、操作人员的维护意识等。然而,一般来说,为了确保设备的准确性和可靠性,建议定期进行以下维护和检查:日常清洁:每天或每次使用后,应对设备进行清洁,去除样品残留和灰尘。这有助于保持设备的卫生和准确性。定期检查:每周或每月进行一次全面的检查,包括设备的各个部件、连接线、电源等。确保所有部件都处于良好的工作状态,没有损坏或磨损。校准:根据设备的使用情况和制造商的建议,定期进行校准。校准是确保设备测量准确性的关键步骤。更换耗材:如果设备使用耗材(如过滤器、灯源等),应按照制造商的建议定期更换。软件更新:如果设备有软件支持,定期检查并更新软件,以确保设备具有最新的功能和修复任何已知的问题。具体来说,维护周期可能因设备型号、制造商和使用环境而异。因此,建议参考设备的用户手册或联系制造商以获取更具体的维护建议。此外,为了确保设备的长期稳定运行,建议对操作人员进行培训,使他们了解设备的操作和维护要求。同时,建立设备维护记录,以便跟踪设备的维护历史和性能变化。
  • 全球蛋白质组学千亿美元市场 中国创新企业能分羹几何
    蛋白质是经过基因表达之后的产物,是生命活动的直接执行者和调控者。蛋白质分子是应用最广泛的一类靶标物质,其中,超过95%的药物靶标,超过55%的临床诊断指标是蛋白质分子。  国家《“十四五”生物经济发展规划》将蛋白质组作为生物经济的重要领域之一,提出发展蛋白质组学技术和检测技术,加快推进生物科技创新和产业化应用,打造国家生物技术战略科技力量,提高重大疾病的诊断和治疗水平。  “蛋白质组学是研究大规模水平上蛋白质的序列结构和功能的系统生物学科,其组成随着生命活动、疾病发生在不断变化。蛋白质组是后基因组时代解读生命本质的重要译码。”近日,青莲百奥CEO李京丽在接受记者采访时介绍称。  弗若斯特沙利文数据预计,当前全球蛋白质组整体市场接近千亿美元,在产业链上游赛默飞等跨国企业质谱仪和试剂供应商为蛋白组学研究提供基础仪器和试剂。2022年以来,海外蛋白质组学的企业陆续在纳斯达克上市,国内蛋白质组的市场热度也一直不断攀升。而目前中国创新企业又能分羹几何?  市场潜力巨大  1994年,Marc Wilkins博士等人提出了“proteome”(蛋白质组)这个术语,将蛋白质组定义为“基因组计划”的延伸。在21世纪初,人类蛋白质组研究在全球开启。2014年,两个独立的国际研究小组分别在《自然》杂志上公布了人类蛋白质组的第一张草图。  在我国,基因组研究发展步伐跟随国际,但在蛋白质组学研究领域,国内研究水平与国际比肩。就在2023年,由中国科学院院士贺福初牵头领衔发起并主导的人体蛋白质组导航国际大科学计划(Proteomic Navigator of the Human Body,简称π-HuB计划),全球科学家通力协作,绘制人类全生命周期图谱,解读人体蛋白质组构成原理与变化规律,实现蛋白质组学驱动的医学范式,共创智慧医学。  据了解,蛋白质组学产业链上游主要包括质谱仪和试剂供应商,如赛默飞、布鲁克、CST等,为蛋白组学研究提供基础仪器和试剂;中游主要包括蛋白组学技术服务的提供商,如景杰生物、中科新生命等,中游企业利用自身的创新技术和平台,为客户提供蛋白质鉴定、定量、修饰、互作等分析服务;下游主要包括蛋白组学技术服务的用户,如高校、科研院所、医院、生物医药企业等,它们通过采购蛋白组学技术服务,进一步从事基础研究、疾病研究、药物研发等活动。  根据弗若斯特沙利文数据预计,我国蛋白质组学市场规模,以31.3%的复合年增长率持续扩大。  不过,李京丽也指出,在上游层面,中国与海外差距较大,主要核心技术如高分辨质谱等,被国外头部企业引领。不过在中下游,国内实力与海外市场差距较小,国内的蛋白质组市场需求也在快速攀升。  值得注意的是,在精准医疗的应用层面蛋白质组具有较大增量,李京丽向记者进一步介绍称,在临床诊断、疾病预测和治疗监测等方面发挥重要作用。通过蛋白组学技术将疾病血液、组织等样品进行数字化,然后采用蛋白质定量、翻译后修饰、蛋白相互作用等数据分析找到关键特征分子,再进行系统研究,找到作为诊断标志物或药物治疗靶点。  另据了解,蛋白质组学技术可以伴随患者全生命周期的健康管理和用药指导。比如,在疾病发生发展过程中,初次确诊,是否复发、用药是否获益、是否耐药等场景的诊断应用。  此外,李京丽指出,相比人的2万个静态基因,人的蛋白质水平是动态的100+万种蛋白变体,蛋白质组维度更精细,基于蛋白质的临床检测还会逐渐增多,无论从存量还是未来增量而言,蛋白质组都有巨大的发展空间。  基于蛋白组学的广泛应用及发展空间,国家政策层面积极支持,资本层面也看好其发展前景。如《“十四五”生物经济发展规划》将蛋白质组作为生物经济的重要领域之一,提出发展蛋白质组学技术和检测技术,加快推进生物科技创新和产业化应用,加快生物技术向多领域广泛融合赋能,加快培育蛋白领域新技术、新产业(300832)、新业态、新模式。  与此同时,近年来也有不少资本向蛋白组学领域倾斜。德联资本在不久前就投资了青莲百奥。德联资本相关负责人向记者分析称,相比于基因组,在蛋白质组领域,中国科学家有更强的话语权,且市场增速较快。同时,蛋白质组与人的健康或疾病状况的关联更直接,其在科研端还有众多未被发现的领域,科学价值很高,可以为科研端市场带来持续不断的增长。2023年,由贺福初院士牵头主导的人类蛋白组导航计划将持续30年,该计划每年可为科研市场带来数亿元的额外经费投入。  “实际上,科研端大量投入的背后,是希望将蛋白质组数据转化为新药研发的靶点或诊断标志物,临床转化是科研投入背后的长期目标,这仍然需要时间,但目的十分明确。当科研发展到一定阶段,如发现一些新的、有效的标志物,谁能将其快速实现商业化,谁就能得到市场的机会。”上述德联资本负责人指出。  填补国内市场空缺  随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。李京丽指出,我国在蛋白组学领域,急需标准化流程,需要解决相关问题。  据了解,针对国内蛋白质组市场现存的空缺需求,青莲百奥提供针对血液和微量组织样本的多种纳米材料富集试剂盒、蛋白样本前处理工作站、AI生信分析算法等产品,其产品组合的多样性和独特性国内独有。  作为一家创新型的服务平台,青莲百奥属于产业链的中游,提供创新性的解决方案,辐射上下游两端,针对上游提供科学工具产品,下游向临床端及科研端提供服务和产品。  青莲百奥是国内一家专注于蛋白质组学检测的创新性平台型CRO企业,成立于2013年,也是国内较早研究蛋白质组学研究的团队,几名核心创始人参与过人类蛋白质组计划及中国人类蛋白质组计划,从蛋白的功能机制研究,到药物靶点的发现,再到疾病诊断的突破,从实验室到产业化,从研发端到商业化落地,团队在蛋白质组学发展的20年间,是见证者也是实施者。  目前,青莲百奥主要面向医院科研和药企研发,临床需求是其首要解决的客户需求,同时,也率先与LDT头部医院达成战略合作,形成产学研闭环。据了解,青莲百奥核心技术优势在于临床需求的解决方案,对样品的高深度、标准化通量产出,加之数据质控和后期AI算法的优势,使得多年的行业积累,其业务发展已获得良好契机。  “在与临床端合作时,我们首先会确定临床需求,再通过创新性的蛋白组学技术,将临床样本数字化,产出数据矩阵,通过大模型算法找到可能引起疾病发生变化的关键蛋白。之后,将蛋白指标作为诊断或治疗特征,实现蛋白质组学驱动的医学范式转变。”李京丽进一步介绍。  目前,青莲百奥已与多家三甲医院展开合作,包括携手协和医院完成国内首篇空间蛋白质组学研究,探讨病毒感染疾病的机制问题;联合深圳市人民医院,利用热蛋白质组学新技术,发现肺部感染治疗的新抗菌药物;助力北京大学第三医院合作妇产项目,运用独有的纳米材料筛选血浆潜在标志物;此外,青莲百奥更与中国人民解放军总医院进行了多种罕见病的相关合作,开发新的诊断标志物。  2022年以来,海外蛋白质组学的企业陆续在纳斯达克上市,国内蛋白质组的市场热度也一直不断攀升。据记者了解,青莲百奥2023年实现了其独特产品的持续放量,获得商业认可并已实现盈利,也于2023年完成了数千万元的首轮融资。所募集资金将用于“一站式蛋白组学平台”升级建设,加速蛋白质诊疗标志物发现及临床转化。  实际上,蛋白质组在结构、组成、变体数量上更加复杂多样,且蛋白质无法通过技术手段实现扩增,因此蛋白质组检测难度更高,挑战性更大。此外,在临床应用端,临床体液样本往往存在样本量小、通量高、一致性及可溯性要求高的特点,传统蛋白质组检测难以应对其低丰度、高深度、高通量的分析需求,因此亟需新一代的蛋白质组学平台,加速蛋白质组学检测在临床端的应用推广。  企业档案:北京青莲百奥生物科技有限公司是一家专注于蛋白质组学检测的创新性平台型CRO企业,以临床需求为导向、以源头创新为核心驱动力,为蛋白质诊、疗标志物的临床转化提供一站式的完整解决方案。拥有蛋白样本的独创性纳米磁珠富集技术、全流程前处理智能机器人及全自动大数据分析系统。公司聚焦于血液、外泌体、组织切片、单细胞等样品,攻克微量检测限、高深度覆盖、定量准确性、方法标准化、算法智能化等蛋白质检测关键技术环节,全力打造新一代蛋白质组学平台。
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。  考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:  Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。  今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。  我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。  蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。姓 名工作单位主要贡献Richard D. Smith美国太平洋西北国家实验室1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白John Yates III美国Scripps研究所SEQUEST MS/MS数据库搜索程序Joshua Coon美国威斯康星大学麦迪逊分校发明了电子转移解离技术(ETD)Neil Kelleher美国西北大学Top-down蛋白质组学Kathryn Lilley英国剑桥大学蛋白质组学定量技术Pierre Thibault加拿大蒙特利尔大学应用生物质谱和蛋白质组学到细胞生物学Michael MacCoss美国华盛顿大学(西雅图)稳定同位素标记技术Albert Heck荷兰Utrecht大学基于质谱的结构生物学Catherine Costello美国波士顿大学HUPO前任主席,质谱技术发展及应用Alexander Makarov德国Thermo Fisher Scientific 生物质谱全球研发总监领导研发Orbitrap质谱仪Donald Hunt美国弗吉尼亚大学FT-MS and ETD  简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style="text-align: justify line-height: 1.75em "  詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。/pp style="text-align: center line-height: 1.75em "  span style="color: rgb(0, 112, 192) "strong深入剖析蛋白质组学技术最新进展与应用/strong/span/pp style="text-align: justify line-height: 1.75em "  詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。span style="text-indent: 2em "蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。/span/pp style="text-align: justify line-height: 1.75em "  蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 427px " src="https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title="1111111.png" alt="1111111.png" width="600" height="427" border="0" vspace="0"//pp style="text-align: center line-height: 1.75em "  图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019)/pp style="text-align: justify line-height: 1.75em "  如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 415px " src="https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title="2.png" alt="2.png" width="600" height="415" border="0" vspace="0"//pp style="text-align: center line-height: 1.75em "  图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019)/pp style="text-align: justify line-height: 1.75em "  “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。/pp style="text-align: justify line-height: 1.75em "  最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。/pp style="text-align: center line-height: 1.75em "  span style="color: rgb(0, 112, 192) "strong基于整合组学发现疾病标志物才是精准发展之重/strong/span/pp style="text-align: justify line-height: 1.75em "  1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案/pp style="text-align: justify line-height: 1.75em "  詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子/pp style="text-align: justify line-height: 1.75em "  机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。/pp style="text-align: justify line-height: 1.75em "  我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。/pp style="text-align: justify line-height: 1.75em "  在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。/pp style="text-align: justify line-height: 1.75em "  2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地?/pp style="text-align: justify line-height: 1.75em "  詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。/pp style="text-align: justify line-height: 1.75em "  我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。/pp style="text-align: justify line-height: 1.75em "  3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划/pp style="text-align: justify line-height: 1.75em "  詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。/pp style="text-align: justify line-height: 1.75em "  另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 802px " src="https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title="詹.jpg" alt="詹.jpg" width="600" height="802" border="0" vspace="0"//ppbr//p
  • 美赞臣奶粉被曝蛋白质不符合要求
    产品名称 制造商名称进口商名称重量(吨)不合格原因描述处理措施进境口岸 美赞臣婴儿配方奶粉(9-24个月) Mead Johnson & Compy厦门中马进出口有限公司0.116 蛋白质含量不符合国家标准退货厦门美赞臣婴儿配方奶粉(0-12个月) Mead Johnson & Compy厦门中马进出口有限公司0.184 蛋白质含量不符合国家标准退货厦门丸三牌调制豆奶丸三株式会社上海心征商贸有限公司0.906标签不合格销毁上海丸三牌调制豆奶丸三株式会社上海心征商贸有限公司0.906标签不合格销毁上海丸三牌豆奶饮料麦芽咖啡丸三株式会社上海心征商贸有限公司0.186标签不合格销毁上海脱盐乳清粉JAMES FARRELL AND CO上海锦江国际贸易有限公司158检出过氧化苯甲酰退货上海甜乳清粉OLAM INTERNATIONAL LIMITED中轻日用百货进出口公司132检出过氧化苯甲酰退货上海甜乳清粉OLAM INTERNATIONAL LIMITED中轻日用百货进出口公司100检出过氧化苯甲酰退货上海
  • 最新发现:世界上第一个单分子高精度蛋白质图像出炉
    在人体内,有数千不同的蛋白质。每个蛋白质都有独特的形状,这样决定了它们独特的功能。科学家们至今都有很难捕捉单个蛋白的图像。问题在于,高功率成像工具往往会抹导致脆弱的蛋白质结构发生破坏,因此研究人员拍摄数以百万计的照片,来全面地了解一种蛋白质的晶体结构。这些工具所产生的图像,通常是模糊的,并且一些蛋白质不能被拍照,因为它们无法形成晶体。  现在,一个研究团队已经可以用新的石墨烯材料来采集单个蛋白的图像。根据最近公布的arXiv上的一项研究,这种使用全新材料石墨烯获得的蛋白质图像是第一个针对单个蛋白质的高分辨率图像。  捕捉单个蛋白质的图像时,研究人员将蛋白质的溶液雾化,并混合到非常薄的石墨烯片上。然后他们使用了低能量的全息电子显微镜,通过弹跳电子束来撞击蛋白质,然后记录这些电子与其它电子的如何相互作用产生的图像。这种低能量的电子束可以保证蛋白质结构不会出现太大的破坏。不同于以前其他成像方法,研究人员使用全息电子显微镜可以保证蛋白质结构的完整性和可靠性。利用计算机技术,研究人员使用了全息电子显微镜产生的图像来重建蛋白质的原始结构。  细胞色素C图像。A)从全息电子显微镜获取的细胞色素C蛋白的图像。B)三种不同的蛋白质观察角度的重建。C)使用电子计算机技术来数字重建的蛋白质的不同角度的模型。  (图片来自:Jean-Nicolas Longchamp et al, 2015, arXiv)  研究人员试图将自己解析的结构与几种已经广为人知的蛋白质结构做对比,比如血红蛋白(在红血球中携带氧气的蛋白),牛血清白蛋白(在实验室常用的蛋白)和细胞色素C(细胞内的电子转移在他)。他们比较了所得图像,并与其他成像技术获得的图像做对比,并发现,他们的照片有更高的清晰度。研究人员接下来希望获取其他未解析过的蛋白质图像。如果科学家更好地了解蛋白质结构,他们可以找可能存在的错误折叠的蛋白、如阿尔茨海默氏症,帕金森氏和亨廷顿氏病相关的蛋白质,这对于人类健康和基础生物学的研究大有益处。
  • 新研究提供调控大脑疾病中有毒蛋白质的分子机制
    所周知,细胞会自然衰老和死亡,但细胞蛋白质的适当调节对我们衰老时保持大脑健康至关重要。在神经退行性疾病中,蛋白质聚集体(或错误折叠蛋白质的团块碎片)扩散到邻近的细胞,但对这些有毒物质是如何转移的科学家们仍然知之甚少。  近日,发表在《美国国家科学院院刊(PNAS)》上的一项研究中,来自美国罗格斯大学新布伦瑞克分校的研究人员首次从分子水平上了解了在阿尔茨海默症和帕金森病等神经退行性疾病模型中,有毒蛋白质是如何调控的。在这项研究中,研究人员对秀丽隐杆线虫模型进行了研究,线虫受到压力的神经细胞可以将神经毒性蛋白质以囊泡的形式挤压出来,这些囊泡被称为exoophers。研究人员还研究了特定的压力如何影响exoophers被挤压出来。他们发现,形成exoophers需要特定的细胞信号,而出人意料的是,禁食可以显著增加exoophers的产生。此外,这项研究还发现了三种在禁食期间增加exoophers产生的细胞途径。  该研究第一作者、罗格斯大学新布伦瑞克分校分子生物学和生物化学系博士后研究员Jason Cooper说“在神经退行性疾病中,有毒蛋白质会扩散到邻近细胞以促进细胞死亡。鉴于在衰老和神经退行性疾病中管理蛋白质聚集体的重要性以及对这些聚集体如何转移的生物学知之甚少,对转移机制的详细了解可能会揭示以前的未被识别的治疗靶点”。   论文链接:  https://www.pnas.org/content/118/36/e2101410118
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 芬兰百得(Biohit)参加第七届中国蛋白质组学大会暨第三届国际蛋白质组学论坛
    中国蛋白质组学大会和国际蛋白质组学论坛代表了当前蛋白质组学及相关领域研究的最高水平,此次会议,不仅是该领域科学家分享研究成果、共同谋划发展的盛会,亦将成为贵公司展示形象和实力的舞台,为您提供与国内外最优秀的专家和科研人员进行交流的难得机会,共同推进中国蛋白质组学的研究、开发和应用事业的发展。 会议时间:2011年4月15-4月17日 地点 :第一世界大酒店 本公司展位号:A8 欢迎相关各界观众亲临指导交流! 体验百得(Biohit)给您带来的精准和轻松! 现场报道--会议中
  • 新型非离子表面活性剂在自上而下蛋白质组学中的应用
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的Letter,Nonionic, Cleavable Surfactant for Top-Down Proteomics [1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授和Kyle A. Brown博士。非离子表面活性剂是从细胞中溶解和纯化蛋白质的通用工具,是结构生物学中使用的关键试剂。N-dodecyl-β-D-maltoside(DDM)是最受欢迎的非离子表面活性剂之一,用于从非变性环境中提取蛋白质进行下游生物学实验。然而,表面活性剂的存在,即使是像DDM这样温和的表面活性剂,依然会对自上而下蛋白质组学分析产生不利影响。与表面活性剂相关的信号抑制一般是由低分子量物质较高的电离效率和信噪比引起的。此外,表面活性剂的存在会对常见的前端蛋白质分离技术产生负面影响,例如对于反相液相色谱(RPLC)而言,可能会导致再现性和稳健性方面的潜在问题。克服表面活性剂在下游蛋白质组学分析中的不兼容性问题的一种方法是插入一个可裂解键(例如酸或光不稳定键),能够在质谱分析之前降解为无害的副产物。然而通常用于蛋白质组学的可裂解表面活性剂含有变性阴离子基团,如硫酸盐,不能用于需要非变性条件的应用。因此,急需开发一种可以在非变性条件下辅助传统的蛋白质制备方法的可裂解表面活性剂,并能适用于下游蛋白质组学分析。本文中,作者首次使用了一种非离子型可裂解的表面活性剂N-decyl-disulfide-β-D-maltoside(DSSM),用于自上而下的蛋白质组学。(图1)  图1. DSSM在蛋白质组学中的应用  首先,作者在变性条件下,用碳酸酐酶(29.1 kDa)评价了DSSM与ESI-MS分析的相容性。表面活性剂通过TCEP在4℃条件下降解2 h,在DSSM降解和离心后,没有观察到不溶性降解产物。    图2. DSSM与完整蛋白ESI-MS分析的相容性。  作者进一步评估了DSSM与RPLC-MS的兼容性,以研究膜蛋白。膜蛋白是一类重要的药物靶点,由于其固有的低溶解性和低丰度,通常难以使用自上而下蛋白质组学进行研究。作者对一种模型离子通道蛋白KcsA进行了DSSM辅助膜蛋白组学分析。使用氯仿:甲醇:水沉淀法去除不相容的缓冲组分(盐、洗涤剂等)后,在DSSM (2× CMC)中溶解KcsA。表面活性剂用TCEP(在水中或50%异丙醇中)降解,用CID进行RPLC-MS/MS破碎。结果显示,作者成功地表征了防止通道失活的突变(E71A)。(图3)    图3.DSSM溶解膜蛋白的自上而下蛋白质组学  最后,作者利用DSSM提取哺乳动物细胞内源性蛋白,表面活性剂降解后直接用RPLC MS/MS进行分析。在采用TopPIC对数据进行分析之后,作者通过四次LC-MS/MS实验从206个蛋白质组中鉴定出276种proteoform。作者证明了DSSM是一种有价值的用于细胞裂解的表面活性剂,并可以用于RPLC-MS/MS分析进行proteoform鉴定。  图4. 使用DSSM从细胞裂解液中提取的内源性蛋白质的自上而下蛋白质组学总的来说,作者证明DSSM可以促进膜蛋白的自上而下蛋白质组学表征,以确定序列变异和翻译后修饰(PTMs)。未来在蛋白质组学实验和结构生物学研究中,DSSM可以作为DDM的一般替代品。  撰稿:张颖编辑:李惠琳文章引用:Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.  李惠琳课题组网址 www.x-mol.com/groups/li_huilin  参考文献  Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.
  • 沃特世向小分子分析、蛋白质解析领域迈进
    Synapt™ HDMS™ 质谱分析系统产品发布会在穗盛大召开 2007年8月19 日,上海 - 沃特世公司(NYSE: WAT)在广州珠江帝景酒店召开新产品发布会,正式向中国用户介绍其于今年年初荣获Pittcon最佳新产品金奖的Synapt™ HDMS™ 质谱分析系统(Waters Synapt High Definition MS™ (HDMS) System)。这是第一台基于高效离子淌度测量和分离技术的高性能四极杆-飞行时间质谱仪。此次发布正值第五届中国蛋白质组学大会在穗举行,因此首次亮相的Synapt HDMS吸引了超过110位来自全国各地的蛋白质组学领域的专家和学者。 晚上19点30分,发布会以为产品亮灯作为序幕:四位客席嘉宾应邀上台,与沃特世中国区市场经理陈红女士共同主持这一仪式。在聚光灯的投射之下,白色巨型的Synapt HDMS仿真模型立刻成为全场的亮点。随后,沃特世中国市场总监舒放、亚太总部市场开发经理Mark Ritchie和应用培训经理吴麟堂,以及中国区质谱维修经理葛玉春等几位高层悉数到场进行精彩演讲,并演示了这一新产品所应用的先进技术。 “这是一套很好的产品。众所周知,蛋白质的结构决定其功能。但是,使用普通的质谱仪是不能观察到异构体的,这或多或少会影响检测结果的准确性。” 东北林业大学生命科学学院的李玉花院长说, “而Synapt HDMS的面世可以很好填补这一技术空白,大大丰富了常规质谱力所不能及的独特信息。” 深圳市南山区疾病控制中心柳洁主任也认为,“Synapt HDMS会在很大程度上有利于对离子空间比较结构的分析,在小分子研究、蛋白质解析、代谢物鉴定和生物制药等领域是一个极大突破。因此,这个产品无论是在全球还是中国的相应领域都有着极大的研究应用潜力”。 Synapt HDMS产品发布会在一片愉悦的氛围中圆满结束。沃特世中国市场总监舒放充满信心地表示,Synapt HDMS进入中国市场的策略是坚决的,也是务实的。“这种激动人心的分析手段,将会利用自身的技术优势,帮助相关领域内的研究人员轻松从事所有UPLC/MS/MS的应用分析。” 关于Synapt HDMS质谱 伴随2006年美国质谱年会上推出Synapt HDMS 质谱系统, 沃特世公司成为第一个将高效离子淌度测量与分离技术结合并商业化的公司,同时设计专业操作软件分析样品离子的大小,形状,电荷数及质量。 作为对该质谱系统创新科技的认可,Synapt HDMS 质谱系统在2007年匹茨堡分析仪器展览会上被评为最佳新产品金奖。 另外,行业通讯杂志—《仪器商业展望》也将Synapt HDMS 质谱系统评为2007年匹茨堡大会新产品最高奖。 欲知更多有关Waters Synapt HDMS质谱分析系统的信息,请访问www.waters.com/HDMS。 关于沃特世公司 沃特世公司(股票代码NYSE:WAT) 在全球范围内,通过传递实用,可持续发展的创新技术在人体保健,环境管理,食品安全和水质分析领域建立了商业优势。 拥有整合的分离科学,实验室信息管理,质谱和热分析技术,沃特世公司的技术突破和实验室解决方案为用户的成功提供了保证平台。 沃特世公司2006年收入为12.8 亿美元,在全球拥有4,700 名员工。沃特世公司致力于与全球用户一同推动科学发现并保障产品的卓越性能。 Waters, Synapt, High Definition MS和HDMS是沃特世公司拥有的商标。 媒体查询,请联络: 沃特世科技(上海)有限公司 谢迎锋 小姐 电话:+86 21 54263597 传真:+86 21 64951999 Email:xie_ying_feng@waters.com 网址:www.waters.com www.waterschina.com
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 浅析蛋白质晶体成像仪
    蛋白质(protein)是组成人体一切细胞、组织的重要成分,是生命的物质基础,分子结构由α—氨基酸按一定顺序组合和排列形成氨基酸顺序不同的多肽链,这些多肽链进一步通过交联构成。蛋白质的复杂结构是其功能多样性的前提和基础,对其分子结构及发挥生物活性的机制进行研究具有重要意义。蛋白质空间结构(图片来源:网络)与其他有机或无机化合物晶体结构一样,蛋白质晶体结构是由相同的蛋白质分子或蛋白质分子复合物在空间中有序排列,从而构成的规则的3D阵列。根据蛋白质晶体结构排列的对称性,晶体中的所有分子相对于晶格具有有限数量的独特取向。蛋白分子通过在晶格中的有序排列,将单个分子的衍射值叠加,最终获得足以测量的衍射强度,其中晶格起到放大器的作用。结晶研究作为探究生物大分子结构及功能的重要手段,有力的推动了蛋白质分子结构的研究进程。 蛋白质晶体结构(图片来源:网络)时至今日,蛋白结晶还存在许多问题,制约着蛋白结构测定的速度。工欲善其事必先利其器,蛋白晶体成像仪作为高通量筛选蛋白质结晶的重要工具,可进行蛋白晶体研究的自动化成像和分析,为下一步进行蛋白质晶体衍射、确定结构奠定基础,最终应用于制药和生命科学领域的研究。蛋白晶体成像仪通过精确的温度控制提供稳定的蛋白质晶体培育环境,在甄别分析中,通过可见光、偏振光、紫外三种模式辨别晶体是否为蛋白晶体并观察晶体成长过程,可对晶体快速定位、自动化拍摄高质量影像。相比传统显微镜,它在蛋白晶体观察捕获的敏感度、成像质量、样本的自动定位等方面都有了很大提升,重要参数指标包括物镜倍数、附镜倍数、数值孔径、景深(mm)、视场(mm)、像素尺寸(μm)、光学分辨率(μm)等。目前市场的蛋白质晶体成像仪主流厂商有赛默飞、腾泉生物、安捷伦、Formulatrix等,不同品牌产品也各具特色。以Formulatrix的产品为例来介绍蛋白质晶体成像仪,蛋白晶体成像仪同时具备可见光和紫外荧光功能,可创造蛋白晶体的培养、成长环境,精确恒定温度和振动隔离。除此之外,仪器提供最多970个结晶板的存储和培养空间,能实现准确实验样本自动定位、智能影像捕捉拍摄等功能。在观察晶体成长过程的同时,可进行数据库数据对比和搜索,以确定蛋白晶体的存在和成长,对蛋白质晶体进行跟踪研究。蛋白液滴定局部成像(图片来源:Formulatrix)蛋白质晶体可见光及紫外成像(图片来源:Formulatrix)更多信息,点击进入仪器信息网相关仪器专场:https://www.instrument.com.cn/zc/2582.html
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制