当前位置: 仪器信息网 > 行业主题 > >

热电偶传感器

仪器信息网热电偶传感器专题为您提供2024年最新热电偶传感器价格报价、厂家品牌的相关信息, 包括热电偶传感器参数、型号等,不管是国产,还是进口品牌的热电偶传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电偶传感器相关的耗材配件、试剂标物,还有热电偶传感器相关的最新资讯、资料,以及热电偶传感器相关的解决方案。

热电偶传感器相关的论坛

  • 插入深度如何影响影响热电偶温度传感器

    热电偶是最常用的测温器件之一,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。因为热电偶温度传感器具有测量范围宽、精度高以及响应时间快等优点,所以得到广泛的使用。本篇文章主要探讨插入深度对热电偶温度传感器的影响。 热电偶测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶温度传感器与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些,陶瓷材料绝热性能好,可插入浅一些。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。

  • 气相色谱仪常用温度传感器 —— 热电偶温度传感器

    气相色谱仪常用温度传感器 —— 热电偶温度传感器

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用温度传感器[/font][font='Times New Roman'] [font=Times New Roman]—— [/font][/font][font=宋体]热电偶温度传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]热电偶传感器([/font][font=Times New Roman]Thermocouple[/font][font=宋体])是工业生产中常用的接触式测温装置,具有性能稳定、测温范围大、信号可以远距离传输、结构简单、使用方便等特点。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者外围设备中用作温度测定或者温度保护器件。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]将两种不同材料的导体组成一个闭合环路时,只要两个结合点[/font][font=Times New Roman]T[/font][font=宋体]和[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的温度不同,在该回路中就会产生电动势,此种现象称为塞贝克效应([/font][font=Times New Roman]Seebeck effect[/font][font=宋体],属于热电效应),回路产生的相应电动势称为热电势。[/font][font=Times New Roman]T[/font][font=宋体]结合点温度较高,称为测量端或工作端,测温时被置于被测介质(或温度场)中,[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体]结合点温度较低,称为参考端或自由端。[/font][font='Times New Roman'] [/font][align=center][img=,312,86]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300838430433_9363_1604036_3.jpg!w468x129.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]热电偶原理图[/font][/font][/align][font=宋体][font=宋体]这两种不同材料导体的组合即称为热电偶,[/font][font=Times New Roman]A[/font][font=宋体]与[/font][font=Times New Roman]B[/font][font=宋体]两种不同材料的导体称为热电极。[/font][/font][font=宋体][font=宋体]实验证明,回路的总电势[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=宋体]α[/font][/font][/sub][font=宋体]与热电偶两端的温差成正比:[/font][align=center][font=宋体][font=Times New Roman]E[/font][/font][sub][font=宋体][font=宋体]α[/font][/font][/sub][font=宋体][font=宋体]([/font][font=Times New Roman]T[/font][font=宋体])[/font][font=Times New Roman]=[/font][/font][sub][font=宋体] [/font][/sub][font=宋体][font=宋体]α([/font][font=Times New Roman]T - T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体])[/font][/align][font=宋体][font=宋体]式中[/font] [font=宋体]α为与材料有关的系数。[/font][/font][font='Times New Roman'][font=宋体]在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即[/font][/font][font=宋体]热电偶工作[/font][font='Times New Roman'][font=宋体]不受第三种金属接入回路中的影响[/font][/font][font=宋体],称为热电偶的中间导体定律[/font][font='Times New Roman'][font=宋体]。因此,在热电偶测温时可接入测量仪表,[/font][/font][font=宋体]通过[/font][font='Times New Roman'][font=宋体]测得热电动势后[/font][/font][font=宋体]获知[/font][font='Times New Roman'][font=宋体]被测介质的温度。[/font][/font][align=center][img=,278,113]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300838517478_4227_1604036_3.jpg!w444x181.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]热电偶实际工作状态图[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]理论上任何两种不同材料导体均可以组成热电偶,但为了准确可靠的测量温度,对组成热电偶的材料必须进过严格的选择。良好性能热电偶材料一般需要满足以下条件:热电势变化较大、热电势[/font][font=宋体]——温度关系尽量接近线性关系、物理化学性质稳定、容易加工、重现性好、有良好的的互换性、易于批量生产。常见的热电偶材质一般有铂铑合金、铁[/font][font=Times New Roman]-[/font][font=宋体]康铜、铬[/font][font=Times New Roman]-[/font][font=宋体]康铜、镍铬硅[/font][font=Times New Roman]-[/font][font=宋体]镍硅和钨[/font][font=Times New Roman]-[/font][font=宋体]铼等。[/font][/font][font=宋体][font=宋体]热电偶温度测量范围较宽,不同电极材料热电偶的温度测量范围不同,一般温度范围为[/font] [font=Times New Roman]0[/font][font=宋体]℃[/font][font=Times New Roman]~1800[/font][font=宋体]℃,钨[/font][font=Times New Roman]-[/font][font=宋体]铼材料制成的热电偶测量温度可达[/font][font=Times New Roman]2300[/font][font=宋体]℃。由于影响其工作因素较多,与热电阻传感器相比,热电偶实现高精度的温度测定难度较大,但热电偶可以测定更高的温度。[/font][/font][font=宋体][font=宋体]热电偶结构形式有普通型、铠装型和薄膜热电偶,图[/font][font=Times New Roman]3[/font][font=宋体]所示为套管热电偶(铠装型),可以制作成细长的形态,使用中可以任意弯曲,测温热容量小、动态响应快、机械强度高、可安装于机构复杂的装置上。[/font][/font][align=center][img=,196,123]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300838586054_4890_1604036_3.jpg!w690x433.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热电偶外观[/font][/font][/align][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统中,经常采用热电阻(铂电阻)做为高精度温度测量和控制器件,热电偶用作温度保护器件。当意外情况发生,造成色谱仪某部件严重超温,热电偶仍旧可以正常工作,启动色谱系统断开加热。[/font][font=宋体]某些[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]外围设备,例如热解析或吹扫捕集进样器内部温度测量和控制也会使用到热电偶传感器,可以实现高响应速度和宽温度范围的测控。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和外围设备在进行计量检定时,测定柱箱、顶空炉温等部件的电子温度计,也经常会使用到热电偶传感器,可以准确迅速的测定色谱仪柱温箱的温度变化。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]热电偶传感器的原理和使用注意事项。[/font]

  • 热电传感器(常用传感器之一)

    热电传感器是常用传感器之一 热电传感器是一种将温度转换成电量的装置,包括电阻式温度传感器、热电偶传感器、集成温度传感器等。 电阻式温度传感器是利用导体或半导体的电阻值随温度变化的原理进行测温的。电阻式温度传感器分为金属热电阻和半导体热电阻两大类,一般把金属热电阻称为热电阻,而把半导体热电阻称为热敏电阻。目前最常用的热电阻有铂热电阻和铜热电阻,铂热电阻的特点是梢度高,性能稳定,工业上广泛应用铂热电阻进行一200^-+850℃范围的温度侧量,还作为复现国际温标的标准仪器;铜热电阻的电阻沮度系数高.线性度好,且价格便宜,应用于一些侧量精度要求不高且温度较低的场合,其侧温范围为一50-+1501C,但由于铜易氧化,热惯性大,不适宜在腐蚀性介质中或高温下工作.热敏电阻的电阻温度系数大,灵敏度高,尺寸小,响应速度快,电阻值范围大((0. 1^-100kS1),使用方便,但温度特性为非线性.互换性差,测温范围小(一般在一50-200). 热电偶传感器是工程上应用最广泛的温度传感器。它构造简单.使用方便,具有较高的准确度、稳定性及复现性,温度测量范围宽(-200^-+3500'C ),动态性能好,在温度测最中占有重要的地位。 集成温度传感器是利用晶体管PN结的电流电压特性与温度的关系.把感温PN结及有关电子线路集成在一个小硅片上.构成一个专用集成电路芯片。它具有体积小、反应快、线性好、价格低等优点,但受耐热性能和特性范围的限制,只能用来测150℃以下的温度。如AD590是应用最广泛的一种集成温度传感器.它具有内部放大电路,再配上相应的外电路,可方便地构成各种应用电路.来源——中国仪器仪表网

  • 流量传感器中热电阻如何运作

    [align=left]流量传感器是热力学流量传感器之一。流量传感器敏感体主要由硅基半导体材料制成,易于微机电加工,并且还具有玻璃基板。常见的加热器是铂电阻和多晶硅。温度测量元件有铂电阻、温度二极管、热电偶三个。该流量传感器主要适用于清洁气体流量测量。[/align]该流量传感器芯片由两个热电偶堆栈和一个加热电阻组成:热电偶堆栈对称分布在加热电阻器、的下游 加热电阻和热电偶叠层的热结在绝热基座上。加热电阻加热热电偶堆叠的热结。热结和热电偶叠层的冷结之间的温度梯度产生输出电压,即内在的塞贝克效应。加热电阻两侧的等温线。当流体静止时,等温线沿垂直加热电阻中间的线对称分布,加热电阻两侧对称位置的温度相同。当流体从左向右流动时,等温线向右倾斜。加热电阻两侧对称位置的温度不再相同。温度差可以通过放置在加热流量传感器电阻器两侧的热电偶堆栈来测量。由于流体的传热仅与流体质量和流体的热容量有关,因此流量传感器可以直接测量流体的质量流量。流量传感器使用过程中的注意事项:1、强腐蚀性气体中禁用、有毒气体、用于爆炸性环境。2、气流介质中含有污垢会缩短使用寿命。建议在流量传感器入口前安装5微米精密过滤器。3、与水接触,溅水或浸入水中会导致流量传感器敏感或损坏。4、电源的正极和负极或电源的过压会导致流量传感器的内部电路烧坏。流量传感器主要用于工业管道介质流体的流量测量,如气体、液体、蒸汽等介质。流量传感器具有压力损失小,测量范围大,精度高的特点。在测量体积流量期间,流量传感器几乎不受诸如流体密度、压力、温度、粘度等参数的影响。没有移动的机械部件,因此可靠性高,维护量小。仪器参数可以长时间稳定。该流量传感器采用压电应力传感器,具有高可靠性,可在-10°C至+ 300°C的工作温度范围内工作。有模拟标准信号和数字脉冲信号输出,易于与计算机等数字系统一起使用。这是一个相对先进的、理想流程。流量传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管湿度传感器丨气压感应器丨[/color]气体压力传感器[color=#333333]丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]风速传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]压电薄膜传感器丨微型压力传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color]湿度传感器[color=#333333]丨压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨气压传感器丨[/color][color=#333333]光纤传感器丨硫化氢传感器丨传感器https://mall.ofweek.com/category_5.html丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨光离子传感器丨[/color][color=#333333]流量传感器https://mall.ofweek.com/category_12.html[/color][color=#333333]丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]bm传感器丨电流传感器丨[/color][color=#333333]位置传感器丨[/color][color=#333333]风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 钨铼热电偶结构原理

    一种基于金属热电效应,将被测温度转换成电量变化的装置,称之为热电式传感器。常见有工业钨铼热电偶、热电阻,双金属温度计等,而热电偶是一种经典而延用至今测温传感器。本文将简要介绍一下热电偶变换原理及回路特点。1.热电偶(WRW-1500型钨铼热电偶)热电效应:将两种不同导体或半导体并连在一起(如图),组成闭合回路。一旦将此种装置两个接头置于不同热源T、T0设定T≧T0,则会产生热电动势。http://img52.chem17.com/9/20130402/635004865548750000727.jpg当热电偶材料不变情况下,热电偶热电动势EAB(T、T0)成为温度T、T0函数差。其表达式为: EAB(T、T0)=f(T)—f(T0)由于冷端温度T0固定不变,则对于一定材料热电偶,其总热电动势与温度T成单值函数关系,即: EAB(T、T0)=f(T)—CC——常数,取决于固定温度T0因此,在实际测温过程中,这一关系式应用意义极其广泛。2.热电偶回路几种情况:①.若热电偶回路中两导体相同,则与两个接点温度无关,热电偶回路中总热电动势为0;②.若热电偶两接点温度相同,而导体A、B不同时,热电偶回路中总热电动势也为0;③.热电偶AB的热电动势与材料A、B中间温度无关,只与接点温度相关;④.热电偶AB在接点温度T2、T3时热电动势,为热电偶在接点温度为T1、T2和T2、T3热电动势总和;⑤.当热电偶回路接入第三种材料导体时,只要其两端温度相同,引入的导体不会影响热电偶热电动势,称中间导体定律;⑥.当温度为T1、T2时,导体A、B组成的热电偶电动势为AC和CB两热电偶电动势总和。 EAB(T1、T2)= EAC (T1、T2)+ECB(T1、T2)目前,WRW-1500型钨铼热电偶使用最多的导体AB有:WRLBT(铂铑-铂),测温范围为0~1300℃,短期可达1600℃;WREU(镍铬-镍硅),测温范围0~900℃,短期可达1200℃,还原性介质中,只可测温500℃以下;WREA(镍铬-考铜)(600℃以下,短期达800℃)以及铂铑30-铂铑6/WRLL,长期使用可耐受1600℃高温介质,短期内可达1800℃。

  • 热阻抗增加对电偶温度传感器的影响

    在高温下使用的热电偶温度传感器,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶温度传感器,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。

  • 【讨论】-关于微波温度控制用的热电阻,热电偶的问题

    目前向温度传感器使用最多的是热电阻,热电偶,它们各有优势!比如:CU50的热电阻传感器测试温度范围在-20-150度!使用的材料是铜!相对来说要便宜!PT100热电偶的测温范围就要广些可以达到800度!PT100和CU50的结构是线圈式的(大概有100圈根据线圈的粗细有所不同),很容易受到电磁波干扰!还有就是铂铑热电偶,它测温范围就大500-1800度!它在500一下就不是线性的了,所以不适合测低温!但他们的传感头是点接触,基本不受干扰!

  • 热电偶冷端温度准确测量的问题

    在箱式电阻炉、工业退火炉等高温炉窑的检测中,我们选择K型或S型热电偶作为传感器。众所周知,在使用热电偶进行检测时冷端温度测量准确与否对整个测量结果的是否准确是至关重要的。因此我们采用了四线制Pt100为传感器,测量准确优于±0.05℃,在温度数据采集器接线端设计了一个密封的恒温区,保证冷端温度相对稳定,由于是密闭空间,受环境温度影响小。采用四线制铂电阻测量可以方便的将冷端温度传感器拉长,减少了补偿导线的使用,且测量准确可靠。

  • 热电偶温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。[size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size][list][*]首先热电偶和热电阻的安装应尽可能保持垂直,以防止保护套管在高温下产生变形,但在有流速的情况下,则必须迎着被测介质的流向插入,以保证测温元件与流体的充分接触以保证其测量精度。[*]另外热电偶和热电阻应尽量安装在有保护层的管道内,以防止热量散失。其次当热电偶和热电阻传感器安装在负压管道中时,必须保证测量处具有良好的密封性,以防止外界冷空气进入,使读数偏低。[*]当热电偶和热电阻传感器安装在户外时,热电偶和热电阻传感器的接线盒面盖应向上,入线口应向下,以避免雨水或灰尘进入接线盒,而损坏热电偶和热电阻接线盒内的接线影响其测量精度。[*]应经常检查热电偶和热电阻温度计各处的接线情况,特别是热电偶温度计由于其补偿导线的材料硬度较高,非常容易从接线柱脱离造成断路故障,因此要接线良好不要过多碰动温度计的接线并经常检查,以获得正确的测量温度。[*]热电偶安装时应放置在尽可能靠近所要测的温度控制点。为防止热量沿热电偶传走或防止保护管影响被测温度,热电偶应浸入所测流体之中,深度至少为直径的10倍。当测量固体温度时,热电偶应当顶着该材料或与该材料紧密接触。为了使导热误差减至最小,应减小接点附近的温度梯度。[*]当用热电偶测量管道中的气体温度时,如果管壁温度明显地较高或较低,则热电偶将对之辐射或吸收热量,从而显着改变被测温度。这时,可以用一辐射屏蔽罩来使其温度接近气体温度,采用所谓的屏罩式热电偶。[*]选择测温点时应具有代表性,例如测量管道中流体温度时,热电偶的测量端应处于管道中流速最大处。一般来说,热电偶的保护套管末端应越过流速中心线。 [/list]

  • 【原创】热电偶应用指南(1)

    热电偶应用指南 Thermocouple Application Note热电偶是一种流行的温度传感器。便宜,可互换,标准连接器以及较大的温度测量范围,主要的限制是精度,很难获得小于1°C的系统误差。工作原理 How they work1822年,一位名叫托马斯 塞贝克的爱沙尼亚内科医生意外发现了两段金属的连接端产生了电压。热电偶便是基于这种塞贝克效应的。虽然任意两种金属就可以做成一个热电偶,但是还是会采用许多标准的型号,因为它们拥有超前的电压输出和较大的温度梯度下面的图表显示的是最常用的K型热电偶 附表显示了在任意温度下热电偶所产生的电压,以上图为例,K型热电偶在300°C时可产生12.2mV电压。但是不可以简单的在热电偶上连接电压表进行测量,因为与电压表连接会产生第二个不希望得到的热电偶结点。为了得到较为精确的测量值,必须采用冷端补偿技术(CJC)。你可能会问为什么在热电偶上连接一个电压表不会产生一些附加的热电偶结点(与热电偶连接的引线,与电压表连接的引线,电压表内部引线等等) 热电偶中间导体定律描述到:热电偶回路中,接入第三导体,只要第三种导体的两个接头温度相同,则回路中的总热电势不变。该定律对于热电偶的结点结构来说也是非常重要的,热电偶的结点连接可以采用焊接的方式,只要保证焊锡不会影响测量读数。实际上,尽管热电偶结点都是采用熔接的方式的(通常是采用电容性放电的方式)这样可以保证热电偶的性能不会因熔接点而受到影响。所有标准的热电偶表格都允许有第二个热电偶结点,只要这个结点是在0°C的情况下。 传统的做法是把该结点放置在冰水融合物中(冷端补偿)采用冰水融合物并不是对大部分的测量设备和应用场合都是适用的,所以需要把热电偶与测量设备的连接点温度记录下来。典型地,冷端温度是由一个高精度的热敏电阻来传感的,这个热敏电阻与测量的设备之间有很好的热传导关系从第三导体与热电偶之间的结点与热电偶本身的结点的测量值可以计算出热电偶末端的确切温度。对于少部分的设备来说,CJC技术由一个半导体温度传感器来实现。这种方法把热电偶的信号与半导体直接相连,最终就可以直接获得准确的测量值,而不需要去记录两个温度再进行计算。理解冷端补偿技术是非常重要的;任何冷端温度测量所产生的误差都会导致热电偶末端测量温度的误差。线性化 Linearisation如采用CJC技术一样,测量设备必须还要考虑到热电偶输出非线性这个事实。热电偶测量温度与输出电压的关系是一个复杂的多项式方程(复杂程度取决于热电偶的类型)类似的线性化方法被用在低成本的热电偶仪表上。高精度的设备,例如Pico TC-08,在计算机内存里已经存储了相关的热电偶查询表格,可自动消除这种非线性问题所带来的误差。热电偶类型 Thermocouples type热电偶可以是裸线式的焊珠热电偶,此类型具有低成本和快速相应时间的特点;也可以是探头式的热电偶。多种探头式的热电偶适合不同类型的测量设备(工业,科研,食品,医药等等)需要提醒的一点是:在选用探头时要首先确定它们具有相匹配的连接头。两种常用的接头类型是标准的圆形插脚接头和小型的平式插脚接头,这导致了一些误会就是:以为小型的接头会比标准的接头更加流行。选择一个热电偶需要考虑热电偶的类型以及绝缘层和探头的结构。所有的这些因素都会给温度的测量范围,测量进度和读数的准确度带来影响。以下显示的是热电偶的类型列表。K型热电偶(铬镍合金/镍铝合金) Type K (Chromel / Alumel)K型热电偶是一种多功能的热电偶。除了成本较低之外,由于它使用的普遍性,K型热电偶还广泛的在各种探头中使用。K型热电偶可以在-200°C到1200°C的范围内使用。灵敏度约为41 µ V/°C。除特殊情况,一般都选用K型热电偶。E型热电偶(铬镍合金/镍铝合金) Type E (Chromel / Constantan)E型热电偶具有较高的输出(68 µ V/°C),这非常适用于低温度的测量。(低温)另一个特性是它没有磁性。J型热电偶(铁制/铜镍合金) Type J (Iron / Constantan)J型热电偶不及K型的使用得普遍,因为它的测量范围限制在-40°C到750°C之间。最主要的应用场合是某些不能适应新热电偶的就设备。 J型热电偶不可在760°C以上使用因为阶跃的磁性变换会导致永久性减低热电偶的测量精度。N型热电偶(Nicrosil/Nisil) Type N (Nicrosil / Nisil)高稳定性能与抗高温氧化性能使得N型热电偶适用于高温测量而不用使用昂贵的白金型热电偶(B,R,S型)N型热电偶作为一种改良型的K型热电偶,将会得到更加广泛的使用。B,R,S型热电偶是昂贵金属热电偶,并具有与N型相类似的特性。它们是最稳定的热电偶,但是因为它们的灵敏度较低(约10 µ V/°C),所以通常仅被使用在高温测量的环境中(300°C)。B型热电偶(白金/金铑) Type B (Platinum / Rhodium)适用于高达1800°C的温度测量。通常B型热电偶会在0°C与42°C有相同的输出(取决于它们的温度/电压特性曲线的形状)这使得不可用于50°C以下的温度测量。R型热电偶(白金/金铑) Type R (Platinum / Rhodium)适用于高达1600°C的温度测量。较低的灵敏度(10 µ V/°C)以及较高的成本使得它们不能够被普遍的使用。S型热电偶(白金/金铑) Type S (Platinum / Rhodium)适用于高达1600°C的温度测量。低灵敏度(10 µ V/°C)和较高的成本使得它们不能够被普遍的应用。但是由于它的高稳定性,S型热电偶通常被用于黄金熔点(1064.43°C)的标准测量。在选用热电偶的型号时,必须先确定你所使用的设备在相应的测量温度范围上没有被限制。以下的列表显示了8通道Pico TC-08所能测量的温度范围。 注意低灵敏度的热电偶(B,S与R型)同时也有较低的分辨率类型 测量范围°C0.1°C 分辨率0.025°C 分辨率B20 to 1820150 to 1820600 to 1820E-270 to 910-270 to 910-260 to 910J-210 to 1200-210 to 1200-210 to 1200K-270 to 1370-270 to 1370-250 to 1370N-270 to 1300-260 to 1300-230 to 1300R-50 to 1760-50 to 176020 to 1760S-50 to 1760-50 to 176020 to 1760

  • 热电偶测温与红外测温比较

    测温方法 测温原理传感器和仪表 特点测温范围(℃)接触式金属热电偶的热电势铜-康铜(分度号T) 0-200℃是最准确的,精度高,低温灵敏度高-200—350 铁-康铜(分度号J) 100℃以下线性好,有较高灵敏度。-40—600非接触式热辐射能量变化部分辐射法由光电池、光敏电阻及其它红外探测元件作热敏元件,因它们有一定的光谱选择性,故非全光谱的因仪表的工作波段可选择,因此可以避开中间介质的吸收峰 -50--3000 比色法比较二个光波辐射能量之比反应速度快,接近真实温度,受中间介质的影响小 50—2000

  • 热电偶检定易忽视问题

    检定人员在检定热电偶过程中,对于接线柱不牢靠、热电偶短路或捆扎偏离几何中心等常见问题导致的所测数据不准确的情况,一般都能及时发现轻松处理,但是会遗忘一些影响检测结果却容易被忽视的问题。  一、热电偶的长度  JJG351-1996《工作用廉金属热电偶》检定规程中明确规定热电偶长度不小于750mm,之所以对热电偶长度作出规定,是因为考虑到热电偶在离开测温区后要有足够宽的温度梯度区。热电偶的热电动势也就产生在这一区域,要有效地阻止热电偶热端(测量端)的热量传给冷端(接线端),最基本的方法就是热电偶的冷端要有足够的距离远离热端。一般来说由于热电偶长度不够带来的误差是负的,修正值是正的。长度越短,带来的误差也越大,因此,在装炉检定之前需要确定热电偶的长度。  二、热电偶丝弯曲  热电偶丝细而软,极易变形,当偶丝发生折叠、扭曲等塑性变形使热电极的偶丝产生应力时,就改变了热电偶的热电特性,从而使变形热电偶测量结果的准确性受到影响。因此,检定前一定要把热电偶丝拉直。  三、热电偶丝被污染  热电偶丝被污染,甚至被氧化,会使热电极偶丝表面不光亮、发暗发黑,这时的热电极热电特性极不稳定,测量数据的准确性较差,因此,要清洗有污染的电极,消除污染层。四、响应时间的影响  接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需要保持一定时间,才能使两者达到热平衡。保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器的结构及测量条件,差别极大。所以,在日常检定过程中要根据不同类型的热电偶选择合适的升温速率、热平衡的时间。  五、绝缘电阻的影响  热电偶在高温下,其绝缘电阻随温度升高而急骤降低,因此将产生漏电流,该电流通过绝缘电阻已经下降的绝缘物流入仪表,使仪表指示不稳或产生测量误差。因此,在热电偶装炉之前不要忽视对其绝缘电阻的测试,只有当满足检定规程要求时,才能进行温度允差检定。

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 解析热电偶之冷端补偿方法

    工业热电偶的正确冷端补偿方法,很重要,因为,没有正确选择冷端补偿方法会导致测量精度的正确与否,误差很大,容易出事故,根据现场经验,有的因为冷端补偿方法失误导致产品质量问题可以说是履见不鲜, 哪么什么叫:热电偶的冷端补偿?测量端为热端,通过引线与测量电路连接的端称为冷端,热电偶测量温度时要求其冷端的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 k' z' h6 D2 t: B1 ^; P常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家 标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 '标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。但热电阻是不需要冷端补偿的,因为所谓的冷端补偿是指热电偶得热电势是以0度为标准测量,它不需要激励源。而仪表在室温端,这样对于热电偶来讲,它就不是以0度为标准进行测量了,这样就测不准。所以在仪表的电路里,一般都要有冷端补偿电路。热电阻与热电偶得测温原理不一样,它是靠自身阻值随温度变化而变化的原理测温,我们给铂电阻一个电流激励,直接读出两端电压,与仪表所在环境温度几乎没有关系。如果采用四线制测量,仪表与传感器的距离还可以更远。:热电偶冷端的温度补偿 ; 由于热电偶的材料一般都比较特殊,而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 【讨论】真倒霉,传感器坏了

    今天消解土壤,到一半时发现温度失控.取出来一看原来是温度传感器坏了.是MILESTONE的热电偶传感器,05年买的到现在用坏了两根温度传感器了.我就纳闷这传感器怎么这么容易坏.买的话还很贵,将近1万2一根.

  • 高低温试验箱传感器的工作原理

    高低温试验箱传感器通常被称为热电偶传感器,在接触式温度测量仪表热电偶和热电阻是工业上最常用的温度检测元件。简单介绍一下气原理及特征:高低温试验箱热电偶传感器测量原理:热电偶是一种感温元件,它能将温度信号转换成热电势信号,通过电气测量仪表的配合,就能测量出被测的温度。热电偶测温的基本原理是热电效应。 在由两种不同材料的导体A和B所组成的闭合回路中,当A和B的两个接点处于不同温度T和To时,在回路中就会产生热电势。这就是所谓的塞贝克效应。导体A和B称为热电极。温度较高的一端(T)叫工作端(通常焊接在一起);温度较低的一端(To)叫自由端(通常处于某个恒定的温度下)。根据热电势与温度函数关系。可制成热电偶分度表。分度表是在自由端温度To=00C的条件下得到的。不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度

  • 新型温度传感器的研究与发展

    温度是一个基本的物理现象,它是生产过程中应用最普通、最重要的工艺参数,无论是工农业生产,还是科学研究和国防现代化,都离不开温度测量及温度传感器。它是现代测试和工业过程控制中应用频率最高的传感器之一。然而,温度的准确测量并非轻而易举,即使有了准确度很高的温度传感器,但是,如果测量方法选择不当或者测量的环境不能满足要求,则都难以得到预期的结果。  温度测量的最新进展  当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。  光纤温度传感器  光导纤维(简称光纤)自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明它具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视。光纤传感器是一种将被测量的状态转变为可测的光信号的装置。它是由光耦合器、传输光纤及光电转换器等三部分组成。目前已有用来测量压力、位移、应变、液面、角速度、线速度、温度、磁场、电流、电压等物理量的光纤传感器问世,解决了传统方式难以解决的测量技术问题。据统计,目前约有百余种不同形式的光纤传感器,用于不同领域进行检测。可以预料,在新技术革命的浪潮中,光纤传感器必将得到广泛的应用,并发挥出更多的作用。  特种测温热敏电缆  热电偶是传统的温度传感器,用途非常广泛。近年来,又发展出了一种新的测温技术,能在火灾事故预警中有独特的应用。这种新型温度传感器称为特种测温热敏电缆,又被称为连续热电偶ConTInuous Thermocouple)或寻热式热电偶(Heating Seeking Thermocouple)。  热敏电缆利用电偶热电效应,但测量的不是偶头部的温度,而是沿热电极长度上最高温度点的温度。由于这种独特功能,最初被发达国家作为高精技术设备铺设在航空母舰、驱逐舰的舰舱以及军用飞机等军事设备中。目前,已被广泛应用到各个领域来预防和减少因“过热”引起的事故和损失。  热敏电缆的主要性能  目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。  材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。  外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。  工作温度 FTLD为-40~200℃,CTTC为-40~899℃。 石英温度计  分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。  弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。   随着生产及科学技术的发展,各部门对温度测量与控制的要求越来越高,尤其对高精度、高分辨率温度传感器的需求越来越强烈,普通的传感器难以满足要求。  石英温度计的特性  高分辨率分辨率达0.001~0.0001℃。  高精度在-50℃~120℃范围内,精度为±0.05℃。普通温度计的精度为±0.1℃。  误差小热滞后误差小,响应时间为1s,可以忽略。  性能稳定它是频率输出型传感器,故不受放大器漂移和电源波动的影响,即使将传感器远距离(如1500m)设置也不受影响,但是抗强冲击性能较差。  石英温度计的应用  石英温度计既可用于高精度、高分辨率的温度测量,又可作为标准温度计进行量值传递,也可以在现场稳态温度场合下进行精密测温或用于恒温槽的精密控温,还可用作远距离多点温度测量等。[/

  • 【资料】传感器的基本概念

    [color=#DC143C][size=4] 传感器——能感受规定的被测量,并按照一定的规律转换成可用输出信号的器件或装置。通常由敏感元件和转换元件组成。[/size][/color]敏感元件指传感器中能直接感受(或响应)被测量的部分。 转换元件指传感器中能将敏感元件感受(或响应)的被测量转换成适合于传输和(或)测量的电信号的部分。 当输出为规定的标准信号时,则一般称为变送器。 最简单的传感器是由一个敏感元件(兼转换元件)组成,它感受被测量时直接输出电量,如热电阻、热电偶等。

  • 传感器技术的分类

    其实说起传感器的分类,按着不同的型号,特点方式等确实可以分为好的种。但是要是单单的从传感器技术上分的话那就简单多了。因为现在中国的传感器行业正在传统型向新型传感器发展的关键阶段,从技术上可以分为三类。1,结构型传感器 结构型传感器,它利用结构参量变化来感受和转化信号。2,固体型传感器 固体型传感器是上70年代发展起来的固体型传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器。3,智能型传感器 智能型传感器是近几年内国内刚刚发展起来的智能型传感器,智能型传感器是微型计算机技术与检测技术相结合的产物,使传感器具有一定的人工智能。他也为在互联网领域带来了不少的便捷与方便,很多国内的传感器厂家也都在向这个技术慢慢的创新和改进。我们希望传感器技术在不久的将来可以为我们人类带来更多的福音。

  • 柱温过热保护传感器故障的排除

    因上周末公司要停电检修线路,周一早上开机,岛津的gcms2010出了问题,GC部分柱温过热保护传感器报错,量该热电偶阻值正常(正向电阻5.0欧,反向电阻5.7欧,插拔该传感器与电源板连接的插头,故障依旧,更换该传感器故障依旧,传感器连接的板子上的插接件都插拔了几遍也不行,最后把该板卡的固定螺丝卸下,把板卡插拔了几次后,OK。现在天气湿度大,再加上我们是沿海地区,空气中盐分高,腐蚀性大,造成插接件表面氧化,接触不良,插拔几次后去掉了表面的氧化层,仪器就OK了。如有不明我可以附张图。

  • 高低温环境测试箱的温度传感器安装和使用

    高低温环境测试箱的温度传感器安装和使用

    在[b]高低温环境测试箱[/b]中只有一个温度传感器,主要作用就是感应温度的变化,并转变成可输出的数字信号 关于高低温环境测试箱的温度传感器显示精度问题,主要是体现在安装和使用的环节上:[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/06/202106091647210732_1415_1037_3.jpg!w469x469.jpg[/img][/align]  1、传热系数导入的偏差,因为电偶的传热系数使仪表盘的标示值落伍于被测温度的转变,在开展迅速精准测量时这类危害尤其突显。因此应当尽量选用热电级偏细、电缆保护管直径较小的热电阻。  2、高低温环境测试箱传热系数偏差高溫时,假如电缆保护管上带一层粉煤灰,浮尘附在上边得话,则传热系数提升,阻拦热的传输,这时候溫度量程会比被测温度的真值要低。应维持热电偶保护管外界的清理,以降低偏差。  3、如高低温环境测试箱安裝不那时候导入的偏差,热电阻不可以装在太挨近门和加温的地区,插进的深层至少应是电缆保护管直径的8~10倍 热电偶保护管和炉壁孔中间的间隙运用发泡聚氨酯,或石绵等隔热化学物质阻塞,以防热冷气体热对流而影响温度测量的精准性。  4、绝缘变差而引入的误差如热电偶绝缘,保护管和拉线板污垢或盐渣过多,会致使热电偶极间与炉壁间绝缘不良,在高温的情况下会更为严重,这不仅会引起热电偶的损耗而且还会引入干扰。

  • 【原创大赛】色谱仪常用电气部件 温度传感器之二

    【原创大赛】色谱仪常用电气部件  温度传感器之二

    色谱仪常用电气部件 温度传感器之二 热电偶、热敏电阻、半导体温度传感器1 热电偶:两种不同材质的导体构成闭合回路,如果两端存在温度差,回路两端就会产生电压。这就是热电偶的基本原理,即塞贝克效应。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457066_1604036_3.jpg 图1 热电偶原理图http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457067_1604036_3.jpg图 2 热电偶图片热电偶的信号较弱,一般只有数个mV的电压。但是温度测量范围较宽,比较铂电阻更加耐高温。一般常见于高温应用场合,例如马弗炉的温度控制系统。在色谱仪器上,一般用于温度保护。2 热敏电阻有点类似热电阻,温度改变后,元件的电阻值发生变化。但是其工作机理和热电阻不同。色谱仪中常用的为负温度系数热敏电阻。下图为负温度系数热敏电阻的温度-阻值特性曲线。温度越高,元件的电阻值越小。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457068_1604036_3.jpg图3 热敏电阻的温度-电阻曲线显著的和热电阻不同的,热敏电阻的阻值比较大,室温下可能电阻值在数十k欧姆,相对于100欧姆左右的铂电阻,温度变化,热敏电阻阻值的变化十分显著。所以热敏电阻对温度有较高的灵敏度,但是热敏电阻的工作范围较窄,一般不超过150度。不同器件之间性能的重复性也比较一般。如图,液相色谱仪使用的温度传感器。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457069_1604036_3.jpg实用案例:在Shimadzu的泵或者检测器模块前部右下角可以看到一个红色的小元件,是漏液传感器,其实就是负温度系数的热敏电阻。漏液传感器内使用了两个热敏电阻,有一个的位置比较低,如果系统泄漏,液体附着在热敏电阻的表面,液体的蒸发使得元件的温度降低,电阻阻值增大,系统检测到这一变化(其实是温度的变化),便认为系统泄漏。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092214_457070_1604036_3.jpg3 集成电路的温度传感器集成电路的温度传感器,温度范围和热敏电阻相似。但是有较好的各器件之间的重复性和温度线性,应用场合越发广泛。小结: 简单介绍了常见的几种温度传感器原理

  • 对热流传感器精度有影响的三大方面

    对热流传感器精度有影响的三大方面

    热流传感器是测量热传递(热流密度或热通量)的基本工具,是构成热流计的最关键器件。热流传感器的性能和用途决定了热流计的性能和用途。热流计是指测定热流的仪表。热流是在单位时间内流经单位面积的热量,也可把热流理解为热能通过单位面积的速率。热流单位是W/m2。为测量某一局部的热辐射强度、热对流强度、热传导强度或总的传热速率,常采用热流计。[img=,690,389]https://ng1.17img.cn/bbsfiles/images/2018/12/201812100945267163_8586_3332482_3.jpg!w690x389.jpg[/img]热阻式(热电堆式热流传感器或称温度梯度型热流传感器)是应用最普遍的一类热流传感器。这类传感器的原理是:当有热流通过热流传感器时,在传感器的热阻层上产生了温度梯度,根据付立叶定律就可以得到通过传感器的热流密度,设热流矢量方向是与等温面垂直。为了提高热流传感器的灵敏度,需要加大传感器的输出信号,因此就需要将众多的热电偶串联起来形成热电堆,这样测量的热阻层两边的温度信号是串连的所有热电偶信号的逐个叠加,信号大能反映多个信号的平均特性。热电堆是热阻式热流传感器的核心元件,也是其他辐射式热流传感器的核心元件。[img=,394,383]https://ng1.17img.cn/bbsfiles/images/2018/12/201812100945512861_3850_3332482_3.jpg!w394x383.jpg[/img]热流传感器计作为热流计的关键性一次敏感元件,其测量结果的准确性是热流计可否信赖的关键。因此热流传感器在出厂前或使用一段时间后都要进行标定。另外,热流传感器在使用时,常常是粘贴在被测物体和表面或者埋没在被测物体的内部,这都会影响被测物体原有的传热状况,为了对这个影响有一个准确的估计,就必须知道热流传感器自身的热阻等性能,这也要在标定过程中加以确定。这里不得不提一下由工采网从国外进口的热流传感器 - MF180和热流传感器 - MF180M,这两款质量突出的热流传感器。这两款热流传感器适合材料内部的热流的直接测,也适合制冷剂的辐射流的测量 。测试原理 有三种热传导模式:热传导,热辐射和热流。如果热流传感器安置在材料的表面,它将测试这三种模式热 的总和。如果传感器安置在材料的内部,它直接测试由热传导产生的热传输。用热电偶测试温度的不同,穿过的热流能被直接测。[b]热流传感器与被测物粘贴紧密程度对热流测量精度的影响[/b]: 热流传感器与被测物粘贴的紧密程度,对热流的稳定时间有着非常大的影响。粘贴越紧密,稳定越快,测量偏差越小;反之,测量偏差越大。因此,在瞬态热流传感器的使用过程中,要尽量保证热流热流传感器能够紧密地粘贴被测物体,这样才能减少测量时间,提高测量精度。导热胶(导热硅脂)的应用,为解决这个问题提供了非常好的条件。[b]热流传感器厚度对热流测量精度的影响[/b]:当热流传感器厚度为0.1mm时,被测物表面热流稳定非常快,从开始到稳定只用了约0.5s的时间,通过热流传感器的热流值与实际值相差2.92%。当热流传感器厚度增加到1mm时,稳定时间达到了8s,为原来的16倍,热流值的偏差达到了6.26%。这主要是由于热流传感器厚度的增加,加大了热流传感器引入的热阻,使通过热流传感器的热流值产生了较大偏移。[b]热流传感器边长对热流测量精度的影响[/b]:热流传感器边长的改变并没有给热流的稳定时间造成太大影响,却给稳定值带来较大的偏差。边长从5mm变成10mm时,稳定热流值减小了8.4%,与实际值相差6.51%;边长从10mm变为20mm时,热流减小了4.3%,与实际值相差1.94%;边长从20mm变为30mm时,热流仅仅减小了0.4%,已经和真实值基本重合。这说明,热流传感器边长越长,稳定值越准确,且边长一定存在着一个最优值。这个最优值既能保证热流传感器尽可能小,又能保证所测热流的准确性。从本文的计算来看,这个最优值约为20mm。当被测物表面近似认为半无限大时,20mm可能是测量精度和热流传感器尺寸的最佳结合点。

  • 【讨论】热电偶 双金属温度计常见问题

    1热电偶的测量原理是什么? 联系电话15953101283热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。 热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端 (参比端或自由端)则与显示仪表相连。如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 2.热电阻的测量原理是什么? 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 3.如何选择热电偶和热电阻? 根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热电阻; 根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶; 根据测量范围选择:热电偶所测量的一般指“点”温,热电阻所测量的一般指空间平均温度; 4.什么是铠装热电偶,有什么优点? 在IEC1515的标准中名称为《mineral insulated thermocouple cable》,即无机矿物绝缘热电电偶缆。将热电极、绝缘物和护套通过整体拉制而形成的,外表面好像是被覆一层“铠装”,故称为铠装热电偶。同一般装配式热电偶相比,具有耐压高、可弯曲性能好、抗氧化性能好及使用寿命长等优点。 5.热电偶的分度号有哪几种?有何特点? 热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。 S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同;}B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。它的长期使用温度为1600℃,短期1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。 N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶; K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。在所有热电偶中使用最广泛; E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用,使用温度0-800℃; J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。 6.热电阻的引出线方式有几种?都有什么影响?(YH^ 热电阻的引出线方式有3种:即2线制、3线制、4线制。 2线制热电阻配线简单,但要带进引线电阻的附加误差。因此不适用制造A级精度的热电阻,且在使用时引线及导线都不宜过长。 3线制可以消除引线电阻的影响,测量精度高于2线制。作为过程检测元件,其应用最广。 4线制不仅可以消除引线电阻的影响,而且在连接导线阻值相同时,还可以消除该电阻的影响。在高精度测量时,要采用4线制。 7.N型热电偶与K型热电偶相比有哪些优缺点? N型热电偶的优点: -高温抗氧化能力强,长期稳定性强。K型热电偶镍铬的正极中Cr、Si元素择优氧化引起合金成分不均匀及热电动势漂移等,在N型热电偶增加Cr、Si含量,使镍铬合金的氧化模式由内氧化转变为外氧化,致使氧化反应仅在表面进行; -低温短期热循环稳定性好,且抑制了磁性转变; -耐核辐射能力强。N型热电偶取消了K型中的易蜕变元素Mn、Co,使抗中子辐照能力进一步加强; -在400~1300℃范围内,N型热电偶的热电特性的线性比K型好。 N型热电偶的缺点: -N型热电偶的材料比K型硬,较难加工; -价格相对较贵。N型热电偶的热膨胀系数要比不锈钢低15%,因此N型铠装热电偶的外套管应采用NiCrSi/NiSi合金; -在-200~400℃范围内非线性误差较大。 8.如何选择合适的热安装套管? 热安装套管的形状主要依据介质的温度、压力、密度和流速及所需插入长度而定。ASME/ANSI PTC19.3对此作了充分规定,采用套管强度分析软件可计算出套管设计是否符合工艺要求。安装于现场的热套管需计算热套管的强度,影响护套管的强度主要有以下三点: 1. 流动引起的振动;经过护套管的液体产生一定频率的旋涡,称为涡区频率,该频率流速成正比。如果这个频率和热套管的固有频率接近或一致,就会产生共振,使吸收大量的热能,从而产生很高的应力并有可能损坏热套管和套管内传感器。ASME技术标准要求:涡区频率和热套管固有频率的比率应小于0.8。 2. 流动引起的应力;流体流动随着流速和密度而变化,并在热套管施加了力,这个流动引起的压力通过计算可以得出。 3. 过程压力;热套管所能承受的最大静压可以计算得出。"一般热安装套管的连接方式有螺纹连接式、法兰连接式和焊接式三种。 9.如何选择合适的双金属温度计? 水平安装时,选择轴向或万向型双金属温度计; 垂直安装时,选择径向或万向型双金属温度计; 倾斜安装时,根据实际需要选择轴向、径向或万向型双金属温度计; 如需对测量点设置上下限报警控制时,可选择电接点双金属温度计 10.双金属温度计有什么优缺点? 双金属温度计的优点在于价格相对低廉、读数直观,缺点为测温范围较小、精度相对不高。通常作为就地测量、显示仪表。 11.温度变送器有何特点? 温度变送器的特点是 -静态功耗低、安全可靠、不需维修、使用寿命长。 -体积较小,可与热电偶、热电阻融为一体,不仅安装方便,还可节省温变器安装费用。 -传输信号为4-20mA标准信号,不但抗干扰能力强,传输距离远,而且可节约价格较贵的补偿导线。 -可提供符合HART协议及FF、PROFBUS总线通讯协议形式. 12.压力式温度计测量原理是什么? 依据液体膨胀定律,即一定质量的液体,在体积不变的条件下,液体的压力与温度呈线形。气体、蒸汽的压力与温度也是呈一定的函数关系,因此压力式温度计的标尺应均匀等分。压力式温度计是由充有感温介质的温包、传压元件(毛细管)及压力敏感元件(弹簧管)组成。 13.红外线温度计测量原理是什么? 红外线测温计由光学系统,光电探测器,信号放大器及信号处理.显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号,该信号再经换算转变为被测目标的温度值。 14.如何选择合适的补偿导线或电缆? 热电偶的补偿导线和电缆主要用于将热电偶的热电动势延长至二次仪表或控制室。主要有延伸型和补偿型两种补偿导线,延伸型采用与热电极相同的材料,所以精度较高;补偿型采用与热电极的热电势特性相势的材料,所以精度没有延伸型高。

  • 传感器的分类方式有哪些

    传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器的分类方式有很多种,根据不同的原理来区分:1、按被测物理量分:如:力,压力,位移,温度,角度传感器等;2、按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;3、按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;4、按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等;5、按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。6、根据能量转换原理可分为:(1)有源传感器:有源传感器将非电量转换为电能量,如电动势、电荷式传感器等; (2)无源传感器:无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。来源:http://www.firstsensor.cn/

  • 【第三届原创大赛】热重分析仪检测器的热电偶断裂与保护

    【第三届原创大赛】热重分析仪检测器的热电偶断裂与保护

    本文为tutm 原创作品,本作者是该作品唯一合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为。热重分析仪检测器的热电偶断裂与保护热重分析(TGA)是在程序控温条件下,监测样品重量变化的技术手段。程序控温条件包括升温、恒温等过程。热重分析应该是热分析技术中的元老,也是最基础的热分析手段。热重分析可以检测到样品性能的不少信息,如脱水、分解、氧化等。由于热重分析(包括TG-DTA同步分析)大多数情况下检测温度较高,一般多在600度以上。长期使用中在反复高温加热后,样品支架上检测器件的热电偶金属材料可能由于晶格改变而脆化,在受外力或本身热胀冷缩变化的影响下而断裂,这几乎是无法避免的。另外,绝大多数热重分析仪不可避免地要升温到样品分解点以上,检测器使用中长期处于样品的高温热分解物气氛中,由于这些分解气体在高温下可能有不同程度的腐蚀作用,使用日久后检测器件很容易被腐蚀而加速了损坏过程,这应该在使用中小心防范,尽可能减轻测试样品对仪器的损伤。常见的容易分解产生对器件有高腐蚀性气体的样品主要有:含卤素有机化合物、含氰基有机化合物(-CN)、含铅化合物(氧化性气氛下)。这些样品常温下可能很稳定,许多人会忽略了它们高温下热分解物的腐蚀性。但事实上这些物质在高温下很可能分别会产生卤化氢、氢氰酸、气态氧化铅等强腐蚀性气体,对仪器的损伤很大。由于检测器样品支架是热重分析仪的重要部件,属于易损件,价格不菲。因此保护其完好、延长使用寿命是很重要的。据有些用户,包括这里版友的使用情况来看,这类检测器支架使用期短的只有半年左右,多数可在1年以上。这可能与使用条件、频度及样品种类有关。最近,我们的一台热重分析仪样品支架上的热电偶也断裂了,这个支架使用了4年半,测试了3200余次各类样品,其中不少含有上述可能有腐蚀性的样品,比如有机氟化合物、含卤素有机阻燃剂、聚丙烯腈、聚氨酯材料等。对这类高度可疑样品,我们采取的预防措施主要是:1. 使用较小的样品量,一般3mg以下,尽可能减少可能的有害分解物。2. 使用较大的扫气流量,这样便于稀释分解气体,并能将其尽快带离传感器。当然,这与仪器结构有关,以不影响仪器测试为限,对于TGA209,我们总流量一般不低于60ml。3. 日常随时注意支架及炉内清洁,尽可能减少分解样品的挥发残留物影响。附图:断裂的热电偶(箭头所指处为断裂点)http://ng1.17img.cn/bbsfiles/images/2010/12/201012081448_265472_1633752_3.jpg

  • 热电偶的作息

    热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;    2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;热电偶 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。http://www.bjtckt.com

  • 热电偶连接器(connector)和热电偶馈通器(feedthrough)的区别和正确使用

    热电偶连接器(connector)和热电偶馈通器(feedthrough)的区别和正确使用

    [color=#990000]摘要:本文详细介绍了热电偶连接器和热电偶馈通器的结构和特点,描述了连接器和馈通器的使用环境和区别,指出了目前许多馈通器和连接器配套使用中的常见错误。[/color][size=18px][color=#990000]一、热电偶连接器[/color][/size]热电偶连接器是一种专门用于测温热电偶快速连接的插拔式电连接器,一般都是公母配对使用,其结构如图1所示。[align=center][color=#990000][img=真空型热电偶连接器,500,254]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151547509343_7458_3384_3.png!w690x351.jpg[/img][/color][/align][align=center][color=#990000]图1 热电偶连接器及其结构[/color][/align]在热电偶连接器中,正负极插片由相应热电偶型号完全相同的热电合金制成,以减小引入连接器后带来的测温误差。需要注意的是两根正负极插片的固定螺丝是其他第三种金属,因此在测温过程中要保证连接器整体温度一致,否则按照热电偶中间金属定律会带来测温误差。[size=18px][color=#990000]二、热电偶馈通器[/color][/size]热电偶馈通器是一种特殊形式的热电偶连接器,主要用来馈通真空容器内外热电偶信号,并同时保持密封性,如图2所示。与热电偶连接器一样,馈通器也需要按照相应热电偶型号配置相同的热电偶合金材料。由于真空环境的特殊性,真空环境内几乎没有对流传热,使得热量很容易通过热辐射和热电偶线传递到馈通器带来温度不均匀而造成测温误差,因此馈通器以及与馈通器连接的所有热电偶连接器不允许有其他第三种金属存在,并且热电偶丝线与热电偶连接器的连接都是压接和缠绕方式。[align=center][img=真空型热电偶连接器,500,326]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151548232624_5702_3384_3.png!w690x451.jpg[/img][/align][align=center][color=#990000]图2 热电偶馈通器[/color][/align][size=18px][color=#990000]三、热电偶连接器和馈通器的区别和正确使用[/color][/size]从上述连接器和馈通器结构可以看出,连接器与馈通器主要有以下区别:(1)使用环境不同,分别用于常压大气和真空。(2)无有其他第三种金属的存在。(3)对热电偶测温精度影响的不同。由此可见,由于不存在第三种金属,馈通器对热电偶测温的影响最小,特别是真空环境下更是如此。因此在实际应用中要特别注意,馈通器不能与连接器配合使用,如图3所示,连接器中的固定螺丝是第三种金属材料,这势必会给热电偶测温带来较大影响。[align=center][color=#990000][img=真空型热电偶连接器,500,359]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151548473253_1757_3384_3.png!w690x496.jpg[/img][/color][/align][align=center][color=#990000]图3 馈通器和连接器错误搭配方式[/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热电偶的种类及结构形成

    (1)热电偶的种类常 用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、答应误差、并有统一的标准分度表的热电偶,它 有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由 于热电偶的材料一般都比较珍贵(特殊是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自 由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本 身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注重型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。热电阻热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制