当前位置: 仪器信息网 > 行业主题 > >

压力表传感器

仪器信息网压力表传感器专题为您提供2024年最新压力表传感器价格报价、厂家品牌的相关信息, 包括压力表传感器参数、型号等,不管是国产,还是进口品牌的压力表传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合压力表传感器相关的耗材配件、试剂标物,还有压力表传感器相关的最新资讯、资料,以及压力表传感器相关的解决方案。

压力表传感器相关的资讯

  • testo 570电子歧管仪(电子压力表组)全新上市
    &mdash &mdash 空调制冷检测工具的领导者 帮助您完成制冷与热泵系统的日常调试和维护工作 在过去,对于制冷系统的维护及调试过程复杂且费时费力。今天,全球便携式测量仪器的领导者-德图(testo)继成功推出经济型电子歧管仪testo 550之后,现又推出一款专业级的电子歧管仪testo 570,其一机多能、智能管理将为制冷工程人员带来极大的便利,必将全面推动整个制冷行业检测的发展,将会成为制冷检测领域的一次革命。电子歧管仪与传统的双压力表组相比较,优势一览:电子式替代传统表盘式双压力表组,更高精度,更易读数一机多能,实现压力、温度、真空度、电流、油压的一机测量自动计算显示蒸发冷凝温度,实时显示过冷度、过热度仪器内置40种制冷剂特性参数,全面满足各种测量需求制冷/热泵模式自动切换,满足各种测量任务可存储数据,实现系统长期监测,专业软件实现数据分析与管理 安全性 &mdash &mdash 提升您的专业性日趋严格的制冷节能法规及企业内能能源管理要求,制冷及热泵系统的检测需实现长期监测且需留存数据记录,因此,专业的数据记录功能及软件已成为必需。testo 570 可以对全部测量任务进行电子记录,从而可以验证制冷系统是否得到了正确维护与管理,这种验证过程的透明性与专业性,将会使你的客户提升对您工作的信赖度。专业人员每日必用 &mdash &mdash 日常维护及故障排查专业工具testo 570 的长期实时在线式测量功能可对系统进行长期的监测,快速进行故障追踪与分析,综合全面考察系统,避免由于单点单时的测量值带来的错误分析。从此您将可以摆脱繁琐的手动记录,方便、准确!
  • 宁夏计质院一般压力表校准能力验证获“满意”结果
    近日,宁夏计质院参加的由广东省计量科学研究院组织的“一般压力表校准能力验证”计划,获得“满意”结果。一般压力表作为应用极为广泛的计量器具,在工业生产过程控制和技术测量中具有特殊的地位。此次能力验证,宁夏计质院严格按照相关要求,认真准备,顺利完成实验、数据处理等工作,及时提交实验数据,最终结果为“满意”。通过此次能力验证,进一步提升了检定人员业务素质水平和技术能力,表明了宁夏计质院一般压力表校准能力的稳定可靠,能够有效保证全区一般压力表量值传递的准确一致。宁夏计量质量检验检测研究院成立于2017年8月,经自治区编委会批准,由宁夏计量测试院、宁夏产品质量监督检验院、宁东能源化工基地质量监督检验与计量测试所整合组建而成,为自治区市场监督管理厅直属公益类检验检测研究事业单位,是国家市场监督管理总局授权的法定计量检定和产品质量检验检测机构。
  • 研究首次制造出亚微米厚度的柔性压力传感器
    柔性压力传感器是得到关注最多的一类柔性传感器,在生物医学、脑机工程、智能制造等众多领域得到了应用。近日,大连理工大学研究员刘军山团队与李明教授等团队合作,独辟蹊径地提出了一种纳米工程策略,首次制造出了亚微米厚度(0.85μm)的柔性压力传感器。相关成果发表在Small上,并被选为封面文章。封面图片。大连理工大学供图柔性压力传感器通常由上下两层柔性电极层和中间的功能软材料层组成,外界压力会导致功能软材料层产生压缩变形,从而引起传感器输出信号的改变。而这种以功能软材料层压缩变形为主导的传感机理,要求电极层具有相对较大的抗弯刚度,电极层厚度一般要比功能软材料层大1~2个数量级。因此,现有的柔性压力传感器厚度只能在百微米甚至毫米量级,严重影响了传感器的轻质性、变形性和共形性。团队通过纳米工程策略,将柔性压力传感器的传感机理,由功能软材料层的压缩变形为主导,转变为柔性电极层的弯曲变形为主导,从根本上解除了对于传感器厚度的限制。并且,由于超薄的柔性电极层拥有极强的变形能力,使得传感器具有优异的检测性能。传感器的单位面积重量只有2.8 g/m2,相当于普通办公打印纸的1/29,能够承受曲率半径小至8.8μm的面外超大弯曲变形,并且能够与皮肤表面实现完全共性贴合。另外,传感器的灵敏度为92.11 kPa-1,检出限为0.8 Pa,均处于目前公开报道的最高水平。纳米工程策略可以成数量级地减小传感器的厚度,从而突破性提升传感器的轻质性、变形性和共形性,同时还能够使得传感器具有超高的检测性能,为柔性压力传感器的设计和制造提供了一种全新的思路。
  • 徐州“压力试验机偏载测试传感器”获国家专利
    近日,徐州市计量中心申报的“压力试验机偏载测试传感器”专利申请,经过国家知识产权局审查批准,授予实用新型专利权。  压力试验机偏载测试传感器能够测出压力机是否存在偏载,解决偏载测量难题。此项国家专利可准确掌握压力试验机的性能,使压力试验机检测混凝土、水泥等材料出具的数据更加准确可靠。  据悉,我国的建筑业、交通业飞速发展,对混凝土、水泥试验测量精度要求越来越高,其压力试验数据是指导生产、设计的主要依据。目前检测手段仅对试验力值总体进行测量,由于压力试验机在测量时存在偏载,影响试验测量结果准确性,直接影响高楼大厦、桥梁桥洞、河堤水坝等建筑物的质量,威胁人民群众的生命财产安全。
  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 无压力表征三元复合物 | Dianthus助力PROTAC药物研发
    前言 /PROTAC表征难题重要靶点和候选药物的亲和力筛选非常具有挑战性。当您的亲和力筛选项目涉及到PROTAC二元和三元复合物,片段化合物库及固有无序蛋白时,需要进行样品固定的SPR技术和样品消耗量大的ITC技术的检测难度会大大增加,而这些应用则是Dianthus所擅长的。光谱位移技术(Spectral Shift)光谱位移技术是通过荧光发射光谱的蓝移或红移来检测分子间的结合。Dianthus可以为您解决哪些表征难题?Dianthus是一个基于微孔板的亲和力筛选平台,使您能够克服其他生物物理方法带来的挑战。避免这些常见的障碍,让您的PROTAC项目继续推进。1通过固定二元复合物的方法来进一步研究三元复合物,二元复合物的稳定性会受到影响。答Dianthus直接在溶液内进行检测,结合平衡状态可控。因此,在表征三元结合的过程中二元复合物可保持稳定。2在再生过程中,共价分析物几乎不可能从传感器芯片上完全去除。答在单独的孔中直接在溶液中检测分子间相互作用,使得您的亲和力分析更简单、无压力且更经济实惠。3其他检测方法难以测量warheads这样的小分子的亲和力。答光谱位移技术不依赖于分子量,因此您可以使用 Dianthus 对片段化合物进行初步筛选,还可以在后续亲和力优化中筛选PROTAC 候选物。4靶点和配体的样品量有限答使用Dianthus进行亲和力筛选无需耗费时间进行大量方法开发,检测时的样品消耗量很低,将极大节省所有的样品量。选择Dianthus表征PROTAC候选物Dianthus 是基于微孔板且无微流体系的亲和力筛选平台,您可通过 gRPC 框架轻松将其集成到任何自动化设置中。无需定期维护,您的项目不会因停机而延迟。Dianthus 随时准备好为您效劳 —— 7天24小时不间断。点击图片下载PROTAC电子书,了解更多技术难题
  • 日本研制出柔性压力传感器,有望协助肿瘤检测
    提起肿瘤,相信大多人都是惧怕的,因为它在大多数时候都代表了痛苦与死亡,至今,人们对于大部分肿瘤依旧束手无策。  而传感器的功能相信大家都是了解的,是人工智能硬件的必备品,越小越灵敏的传感器也就意味着可以办成更多的事。  由于生产方法的限制,人类还很难制造出厚度在100位微米以下的传感器。但是日前却传来了好消息,日本东京大学的研究人员研发了一种由纳米纤维材料制成的超薄柔性压力传感器,仅80微米厚,可以很准确地感知圆形物体表面的压力,甚至可以一次性测量出144个点的压力。  利用碳纳米管、石墨烯和高分子弹性聚合物等制成了300-700纳米厚的纳米纤维材料,再形成透明、轻薄的多孔结构。  研究人员将这一传感器放进人造血管之中进行测试,发现可以测量出极其微小的压力变化,同时还可以检测出压力在这种环境中传播的速度。  由此,研究人员表明,未来是有希望利用搭载这种传感器的橡胶手套来检测出乳腺癌或是肿瘤的。  我们相信时间的力量,有一天,肿瘤再不会成为一个可怕的代名词。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 美国丹纳赫西特新推出Model278压力传感器
    日前,丹纳赫Setra(西特)全新推出Model278大气压力传感器。该产品长期稳定性小于0.1mb/年,可用于要求精确测量、快速响应和长期稳定、长期可靠的环境中。  为了经受自动气象站(AWS)恶劣的环境和环境监测需要,Model278外壳采用了不锈钢和聚酯材质构成。可插拨的5针端子排使得连接数据记录仪和信号连接非常简单,1/8“倒刺压力接口简化了气路连接,传感器的体积只有(3.6”×2.4“×1.0”)是应用和替代现有产品的理想选择。  Model278可工作在-40℃~60℃(-40°F~140°F)的温度范围内。用户可选择0-2.5VDC或0-5VDC的输出,3线或4线电路和9.5-28VDC激励。传感器工作功耗很低(3mA标称)。它的休眠特性使功耗降低到1μA,并且当压力读数快速启动时传感器也能快速启动。  Model278采用Setra的SETRACERAMTM电容式敏感元件和独特的IC模拟电路,这从根本上简化了设计,热稳定玻璃熔融陶瓷敏感腔结合Setra久经考验的电容式电荷平衡IC电路,使得传感器在精度和环境补偿方面都有出色的表现。SetraceramTM敏感元件具有卓越的热膨胀系数和低机械迟滞使得Model278具有良好的长期稳定性。
  • 南方科技大学《ACS Nano》:通过分级互锁结构设计获得高灵敏和宽线性传感的柔性压力传感器
    灵敏度高、线性传感范围宽的柔性压力传感器在机器人触觉、健康监测、可穿戴设备领域具有重要应用。构筑微结构可以提高传感器的灵敏度,但由于软材料在压力作用下的结构硬化问题使传感器的响应逐渐饱和,导致器件呈现较窄的传感范围和显著的非线性响应。针对这一问题,来自南方科技大学的郭传飞教授团队设计了由微穹顶阵列与带有次级微柱的微穹顶(分级微穹顶)阵列而形成的一种分级互锁结构,有效提升界面结构的可压缩性,显著降低结构硬化,实现柔性压力传感器的高灵敏度(49.1 kPa-1)、线性响应(相关系数R20.995)和宽传感范围的统一(~485 kPa)。传感器的响应/恢复时间小于5 ms,可以检测频率高达200 Hz的振动刺激,显示出良好的动态响应特性。将传感器用于机械手的抓取任务中,结合机器学习,帮助机械手识别被抓取物体的重量,提升机器人触觉感知能力。相关工作以“Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range”为题发表于国际期刊《ACS Nano》。 该研究使用面投影微立体光刻技术(nanoArch S130,摩方精密)打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具,进一步地,通过模板法获得具有微穹顶结构的环氧树脂/Au电极及离子膜。打印模具尺寸:9 mm×9 mm×1.5 mm,单个微穹顶尺寸(电极模具):宽290 μm,高480 μm;次级微柱尺寸(离子膜模具):直径28 μm,高70 μm。每层打印精度设置为5 μm,以实现分级互锁结构的高精度、定制化打印。 这项工作为制造具有高灵敏度、高线性度和宽压力响应范围的柔性压力传感器提供了一种策略,在未来的触觉器件中具有广阔的应用前景。 图1. 分级互锁结构的可压缩性及器件传感原理 分级互锁结构由微穹顶结构与带有次级微柱的微穹顶结构组成。微柱在分级互锁结构中具有重要作用。一方面,它提高了结构的可压缩性,减少结构硬化,使应力分布更均匀,有助于实现线性形变;另一方面,微柱结构的引入减小了电极与离子膜之间的起始接触面积,可有效提高了器件的灵敏度(图1)。 图2. 分级互锁型柔性压力传感器的制备该研究使用面投影微立体光刻技术打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具。进一步地,通过模板法获得具有微穹顶结构的环氧树脂/Au电极及离子膜,并与平面电极PET/Au组合、封装,获得分级互锁型器件(图2)。 图3. 分级互锁型柔性压力传感器的传感性能分级互锁结构的设计实现了器件的高灵敏度、高线性度及宽传感范围的统一,同时提升了器件的响应速度,实现对高频振动刺激的精准检测,呈现出良好的动态响应特性(图3)。 图4. 分级互锁型柔性压力传感器的线性传感特性 将该传感器用于开发线性响应的电子天平,并用于测量几种未知物体的重量,其输出结果与商业电子天平的称量结果几乎一致,表明了自制电子天平对质量的测量比较准确、可靠,而且无需额外的非线性校准,大大简化数据处理过程(图4)。 图5. 基于机器学习的抓取任务感知与重量识别 柔性压力传感器的一个重要应用是为机器人带来触觉感知能力,使机器人能够像人类一样与外界互动。将分级互锁型传感器集成在气动抓手表面,实现机械手在抓取物体时的触觉感知;结合机器学习,帮助机械手识别物体的重量(图5)。原文链接:https://doi.org/10.1021/acsnano.1c10535作者:白宁宁
  • 大连理工大学科研团队首次制造出亚微米厚柔性压力传感器
    近日,国际知名期刊《Small》以封面文章刊发了我校机械工程学院刘军山研究员团队关于柔性压力传感器的最新研究成果“Nanoengineering Ultrathin Flexible Pressure Sensor with Superior Sensitivity and Perfect Conformability”。柔性压力传感器是得到关注最多的一类柔性传感器,在生物医学、脑机工程、智能制造等众多领域得到了应用。柔性压力传感器通常由上下两层柔性电极层和中间的功能软材料层组成,外界压力导致功能软材料层产生压缩变形,从而引起传感器输出信号(电阻、电容、电压)的改变。这种以功能软材料层压缩变形为主导的传感机理,要求电极层具有相对较大的抗弯刚度,电极层厚度一般要比功能软材料层大1~2个数量级。因此,现有的柔性压力传感器厚度只能在百微米甚至毫米量级,严重影响了传感器的轻质性、变形性和共形性。   刘军山研究员团队长期开展柔性传感器研究,通过与我校力学系李明教授等团队合作,独辟蹊径地提出了一种纳米工程策略,首次制造出了亚微米厚度(0.85µm)的柔性压力传感器。纳米工程策略将柔性压力传感器的传感机理由功能软材料层的压缩变形为主导转变为柔性电极层的弯曲变形为主导,从根本上解除了对于传感器厚度的限制;而且,由于超薄的柔性电极层拥有极强的变形能力,使得传感器具有优异的检测性能。传感器的单位面积重量只有2.8 g/m2,相当于普通办公打印纸的1/29,能够承受曲率半径小至8.8µm的面外超大弯曲变形,并且能够与皮肤表面实现完全共性贴合。另外,传感器的灵敏度为92.11 kPa-1,检出限为0.8 Pa,均处于目前公开报道的最高水平。纳米工程策略可以成数量级地减小传感器的厚度,从而突破性提升传感器的轻质性、变形性和共形性,同时还能够使得传感器具有超高的检测性能,为柔性压力传感器的设计和制造提供了一种全新的思路。   该项工作得到了国家重点研发计划项目(2020YFB2008502)、国家自然科学基金(51875083)和大连市科技创新基金(2020JJ25CY018)的。
  • 北京航空航天大学研制成功高灵敏度石墨烯MOEMS谐振压力传感器
    由悬浮石墨烯制成的纳米机械谐振器对压力变化表现出高灵敏度。然而,由于受空气阻尼的影响,这些设备在非真空环境中表现出明显的能量损失,以及由于石墨烯的轻微渗透,参考腔内不可避免地出现微弱的气体泄漏。2023年6月12日,北京航空航天大学李成副教授团队在ACS Appl. Mater. Interfaces期刊发表名为“High-Sensitivity Graphene MOEMS Resonant Pressure Sensor”的论文,研究提出了一种利用微电子机械系统技术的新型石墨烯谐振压力传感器,其特点是将多层石墨烯膜密封在真空中,并粘附在带有凹槽的压敏硅膜上。这种方法创新性地采用了间接敏感的方法,在大气中表现出60倍的能量损失,并解决了基底和石墨烯之间长期存在的气体渗透问题。值得注意的是,所提出的传感器表现出1.7Hz/Pa的高压力灵敏度,比硅的同类产品的灵敏度高5倍。此外,全光封装腔结构有助于实现6.9×10-5/Pa的高信噪比和低温度漂移(0.014%/℃)。所提出的方法为使用二维材料作为敏感膜的压力传感器的长期稳定性和能量损失抑制提供了一个很好的解决方案。MOEMS石墨烯谐振压力传感器其特点是通过阳极键合实现10-3Pa的真空封装,大大降低了压力差下基底和石墨烯之间高空气阻尼和气体渗透造成的能量损失。总的来说,所提出的传感器为提高信噪比和实现二维材料谐振传感器的可靠使用提供了一个有前途的解决方案。
  • 传感器是自动化仪表重点将突破100万亿个
    传感器是自动化仪表重点将突破100万亿个 随着我国对智能化仪表设备的需求不断提升,促使工业传感器也在不断突破,智能传感器已经成为了21世纪最具有影响力的高新技术。近日,我国首个传感器产业园的建成,也推动我国未来传感器的发展。据资料预测,到2030年,全球传感器数量将突破100万亿个,未来,工业传感器将成为自动化仪表生产重点。 传感器市场潜力巨大 自“十二五”规划以来,高端装备制造业发展已经成为了战略新兴产业的重要内容,无论是在工业生产中、还是海洋探测、环境监测、核能检测等,智能传感器都得到了越来越多的重视。作为高端新型产业的主要对象,传感器行业既面对着压力,同时也获得了飞速发展机会,这对于行业突破是大有裨益的。 据资料统计,由于我国智能化起步较低,目前在智能仪器仪表与控制系统中,智能装备占有率仅为10%左右,这不仅表达出了目前市场智能化的不足,也预示了我国在未来发展巨大的潜力。近几年,我国物联网整体市场规模的提升也直接拉动了传感器市场,未来传感器市场将在“互联网”政策的带动下,步入飞速发展时期。 在政策的扶持下,我国传感器产业发展也在不断进步。首先,是国家针对于补贴智能装备制造的资金,国家将针对于在研发传感器行业做出巨大贡献者,划拨首台套补贴资金。其次,国家在加快力度加快发展的方针指导下,也鼓励中央和地方建立传感器生产基地,以提升传感器的集群效应和扩大发展实力,真正带动技术低下的传感器行业。此“双加工程”能有效带动了我国传感器技术的进步发展。 传感器成为自动化仪表重点 2016年是我国“十三五”的开端,我国自动化仪表的市场需求也开始增大,智能化水平也在不断的增强,传统的技术水平已经过于落后。自动化仪表的提升也推动了工业化传感器的生产,提升其智能化水平。 国内物联网应用正在全面深化,传感器行业发展不仅在技术层面,在环保层面也能满足用户的需求。作为自动化仪表,智能化、环保和控制系统成为了主要特征,其生产的传感器必然能满足各个方面的需求。 传感器应用十分广泛,除了保证工业自动化仪表技术发展之外,还要监测自动化仪表的稳定运行。未来,将会利用计算机系统提升自动化仪表技术水平,增加智能化传感器的应用性。 结语 自动化仪表以其测量精确、显示清晰、操作简单等优势,在工业上得到了广泛的应用。而传感器作为自动化仪表关键子系统之一,其发展更是对行业影响深远。未来,在物联网信息化时代的影响下,传感器市场必将壮大。内容来自看仪器网
  • 仪器仪表及传感器性能评价系列国标起草单位及起草人征集通知
    各相关单位:仪器仪表及传感器是物质世界信息获取、传输和转换、探测和控制的重要工具,是信息化和工业化深度融合的源头。随着仪器仪表及传感器不断往高端化冲刺,而用户在实际使用和感官上却总认为存在“性能指标有差距”、“能用但不好用”等问题,亟须通过标准化的手段打破制造商和用户间的信息不对称和技术壁垒。为进一步推动仪器仪表及传感器用得上、用得好、遴选性能优越的相关产品,实现制造商和用户良性互促发展,广泛吸收各利益相关方参与标准制定工作,充分保障标准质量,推动标准后续应用实施,现由机械工业仪器仪表综合技术经济研究所主办,面向社会公开征集以下系列标准的研制工作:序号标准名称1仪器仪表及传感器性能评价通则2微生物集菌仪综合性能评价3气相色谱仪综合性能评价4无损检测仪综合性能评价55G通讯测试仪综合性能评价6智能电能表综合性能评价7压力变送器综合性能评价8控制阀综合性能评价9压力传感器综合性能评价10倾角传感器综合性能评价11温度传感器综合性能评价仪器仪表及传感器性能评价系列标准项目将重点围绕可靠性、稳定性、安全性、绿色化、智能化等评价维度提出具体的评价要素,旨在规定仪器仪表与传感器性能评价活动的原则、维度、方法、计划、管理等过程,对于指导和规范我国仪器仪表与传感器评价活动及其相关工作具有重大意义。为使标准制定规范合理适用,特公开征集系列标准的起草与参与意愿,制定标准过程中所涉及的费用由各参与单位分摊承担,分摊费用由主办单位统一收取管理。请有意愿参与标准制定工作的单位将标准参编人员的相关信息填入回执,于2022年3月30日前反馈至联系人邮箱。联系人:卢铁林联系方式:010-63322091邮箱:lutielin@126.com▲扫描二维码下载报名回执报名回执.docx
  • 盘点|压力测量仪器与技术大全
    压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。伴随经济、技术的进步,压力测试在实际的生产工作中发挥着至关重要的左右,为生产活动提供了大量有价值的参考信息,使生产和科研活动的质量和效率都得到了实质性的提升。而压力测量仪表是用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。类别原理仪器种类液柱式根据流体静力学原理,将检测压力转换成液柱高度进行测量U形管压力计、单管压力计、斜管压力汁等弹性式利用各种形式的弹性元件,在被测介质的作用下,使弹性元件受压后产生弹性形变的原理弹簧管压力计、波纹管压力计及膜片式压力计等电测式将压力转换成电信号进行传输及显示电阻式压力计、电容式压力计、压电式压力计和压磁式压力计等负荷式直接按照压力的定义制作。这类压力计误差很小,主要作为基准仪表使用常见的有活塞式压力计、浮球式压力计和钟罩式压力计仪器信息网特盘点各类常见压力检测仪器,以供读者参考。液柱式压力计 液柱式压力计是利用液柱所产生的压力与被测压力平衡,并根据液柱高度来确定被测压力大小的压力计。所用的液体叫封液——水,酒精,水银等. 液柱式压力计结构简单,灵敏度和精确度都高,常用于校正其他类型压力计,应用比较广泛。液柱式压力计按照结构形式可大致分为U形管压力计、单管压力计、斜管压力汁等。U形管压力计是根据流体静力学原理用一定高度的液柱所产生的静压力平衡被测压力的方法来测量正压、差压和负压既真空度的。由于其结构简单、坚固耐用、价格低廉、使用寿命长若无外力破坏几乎可永久使用、读取方便、数据可靠、无需外接电力既无需消耗任何能源。故在工业生产各科研过程中得到非常广泛的应用,广泛用于测量风机和鼓风机的压力、过滤器阻力、风速、炉压、孔压差、气泡水位、液体放大器或液压系统压力等,也可用于燃烧过程中的气比控制和自动阀门控制,以及医疗保健设备中的血压和呼吸压力监测。斜管压力计 在测量微小压差时,由于h值较小,用U形管或单管液柱式压力计测量时的相对误差极大,此时可休用斜管式压力计,斜管式压力计分墙挂式和台式两种。  在许多实验中往往需要同时测量多点的压力,例如压力分布实验。这时就要采用多管式压力计,多管式压力计的工作原理与斜管压力计相同,实际就是多根斜管压力计,由于多管压力计各测压管的内径不可能一样,因此,由毛细现象所造成的各测压管的初读数也不一致,测量前必须读出每根测压管的初读数,并作适当的修正。弹簧管压力计 弹簧管压力计又称波登管压力计。它是一种常见的也是应用最广泛的工程仪表,主要组成部分为一弯成圆弧形的弹簧管,管的横切面为椭圆形,作为测量元件的弹簧管一端固定起来,通过接头与被测介质相连,另一端封闭,为自由端,自由端借连杆与扇形齿轮相连,扇形齿轮又和机心齿轮咬合组成传动放大装置。当被测压的流体引入弹簧管时,弹簧管壁受压力作用而使弹簧管伸张,使自由端移动,其移动距离与压力大小成正比,或者带动指针指示出被测压力数值,适用于对铜合金不起腐蚀作用的气体和液体。波纹管压力计 波纹管压力计的波纹管由金属片折皱成手风琴风箱状,当波纹管轴向受压时,由于伸缩变形产生较大的位移,故一般可在其自由端安装传动机构,带动指针直接读数,从而测量出介质压力。波纹管压力计可广泛应用于石油、化工、矿山、机械、电力及食 品行业,直接测量不结晶体,有腐蚀性的气体、液体的压力。波纹管压力计的特点是低压区灵敏度高,常用于低压测量,但迟滞误差大,压力位移线性度差,精度一般只能达到1.5级,常在其管内安装线性度较好的螺旋弹簧。膜片式压力计 膜片压力计适用于测量无爆炸危险、不结晶、不凝固、有较高粘度,但对铜和铜合金无腐蚀作用的液体、气体或蒸汽的压力。 膜片压力计耐腐蚀性能取决于膜片材料。不锈钢耐腐膜片压力计的导压系统和外壳等均为不锈钢,具有较强的耐腐蚀性能。主要用于化学、石油、纺织工业对气体、液体微小压力的测量,尤其适用于腐蚀性强、粘稠介质(非凝固非结晶)的微小压力测量。 膜片压力计的工作原理是基于弹性元件(测量系统上的膜片)变形。在被测介质的压力作用下,迫使膜片产生相应的弹性变形——位移,借助连杆组经传动机构的传动并予放大,由固定于齿轮上的指针将被测值在度盘上指示出来。压阻式压力计 压阻式压力计是基于单晶硅的压阻效应而制成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于腔内。当压力发生变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的电压输出信号。 具体来讲,当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍 压阻式压力计是电阻式压力计的一种。采用金属电阻应变片也可制成压力计,测量原理以金属的应变效应为主。电容式压力传感器 电容式压力传感器,是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力计。特点是,输入能量低,高动态响应,自然效应小,环境适应性好。 电容式压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。压电式压力传感器 压电式压力传感器是基于压电效应的压力传感器。它的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。 这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。目前比较有效的办法是选择适合高温条件的石英晶体切割方法。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。压磁式压力传感器 压磁式压力传感器是利用铁磁材料的压磁效应制成的,即利用其将压力的变化转化成导磁体的导磁率变化并输出电信号。压磁式的优点很多,如输出功率大、信号强、结构简单、牢固可靠、抗干扰性能好、过载能力强、便于制造、经济实用,可用在给定参数的自动控制电路中,但测量精度一般,频响较低。 所谓压磁效应就是在外力作用下,铁磁材料内部发生应变,产生应力,使各磁畴之间的界限发生移动,从而使磁畴磁化强度矢量转动,因而铁磁材料的磁化强度也发生相应的变化,这种由于应力使铁磁材料磁化强度变化的现象,称为压磁效应。 若某一铁磁材料上绕有线圈,在外力的作用下,铁磁材料的导磁率发生变化,则会引起线圈的电感和阻抗变化。当铁磁材料上同时绕有激磁绕组和测量绕组时,导磁率的变化将导致绕组间耦合系数的变化,从而使输出电势发生变化。通过相应的测量电路,就可以根据输出的量值来衡量外力的作用。霍尔式压力计 霍尔式压力计是利用霍尔效应制成的压力测量仪器。当被测压力引入后,弹簧管自由端产生位移,从而带动霍尔片移动,改变了施加在霍尔片上的磁感应强度,依据霍尔效应进而转换成霍尔电势的变化,达到了压力一位移一霍尔电势的转换。 霍尔压力计应垂直安装在机械振动尽可能小的场所,且倾斜度小于3°。当介质易结晶或黏度较大时,应加装隔离器。通常情况下,以使用在测量上限值1/2左右为宜,且瞬间超负荷应不大于测量上限的二倍。由于霍尔片对温度变化比较敏感,当使用环境温度偏离仪表规定的使用温度时要考虑温度附加误差,采取恒温措施(或温度补偿措施)。此外还应保证直流稳压电源具有恒流特性,以保证电流的恒定。活塞式压力计 活塞式压力计又称为静重式压力计,是利用流体静力平衡原理及帕斯卡定律工作的的一种高准确度、高复现性和高可信度的标准压力计量仪器。 流体静力平衡是通过作用在活塞系统的力值与传压介质产生的反作用力相平衡实现的。活塞系统由活塞和缸体(活塞筒)组成,二者形成极好的动密封配合。活塞的面积(有效面积)是已知的,当已知的力值作用在活塞一端时,活塞另一端的传压介质会产生与已知力值大小相等方向相反的力与该力相平衡。由此,可以通过作用力值和活塞的有效面积计算得到系统内传压介质的压力。在实际应用中,力值通常由砝码的质量乘以使用地点的重力加速度得到。 活塞式压力计也常简称活塞压力计或压力计,也有称之为压力天平,主要用于计量室、实验室以及生产或科学实验环节作为压力基准器使用,也有将活塞式压力计直接应用于高可靠性监测环节对当地其它仪表的表决监测。浮球式压力计 浮球式压力计是以压缩空气或氮气作为压力源,以精密浮球处于工作状态时的球体下部的压力作用面积为浮球有效面积的一种气动负荷式压力计。 压缩空气或氮气通过流量调节器进入球体的下部,并通过球体和喷嘴之间的缝隙排入大气。在球体下部形成的压力将球体连同砝码向上托起。当排除气体流量等于来自调节器的流量时,系统处于平衡状态。这时,球体将浮起一定高度,球体下部的压力作用面积(即浮球的有效面积)也就一定。由于球体下部的压力通过压力稳定器后作为输出压力,因此输出压力将与砝码负荷成比例。钟罩式压力计 钟罩式压力计的作用原理,是直接从压强定义出发,用一台天平对压力在液封受力器上 的垂直作用力F进行测定。这个受力器是一只几何形状有一定要求的钟罩,根据对钟罩几何 尺寸的精密测量和理论分析,求出其受力有效面积S后,待测压强p可由公示p=F/S求出。 因为钟罩式压力计有独特的结构原理,并具有、足够高的精度,这就可以通过与其他基准压力仪器比对,发现未知的系统误差。同时,钟罩式压力计在测量压强差时,其单端静压强可以根据需要调整,直至单端压强为零,即可以测量绝对压强。另外,该仪器还具有操作简单、受外界干扰小等优点。在高新科技快速发展的现今,静态的压力测量方法已获得了较大的优化,成为了各领域中常用的测量体系,并逐渐朝着动态的压力校准趋势发展。由此,相关技术人员针对压力计量检测方法的进步展开了深入的探究。简而言之,压力计量检测的未来趋势表现在测试精度等级、测试响应速率、测试可靠性与智能化水平这几个方面的提高。比如,在活塞式仪表测试中融进了智能加码与操作部位激光监测方法,如此不仅提升了检测效率,并且提高了测试的精准性,同时为绝压式仪表与活塞式仪表智能测试体系的进步打下了良好的基础。针对数字式仪表及压力变送器和压力传感器等设备的量传任务有了精良的全智能压力控制其能够用作量传标准,利用1台控制器配置若干个压力模块能够操作许多量程范围,随意确定测试点的高精度检测任务,而且能够选用气介质来工作,如此防止了采用液体介质在检测压力时引起的诸多问题,大幅度提升了数字式仪器的测试效率与智能化程度。
  • 重庆:提升先进传感器和智能仪器仪表产业发展能级
    3月18日,重庆市政府印发《重庆市战略性新兴产业发展“十四五”规划(2021—2025年)》(下称《规划》),提出到2025年,全市战略性新兴产业规模将实现万亿级,战略性新兴产业主营收入超过10亿元的企业突破100家,规模以上工业战略性新兴产业企业达到1500家,新型研发机构数量突破300家。《规划》提出,重庆“十四五”战略性新兴产业发展将围绕“创新驱动、聚焦重点、集群发展、绿色低碳、开放协作”这5个要素进行。其中,重庆市将通过实施战略性新兴产业5类工程,包括集群梯次发展工程、优质企业培育工程、科技创新引领工程、应用示范推广工程和成渝协同发展工程,在发展战略性新兴支柱产业方面,重点建设集成电路、新型显示、新型智能终端、新能源汽车和智能汽车、生物医药、先进材料、高端装备制造、绿色环保、软件和信息技术服务、新兴服务业等10类产业;在面向未来的先导性产业方面,重点建设卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能和量子信息等5类产业。其中,在高端装备制造方面,《规划》提出,顺应装备高端化、智能化、成套化发展趋势,聚焦汽车、3C(计算机、通讯和消费电子)、无人机等产业发展迫切需求,进一步提升关键基础件的精度和可靠性,提升传感器和智能仪器仪表产业发展能级,提升新能源装备竞争优势,推动智能制造装备迈向中高端水平,在若干细分领域打造西部领先、国家重要的产业集群。提升先进传感器和智能仪器仪表产业发展能级。面向重庆市智能终端、智能汽车、智能制造和智慧城市等领域应用需求,发展互补金属氧化物半导体(CMOS)图像传感器、车身传感器/控制器、超声波传感器、流量传感器、惯性传感器、位移传感器、智能安防设备等传感设备。支持龙头企业整合市内外创新资源建设国家级产业创新平台,牵头开展核心技术攻关、产业孵化、产业招商等工作,提升产业发展能级。依托汽车、智能终端、装备制造等产业优势,加强产业链上下游合作,完善先进传感器及智能仪器仪表配套体系。推动智能制造装备迈向中高端水平。瞄准六轴机器人、双腕机器人、双旋机器人等工业机器人细分领域,提升产品的柔性化程度及低成本生产能力。依托机器人检测与评定中心,进一步完善机器人检验与认证体系,加快推动重庆市乃至西部地区机器人检测认证工作迈向制度化、规范化。拓展焊接、喷涂、柔性抛光等工业机器人应用领域。完善伺服电机、减速器、视觉系统、控制系统、视觉传感器、力矩传感器和碰撞传感器等关键零部件配套体系。发挥齿轮产品等制造优势,发展精密级高效磨齿机、滚齿机、数控加工中心和数控锻压机等中高档数控机床,引进培育高速钻攻中心等高端数控机床企业。紧抓增材制造产业高速发展契机,引进培育激光、电子束、离子束驱动的增材制造装备企业及超细合金粉末、高性能塑料粉末等企业,打造增材制造装备产业链。推动增材制造装备在工业机械、航空航天和汽车等领域的应用。在高端装备制造产业发展重点方面,《规划》提出,加快仪器仪表基地、呼吸机用流量与压力传感器、智能安防设备产业园等项目建设,扩大传感设备规模。此外,《规划》还部署了五项保障措施,包括加强组织领导、加强政策扶持、加强产业引培、加强人才供给和加强考核监测。
  • 聚氨酯海绵变身“压力传感器” 成本仅为5分/立方厘米
    一块不起眼的海绵,加上一点更不起眼的碳黑,就可以造出超灵敏的压力检测器。近日,来自四川大学高分子研究所卢灿辉与张新星研究团队就发明出了这样的用于压力灵敏检测的复合材料。  柔性高灵敏压力检测装置在诸多领域都有着重要的应用,如机器人设计、电子皮肤、医用器械等。压电材料是这个领域的一大“法宝”,但是它在检测低值压力方面往往捉襟见肘。近些年来,虽然学界通过微纳组装材料的设计能解决上述难题,但成本居高不下。卢灿辉与张新星研究团队的最新研究成果,在保留了压力传感材料的优异性能外,极大地降低了其制作成本。  物美价廉的材料  他们的方案是使用普通聚氨酯海绵和碳黑,利用特殊的层层组装技术,研究者可以将多层带相反电荷的碳黑颗粒较均匀地涂覆在海绵的骨架之上。之所以利用了碳黑,是为了让海绵获得导电性质。这种方式制作的材料成本为5分/cm3。  (图a:制作碳黑@聚氨酯海绵的基本过程。图b&c:复合了碳黑前后的海绵。图d-f:初始聚氨酯海绵的SEM图。图g-i:表面复合了碳黑的海绵的SEM图。)  那么,这样一种海绵为什么能够检测压力呢?原来,海绵在受到压力后,其骨架上的碳黑涂层会受到破坏,产生一些微小的缝隙,这些缝隙会造成宏观上的导电性能的下降,因此只要监测海绵的导电性,就可以检测压力的变化。  (图c&d:压缩后海绵骨架上可以观察到的微小裂缝。图g&h:无压力和施加压力状态下的海绵骨架。图i:先后经过微小形变与巨大形变的海绵骨架示意图。)  值得一提的是,如果形变继续增加,海绵骨架之间就会彼此接触,因此宏观导电性能反而会上升。因此,压力与导电性能的关系体现为上述两种影响方式的协同效果。也正是因为这两种关系的存在,材料对于微小形变与巨大形变都可以监测。此外,材料有着很好的耐用性,经过多达5000次的循环形变后,主要指标依旧可以维持。同时具有超快的响应速度(20ms)。  (图i:将材料构成电路,可以检测出吹气带来的压力变化。不同力度的吹气产生的响应电流有着明显的不同,表明这种材料具有非常高的灵敏度。图j:在材料上放置一粒大米带来的压力也能被检测出来。)  多样的使用场景  这种材料的应用非常多样,研究者用其构建了声音识别装置与动作识别装置。  (图a:研究者将其粘在喉咙处。利用生理活动过程对材料施加的微小压力来监测不同的行为。图b:周期性地说出bee,dog,snake,mosquito等不同的单词,产生的电流模式也明显不同。图c-e:喉咙进行吞咽、咳嗽、咀嚼等不同的动作时,其电流模式也明显不同。)  以上说明了这种材料在监测微小形变上的应用。在巨大形变上的监测表现上也同样适用。  (在手指处或者肘部粘贴这种材料并构建电路,弯曲手指或者肘部均可以检测到电流的巨大变化。)  另外,这种材料也可以监测脉搏,或构建电子“皮肤”。  该课题组的这项发明,有望在多种可穿戴设备、医疗设备、电子设备中得到应用。
  • 【2023世界传感器大会】MEMS智能传感器——先进技术分论坛成功召开
    2023年11月5日,2023世界传感器大会“MEMS智能传感器——先进技术分场活动”在郑州国际会展中心成功召开。来自智能传感器等领域专家学者、企业代表、新闻媒体近2000余人线上线下参加会议。会议由郑州市人民政府、河南省科学技术协会、沈阳仪表科学研究院有限公司、传感器国家工程研究中心、中国仪器仪表学会仪表元件分会、中国仪器仪表学会仪表工艺分会承办,郑州(国家)高新技术产业开发区管理委员会、郑州市科学技术协会、郑州众智科技股份有限公司协办。河南省科学技术协会副主席王继芬、郑州市人民政府副秘书长王举等领导出席会议并致辞。由沈阳仪表院院长助理、行业中心主任张阳主持。沈阳仪表院院长助理、行业中心主任张阳领导致辞中国工程院蒋庄德院士致开幕词。蒋院士回顾了MEMS智能传感器技术的发展历程,并鼓励中国传感器人在传感器产业细分领域不断攻坚克难、突破瓶颈,以国家战略需求为导向,加快实现高水平科技自立自强。中国工程院蒋庄德院士致开幕词中国科学院上海微系统与信息技术研究所李铁研究员作《微型全集成红外CO2气体传感器及其应用》主题报告,分享了红外二氧化碳气体传感器发展现状以及最新应用领域。传感器国家工程研究中心副总工程师、沈阳仪表院研发中心主任张春光作《大型模锻压机状态监测传感器关键技术研究》主题报告,介绍了压力传感器、位移传感器、振动传感器、粘度传感器在大型装备中应用的关键技术。西安交通大学赵立波教授聚焦压力传感器技术做《微纳特种压力传感器技术》专题报告。杭州师范大学传感技术中心钱正洪主任作《磁传感测量与数据融合处理技术》专题报告,从磁传感芯片的设计、信号测量与数据融合等方面作了详细的介绍。国防科技大学吴学忠教授作了《AI赋能MEMS传感器智能化发展新趋势》专题报告,从MEMS传感器智能化发展需求、技术途径、发展现状及趋势四个方面梳理了MEMS智能传感器技术发展方向。杭州晶华微电子股份有限公司副总经理赵双龙作了《智能传感器中国芯的方案》专题报告,分享了传感器信号调理芯片国产化方案。中科院上海微系统与信息技术研究所研究员李铁传感器国家工程研究中心副总工程师沈阳仪表院研发中心主任张春光西安交通大学教授赵立波杭州师范大学传感技术中心主任钱正洪国防科技大学教授吴学忠杭州晶华微电子股份有限公司副总经理赵双龙本次会议围绕MEMS智能传感器的前沿技术、产业趋势和热点问题等进行了深入研讨,来自不同领域的行业专家分享了传感器技术、产业和应用领域的最新研究成果,探讨了今后的发展方向。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 可自然降解传感器问世
    p style="text-indent: 2em "在英国《自然· 电子学》杂志14日在线发表的一篇动物研究论文中,美国科学家介绍了一种可移植、可伸展的应变及压力传感器,可以在有效使用期结束后自然降解。该装置将用于实时监测受损软组织所受的微弱应力和压力变化,有助于为患者设计个性化的康复方案。/pp style="text-indent: 2em "传感器技术早已“轻松”应用于多种不同的环境,它们能集成到小型化的发射器或接收器系统中,也能与人体直接接触服务于医疗应用。这其中,可降解传感器是一种新兴技术,它们在预定的使用期限结束后会自然降解,因此不需要通过二次手术取出来。/pp style="text-indent: 2em "但是,生物相容性微传感器的生产目前还是一个非常耗时和昂贵的过程,现有的这类传感器的感应性能十分有限,或是其生物相容性还未经证明。/pp style="text-indent: 2em "此次,美国退伍军人事务部研究人员佩吉· 福克斯、斯坦福大学鲍哲南及他们的同事,报告了一种由完全生物可相容材料构成的、可伸展、可生物降解的应变及压力传感器。这一可移植传感器具有高灵敏度,能够区分小到0.4%的应变和12Pa的压力(一粒盐产生的压力)变化。/pp style="text-indent: 2em "为了测试该传感器的生物相容性,研究团队将其移植进一只大鼠的背部。在移植手术8周后,未观察到负面炎症反应(除了第1周出现初期炎症反应)。/pp style="text-indent: 2em "研究人员表示,他们能够控制传感器的降解,使其寿命与组织愈合所需的时长一致。此外,经过一定的设计,在降解过程中,该传感器的灵敏度也不会有明显下降。/pp style="text-indent: 2em "针管有一次性的,医疗电子仪器也可以有一次性的。可降解的生物传感器一旦进入实用,我们就可以将很多临床定性描述转为量化指标,病人的恢复快慢可显示在屏幕上,痛觉程度也不再模糊。医生的工作将因此大大便利。/p
  • 2027年产值达500亿!重庆印发传感器及仪器仪表产业集群高质量发展行动计划
    传感器及仪器仪表是获取自然生产领域中数据、信息的主要途径,是“制造”走向“智造”的关键一环,产品门类覆盖12大类、42小类,超6千种品类、2万种规格。近日,为推动传感器与重庆市主导产业深度融合,打造具有全国影响力的传感器及仪器仪表高质量创新发展高地,重庆市经济和信息化委员会印发《重庆市传感器及仪器仪表产业集群高质量发展行动计划(2023—2027年)》(以下简称《行动计划》)。《行动计划》明确发展目标,到2027年,传感器及仪器仪表规上企业产值达到500亿元,年均产值增速达到6%,规上企业数量倍增至10家,累计培育专精特新企业达2—3家;规上企业研发投入强度超3%、高端研发创新人才占比达50%,培育创新平台5家以上,突破行业关键核心技术20项以上,开发高技术高附加值产品30款以上。形成以两江新区、西部科学城重庆高新区及其拓展区为核心,重点区县及重点基础产业园为增长极的“双核多级”产业格局。为实现发展目标,《行动计划》部署了七项重点任务和四项保障措施,重点发展船用级执行器、单作用电液执行仪器仪表、气液联动执行仪器仪表等系列产品,加强高端激光分析仪系列产品研发,推动汞分析仪、激光粉尘仪、超低紫外分析仪、粉尘微质量检测仪、爆炸性沉淀粉尘检测仪等环保气测和测尘监测产品产业化,推动核温控、中子能量、流量、棒位、液位,以及核级热式质量流量计、超声波流量计等产品产业化,重点发展新型MEMS(微电子机械系统)传感器和智能传感器等。(一)打造仪器仪表核心产品。提档升级测量仪器仪表产品。支持运用超声波、物联网等新技术推动公用能源计量设备智能化、高端化,依托专业投资基金开展海外并购,不断缩小温度、湿度、压力、流量等智能变送器与国际先进水平的差距。巩固执行仪器仪表技术优势。支持龙头企业通过合作并购、自主创新等方式,重点发展船用级执行器、单作用电液执行仪器仪表、气液联动执行仪器仪表等系列产品,提档升级调节阀、球阀、蝶阀、阀门定位器等传统优势产品,布局发展三偏心全金属密封蝶阀等大口径、高磅级产品。打造科学仪器仪表特色化品牌。巩固流程气体、环保气体、流程水质等领域技术优势,加强高端激光分析仪系列产品研发,推动汞分析仪、激光粉尘仪、超低紫外分析仪、粉尘微质量检测仪、爆炸性沉淀粉尘检测仪等环保气测和测尘监测产品产业化。提升核能仪器仪表国产替代率。推动核级温控、中子能量、流量、棒位、液位,以及核级热式质量流量计、超声波流量计等产品产业化;支持龙头企业加快核级执行器产品设计制造认证许可,推动核电阀位变送器、核电阀门限位开关、核级调节阀等通过核级产品鉴定试验测试,填补国内第三代核电核级电动执行器空白。(二)推动传感器高端化发展。支持建设萤石智能制造基地、科技园三期等项目,推动高新仪器仪表基地、智能调节阀、智能流量仪表等项目建设。聚焦消费电子、汽车电子、工业电子、医疗电子等应用领域,重点发展新型MEMS(微电子机械系统)传感器和智能传感器,以及微型化、智能化的敏感元器件。围绕声、光、电、磁和微系统领域,引进一批传感器、微系统、通信模组等领域优质企业。鼓励我市晶圆制造企业开放硅基产线加工高端元器件,支撑传感器制造企业开发微硅电容、微硅质量流量等传感器产品。(三)补齐配套环节短板。加大基础材料研投力度,依托龙头企业和科研院所,围绕微电机复合材料、高精密电阻合金带材、半导体及微电子封装用复合材料、动力电池组用复合材料、熔断器用复合材料等,建设具备稳定供货能力的专线;支持合作并购一批高端金属导电材料及其复合材料,推进环保工艺研发,尽快突破贵金属环保提纯工艺研究试验。填补关键芯片产品空白,聚焦工业控制、消费电子、医疗器械等市场需求,引进并购一批国内外知名MEMS芯片设计和制造的龙头企业,建立国际领先的MEMS芯片生产线和封装线,以IDM模式打造MEMS芯片全产业链,培育新增长点;支持设计企业加大模拟/数模混合芯片的投入力度,开发更多支撑信号传输转化的芯片产品。(四)加强核心技术创新。支持本地高校和龙头企业加强合作,建设仪器仪表创新平台,发挥其学科优势和人才资源优势,聚焦高精度智能压力变送器、超声波流量计、超低排放污染气体监测设备等核心产品的技术迭代和应用场景创新,不断巩固我市在细分领域的比较优势。聚焦MEMS传感器、四类仪器仪表等重点领域,建立“企业出题、政府立项”科研攻关模式,支持传感器及仪器仪表、芯片厂商和科研院所组建创新联合体,围绕传感器及仪器仪表高性能、高可靠、长寿命技术,低成本、低功耗、微型化技术,以及信息处理、融合、传输等技术开展联合攻关,形成一批自主知识产权。构建“龙头企业+产业园区+重点高校+科研机构”型技术创新平台,带动优势领域在技术创新方面早出成果。(五)引育优质市场主体。瞄准重点领域龙头企业,形成招商清单,策划推动一批重点招商项目,加强与专业投资基金的战略合作,促进招商项目签约一批、建设一批、投产一批滚动实施。以产业链招商为主线,组建专业招商团队,整合龙头企业、行业协会、科研机构等各类资源,围绕我市重点发展方向,不断拓宽传感器及仪器仪表上下游产业链招商资源渠道。深入实施“链长制”,完善“链长+领军企业+链主企业+属地区县”联动机制,解决链主企业在生产、运营等关键环节的问题和困难,责任制、清单化解决其在科创、重组、管理等关键环节的问题和困难,通过多方联动培育引进优质企业,培育更多链主企业,不断吸引传感器及仪器仪表企业来渝布局。协调市工业和信息化、市科技发展等专项资金,加大对传感器及仪器仪表企业的支持力度。(六)深化区域协同发展。充分发挥我市区位优势,全面加强与北上广深等重点省市交流,强化科技创新、产业链供应链等领域合作。深化成渝地区双城经济圈在重大项目、创新平台、人才培养等方面协同,加快形成全域共享、双核驱动的协同发展新格局。推动全市传感器及仪器仪表产品接轨国际市场,整合各类优质资源,精准支持本地企业发展,并购海外优质资产,增强我市传感器及仪器仪表产业国际竞争实力。(七)强化服务平台支撑。支持两江新区、西部科学城重庆高新区等重点区域谋划建设传感器及仪器仪表产业集群公共服务综合体,服务本地高校在测控技术、计量技术、科学仪器等领域的技术成果转化、标准体系构建。建立“龙头企业+检测机构”型计量服务平台,解决传感器及仪器仪表中小企业生产设施不完备、检测能力不足等问题,吸引各类企业集聚。构建“科创苗圃+孵化器+加速器”的创新创业服务体系,培育更多专精特新传感器及仪器仪表企业。引进中科院精密测量研究院、全国核仪器仪表标准化委员会等国家级权威平台在渝设立分支机构,开展标准体系验证、共性技术供给等专业服务,提升我市传感器及仪器仪表产业全国话语权。鼓励检验检测机构、行业组织、产业园区、科研院所、龙头企业建设传感器及仪器仪表适配验证服务平台,缩短产品适配周期。全文下载:关于印发《重庆市传感器及仪器仪表产业集群高质量发展行动计划(2023—2027年)》的通知.doc
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 传感器国家工程研究中心常务副主任刘沁:工业基础传感器需破解核心器件产业化难题
    为适应国家工业发展需要,特别是能源、化工、交通、航空航天等特殊领域针对传感器的需求,从上世纪50年代起,国家先后组织一批国家级研究机构、专业生产企业及部分重点高校共同针对工业传感器进行攻关和生产。在经历了几代人、近半个多世纪的努力后,至今为止基本建成了具有中国特色的覆盖全工业领域的工业传感器体系。很多传感器从无到有,相当程度满足了国家工业发展的需求。传感器行业进入快速发展阶段“十二五”以来,密集的传感器相关政策推动了我国传感器行业飞跃发展。“十三五”期间,政府支持力度进一步加大,2017年工信部出台《智能传感器产业三年(2017—2019)行动指南》及《促进新一代人工智能产业发展三年(2018——2020)行动计划》,从而直接催生了重大科学仪器及设备开发、制造基础技术与关键部件研究两大专项。2020年8月国务院发布《新时期促进集成电路产业和软件产业高质量发展的若干政策》,针对我国集成电路产业发展从财税政策、投融资政策、研究开发政策、进出口政策、人才政策、知识产权政策、市场应用政策、国际合作政策等全方位多方面提出部署,直接将当前新时期新阶段的集成电路产业和软件产业发展推进到一个全新的发展阶段,为其他相关基础产业发展起到了引领示范作用。在一系列政策持续出台的背景下,我国传感器行业进入快速发展阶段,形成了基本全覆盖的产业布局,工业需求传感器从自主到引进全产业链覆盖。中低档产品在满足自给自足的前提下实现出口,设计、研发、应用一条龙配套建设和水平普遍提升。在快速发展的中国工业市场,针对传感器的需求已经从原始的配套变成刚性需求,巨大的中国制造转型升级带来的市场吸引力不仅对国内企业,对国外工业传感器龙头企业也是巨大的吸引,美国艾默生、德国E+H、日本横河等工业传感器巨头在中国市场的份额已经成为其公司业务重要组成部分。在政府支持和行业需求的双层推动下,我国工业传感器已形成由材料、器件、系统、网络等全方面构成的产业链模式,产业链规模、质量也不断得到完善和提高。据统计,国内具有一定规模的应用于工业制造业的各类传感器生产厂家约2000余家,产品基本覆盖工业制造各领域。生产的各类工业用传感器品种、规格约1.6万种。已经显现出有区域特点的传感器产业集群,重点集中在长三角,并逐渐形成以北京、上海、南京、深圳、沈阳和西安等中心城市为辐射的区域布局。这些集群各有侧重优势,形成了我国较为完备的传感器产业链。诸多瓶颈亟待突破尽管取得不俗成绩,但我国工业基础传感器仍存在许多问题需要破解,主要表现在:一是顶层设计仍缺乏统筹设计,规范引导。工业传感器在仪表行业是小行业,在中国制造中更是小小行业,但工业传感器在制造强国战略中却有举足轻重的地位。由于传感器具有的专业分散和行业分属的特点,长期以来传感器行业始终缺乏统一的行业认知。虽然国家投资逐年加大、政策力度逐年增强,但传感器产业需要长期不断地培育养成的特点在地方政府、企业急于求成的作用下,想取得传感器产业化的标志性成果,往往事与愿违。二是产业规模小,盈利能力低,核心技术缺乏。以压力传感器行业为例,国内具有一定规模的生产厂商大约有千余家,其中民企数量约占企业总数的90%,已经成为了中国工业压力传感器、变送器行业的与国外厂商争夺国内工业用压力传感器、变送器市场的主力军。但这些企业年销售额大于2000万元的企业不足三成,七成以上的传感器生产厂商为中小微企业,产业规模很小,自身盈利能力也不强。因此企业核心技术、企业研发能力、企业核心竞争力严重不足或缺乏。统计国内主要传感器厂商的产品分析也可以发现,目前国内厂商生产的压力传感器,70%以上是常规应变式、溅射薄膜式等传感器产品,30%左右为陶瓷材料为主的低端产品,产品结构相对单一。三是共性化问题多,产业化问题多。共性关键技术,如可靠性技术研究尚待突破。国外典型流程工业高端典型传感器在上世纪末已实现五年免调校,但国内相关产品免调校功能还在推广验证中。工业传感器共性技术如材料、设备、方法、可靠性验证分析等基础理论的研究与发展同国外发达国家的差距仍然巨大。四是工业传感器核心敏感技术产业化缺“芯”严重。尽管传统的工业传感器如应变、电感、电容、光栅、称重、位移量、位置量、金属弹性器件等年产量居世界领先地位,有些甚至已经实现出口。但是对于高端工业传感器,尤其是高端制造的重点领域、重点行业、重大工程用配套工业传感器基本上100%依靠进口。即使国内生产,也仅仅停留在研究、样机、小批量中试阶段,相关传感器核心技术(器件)的产业化仍然“路漫漫”,严重制约我国工业的快速发展及工业制造的“自主可控”。如:国内硅基MEMS压力传感器全产业基本处于封装代工阶段,从普通硅基压力传感器、OEM硅基压力传感器到流程工业高端设备控制用变送器,核心硅基敏感芯片基本上全部进口,国内自主配套不足1%;高端智能制造、CNC数控机床、大型工程机械等配套需求的位置、压力、图像、惯性器件等传感器以欧美日或欧美日在国内的合资企业垄断;国内工业基础气体传感器主要集中在中低端的催化燃烧式、电化学式、红外式,以及MOS气体传感器阶段,仅有少量高端的激光红外气体传感器及光离子化PID气体传感器在工业制造领域使用。新产品、新技术的工业气体传感器产业化落后国际先进水平至少五年左右。MEMS硅基压力传感器核心敏感元器件、高端气体传感器敏感芯片等虽然完成技术攻关,但产业化配套基本为零,国内产业化生产敏感核心器件及传感器高端市场基本上全部依赖进口。国内工业传感器主要集中在中低端制造业市场。高端应用的产业化发展空“芯”化问题已经成为制约中国制造由大到强的关键阻碍。努力完善工业基础传感器生态第一,以德国X-Fab的精、专、特标准化核心器件产业基地为对标,建成力、热、磁、气核心器件专业定点产线,实现国内工业基础传感器基础核心器件成果产业化转移,配套快速发展的中国制造业对传感器的需求特别是核心器件的需求。工业基础传感器是制造工业的基础,首先解决当前产业急需的核心器件产业化问题,完善从材料、制造、销售、使用的一条龙产业生态,彻底解决国内工业基础传感器有“器”无“芯”的尴尬局面,真正实现工业基础传感器对国家工业基础的基石和支撑作用,形成分工明确、配套清晰的产业化发展链条。建成中国的X-Fab专业产线。标准化定点专业产线不仅要求有良好洁净的工作环境,更需要清晰的产品(不可唯利是图)、清晰的工艺管控、素质技能稳定的管理管控团队。做到环境、产品、工艺、管控四“净”。第二,集中开展传感器跨学科培养,在人才评价、人才团队建设中树立领军人物,培养高端扛旗帜的企业;在标准、可靠性、专利等多方面加大奖励制度,推动人才队伍快速成长。第三,从材料、制造、销售龙头抓起,建成工业传感器“一条龙”生态。健全分工清晰明确的工业传感器生态链,实现传感器工业“基石”的支撑作用。加大流程工业用力、热、磁、流量、环境气体安全检测传感器和离散传感器产业基地建设,形成流程工业、离散工业传感器精、专、特、新的产业布局,培养一批各自产业领域的隐形冠军。针对隐形冠军培养在市场、技术、团队方面从不同角度给予政策支持,设立专项资金对技术创新型企业进行扶持,在功能工业传感器生态链上培养领军企业。第四,加大对传感器中、小微企业知识成果及科研成果保护,鼓励企业技术创新,积极开展共性关键技术、基础工艺技术的研究,降低企业科研成果转化风险,开展新型一体化智能工业传感器研究,提倡建设工业传感器小微企业的技术隐形冠军。加大国家对于传感器产业化的投入,鼓励建设产业集聚园区和公共创新平台,加速新设计、新工艺导入。加强对共性关键技术、基础工艺技术研究的投入,在政策、制度、资金等方面给予倾斜,缩短技术向产品转化的周期。强化市场应用对产业的需求牵引作用,鼓励应用厂商通过商业合作、投资入股等方式参与智能传感器的研发与制造,整合产业链上下游。支持科研院所和高等院校开展智能传感器关键技术和基础理论研究、关键芯片开发,提升产品的集成化、智能化水平,加强知识产权保护,鼓励科研成果转化。鼓励开展新型工业传感器一体化及技术及应用研究,在感知、控制、通信、算法、智能化、网络化应用方面开展工作,满足新一代工业传感器需求。第五,以市场需求为引领,产品质量为准入门槛,企业对自身产品的质量责任保障为前提,从政策面给予工业传感器在国家重点行业、重点领域、重大工程中的配套使用力度,给予国货配套更优惠条件,在工业传感器应用领域落实并加大力度实施国家“政府采购法”和“国货优先”政策。保障工业传感器在中国制造的发展过程中同步快速成长。
  • 10亿元传感器项目落户东阳
    东阳市引进的首个央企独立投资项目——传感器工业园项目落户城北工业新区。该项目总投资10亿元,计划2013年5月开工,2015年9月建成投产。  昨日上午,投资方代表中国机械工业集团有限公司沈阳仪表科学研究院院长庞士信、院长助理曾艳丽,金华市委常委、东阳市委书记徐建华,市委副书记、市长朱建军,市人大常委会主任施侍伟,市政协主席王正明,市委常委、常务副市长郭慧强等出席在市行政中心举行的签约仪式。市委常委、副市长李宝春主持签约仪式。  朱建军和曾艳丽分别代表双方签署了投资协议。  据了解,传感器产业是国内外公认的具有良好发展前途的高技术产业,有着广泛的应用前景。该项目建成后,可形成年产5000万只力敏传感器芯片、压力传感器、压力变送器的生产能力,有助于改变我国中高端传感器基本依赖进口的现状。项目土建工程主要包括国家传感器工程研究中心分中心、科技成果孵化中心、传感器芯片生产区、汽车传感器生产区、压力传感器生产区、MEMS智能变送器生产区、物流区、国际贸易区、检验检测区及其他配套设施等。该项目投产后,预计年收入(平均值)可达10亿元,年创税10784.8万元,实现用工1500余人。  徐建华指出,这是一次优质产业资本、高端创新技术与优质发展区域的战略合作。他表示,市委、市政府将全力以赴支持项目的建设和发展,切实解决项目实施过程中遇到的困难和问题,努力以最优的环境、最佳的服务,保障企业发展。同时希望沈阳仪表科学研究院紧紧把握当前大好的发展机遇,加快项目建设步伐,力争使项目早开工、早建设、早投产、早出效益。  庞士信表示,争取把这一项目建成中国机械工业集团在外投资的成功典范。  据悉,中国机械工业集团是国内机械工业规模最大、覆盖面最广、业务链最完善、研发能力最强的大型中央企业集团,2010年营业收入达1522.2亿元,2011年首次成为世界500强企业。作为本项目的科研、生产单位,沈阳仪表科学研究院始建于1961年,隶属于中国机械工业集团。
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 透明电极指纹传感器问世
    p  让手机屏任何位置都能识别身份/pp  科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。/pp  指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。/pp  消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。/pp  韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。/pp  这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。/pp  研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。/pp  总编辑圈点/pp  手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。/ppbr//p
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 传感器行业未来关注的四大领域
    未来值得关注的四大领域  随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。  一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。  二是无人驾驶。美国IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。  三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。  四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。超声波气象站集合了7个传感器,为工业生产提供了一流的天气监测信息,为预防一些灾害事件提供可靠信息,从而提高效率,降低和总的成本。  此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。
  • 回顾 展示 探讨 推动 ——首届世界传感器大会“新型传感器技术在仪器仪表领域应用分论坛”成功举办
    p style="text-align: justify "  2018年11月12日,由中国仪器仪表学会、河南省发改委、河南省科技厅、郑州市政府等单位主办,中国仪器仪表学会、郑州高新区管委会承办的“首届世界传感器大会”于郑州国际会展中心隆重召开。由沈阳仪表科学研究院有限公司、传感器国家工程研究中心承办的“新型传感器技术在仪器仪表领域应用分论坛”于12日下午成功举行。/pp style="text-align: justify "  中国仪器仪表行业协会副理事长、中国仪器仪表行业协会传感器分会理事长、沈阳仪表科学研究院有限公司董事长、总经理曾艳丽、智能传感器创新联盟副理事长、沈阳仪表科学研究院有限公司党委书记张仕卿出席了此次专题论坛,中国仪器仪表行业协会传感器分会名誉理事长、沈阳仪表科学研究院原院长徐开先致开幕词。来自全国各地的传感器行业专业人士二百余人参加了本次论坛。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/25eed8c6-07c0-45bd-8f37-cbce7879340f.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center " span style="font-family: 楷体, 楷体_GB2312, SimKai " 中国仪器仪表行业协会传感器分会名誉理事长、沈阳仪表科学研究院原院长/span/pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "徐开先致开幕词/span/pp style="text-align: justify "  论坛邀请了六位专家学者、企业负责人做了精彩的报告。/pp style="text-align: justify "  英国纽卡斯尔大学首席教授田贵云教授以题为“用于无损检测和评价的多物理及传感器成像系统”报告精彩开篇。span style="text-align: center "  /span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/8a6df3a1-77eb-4d98-843b-6313c8d62bf1.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "英国纽卡斯尔大学首席教授田贵云/span/pp style="text-align: justify "  沈阳仪表科学研究院有限公司副总工程师袁峰结合多年传感器应用技术的积淀与大家分享“新型传感器技术在仪器仪表领域的应用”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/097f9233-d0ec-4c57-bdde-57c44abe0147.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "  span style="font-family: 楷体, 楷体_GB2312, SimKai "沈阳仪表科学研究院有限公司副总工程师袁峰/span/pp style="text-align: justify "  汉威电子集团郑州炜盛电子科技有限公司常务副总经理古瑞琴梳理了“气体传感器的行业应用及发展中的机遇与挑战”。古总为我们讲述了气体传感器在环境空气监测、医疗、食品链监控、车用气体传感器及智能家居等领域的应用与发展方向,让我们对传感器有了更丰富的认识。中国传感器市场仍面临较大的挑战,目前70%的传感器来自进口,中国传感器市场份额较少,中美贸易战更是引起了中国人的觉醒。对中国未来传感器市场的发展,古总提出需要政府的支持与国产厂商不断探索、创新共同的努力。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/fc401411-01c4-4e04-97ac-2731cd8cda2e.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "  span style="font-family: 楷体, 楷体_GB2312, SimKai "汉威电子集团郑州炜盛电子科技有限公司常务副总经理古瑞琴/span/pp style="text-align: justify "  西安中星测控有限公司董事长、中国工业传感器分联盟理事长谷荣祥以深入浅出的方式为大家解读了“智能传感器在智慧城市中应用”技术。谷董说,感知、传输、计算、共享是智慧城市的四大构想。传感器可以用在我们生活的方方面面,实现智慧城市需要一套合理的整体解决方案。他指出中星测控未来将在市场、工业、军工、民生等的应用方面做出努力。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/34007e8f-2616-4bee-b68d-58022cacce8a.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "西安中星测控有限公司董事长谷荣祥/spanbr//pp style="text-align: justify "  上海兰宝传感器科技股份有限公司副总经理谢勇基于兰宝智能制造新模式解读了“智能传感技术在数字化工厂中的运用”。报告中指出,数字化的基本要求就是让每一个单体的设备、每一个部件具备数据运算、通讯、基于信息融合的精确布置,以及远程运维、远程协调和自我管理的功能。智能制造的重点是装备和生产数字化 智能传感器技术与智能化的应用相辅相成,相互促进。他提出,未来的传感技术要紧紧围绕智能制造,来加大产品的供应。/pp /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/2c6bfbf7-690d-4542-8d5c-1e1907c9d8bc.jpg" title="6.jpg" alt="6.jpg"/ /pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "上海兰宝传感器科技股份有限公司副总经理谢勇/span/pp style="text-align: justify "  最后,杭州电子科技大学磁电子中心主任钱正洪教授的报告“新型自旋传感器件设计与应用技术”将论坛气氛推向高潮。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201811/uepic/018aee6e-50e0-461a-bc7a-19ebe9331c8e.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center "  span style="font-family: 楷体, 楷体_GB2312, SimKai "杭州电子科技大学磁电子中心主任钱正洪/span/pp style="text-align: justify "  六位嘉宾在各自擅长的领域为观众带来了精彩的演绎与分享,这场技术盛宴作为世界传感器大会的分论坛活动,回顾总结了新型传感器技术在仪器仪表领域的成就,同时展示了最新的前沿研究和应用成果,探讨了今后的发展方向,对推动传感器领域的创新研究与应用起到积极的促进作用。/p
  • 我国传感器如何创造自己的“脊梁”
    我国在传感器领域一直都在依赖国外的技术,在产业化的进程中,国产传感器也需不断提升自己的创新技术。我国传感器技术水平低竞争激烈,该如何应对国外市场地压力,挑战激烈地市场竞争?我国在传感器生产产业化过程中,引进国外先进技术,同时提高自己地技术,满足了国内市场地需求,形成了传感器生产产业规模。近年来,我国传感器市场一直持续增长,增长速度超过了15%,预计五年后产值将达1200亿元。但是从目前来看,我国传感器技术还并不成熟,国产传感器存在技术低价格高地问题,在国际价格竞争中并不占优势。我国传感器未来发展被看好传感器是将外界地各种信息转换为可测量可计算地电信号,经过设置地程序输出结果,发送指令使各种事物可以不由人控制而只是由外界条件地变化自觉地调整行为。基于我国与欧美等发达国家存在着一定地差距,研究技术地薄弱,我国传感器技术暂时不能完全满足国内地需求。但在国家地支持下,我国传感器企业数量和行业规模发展快速,未来发展被看好。中国传感器市场近几年一直持续增长,增长速度超过15%。2012年中国传感器应用四大领域为工业控制、汽车电子、通信电子及消费电子,其中工业和汽车电子产品占市场份额地42%左右。而传感器在医疗、环保、气象等专用电子设备中地应用也快速增长,所用传感器占市场份额地15%左右。上述行业对传感器地大量需求,为本土传感器产业提供了很好地发展机遇。未来五年,国内传感器市场平均销售增长率将达31%。我国传感器技术水平低竞争激烈尽管我国传感器市场需求高,发展迅速,但是也存在着技术水平偏低、种类欠缺,研发能力差等问题。如在产品技术上产业基础薄弱、科技与生产脱节、产品技术水平偏低、产品种类欠缺、企业产品研发能力弱。我国目前有1688家企事业从事传感器地研制、生产和应用,但从事MEMS研制生产只有50多家,而且规模和应用都较小。没有形成足够地规模化应用,导致我国传感器存着技术低但价格高地问题,在国际市场上就失去了优势,也使得市场竞争更为激烈。中国制造进入转型关键期,加速积累是中国制造业获得跨越式发展地唯一路径。传感器发展前景报告认为,提升质量、打造品牌非常重要。推广智能制造,必须始终依靠创新驱动,将传感器推高端智能化方向发展。新传感器供应商不断杀入我国传感器面临国际价格竞争不断有新地传感器供应商杀入市场,导致竞争加剧是传感器单价下降地原因之一,下游大厂商不断压价也使得价格逐渐下降。传感器单价下降不但降低了高度竞争地传感器市场增长率,也压缩了传感器供应商地利润空间。我国未来传感器产业或将遵循三大方向我国传感器如何应对国外市场地压力,挑战激烈地市场竞争?未来我国传感器产业或遵循以下三大方向:第一,以工业控制、汽车、通讯、环保为重点服务领域,以传感器、弹性元件、光学元件、专用电路为重点对象,发展具有自主知识产权地原创性技术和产品。第二,以增加品种、提高质量和经济效益为主要目标,加速产业化,使国产传感器地品种占有率达到70%~80%,高档产品达60%以上。第三,以MEMS工艺为基础,以集成化、智能化和网络化技术为依托,加强制造工艺和新型传感器和仪表元器件地开发,使主导产品达到和接近国外同类产品地先进水平。本文来自仪器仪表商情网原创
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制