当前位置: 仪器信息网 > 行业主题 > >

精密平台

仪器信息网精密平台专题为您提供2024年最新精密平台价格报价、厂家品牌的相关信息, 包括精密平台参数、型号等,不管是国产,还是进口品牌的精密平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密平台相关的耗材配件、试剂标物,还有精密平台相关的最新资讯、资料,以及精密平台相关的解决方案。

精密平台相关的资讯

  • 一平台两中心,先进精密仪器创新平台来了!
    12月30日,LinkPark(滨河)产业社区及先进精密仪器共性技术研发及工程化创新服务平台启用仪式在杭州青山湖科技城隆重举行,杭州市人大常委会副主任、临安区委书记卢春强,市政府副市长柯吉欣,市政府党组成员、杭州城西科创产业集聚党工委副书记、管委会主任李玲,临安区区委常委、青山湖科技城党工委书记蔡萌等出席启用仪式,杭州市委组织部、市经信局、市科技局、临安区有关部门等领导一行参加活动。 为深入推进中国先进精密仪器产业发展,杭州谱育科技发展有限公司(聚光科技旗下自孵化子公司)携手杭州青山湖科技城,搭建“一平台两中心”——先进精密仪器共性技术研发及工程化创新服务平台、先进精密仪器创新中心、工程师协同创新中心,争取国家和省市资源,围绕产业链部署创新链,合力打造先进精密仪器全产业链的创新策源高地。先进精密仪器共性技术研发及工程化创新服务平台一平台两中心打通创新链 在仪器创新的研究、工程化、产业化链条上,工程化阶段成为创新链上的瓶颈和产业破局的关键,通过建设高水平、全链条的先进精密仪器共性技术研发及工程化创新服务平台,打通创新链、带动产业链,形成支撑仪器整机、核心零部件、试剂耗材、技术服务、高端专用仪器与系统五位一体的产业集群服务能力,打造“面向世界、引领未来、服务全国、带动全省”的先进精密仪器全产业链共性技术研发与工程化创新策源地。 带动产业链 先进精密仪器创新平台启用后,将加速区域内仪器技术创新研究成果的工程化、产业化进程,孵化培育一批生命科学、半导体、先进工业、新材料、食品药品、环境安全等领域的产业项目,加速集聚龙头企业,促进在杭州城西科创大走廊带动先进精密仪器产业集群,打造具备全球竞争力的中国“仪器谷”。 面向世界科技前沿,为我国科研院校与企业创新实验室,开发高端质谱、光学、色谱、电镜等科学仪器。 面向经济主战场,为我国新材料与先进制造业,开发高端智能品控、在线监测分析自动化系统。 面向国家重大需求,为半导体、先进工业等行业,解决“卡脖子”关键技术和高纯检测设备国产化。 面向人民生命健康,开发食药品检验、环境安全监测、生命科学分析与精准医学诊断先进解决方案。 五位一体:打造仪器整机、关键零配件、耗材与试剂、技术服务、高端专用系统集成五位一体的全产业链生态。
  • 联公精密测量与东南大学联手实现科技仪器自主平台
    (从左到右分别为,联公精密测量联合创始人陈方,首席科学家马蒂亚斯,东南大学仪器科学与工程学宋爱国教授。)3月14日,为深入贯彻落实加强基础研究,实现高水平科技自立自强,建设世界科技强国的方针。《溅射技术在高精度力学传感器上的应用》技术研讨会在东南大学召开。此次技术研讨会校企合作,协同创新,实现科技仪器设备的自主可控搭建平台。由东南大学机器人传感与控制技术研究所、中国仪器仪表学会力触觉感知与交互专业委员会与IEEE机器人与自动化学会南京分会主办,联公精密测量技术(合肥)有限公司协办。在研讨会上,联公精密测量有限公司的首席科学家,马蒂亚斯与联公精密测量联合创始人陈方先生首先介绍了当前德国同行在力学传感器制造领域相对成熟的技术,东南大学首席教授宋爱国随后介绍了团队在力反馈应用技术当中所作出的进展。中国航天科技44所与江苏省计量院的专家们同时参与了会议。2022年国金证券的一份调研报告指出,中国科学仪器市场的国产化率只有5%。而现在更加火热的半导体设备的国产化率是18%。科学仪器属于国产替代难度系数最高的领域之一,业内普遍认为需要5-10年的攻克时间,而科学仪器的高端市场更是完全被外资品牌垄断,形势非常严峻,而其“卡脖子“的难点在于仪器核心的传感器以及配合高端传感器的经验算法。东南大学与联公精密测量有限公司未来会携手将一种新型的溅射技术引用到力学传感器的制造工艺当中,此项尝试可以非常有效地降低传感器使用的环境要求,对高低温,真空高压,高辐射,潮湿腐蚀等恶劣环境,针对当前的航天领域,半导体制造领域有着至关重要的作用,可以有效的避免核心零部件频繁替换所带来的不利影响。同时,联公还即将突破高精度实验室称重仪器的完全国产化。据不完全统计,从2020年开始,在中国工业市场,国产替代的旺盛已逐渐体现,而企业与高校同心协力,发挥各自的优势,可早日实现用我国自主的研究平台、仪器设备来解决重大基础研究问题的需求。
  • 海顿科克新应用-精密显微镜电动载片平台
    海顿科克直线传动是世界领先的直线运动产品制造商,公司最近发布了一个驱动精密显微镜窄片平台的应用,该工作平台移动的最小步长为15微米,最大推力为13N,在这个非常紧凑空间里的实现传动要求,无疑这是一个完美的机械结构,在精密的微流体或者光学仪器中经常会有这种需求。这个结构大约有22MM宽,25.2MM高,其行程最大可以达到64MM。 一个轻型的经过阳极氧化的铝合金型材做成的底座,底座两端分别安装有螺杆衬套和电机安装支架,整个结构的核心是海顿15000系列的永磁式直线步进电机,该电机已经成功应用在几千种结构应用中,该电机不需要复杂的控制设备,只需要简单的速度脉冲和方向信号。 整个结构的移动滑块是用带有自润滑效果的聚缩醛材料做成,滑块本身带有张紧弹簧,这能使滑块在运动过程中保证运动的精确性,滑块由2根涂有TFE涂层的直线滑轨做导向。滑块由KERK的螺杆驱动,螺杆由303不锈钢制成,并且由5种导程可选,分别是0.3MM,0.4MM,0.5MM,1.0MM,2.0MM,该螺杆一端固定在底座的螺杆衬套中,由于螺杆精密,所以当电机工作时,自然可以实现高精度的运动控制。 该电动载片平台结构还可以客户化定制,比如客户特定的底座,不同的行程(最高可达64MM),传感器安装,客户化的布线等等,都可以根据客户要求定制。 更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • VarioBasic系列主动隔振台:为精密实验室量身定制的高性能稳定平台
    实验室中的精密仪器和敏感实验往往要求高度精确的测量与控制,微小的振动都可能对实验结果产生不可忽视的影响。因此,为什么主动隔振台会成为众多实验室不可或缺的设备,以下是几个关键原因:1. 保护精密仪器的精确度与稳定性精密科学仪器如显微镜、光谱仪、电子显微镜、原子力显微镜(AFM)及各类光学平台等,对振动极其敏感。即使是微小的地壳振动、人员走动或空调运行等日常因素引起的震动,都可能导致测量结果失真、图像模糊或数据采集错误。主动隔振台通过动态监测并抵消外界振动,为这些精密设备创造一个几乎“零振动”的工作环境,确保实验结果的准确性和可重复性。2. 提升实验研究的质量与效率在生命科学、纳米技术、材料科学等领域,很多实验需要长时间曝光、微观结构观察或进行精密测量。若无有效的隔振措施,持续的外部振动会显著增加实验失败率,延长实验周期。主动隔振台能够有效减少因振动导致的重做次数,提升实验效率,同时保障研究成果的高质量。3. 促进创新研究与复杂实验的开展随着科学研究的深入,越来越多的前沿实验要求在极端条件下进行,如量子计算、生物分子成像等,这些实验对环境的稳定性和纯净度提出了更高要求。主动隔振台不仅能隔离低频到高频的广泛振动范围,还能适应不同的负载和实验条件,为科学家探索未知领域提供稳定的技术支撑平台,推动科学进步。4. 保障研究人员的安全与健康在进行某些涉及危险物质或高压环境的实验时,任何意外的振动都可能引发安全问题。主动隔振台通过减少外部干扰,不仅保护了实验的顺利进行,也间接保障了实验室人员的安全健康,营造了一个更加安全可靠的研究环境。综上所述,主动隔振台作为现代实验室基础设施的重要组成部分,对于维护实验的精确性、促进科研效率、推动科技前沿探索以及保障实验室安全均具有非常重要的作用。在此茂默科学推荐VarioBasic系列主动隔振台。基础信息:Vario Basic 40尺寸:396x120x111mm 载重:0-300kg,0-600kg Vario Basic 60尺寸:636x130x111mm载重:0-300kg,0-600kgVario Basic 90尺寸:932x130x111mm载重:0-300kg,0-600kg主要特征: 相比于气囊式被动隔振台,主动隔振台没有低频共振,即使在低频范围内也有出色的隔振性能。 超快的稳定时间:低至0.3秒(普通被动隔振台的稳定时间为30秒至60秒)。 主动隔振台带宽0.6/1Hz至200Hz(远超被动隔振台)。 6个自由度主动隔振。 真正的主动隔振:即时产生反作用力来抵消振动。 操作简单-按钮式解决方案。 设计紧凑,安装简便。 高度的位置稳定性-1Hz时固有刚度通常是被动隔振台的20到30倍。 接电即可,无需压缩空气。 适用于将高分辨率测量设备与建筑振动隔离, 广泛的适用范围:拥有标准化产品和用户定制产品。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多隔振台相关的产品,Welcome to consult~咨询有惊喜哦!
  • 中科科仪控股公司中科科美研制的高精密镀膜装置在先进光源技术研发与测试平台正式运行
    在庆祝中国共产党百年华诞之际,由国家发改委立项支持、中科院高能物理研究所承建的高能同步辐射光源(HEPS)首台科研设备于6月28日上午安装,为其提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS)启动试运行。其中,中科科仪控股公司中科科美研制的直线式劳埃透镜镀膜装置及纳米聚焦镜镀膜装置也于同一天正式投入使用。直线式劳埃透镜镀制装置及纳米聚焦镜镀制装置可实现各类高能物理装置聚焦镜、单色镜、劳埃镜、纳米聚焦镜等膜层制备。在两装置研制过程中,中科科美突破了多项先进制造技术:精密加工制造技术,实现大型真空腔室及复杂运动系统精密加工与装配、减震及超洁净等严苛设计指标;大型真空系统超高真空获得技术,实现结构复杂、内部零部件放气量大的大型真空腔室系统极限真空度达到10-6Pa;高精度直线运动控制技术,实现长距离导轨运行平行度达到微米量级、运动系统速率稳定性控制在千万之一以内;复杂镀膜工艺技术,实现高精度纳米量级万层镀膜工艺,膜厚精度控制在0.1纳米以内。经相关主管部门和院所专家委员会现场测试,高精密镀膜装置结构设计合理、制造工艺先进、主要性能指标达到国际同类产品水平,填补了该领域内多项国内技术空白。直线式劳埃透镜镀制装置HEPS是国家“十三五”重大科技基础设施项目之一,该项目于2019年6月29日开工建设,建设周期6.5年。建成时,HEPS将成为中国第一台高能量同步辐射光源之一,为基础科学和工程科学领域原创性、突破性创新研究提供重要支撑平台。中科科仪控股公司中科科美凭借在真空系统集成领域深厚的专业技术积淀、强大的整体方案解决能力和一站式服务能力参与到该项目中,为国家重大科技基础设施项目实施和技术攻关贡献了力量。
  • 1688万!北京理工大学超精密低噪声测试平台系统、场发射环境扫描电子显微镜等采购项目
    一、项目基本情况1.项目编号:CFTC-BJ01-2311044项目名称:北京理工大学超精密低噪声测试平台系统采购预算金额:490.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述超精密低噪声测试平台系统用于教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。2.项目编号:CFTC-BJ01-2311043项目名称:北京理工大学低温、强磁场、高压显微红外测试系统采购预算金额:306.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述低温、强磁场、高压显微红外测试系统用于教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。3.项目编号:GXTC-A1-23630980项目名称:北京理工大学场发射环境扫描电子显微镜采购预算金额:462.000000 万元(人民币)最高限价(如有):462.000000 万元(人民币)采购需求:序号货物名称主要规格单位数量交货时间交货地点是否接受进口产品投标1北京理工大学场发射环境扫描电子显微镜采购详见附件套1签订合同之日起10个月内货到采购人指定地点并安装调试验收完毕北京理工大学西山实验区是合同履行期限:签订合同之日起10个月内货到采购人指定地点并安装调试验收完毕 。本项目( 不接受 )联合体投标。4.项目编号:CFTC-BJO1-2311045项目名称:北京理工大学红外焦平面探测器综合测试与成像设备采购预算金额:430.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述红外焦平面探测器综合测试与成像设备教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:北京市朝阳区东三环南路甲52号顺迈金钻国际商务中心9层9C方式:现场获取售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:陈老师010-68912384       2.采购代理机构信息名 称:国金招标有限公司            地 址:北京市朝阳区东三环南路甲52号顺迈金钻国际商务中心9层9C            联系方式:杨振豪、刘晓红、孙涛、王树凡、张含勇、王珊珊、边璐、谢丹丹010-53681306/1309(获取采购文件电话:010-53670136)            3.项目联系方式项目联系人:杨振豪、刘晓红、孙涛、王树凡、张含勇、王珊珊、边璐、谢丹丹电 话:  010-53681306/1309(获取采购文件电话:010-53670136)
  • 天开高教科创园 天津高端精密仪器产业园项目一期交付 为精密仪器成果转化落地搭台
    作为天开高教科创园津南园的承接载体之一,日前,天津高端精密仪器产业园项目一期交付,今后将为天津大学精密仪器的成果转化落地提供平台。作为全市首家以精密仪器、传感器以及工业过程控制为主导产业的专业化主题园区,天津高端精密仪器产业园一期占地52亩,能为企业提供建筑面积约500至5000平方米的三至五层双拼、独栋、多层厂房,可用于科技研发、小试中试研发组装、集合性办公等。随着众多企业入驻,园区将形成产业聚集效应,并在校企对接、研产科技转化、解决企业用工需求、市场对接撮合、股权融资、银行机构融资方面发力,为入园企业发展赋能。天津高端精密仪器产业园相关负责人介绍说:“截至目前,园区一期招商引资工作已经全部完成,累计引进企业26家,其中,国家高新技术企业10家、专精特新企业3家、雏鹰企业4家。”
  • 青岛出台“十条”支持措施推动精密仪器仪表产业集聚
    市政府办公厅近日印发《青岛市精密仪器仪表产业园发展若干政策》。青岛将以政策撬动加快推动精密仪器仪表企业向位于高新区的青岛市精密仪器仪表产业园集聚,借此提升产业链完整度和竞争力,打造北方仪器仪表产业总部基地。精密仪器仪表产业是青岛面向未来重点布局发展的新兴产业之一。青岛市精密仪器仪表产业园总占地2903.5亩。根据政策,园区将重点发展工业测控系统与装置、实验分析仪器、传感器及核心元器件三大领域,并围绕这三大领域开展延链、补链、强链。政策共涵盖十条支持措施。青岛将连续三年由市财政每年出资1亿元用于园区建设,同时从加速优质项目集聚、支持企业规模化发展、支持企业加强科技创新、鼓励产品推广应用等方面给予支持。根据政策,新入园的精密仪器仪表企业申请租用研发、办公用房或生产厂房的,可依条件连续获得5年房租补贴。对满足条件的投资企业和项目,竣工投产后按照设备投资的20%给予最高1000万元的一次性奖补。企业是产业发展的主体,企业做大做强是产业发展的根本支撑。政策提出,对园区内具有独立法人资格并纳统的精密仪器仪表制造企业,年营业收入首次达到5000万元、1亿元、3亿元的企业,分别给予不同数额的一次性奖励。对实施技术改造并达到一定标准的规模以上的制造业企业,按照企业年度设备投资不超过16%的比例给予奖补。搭建良好创新生态对新兴产业发展而言至关重要。政策支持园区领军企业联合高校院所协同创新,强化共性技术供给。支持园区企业开展技术攻关、平台建设等,按现行市级科技计划体系给予支持。对园区内加大研发投入的产业链上下游企业、研发机构,按照企业当年加计抵扣确认研发费用的8%-15%予以每年最高不超过600万元的奖励。针对产品技术集成和功能创新,对通过省级认定首台(套)技术装备及关键核心零部件的企业,按照认定年度产品销售额5%给予奖补,成套设备最高奖补150万元,单台设备(关键核心零部件)最高奖补100万元。产业发展离不开人才。政策对入驻园区企业从产业人才引进、产业人才培育以及高端人才聘用等三方面给予奖励。根据规划,到2028年,青岛市精密仪器仪表产业园目标营收规模突破300亿元,“四上”及高新技术企业数量达到180家以上,国家级、省级创新平台达到20个以上,上市企业达到8家以上。培育一批细分领域隐形冠军,打造一批供应链稳定、要素链完备、创新链活跃、“根植性”和竞争力强的现代产业集群,塑造“青岛制造”新优势。
  • 中德智能制造创新园揭牌 将研发全球首台量子精密谱仪
    1月18日,合肥国家中德智能制造国际创新园揭牌仪式暨2017年度合肥高新区智能制造项目集中签约仪式在合肥市政务中心举行。创新园将成为中德两国科技创新、成果转化、产业发展合作的示范区,中德两国的科研人员将在合肥“碰撞”出“智能制造”的火花。  研发全球首台量子精密测量谱仪  此次签约的项目团队多为高、精、尖人才,其中包括中科大的量子研究团队。  “中科大杜江峰院士主要开展量子精密测量领域的研究工作,其团队在该领域的研究成果处于世界领先水平。”高新区负责人介绍,杜江峰院士承担量子精密仪器研发和制造项目,将在高新区研发全国首台脉冲式电子顺磁共振谱仪,及全球首台量子精密测量(量子探针)谱仪并实现产业化。  该负责人介绍,在本次智能制造项目集中签约仪式上,将围绕中德合作、高校院所及知名企业合作等进行12个重大项目的签约。  创新园重点发展五大产业集群  合肥国家中德智能制造国际创新园位于合肥高新区,规划面积15平方公里,南区规划面积5平方公里,功能定位为科研培训区、企业孵化区、配套服务区。北区规划面积约10平方公里,位于合肥高新区南岗科技园,功能定位为产业集中区。  创新园以智能制造产业为主,重点发展新一代信息技术、高端装备制造、节能和新能源汽车、生物医药和高端医疗器械、应急装备制造五大产业集群,建设中德智能制造国际交流与教育合作基地、中德智能制造成果转移与企业孵化基地两大创新平台和一个技术创新中心,形成一套综合性金融创新服务体系。  成为中德两国科技创新示范区  合肥国家中德智能制造国际创新园是科技部批准设立的国际合作基地,是落实中德合作的重要平台和抓手。  该负责人介绍,目前国际创新园已集聚了一批德资企业,在技术研发、人才交流等方面中德双方也建立了良好的合作关系。下一步,合肥高新区将集聚相关资源,进一步加强与德国在项目、人才、物流、交通等领域的合作,将合肥国家中德智能制造国际创新园打造成为合肥对外开放合作发展的新窗口、“中国制造2025”和“德国工业4.0”融合发展的新平台和深度结合的集中区、科技金融与高端国际人才的聚合区,最终成为中德两国科技创新、成果转化、产业发展合作的示范区。
  • “精密超精密制造技术联合实验室”揭牌
    南京航空航天大学机电学院与上海航天控制技术研究所共建“精密超精密制造技术联合实验室”签约暨揭牌仪式近日举行。   南航机械制造及其自动化学科是国家重点学科。上海航天控制技术研究所的业务涉及弹、箭、星、船、器各领域,军民融合已形成良性发展。  双方相关负责人表示,成立联合实验室可充分发挥双方技术与人才优势,实现在先进制造领域的全面战略合作 希望双方加强产学研合作,使联合实验室成为人才培养的平台、先进制造技术交流的平台。希望联合实验室不断提高自主创新能力,为我国航天事业的发展提供强有力的技术支持。
  • 基于可调塑性的凝固态液态金属的3D柔性电子,摩方精密为科研探索提供精密技术支持
    哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。在本项研究中,由摩方精密25 μm精度的nanoArch P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。
  • 华海清科首台十二英寸超精密晶圆减薄机出货
    作为我国集成电路装备行业的核心企业之一,华海清科股份有限公司成功推出了具有自主知识产权的十二英寸超精密晶圆减薄机Versatile-GP300,于9月27日发往某客户大生产线。这款设备能满足3D IC制造、先进封装等制程的超精密晶圆减薄工艺需求,可提供超精密磨削、抛光、后清洗等多种功能配置,具有高刚性、高精度、工艺开发灵活等优势,主要技术指标达到了国际先进水平,填补了集成电路3D IC制造及先进封装领域中超精密减薄技术的空白。Versatile-GP300采用的工艺很巧妙。团队在设计之初,创新性地将高效减薄和抛光工艺集成,既能实现超平整减薄与表面损伤控制,又兼顾高效率与综合性价比,更匹配3D IC晶圆减薄市场的迫切需求。在我国3D IC制造、先进封装等领域中,十二英寸高精度晶圆减薄机全部依赖进口。如今,华海清科的首台十二英寸超精密晶圆减薄机Versatile-GP300已完成厂内测试,出机进入客户产线验证。这是华海清科又一产品在实现国产半导体装备自主可控道路上的重要突破。“念念不忘,必有回响”。华海清科团队在自主研发道路上,始终秉承着初心,一如既往地用精益求精的态度,不断追求技术突破,不断丰富产品系列,为加速推动集成电路国产设备替代进程、更好地服务社会贡献力量。
  • 密理博推出新一代微毛细管细胞分析平台
    密理博微毛细管细胞分析平台:突破传统,新一代流式技术革命  今年初,密理博成功收购了Guava Technologies后,又对“guava 微毛细管细胞分析平台”进行了创新和升级。为了让更多的用户体会新一代流式技术带来的科技震撼,Millipore推出了中国第一个以微毛细管技术为核心的细胞分析平台。  在这个平台上,您不仅可以领略革命性的 “微毛细管技术”,也可以感受细胞分析平台内部的精密构造、精细光路和精确检测。  欢迎进入guava平台!平台网址:http://tong.dxy.cn/upload/2009/guava/welcome.html
  • 上海超精密光学研究中心成立
    近日,上海市科学技术委员会向通过验收的复旦大学上海市超精密光学工程技术研究中心授牌。至此,经过一年的筹备建设,复旦大学上海市超精密光学工程技术研究中心正式成立。  2013年底,上海市科委组织专家对复旦大学上海市超精密光学工程技术研究中心进行了验收。上海市科委领导、业内专家以及复旦大学副校长金力,科技处处长殷南根、副处长胡建华,信息科学与工程学院院长郑立荣、党委书记周立志、副院长刘冉以及中心成员20余人参加验收。  金力副校长表示,学校将对中心的发展给予大力支持,希望中心积极对接国家重大需求、在协同创新,工程化方面加大力度,引领超精密光学制造工程技术领域的发展。  工程中心主任徐敏教授汇报了工程中心目前的研究工作和取得的成绩。通过现场考察,超精密光学工程技术研究中心的建设工作得到了与会专家的一致肯定。之后,工程中心副主任、光科系主任陆明教授参加了上海市科委验收答辩,得到了与会专家的高度评价并通过验收。  据悉,上海超精密光学制造工程技术研究中心由超精密光学制造技术研发室、超精密光学检测与表面评定技术研发室、超精密光学应用技术研发室、超精密光学工艺仿真模拟技术研发室和超精密光学系统设计研发室组成。并设有1个产业化创新研究管理办公室和中心管理办公室。  超精密光学工程技术是关系国家安全和科技发展的关键技术,是衡量一个国家工业发展水平以及自主创新能力的主要标志之一。我国在该领域的科技水平尚不能满足此类零部件的制造要求,严重制约了其尖端技术的发展。研究中心旨在建设我国光学工程技术领域尖端光学制造的技术平台,研究超精密光学制造工程技术关键工艺,满足国家发展科技进步以及产业化的需要。  据工程中心主任徐敏教授介绍,上海超精密光学制造工程技术研究中心将以国家中长期科技发展纲要以及&ldquo 十二五&rdquo 国家战略性新兴产业发展规划为指导,规划该中心的自身科技发展:以精密光学工程、光电集成制造及检测技术的应用基础研究为核心,着力开展前沿技术、关键材料、核心器件、装备集成、特色工艺等方面的研究,提升自主创新能力,解决高端装备制造等领域中的科学问题,搭建有自身特色的科技研发及自主创新平台,同时建立一支富有研究活力的科研创新团队,不断提升该工程中心在本领域的影响力。
  • 费业泰:用“微米”丈量人生的密度 留下精密仪器领域“费家军”
    2007年,费业泰被授予国际测量与仪器委员会“终身贡献奖” 神舟浴火腾飞升空,蛟龙耐寒深潜入海,高度精密的仪器在热胀冷缩时会产生什么变化?如何才能保证它们正常运转?我国高新技术领域的每一项重大突破,都离不开精密仪器学科的支撑。  在我国精密仪器领域,很多知名专家自称“费家军”,因为他们有着共同的导师——我国现代精度理论及工程应用的奠基人、合肥工业大学教授费业泰。在把60年人生奉献给精密仪器事业后,今年2月26日,费业泰教授在合肥逝世,享年82岁。  60年努力,奠基我国现代精度理论及工程应用  “精度”与“误差”这对反义词,是人类科学研究中不可回避的问题。而费业泰一辈子的工作,正是不断消除误差,追求越来越高的精度。  1955年,费业泰在合肥工业大学留校任教,同年6月加入中国共产党,1959年来到新开办的精密仪器专业。那时,新中国工业建设刚刚起步,我国对精度与误差的研究几近空白,机械工业总是难逃噪音大、震动大、能耗大的“傻大粗”模式。  现在精度测量以微米为标准,而当时的标准是毫米甚至厘米,相差千倍、万倍,为了改变这一切,费业泰养成了没日没夜工作的习惯。由于精密仪器特别敏感,为了确保实验质量,多年来,费业泰在忙碌一天后,晚上仍会趁夜深人静继续待在实验室。  经过长期的研究,费业泰提出了精度误差理论,半个多世纪来,这一理论在我国社会主义现代化建设的各个领域中得到了广泛应用,并成为我国精度评定的基本方法以及精密仪器学科的理论基础。  航天器在太空中飞行,向阳与背阳的两面温度相差数百摄氏度,由于膨胀系数标准有误,用什么材料才能确保卫星正常使用,一直长期困扰我国航空业的发展。九十年代末,时任我国某型卫星研制部门负责同志找到了费业泰。  在大量实验的基础上,费业泰发现原有的检测方法和计算标准存在较大误区,于是创新膨胀系数的检测和制定方法,不仅成功解决了精密仪器的稳定问题,还依此提出了全新的热误差理论体系。  在我国精密机械领域,曾一度陷入加工设备每个部件都要高精度的误区。这不仅大大提高了成本,而效果也并不稳定。针对这一情况,费业泰在我国率先提出“最好的部件在一起不一定能有最好的性能”这一理念,找到了误差传递的规律,并利用这一规律提出了新的方法,不再要求每个部件均为高精度,而是通过不同部件之间的最优组合,保证机械设备的高精度。这一方法成为我国最新精度理论的重要内容。  60年来,费业泰承担并完成了40余项高水平科研项目,发表过320余篇论文,获得9项省部级奖励,是安徽省五一劳动奖章获得者,为我国重点科研项目解决了大量实践难题,被称为我国精度理论的开拓者。2007年,费业泰被国际测量与仪器委员会(ICMI)授予终身贡献奖。  2010年,费业泰入选“感动工大十大人物”  潜心钻研,淡泊名利拒绝美国抛出的“橄榄枝”  《误差理论与数据处理》是费业泰的9本专著之一,他的学生、合肥工业大学仪器科学与光电工程学院院长于连栋教授介绍,该书1981年被列为国家重点教材,成为我国精密仪器学科理论的开拓之作。30多年来,该书再版7次,被全国200余所高校采用,很多年轻一代的杰出青年、长江学者,都是读着它迈进了精密仪器科学的殿堂。  “做科研不能带有一点功利心。”合肥工业大学仪器科学与光电工程学院苗恩铭教授至今牢记着费业泰的教导。  其实热误差理论,费业泰早在1980年代就已经发现并进行总结,但很长一段时间内,热误差的研究一直是领域内的“冷门”,甚至其理论的科学性也受到质疑。  如今苗恩铭率领的热误差研究团队,在全国已处于领头羊的位置,但最初这个研究之“冷”,曾让他想到放弃。  “科研不能追名逐利,什么方向热门做什么,你在科学的路上走不远。”费业泰的一再告诫,让苗恩铭坚持了下来。如今,热误差理论,已经成为精密仪器学科典型的三个学科方向之一。而热误差理论研究团队,也不断在我国重大项目中建功立业。  费业泰的老伴郭子顺还记得,1989年费业泰在美国西雅图华盛顿大学做客座教授时,他所负责的波音公司一项科研项目原计划要做9个月,但在他的努力下仅用时6个月。费业泰的出色表现引起了美国方面的兴趣,向他抛出橄榄枝,表示如果他愿意留下,就可以拿到绿卡。但费业泰毫不犹豫地拒绝了,甚至放弃了应得的3个月优厚报酬,毅然提前回国。  虽然淡薄名利,但费业泰对国内相关产业的发展一直十分关注。  “中国数控机床的落后,让老先生一直耿耿于怀。”苗恩铭说,费业泰在1980年代发现热误差后,研究了国际上近30年来数控机床精度的发展,预测未来机床如果要提高精度,必须利用其材料结构的热特性来设计。  当时费业泰找了很多国内大型企业,建议企业进行相关研发提高产品精度,但当时普通数控机床很好卖,他的建议被一一拒绝。1990年代中期,费业泰受邀到日本作学术报告,他的理论引起现场日本、德国专家的注意,并特意向他请教。2005年,日本企业生产了第一台热亲和数控机床,现在这种机床已经成为全世界最著名的数控机床之一。  “现在很多国内企业产品卖不出去,又去模仿,但只能模仿个外形,其实它的核心思想是我们这边出来的,但是当年国内却没有人相信。”苗恩铭说。  2013年,80岁的费业泰仍坚持工作  教书育人,言传身教关注每个学生前行  为了保证人才培养质量,费业泰不但对学生因材施教,还始终坚持在科研一线,用自己的言行给学生们做好榜样。  “费老师知道每个学生的特点,哪怕我们毕业了,他还会一直关注着。” 于连栋说,费老师去世后,有同学在微信群里晒出老师以前寄来的信,老人家对这位学生从专业方向到人生道路,都给出了言辞真切的建议,让人十分感动。  费业泰一生严谨,今年48岁、早已是博士生导师的胡鹏浩教授回忆起恩师的严谨时说:“怕挨训、被训怕了,但总是被训得心服口服。”  2003年的暑假期间,时任学院副院长的胡鹏浩去找费业泰汇报工作,因穿着随意让老师很不高兴。  最初胡鹏浩不以为然,他觉得不是工作日,也不在正式场合,穿着随便一些无所谓,但老师的反问让他意识到自己的不足:“老师说,如果现在学院有急事,需要你立即送一份材料到教育主管部门,你觉得你现在的穿着合适吗?这就是费老师的做事风格。”  “我参加工作后,学校安排我授课,但费老师坚持让我再等一年,用一年的时间备课。” 费业泰的学生、合肥工业大学仪器科学与光电工程学院副院长夏豪杰副教授说,费老师认为“照本宣科是没有质量的授课”,只有精心准备,才能真正传授给学生知识。  除了专业知识和严谨的科研态度,费业泰带给学生的,还有做人的道理。  2004年,胡鹏浩评上了教授,但费业泰却说其实不希望他这么早获评,随后老先生的一席话让胡鹏浩非常感动。  “他说虽然我评上教授,但知识的宽度和广度沉淀不够,可能会碍于面子,到哪都端着架子,不懂的也不好意思问,时间一长,就会越来越空。”胡鹏浩说,从那时起,他不管到哪,遇到不懂的就会直接问,  2011年夏天,77岁高龄的费业泰在北京进行完一项国家专项答辩后,急着赶回合肥,由于北京暴雨,等到23点仍然不能起飞,临时也买不到火车票。  “下着大雨,他跑到火车站,没有票又回到机场,这么大年纪,我看着很心疼,就劝他住一晚明天再走,他却坚持要当天回去。”当时随行的夏豪杰说,当天老人家等到凌晨4点,才得到登机的通知。  早上7点,费业泰带着一身疲惫抵达合肥,随后立即赶到办公室时,这时夏豪杰才发现,费业泰坚持赶回来的原因,只是答应给一位研究生修改论文。  “费教授辛勤工作60年,精于专业,一心教书育人,忠诚于人民的教育事业,是一位有理想信念、有道德情操、有扎实知识、有仁爱之心的好老师。”合肥工业大学党委副书记周军说。  2013年,80岁的费业泰仍坚持工作  2013年,费业泰与学生们在桃李园合影
  • 江苏出台装备行业稳增长措施,涉及精密仪器仪表等12条重点产业链
    江苏省工信厅日前印发《装备行业稳增长工作方案贯彻落实措施》(以下简称《措施》),明确提出,2024年,全省装备行业保持平稳运行态势,工业增加值增幅高于全部工业1个百分点左右。《措施》提出一系列具体目标,涉及3大集群12条产业链。具体目标包括,2024年,新型电力装备集群、智能电网产业链国际竞争力进一步增强;高端装备集群规模稳中有升,工程机械、现代农机装备、工业母机、机器人、精密仪器仪表、轨道交通装备产业链供给能力显著提升,质量效益进一步提升;航空航天集群快速蓬勃发展,飞机配套、低空产业、商业航天产业链成为装备工业运行的重要增长极;高技术船舶与海工装备集群市场份额继续保持全国第一,高技术船舶产业链、海洋工程装备产业链三大指标继续保持较快增长。其中,《措施》对12条重点产业链明确了具体的工作任务。其中对于精密仪器仪表产业链,要加快推动产业链补短板锻长板,进一步提高产品在细分领域的市场占有率;举办仪器仪表产业链上下游对接会,推动市场合作共赢;落实《智能检测装备产业发展行动计划(2023-2025年)》等相关文件要求,加快推动智能检测装备创新发展,培育一批国家智能检测装备创新产品。正文如下:装备行业稳增长工作方案贯彻落实措施 为贯彻落实中央经济工作会议、全国新型工业化推进大会和省委经济工作会议、全省新型工业化推进会议精神,根据工信部《电力装备行业稳增长工作方案(2023-2024年)》和工信部等七部门《机械行业稳增长工作方案(2023-2024年)》要求,把稳增长摆在首要位置,推动全省装备行业运行平稳健康发展,持续提升重点产业链供应链韧性和安全水平,努力推动实现工业经济平稳增长,结合我省实际制定以下贯彻落实措施:一、总体要求坚持以习近平新时代中国特色社会主义思想为指导,深入贯彻落实党的二十大和习近平总书记对江苏工作的重要讲话重要指示精神,完整、准确、全面贯彻新发展理念,着力优化重大技术装备供给,推进产业链强链补链延链,健全推广应用体系,促进装备行业稳增长、提质量、促升级、保安全,推动质的有效提升和量的合理增长,力促装备行业运行保持在合理区间,为全省工业经济稳定增长作出积极贡献。2024年,全省装备行业保持平稳运行态势,工业增加值增幅高于全部工业1个百分点左右。其中,新型电力装备集群、智能电网产业链国际竞争力进一步增强;高端装备集群规模稳中有升,工程机械、现代农机装备、工业母机、机器人、精密仪器仪表、轨道交通装备产业链供给能力显著提升,质量效益进一步提升;航空航天集群快速蓬勃发展,飞机配套、低空产业、商业航天产业链成为装备工业运行的重要增长极;高技术船舶与海工装备集群市场份额继续保持全国第一,高技术船舶产业链、海洋工程装备产业链三大指标继续保持较快增长。二、重点工作举措(一)紧跟有效需求。紧盯物流交通体系、现代能源体系、城市基础设施、农田水利建设、防灾减灾救灾等重点领域,围绕国家和省“十四五”规划纲要重大工程项目建设,抢抓国家发展低空经济、商业航天机遇,聚焦2024年省重大项目清单和省重大工业项目清单,深入推进制造业智改数转网联,加快释放固定资产投资和装备购置需求,有效带动智能电网、工程机械、农机装备、轨道交通装备、飞机配套等行业发展。(二)开拓国际市场。鼓励企业用好《区域全面经济伙伴关系协定》(RCEP)等自由贸易协议,积极参与“一带一路”战略,开拓全球新兴市场,引导行业优质企业“走出去”。支持工程机械、农机装备、轨道交通装备、高技术船舶、海工装备等领域企业开展全球化经营,完善全球服务体系。鼓励企业参加行业内国际性展览展会,提升品牌知名度和影响力。鼓励行业组织加强国际贸易规则和贸易形势研究,帮助企业提高风险应对能力,增强海外合规经营、安全和可持续发展能力。(三)搭建对接平台。高水平办好世界智能制造大会、世界物联网博览会等品牌会展,组织企业参加中国国际工业博览会、世界机器人大会等重大活动。支持行业组织举办细分领域会展论坛,促进技术交流、产业对接,激发市场需求。支持行业组织举办供需对接会、成果交易会等对接交流活动,帮助企业及时获取有效市场信息,推广创新成果。鼓励互联网平台企业构建一批符合机械行业特点的专业化线上交易平台,形成一站式供需对接机制,提高对接效率。(四)强化推广应用。积极参与国家组织的工业母机、仪器仪表、农机装备、机器人等创新产品推广应用系列活动,围绕“1650”产业体系开展行业对接活动,推广一批应用验证单元、产线或典型场景。组织开展2024年首台套重大装备认定工作,支持首台(套)重大装备首购首用,优先将省内首台套装备列入政府采购创新产品目录,积极推荐符合条件的装备申报国家首台套保险补偿。(五)培育优质企业。加快培育一批主营业务突出、竞争力强、成长性好的制造业领航企业、专精特新中小企业、制造业单项冠军企业和技术创新示范企业。加强行业标准建设,强化质量管理,培育质量标杆。加快布局发展重点领域专业检测验证机构,进一步完善计量、标准、认证、检测试验、电磁兼容等基础服务体系。(六)加快智改数转网联。组织制订、宣贯、实施重点产业链智能化改造数字化转型网络化联接实施指南。对标国际领先水平,支持装备企业建设一批智能制造示范工厂、示范车间、优秀场景,争创标杆企业。加快推进“5G+工业互联网”、工业互联网标识解析与装备行业的融合应用。围绕装备行业智改数转网联需求,加快培育一批优秀服务商。(七)深化对外合作。进一步推动我省与中航工业、中国商飞、中国航发、国机集团、中国船舶、中国电气装备集团等装备领域央企战略合作,组织开展专题对接,推动省内企业加快进入上游整机企业供应链体系。支持央企在我省深度布局和优化发展,鼓励省内民营企业、科研机构参与承接央企集团研发制造项目,主动融入央企供应链体系,建立与重点央企全面战略合作关系。支持国内外龙头企业来我省设立分支机构和建设产业投资项目。主动融入长三角重大技术装备合作发展机制,开展重大技术装备产业链供应链合作。三、重点产业链工作任务(一)智能电网产业链。支持我省电力装备企业参与国家能源领域重大工程建设,依托国家重点工程示范应用扩展我省电力装备应用领域,提升电力装备供给质量;主动加强与国家电网、三峡集团、国家能源集团、华能集团、国家电投、华电集团、大唐集团等电力领域央企对接,推动国内市场合作。(二)工程机械产业链。加强产业对接,组织召开徐州工程机械先进制造业集群创新发展大会,支持举办中国(徐州)国际工程机械展览会,搭建产业对接平台,有效激发市场需求;组织开展工程机械“主配协同、供需对接”合作交流会暨大中小融通发展对接活动。(三)现代农机装备产业链。会同省农业农村厅联合甘肃省加快建设“一大一小”农机装备研发制造推广应用先导区,推动新型丘陵山区适用机械在先导区推广应用;充分发挥农机购置与应用补贴政策引导作用,支持购置先进适用农机。(四)轨道交通装备产业链。支持企业开展轨道交通领域标志性产品和关键系统部件的研发攻关;鼓励企业以“一带一路”战略为牵引,加快产业“走出去”,推动我省轨道交通装备产品推广应用。(五)工业母机产业链。组织国家工业母机基金与制造企业开展交流对接,引导社会资本加大投入,带动有效需求;组织整机制造企业、零部件企业及应用企业开展产需对接,引导组织企业参加汉诺威机床展(EMO)、中国国际机床展览会(CIMT)等国际行业重点展会,积极开拓国际国内市场。(六)机器人产业链。以需求为牵引推动龙头企业牵头联合产学研用组成创新联合体,组织开展关键核心技术攻关,持续提升供给能力;深入实施“机器人+”应用行动,组织开展典型应用场景征集遴选,形成应用推广示范,提升机器人应用深度和广度,深挖市场潜能,激活新兴应用。加快推进人形机器人创新发展。(七)精密仪器仪表产业链。加快推动产业链补短板锻长板,进一步提高产品在细分领域的市场占有率;举办仪器仪表产业链上下游对接会,推动市场合作共赢;落实《智能检测装备产业发展行动计划(2023-2025年)》等相关文件要求,加快推动智能检测装备创新发展,培育一批国家智能检测装备创新产品。(八)飞机配套产业链。推进省政府与中国商飞、中航工业、中国航发等央企战略合作协议落实执行,建立对接工作机制,支持引导企业融入航空领域央企供应链体系;组织开展专题供需对接活动,新增一批中国商飞、中航工业供应商。(九)低空产业链。学习先进地区低空产业商业模式和发展经验,结合我省实际研究制定推动低空产业发展的意见。在市政管理、应急救援、低空旅游、商务出行、驾驶培训等领域,开发开放一批典型应用场景。推动无人机在巡检监测、农业植保、应急救援、物流配送等领域规模化应用。(十)商业航天产业链。跟踪国际行业发展和前沿科技变革最新动态,制定推动我省商业航天产业链高质量发展三年行动方案;举办“走进主机厂”活动,进一步加强与院所总体单位以及商业航天龙头的交流合作,推动更多省内企业主动融入重大工程建设。(十一)高技术船舶产业链。聚焦新能源船舶产业发展,积极抓好《江苏省新能源船舶产业高质量发展三年行动方案(2023-2025年)》实施,加强绿色新能源典型船型研发,大力推动电动船发展,推进甲醇动力新能源船舶的船型技术开发及应用,积极推动向大型化、智能化发展,突破一批关键技术,形成综合解决路径与船型方案。推进产业链供应链融合发展,确保大批订单平稳交付。(十二)海洋工程装备产业链。依托链主企业,积极推进大型海洋工程装备总装集成能力提升,大力培育具备总承包能力和较强国际竞争力的专业化总装制造企业。加快海工产品谱系化能力建设,提升取得技术突破的海洋工程装备产业化步伐,扩大自升式钻井平台、半潜式钻井平台、圆筒型钻井储油平台、浮式储油船等海洋工程装备产品系列化、批量化生产。加快研发新型海洋工程装备,集中力量突破深水海洋工程装备钻井船、高附加值浮式生产储油卸油船等高端装备。
  • 精密测量:无尽的追求
    十几年前,当数位战略科学家聚首探讨精密测量物理学科发展走向时,他们预判中国会一步步缩小和国际先进水平的差距,有一天会走在国际前沿,甚至引领发展。他们没料到的是,这一天来得如此之快,当然也没料到“卡脖子”同样来得很快。当下,世界正经历百年未有之大变局,科研环境也发生了巨大变化。所幸十几年前,在国家自然科学基金等的资助下,我国布局了一批前瞻性、引领性的基础研究。在国家自然科学基金重大研究计划——“精密测量物理”项目稳定资助下,我国不仅在精密测量领域取得了多项“世界最好”“精度最高”的成就,凝聚、培养了一支队伍,大大增强了在该领域的国际话语权和竞争力,还辐射带动了相关学科发展。“算是对我们10年‘打工’的鼓励吧。”谈及“精密测量物理”重大研究计划的研究成果对相关学科的引领带动作用,中国科学院院士,华中科技大学、中山大学教授罗俊的语调中透着实现“小目标”的轻松。实际上,这项超前布局的研究计划仅酝酿谋划就用了5年时间。此后在研10年,“聚队伍、聚智慧、聚重点、聚资源、聚突破”,项目成果全面超越预期目标。“十几年前,国家自然科学基金支持一批科研人员开展精密测量物理研究确实很有开拓性。”罗俊告诉《中国科学报》,“这项研究计划虽然圆满结题了,但精密测量永无止境,精益求精是无尽的追求。”破局,始于“香山科学会议”2008年7月,第327次香山科学会议(创立地点及会址在北京香山)破例在位于湖北省武汉市的华中科技大学召开。7位院士、50余位物理学家相聚喻家山,参加为期3天的“精密测量物理和方法”主题研讨会。“在香山科学会议之前,叶老师(中国科学院院士叶朝辉)和几位专家动念提出开展‘精密测量物理’研究,是因为我们遇到了一些问题。”罗俊回忆说,“当时我国很多学科面临怎样向前沿延伸的困境。一个严峻的现实是,我们的科研仪器基本全靠进口。别人生产的仪器卖给我们之前,实验室里该做的研究都做完了,我们一直跟在后面做,这样很难触及科学最前沿。”没有自己的仪器,跻身前沿都很难,更别说超越引领。科研仪器如此重要,但问题是,这种尖端的科研仪器谁来研制?在此背景下,叶朝辉等人提出了“精密测量物理”的概念。“我们现在对‘精密测量物理’有很多期待,赋予它很多内涵。但当时的出发点和最基本的想法就是做出一套最先进的仪器给科学家用。”罗俊说,“要挺进学科最前沿,验证物理学家的想法,进行实验研究,必须有自己的仪器设备。”香山科学会议后,叶朝辉、罗俊等人在国家自然科学基金支持下,开始推动重大研究计划立项,在数理科学部的主持下,组织双清论坛进行论证。2013年,“精密测量物理”重大研究计划获准立项。引领,辐射学科带动人才按照该重大研究计划最初的设计,研究目标分为三部分。一是精密测量工具仪器研制,以时间频率测量为代表,将光频这些和国际水平差距较大且非常基础的测量仪器“做上去”;二是在更高精度上测量物理基本常数并检验物理基本规律,这是精密测量物理的难点和重点;三是研究精密测量新体系,发展新方法和新技术,不断突破测量极限,包括突破标准量子极限等。实际上,在该重大研究计划执行的10年中,他们不仅圆满完成了三大目标,还屡屡取得突破性进展,获得多项“世界最好”“精度最高”的成就。“这项重大研究计划的特点之一是带动了整个中国精密测量物理学科的发展。”中国科学院精密测量科学与技术创新研究院研究员詹明生说,“也带动了其他一些项目,辐射和延伸到了相关领域,比如影响了中国科学院的先导科技专项,带动基于原子分子的物理研究向精密测量物理延伸。”中国科学院国家授时中心研究员张首刚认为,该重大研究计划的意义在于10年前就有了明确目标,把精密测量这项前沿基础研究和国家战略需求相结合,从而做出一系列方向性、引领性的研究工作。“通过国家自然科学基金项目牵引,这些年我国精密测量物理研究队伍不断壮大,并从基础研究向前沿基础研究推进。”张首刚说,“我们不但超额完成了该重大研究计划的各项指标,还产生了原创性的想法,取得一批‘国际首次’级的成果,并在部分领域领先国际。”“量子精密测量是精密测量物理的一个前沿方向,很多微弱信号测量,比如引力波探测、量子操控、原子分子和光物理等研究都离不开精密测量。”上海交通大学教授张卫平补充道,“这个项目将我们的学术生涯和国家战略需求完美对接起来,我觉得最大成果之一是凝聚并培养了一支队伍。”清华大学教授尤力同样认为,这是个高瞻远瞩的研究计划。“过去四五年,国际科研环境发生了巨变,出现了更多的不确定性。我们必须科学上自主、技术上独立。好在我们进行了预研,建立了这么一支队伍。”求精,追求永无止境精密测量物理对实验条件要求极高,数千米外的振动、电流波动、地球磁场,甚至空气温湿度都会影响测量精度。为避免外界扰动,30多年前,罗俊等人就将实验室建在位于喻家山的一个山洞里。在罗俊团队的引力常数测量进行到关键时期时,地方政府按规划准备在喻家山下修一条路。“修路会引发两个问题:一是山体稳定性发生变化,这些微小变化会导致实验环境不稳定;二是修路过程中及修好后,车辆经过产生的震动会影响测量精度。”了解到罗俊的担忧,华中科技大学和武汉市都非常支持实验研究。最后,武汉市调整道路规划,终止了道路修建。得益于安静的实验环境,罗俊团队测出了世界上测量精度最高的G值(引力常数)。至今,该数值仍保持着世界第一的纪录。“精密测量物理要测的通常是非常小的数值,它无限趋近于‘0’,但永远不会达到‘0’。例如,我们进行粒子、量子、多粒子纠缠等前沿研究,背景补偿(抵消环境磁场的影响)做得越好,测量结果就越准。”尤力感慨地说,“我们测一个量,总希望向小数点后再多推一位,但最终要推到什么地方、推到什么程度,没有人知道。所以精密测量物理没有止境,需要长期坚持,也需要长期支持。”“精密测量的本质是永无尽头。”罗俊说,“精密永无止境。这种无限精密、精益求精的特点造就了精密测量物理研究者不断提高精度、不断开发新技术,挑战新极限的信念。”传承,精密测量精神“我们常说十年磨一剑,从事精密测量物理研究真的需要长期积累。”华中科技大学教授胡忠坤说,“它需要10年、20年,甚至更长时间才有可能见到成效,因此研究者要耐得住寂寞,但也需要得到长期稳定的支持。”“精密测量物理有两个特点:一是高精尖,二是研究周期特别长。”山西大学教授张靖补充说。20世纪90年代初,张靖还在华中科技大学读本科,有时会到位于喻家山山洞的实验室上课。他记得当时山洞两边都是实验室,里面很安静,感觉很神秘。“精密测量物理研究不是三两个人花两三年时间就能取得成果的。罗老师选择在山洞里做实验,还带出一支队伍,一步步把精度提高再提高,确实很有魄力。”张靖说。“我们国家的科学研究已经形成了崭新的局面,上了一个历史性的新台阶。现在我们山洞的实验条件是30年前根本无法想象的,每个实验室都‘鸟枪换炮’,不知道好到哪儿去了。”罗俊说,“但当初也没觉得条件多艰苦,因为有兴趣、有追求,希望能精益求精,所以并未在意‘苦’还是‘不苦’。”“进行精密测量物理研究,总是想精益求精,把精度提高点,再提高点。”清华大学教授尤力对《中国科学报》说,“进实验室打开仪器,我们就知道北京地铁4号线列车什么时间进站、什么时间出站,地铁运转产生的磁场会严重影响原子能级……”尽管北京地铁4号线从清华大学、北京大学两所高校旁通过时采取了一系列减震措施,但轻轨列车进站减速、出站加速时电流变化产生的磁场,还是会影响1.5公里外清华大学的原子分子与光物理实验。磁场变化会引起原子能级移动,给光学测量带来不确定性,使科学家无法判断是否出现了误差。虽然研究人员已经习惯在夜深人静时做实验,但很多扰动仍无法避免。“我们做原子分子与光物理研究时,原子的磁矩就像一块小磁石,它周围的磁场扰动会让原子磁矩抖动,导致测量信号不确定。”尤力说,“环境中各种扰动、噪声、磁场等都会影响测量结果。”尤力团队曾对实验室环境进行检测,不只地铁4号线列车进出站,包括地球磁场、实验室照明电路,甚至光学实验平台上的金属器件(螺丝钉、钻头等)所带磁性都会影响测量精度。“这些磁场是‘躲不掉’的,那就想办法把它‘干掉’。”尤力说。在多次测量、分析、计算的基础上,尤力团队创造性地应用了“背景补偿”这样一个解决方案。简单地说,就是针对一些无法改变的干扰因素,比如地球磁场、实验室电流磁场等,研究人员先测出环境磁场强度,计算出平均值,然后绕制一个通电线圈,使其产生相反的磁场,用“前置反馈”的手段,将环境磁场的磁力抵消。“用‘前置反馈’补偿(抵消)背景磁场是个亮点。”中国科学院院士,华中科技大学、中山大学教授罗俊说,“虽然‘前置反馈’不是新概念,但要把它做成,需要很好地掌握背景磁场,用它解决问题简单、高效。”“我们用的物理概念并不新鲜,但它能解决实际问题。”尤力说,“我们用一块电路板就解决了问题,同很多兄弟单位分享了这项技术,能为大家做点事我很高兴。”在反馈补偿技术的“加持”下,尤力团队取得了一系列重要突破。他们突破了标准量子极限测量非经典双数态新体系,解决了双数态确定性制备难题,该体系在原子数、原子数涨落、压缩系数以及相干性等多项重要指标上远超国际同类实验。团队通过调控量子相变过程,解决了传统动力学制备方法所存在的问题,在国际上首次确定性地制备了大粒子数双数态87Rb原子玻色爱因斯坦凝聚体。目前,该实验平台能在40秒内确定性地制备约1万个粒子组成的多体纠缠态,从非纠缠的初态到双数态凝聚体的转换效率高达(96±2)%。该双数态的量子噪声的压缩度为(13.3±0.6)dB,是国际同类实验中最好的指标。双数态的相干性更是达到了接近理想值的0.99,远优于此前国际上最好的0.9。由此,实验可以表征的纠缠粒子数也是目前能确定性制备量子纠缠数目的世界纪录。这项工作大大提高了双数态在精密测量中的实用性,首次验证了量子相变可以作为制备多体量子纠缠态的有效手段,为纠缠态的制备提供了新思路。追求极限, 刷新“钙帮”世界纪录近年来,中国科学院精密测量科学与技术创新研究院研究员高克林团队研制出不确定度为 3×10-18(相当于105亿年不差1秒)、稳定度为6.3×10-18@524000s的钙离子光频标,成为第五种不确定度指标达10-18水平的光频标、第二种稳定度达10-18量级的离子光频标,并研制出目前搬运距离最远的光钟,实现精度达到10-16的钙离子光频的溯源测量。该成果被国际时间频率咨询委员会推荐为次级秒定义。“钙离子有很多优点,比如其光频跃迁是搭建高精度光频标的理想参考,可有效抑制离子特有的微运动频移。其离子的量子态制备、激光冷却及钟跃迁探测所用的激光均可用商品化的半导体激光器发射,因此极有可能实现广泛应用。”高克林说,“但是钙离子光频标也面临两个世界级难题:一是钙离子对磁场非常敏感;二是钙离子在室温下对黑体辐射效应(环境温度)敏感。”频率标准研究对外场控制(环境中各种效应,如振动、噪声、磁场和温度等)的要求非常高,国际上许多光频标研究机构已经放弃参考钙离子搭建高精度光频标。目前,国际上仅有锶原子光频标、镱原子光频标、铝离子光频标,以及镱离子光频标的不确定度达到10-18量级。“能否直面这些国际难题,将钙离子光频标推进至更高精度是我们面临的艰巨挑战。”高克林说,“在叶朝辉、罗俊院士领导的精密测量项目专家组与频标科学家王义遒、王育竹、李天初等人的关心和支持下,我们一步步解决了这些难题,将钙离子光频标推至国际第一方阵。”为进一步提高钙离子光频标的性能,研究人员通过改进钟跃迁激光性能,建立了第二台钙离子光频标并进行比对,大幅降低了电四极频移、光频移和微运动频移,实现了不确定度达5.5×10-17、稳定度达7×10-17的钙离子光频标。2018年,团队通过“魔幻射频囚禁场”抑制了微运动频移,又通过降低黑体辐射频移、改进光频标伺服软件等措施,进一步将钙离子光频标不确定度提升至2.2×10-17。2019年,通过对两台钙离子光频标长达31天的频率比对,研究人员测得稳定度达到6.3×10-18@524000s。为降低钙离子光频标黑体辐射频移的影响,团队将离子阱置于液氮低温环境中,使黑体辐射频移对温度的敏感度降低了约两个数量级。与国际上采用的液氦系统相比,液氮系统造价低廉、操作简单。但缺点是使用中液氮会蒸发,系统运行时液氮容积变化易造成离子位置移动,从而导致荧光信号损失。为解决低温系统问题,研究人员反复迭代和纠错,并采用清华大学教授尤力团队的“前置反馈”技术,大幅降低了背景磁场噪声。最终,该团队在国际上首次实现了液氮低温钙离子光频标,不确定度达到3×10-18。2020年,该团队实现钙离子光频标系统集成、可靠和高精度运行等关键技术突破,研制出一台精度24亿年偏差不到1秒的可搬运钙离子光钟,首次将钙离子光频测量精度推进到国际最高水平,并实现从武汉到北京千公里级车载搬运。“研究钙离子的人称自己为‘钙帮’。”高克林说,“在实验关键时期,大家加班轮岗的故事很多,但没人觉得辛苦,因为热爱,所以乐在其中。”在精密测量领域实现量子优势前不久,中国科学院院士、中国科学技术大学教授潘建伟,中国科学技术大学教授陆朝阳等基于“九章二号”中自主设计的受激双模量子压缩光源,结合非线性干涉仪,提出并演示了一种新方案来实现可扩展的、无条件的、鲁棒的量子精密测量优势。相关成果发表于《物理评论快报》。“实际上,该成果是在‘精密测量物理’重大研究计划前期工作的基础上衍生出的一项新成果。”陆朝阳告诉《中国科学报》。“精密测量物理”重大研究计划有几个子研究方向,其中中国科学技术大学团队的目标更具探索性质,主要是基于单光子和纠缠光子探索精密测量的新原理、新方法。在研期间,团队基于高品质单光子和多光子纠缠突破超越标准量子极限,在国际上首次同时解决了单光子源的三个关键问题,实现国际上综合性能最优秀的单光子源。“制备单光子源是这个重大研究计划中的一项代表性工作。”陆朝阳解释说,“进行量子精密测量或量子计算时,有用的是单光子源。这就像幼儿园小朋友‘排排坐’,如果有100个小朋友,每个小朋友坐一条板凳是理想状态。但自然界的光源(灯光或阳光)是热光源,它们衰减之后只有约8%是单光子(相当于一个小朋友坐一条板凳),约90%是‘空板凳’,另有2%是两个或多个光子(一条板凳上坐多个人)。在量子技术中,‘空板凳’无法用于测量,而一条板凳坐多个人会引起测量误差。因此,科学家要在实验室通过主动量子调控制造一种非经典的量子光源。”精密物理测量往往会受一些在原理上都无法避免的“散粒噪声”的影响。因此,任何测量都存在精度极限。不过,量子光源可以打破这种物理极限。中国科学技术大学团队用制备出的新光源进行测量,发现它比之前用激光光源测量的精度提高了0.6dB,而且首次实现了强度压缩。此后,该团队又研发出“九章”系列光量子计算原型机。在“九章二号”的相关研究中,团队受到激光的启发,发明了一种受激辐射放大量子光源的新方法。在调节这种新光源的位相时,他们意外发现数据对相位特别敏感。“我们当时灵机一动,想利用这个现象做量子精密测量。”陆朝阳说。抱着试试看的想法,研究人员基于“九章二号”中自主设计的受激双模量子压缩光源,结合非线性干涉仪,提出了一种新方案来达到海森堡极限。该方案同时具有可扩展性、无条件优势、对外部光子损失鲁棒等优点。在未扣除任何实验噪声的情形下,在相位测量实验中直接观察到的单光子信息量(用于衡量测量的精度),达到了目前国际最高水平。精密物理测量领域有一个共识:如果把精度向前推进一个数量级(10倍),就有可能发现新物理、新规律。这一次,中国科学技术大学团队基于量子受激光源发展出新的量子精密测量技术,将测量精度极限提高了5.8倍。“学术界将量子计算在特定问题上的能力超越经典的超级计算机的里程碑称为‘量子计算优越性’。现在,类似的,我们又首次实现了‘量子精密测量优越性’。”陆朝阳说,“这有点像立体农业中塘中养鱼、塘泥肥田,在国家的整体布局下,量子信息的基础研究不仅开花结果,还可催生肥鱼。”
  • 法媒探究引力波观测台:全球最精密仪器
    位于华盛顿汉福德的激光干涉引力波观测台内景  法媒称,令科学家们第一次得以窥见引力波“真容”的机器,是有史以来最先进的、用于探测宇宙中最轻微振动的探测仪。  据法新社2月11日报道,置于美国地下的这两台探测仪,名为激光干涉仪引力波观测台(LIGO)。其中一台位于华盛顿的汉福德,另一台位于约3000公里外的路易斯安那州的利文斯顿。  报道称,观测台的建设工作始于1999年,并在2001年到2007年间开展了观测工作。之后,这两个观测台经历了一次重大升级,令其功能增强了10倍。  2015年9月,升级后的高级LIGO探测仪首次开始全面运转。当月14日,路易斯安那州的探测仪首先捕捉到了一个来自13亿年前南部天空的引力波信号。  报道称,这种波是一种对于太空中的波动的测量方式,即拉伸时空结构的大规模质量体的运动所产生的影响——这是一种将时间和空间视为一个单一的、交织的连续统一体的方式。  7.1毫秒后,华盛顿的探测仪也捕捉到了相同的信号,这使得科学家们能够证实这一发现真实不虚。  报道称,这些超精密工具通过利用单个长约4千米的大型激光干涉仪工作。这些干涉仪都被埋在地下,令其能够得出最精确的测量结果。  这种L型仪器根据激光物理学和空间物理学原理追踪引力波。它们不像望远镜那样依赖天空中的光线。它们感知太空中的振动,这种优势令它们可以揭示黑洞的特性。  麻省理工学院的高级LIGO项目负责人戴维休梅克说:“当一个引力波通过太空传播的时候,它便会拉伸时空。”  报道称,简言之,引力波探测仪“就是一台将太空中的波动转变为电子信号的大型仪器”。
  • GTI吉泰精密仪器亮相2024零碳大会
    “2024国际零碳城市乡村与零碳建筑大会暨技术设备博览会”于5月26日在北京国家会议中心举行。本届零碳大会主题是“推动建筑零碳发展,促进城乡绿色低碳转型”,以零碳贯穿主题展览和会议活动,引领建筑节能相关产业迈向可持续的零碳未来。一、大会现场本次零碳大会,GTI吉泰精密携建筑气密性测试系统、管道漏风量测试机、风量罩、风速仪、差压类传感器等产品精彩亮相。 管道漏风量测试机吸引了众多客户驻足咨询,DALT 6910专业版用于空调风管、消防风管及密闭空间的漏风量测试,可对分段管道和整个系统安装后的总管道进行检测,保证系统的工作效率,避免能源浪费。仪器集成了欧美及国内风管行业多种现行测试标准,根据相关的鉴定标准进行检测后,可直接确定管道的密封性是否合格。通过外接打印机可实现打印功能,且整机尺寸小,重量轻,家用SUV后备箱即可装载运输,可测流量范围更大。触摸屏一体化操作,LCD彩屏显示,良好的人机交互界面可实现测试全过程操作。 GTI吉泰精密工作人员详细为来访观众介绍产品性能及使用方法,解答观众的疑问,提供优质的服务体验。同时,我们也欢迎观众亲自观摩我们的产品,感受GTI品牌产品的品质和性能。 GTI620型风量罩是集风量测试、风速测试、微差压测试于一体的智能型测试仪器,其广泛适用于空调、管道等场所的风速风量测试,并且可以进行高精度的微差压测试。 差压类传感器系列产品包括手持式微差压计GTI115、超小型微差压数显表GTI135/GTI145、微差压变送器GTI131等,欢迎您莅临现场参观交流。二、扫码有礼端午节来临之际,GTI吉泰精密特别推出现场扫码签到赠送艾草香囊及GTI文创漆扇活动!数量有限,先到先得,快来现场参与吧! 本次2024零碳大会将持续至5月28日,GTI吉泰精密展位023、025期待您的光临!
  • 国产法医DNA检测平台研发解密
    陈力在生产车间向记者介绍法医DNA检测平台的生产情况  12月3日,&ldquo GA118-16A型&rdquo 国产法医DNA检测平台在福建省福州市正式发布。这一检测平台打破了多年来外国公司在此领域的技术垄断,在打击犯罪等方面产生了深远影响。在该检测平台的幕后,还有很多鲜为人知的研发故事  在一处案发现场,法医小心地用工具夹取了粘在枕头上的一根毛发,并迅速把它装入证据袋中。随后,相关的DNA数据在实验室中被迅速检测出来,犯罪分子迅速被警方锁定。  这是如今美国电视剧中常见的桥段。  而在现实中,DNA检测技术也早已成为最有效的刑侦技术手段之一。  来自公安部第一研究所(以下简称一所)的统计数字显示,目前我国已建立超过400家DNA实验室,年度受理案件10万余起,检验检材75万余份,DNA数据库规模也已超过1200万人份。  令人遗憾的是,在上述400多家DNA实验室中,包括DNA检测平台在内的关键设备全部来自进口。昂贵的费用不仅严重制约了DNA检测技术在公安一线的推广应用,也限制了我国法医DNA检测技术的进一步发展。  这一窘境已在一周多以前被打破&mdash 12月3日,&ldquo GA118-16A型&rdquo 国产法医DNA检测平台在福建省福州市正式发布。据业内人士评价,该平台的应用将有效增强我国预防和打击刑事犯罪的快速反应能力、犯罪证据认定能力以及物质条件保障的自给能力。  而在首个国产法医DNA检测平台的幕后,还有很多鲜为人知的研发故事。  从血型到DNA  &ldquo 世界上第一次将DNA应用在生活中是在1985年,在英国一个叫做拿波若的小镇上发生的一起谋杀案中。&rdquo 39岁的赵兴春对于DNA的历史了如指掌,他甚至还写过一本名为《DNA作证》的科普读物。  不过,赵兴春的主要身份并不是&ldquo 作家&rdquo ,而是我国DNA检测权威部门、公安部物证鉴定中心(以下简称物证中心)的专家型官员。  赵兴春告诉法治周末记者,在DNA技术应用到刑侦领域之前,刑侦领域主要是依据血型检测和酶型检测。&ldquo 血型大家都知道,而酶型比血型要高级一些,是通过对蛋白进行分析&mdash 比如犯罪现场的精斑,因为每个人它里面含的东西不一样。&rdquo   赵兴春说,但不论是血型还是酶型,在进行区分的时候都无法做到像DNA那么准确。而DNA就像指纹一样,有唯一性。  1989年,我国首次将DNA检测技术应用到案件侦破工作中。在第一批案子中,有一个新疆女大学生的案子令赵兴春印象尤为深刻。  &ldquo 当时那个女学生一口咬定她的孩子是(和)一位老师(生)的。老师说不是,但又没有办法证明,因为血型不能确切证明是不是他的。后来,就做DNA检测。&rdquo   赵兴春说,此时的DNA检测还是第一代技术DNA指纹图谱技术,操作比较繁琐,对样本的要求很高,要抽一定量的血,而且需要用到同位素,对实验操作者的身体伤害也比较大。  &ldquo 后来检测结果出来,孩子还真不是那个老师的&hellip &hellip 那个老师终于得以洗刷清白。当时,他因为被冤枉,好像都快(得)神经病了。&rdquo 赵兴春说。  1996年,赵兴春进入物证中心,此时正赶上DNA检测从第一代技术向第二代技术的过渡,国内的DNA检测应用水平也跟着突飞猛进。  &ldquo 因为第一代技术对检材的量要求比较高,但在实际案件当中,它不可能给你准备那么大的量&mdash 物证量是很小的,所以必须要发展需要检材比较少的技术。&rdquo 赵兴春解释说。而新一代的荧光标记复合扩增技术实现了这一目标,它可以对DNA进行人工复制,来满足检测的要求。  受制于人造成&ldquo 贵族检测&rdquo   虽然DNA检测应用水平和国际同步,但由于所有的设备、耗材还有试剂都源自进口,因而就留下了受制于人的隐患。曾经在一段特殊时期内,外国公司以技术原因为由断供了试剂。  &ldquo 人家说&lsquo 我们因为技术原因,产品生产不出来&rsquo 。结果有好几个月试剂没法供应,我们想买也买不到。&rdquo 赵兴春说。  更令人担忧的是,在这种情况下建设国家DNA数据库将面临巨大的风险。赵兴春举例说,一旦某一天外国公司停止供应相关的设备材料,耗费巨资建成的国家DNA数据库就瞬间瘫痪,之前的投资也相当于打了水漂。  &ldquo 这个东西如果不能确保持续使用,就等于你没有办法去做DNA比对,也无法录入新的DNA样本,这样就一下被打回了30年前。这就会对国家安全造成影响,破案的效率会大大降低。&rdquo 赵兴春解释说。  此外,由于技术垄断,进行DNA检测的相关设备、材料的价格也非常昂贵。  以作为消耗品的试剂为例,在2006年以前,一个容量为1毫升的试剂盒的售价高达4万多元,价格远超黄金,平均下来要每人份200多元。假设一个实验室一年处理5000个样本,每年仅试剂的开支就高达百万元。  &ldquo 第一仪器贵,第二试剂贵。所以对我们公安机关来说它是&lsquo 贵族检测&rsquo ,用不起。用不起怎么办?只好有选择性的。所以就只能用在杀人案上,大案就用一用,小案就靠别的其他技术手段。&rdquo 赵兴春说。  在这种背景下,DNA检测试剂的研发提上了日程。在赵兴春和同事们的努力下,2004年12月5日,由物证中心自主研发的法医DNA检测试剂通过了公安部组织的验收鉴定。  赵兴春还记得,就在成果发布的当天,国外公司就立即把试剂的价格降低了一半,比他们自己国家的价格还要便宜。&ldquo 所以国产试剂是已经尝到这个甜头了,当然我们自己的试剂更便宜,平均下来只要50多元每人份。&rdquo   不过,为了保证利润,外国公司又将仪器设备和耗材的价格提了上去。不仅如此,该公司还在自己的产品上添加了标签并推出新的设备,而新的设备只能识别该公司自己的试剂。刚刚研发出来的试剂再次面临受制于人的风险。  从零起步  2006年11月8日,在公安部时任领导的推动下,公安部启动&ldquo 118专项&rdquo 。一所和公安部物证鉴定中心携手接下了国产DNA检测平台的研发任务,并在此基础上,继续承担了该领域科技部&ldquo 十一五&rdquo 国家科技支撑计划&ldquo 法医DNA专用检测平台关键技术研究&rdquo 项目。  据项目总师、一所研究员陈惠民介绍,整个项目被分成了硬件平台、采集软件、分析软件、耗材4个课题,其中前两个课题由一所负责,后两个课题由物证中心负责,整个团队大约有50多人,其中年轻人占大多数。  &ldquo 跟试剂相比,我们对仪器的印象就是一个黑匣子。毕竟对试剂的应用我们还有一些了解。&rdquo 陈惠民跟法治周末记者坦言,研发的难度超乎想象。  由于有着产业化的成功经验,庞晓东所在的一所安检事业部得到了其中难度最大的硬件平台和采集软件的研发任务。当他和他的同事们听到自己将要参与研发DNA检测平台时,他们的第一反应是&ldquo 开玩笑&rdquo 。  &ldquo 做DNA测试仪?太开玩笑了。我们自己都觉得不可思议,什么都不懂。&rdquo 庞晓东笑着回忆说。  庞晓东2008年年初担任安检事业部主任助理。他告诉记者,他所在的开发团队中有学电路设计的、光学设计的、结构设计的、软件开发的,但都和DNA没关系。和DNA&ldquo 离得最近&rdquo 的是做化学分析的,但化学分析与生物化学还是&ldquo 隔行&rdquo 。直到项目中后期,才有学法医和生物化学的研究人员进入团队。  在安检事业部副主任、原开发部主任陈力看来,这些当时30岁左右的年轻人,由于大多刚刚硕士毕业参加工作,实际上相当于新人。&ldquo 基本上这个团队做研发,差不多是从零起步。什么都不了解,需要做哪些都不知道,水有多深也不知道。&rdquo   于是,找老师补课成为研发人员们的首要任务。研发的过程也成了一个不断学习的过程。  &ldquo 最开始找的是中国刑事警察学院的李树老师,给我们连续讲了一个星期。&rdquo 庞晓东说,虽然感到茅塞顿开,但仍然有很多东西不明白,于是大家又反复查资料、问问题。&ldquo 物证中心那边也非常热情,我们也跟着他们去学习,包括怎样操作仪器。&rdquo   陈惠民告诉记者,正确的认识和理解是整个DNA检测平台研发的关键。&ldquo 一旦我们理解了这个系统的工作原理,我们就能够设计这个系统,通过实验完善各个器件之间的关系,最后把要求的整个系统和指标做出来。&rdquo   &ldquo 这么难的机器你们能做出来?&rdquo   庞晓东坦言,整个项目从头到尾大家都承受了特别大的压力&mdash 而这些压力很大一部分来自于外界的质疑。  "这么难的机器你们能做出来?&rsquo 很多人抱着看笑话的心态。&rdquo 庞晓东说,由于当时整个项目是保密的,这些质疑声主要来自于公安系统内部,因此大家的压力都特别的大。  而由于一切都是从头开始,既没有原理图,也没有可以直接参考的资料,再加上大部分研发人员没有什么工作经验,所以研发进展并不顺利。尤其是光路的部分,在很长的一段时间内都没有任何实质性突破。  陈力还告诉法治周末记者,部里对技术路线的安排也影响了研发的进度。&ldquo 课题分成了一二三四,就是不仅要整体替代外国产品,还要分别替代,这就把我们给&lsquo 框死了&rsquo 。因为你得考虑兼容问题,不能自成体系。&rdquo   陈力解释说,之所以有&ldquo 分别替代&rdquo 的安排,是因为研发的风险比较大。这样一来,某一课题的失败不会影响到整个项目&mdash 即使做不出来,还可以用进口的产品替代。  此外,由于整个系统涉及光、机、电、生化等多个方面,极其复杂,因此原本分解完成的各个部分往往各自独立检测能够通过验证,但相互结合的时候又会出现适应性方面的问题,需要反复修改、磨合。  &ldquo 从2007年开始预研,一直到2010年还没有成型的东西拿出来。包括我们自己内部有些人都动摇了。2010年2月份的时候,小组内也开始有人提出疑问,能做出来么?而且这种声音的比例还挺大。&rdquo 庞晓东回忆说。  陈力告诉记者,由于项目涉及的专业领域太多,各个专业之间隔行如隔山,有的部分虽然直接负责的研发人员有信心,但其他专业的人会质疑。&ldquo 只有样机出来才能确认能否做得了,大家才都有信心&rdquo 。陈力说。  于是,为了稳定军心,项目组决定要尽可能快地做出一个样机出来。  &ldquo 即使天天晚上加班也一定要把它做出来。自己的软件不行,就先用国外的软件连着 光路(部件)不行,先拿国外的光路(部件)用着。无论如何要能看到这么个东西。&rdquo 庞晓东说。  2010年5月,第一台样机正式诞生。虽然这台样机的性能还没有达到国外同类产品的水平,但已经表明,这些年轻人也可以做出这样一个高端的科学仪器来,这给了研发团队极大的信心,外界的质疑声也小了很多。  成功背后的付出  事实上,除了在研发方面要突破重重阻碍,把设计出来的图纸变成实实在在的产品同样面临着相当大的困难。尤其是DNA检测平台属于精密仪器,对零部件加工的要求很高。  以荧光激发系统来说,该系统用于引导激光激发毛细管阵列内的样品荧光标记,要求激光会聚精度高达10微米。  &ldquo 虽然我们可以把嫦娥送到月球上去,但实际上我们在基础方面的差距仍然很大。像我们有的东西不是不想做,但国内加工水平做不了。&rdquo 陈力告诉记者,我国的科学仪器领域比国外要落后二三十年,而这种落后不仅有设计能力的落后,也包括加工能力的落后。  所以,找一个合适的加工厂加工出合格的零部件,成为这些研发人员必须要过的一个坎儿。但往往却是,有加工能力的大厂因为数量太小而不愿意接手 而那些愿意接手的,加工能力又达不到要求。  &ldquo 你比如说这个针阀,看起来很小,但结构却很复杂,而且必须做到高压密封,要能承受100个大气压。&rdquo 常海龙负责结构设计,他告诉记者,一个零部件的加工常常需要多个来回的反复沟通。很多研发人员甚至干脆跑到厂里盯着。  其实不光是零部件的加工,包括整个DNA测试平台的搭建也全靠研发人员自己动手。庞晓东说,尤其是后期样机试制阶段,同事们每天加班到深夜是再正常不过的事情,不少人都是带病坚守。  最终,等到第五台样机组装出来的时候,整机的性能已经达到设计要求,有些方面像光学性能的效力甚至已经超过国外设备同类部件的性能,研究任务基本完成。  2012年10月,整个项目顺利通过了验收。&ldquo 平行测试的结果显示,我们的设备和国外同类设备在检测结果上基本一致。&rdquo 陈力说。  &ldquo 研发团队的年轻人放弃了很多。这个事情就是不断地产生想法,不断地试验,不断地验证,然后不断地解决问题的一个过程,这就需要大量的时间和精力。周末不休息都是经常的状态,甚至包括亲人去世、家人生病时,都没能请假。&rdquo 陈惠民回忆。  陈力也笑着对记者说,研发团队里的年轻人正好赶上了恋爱、结婚或生孩子的时光,很多人甚至为了项目把生孩子的事情都推迟了。&ldquo 我们有些时候开玩笑说,这个项目已经生出八九个孩子了。&rdquo   不仅仅能震慑犯罪  2013年上半年,公安部刑事侦查局、科技信息化局等联合组织上海、福建等10个省市公安机关DNA实验室对&ldquo GA118-16A型&rdquo 国产法医DNA检测平台进行了测试。  测试表明,该检测平台及配套耗材已可以满足我国法医DNA检测应用需要,整体性能达到了国外同类先进技术产品水平,可以替代国外同类产品,彻底打破了国外企业的垄断。  后据公安部第一研究所所长仇保利介绍,该项目先后投入科研经费达1.4亿元,实现了多项重大关键技术突破,已获得发明技术专利40余项,形成了具有完全自主知识产权的关键技术体系,填补了国内相关领域技术的空白。  &ldquo 在实际应用当中,就是可以缩短破案周期,节约成本投入。如果能够在第一时间内提供检测结果,就能快速锁定破案的方向。&rdquo 赵兴春说。  在赵兴春看来,虽然目前国内已经建立了400多家DNA实验室,但就公安侦破工作来说,还远远不够。而国产DNA检测平台的发布将有助于建设国家DNA数据库和更多的DNA实验室,侦破更多案件。  &ldquo 事实上,DNA技术最大的一个贡献就是能够起到一种震慑犯罪的作用&mdash 它让人不敢犯罪,因为你(如果)犯了(罪)就会被绳之以法。现在每一起命案背后都会有DNA技术的身影,大量的案子也得以侦破。尤其是这两年,命案发生率有了明显的下降。&rdquo 赵兴春说。  陈力也告诉记者,虽然法医是DNA检测平台应用的主要领域,但在社会其他领域例如医疗、科研等也有着广阔的前景。  &ldquo 比如在疾病的诊断中,DNA检测可以做辅助判断,看基因里面得哪种病的概率比较高。像之前美国的电影明星安吉丽娜· 朱莉就做了预防性的乳腺切除手术。&rdquo 陈力说。  不过,赵兴春也坦言未来还面临着很多挑战。&ldquo 原来是垄断的,用户可能不敢在人家(外国公司)面前提的要求,现在会提出来。我们刚刚起步,就像步履蹒跚的婴儿,人家已经是成人了。但是用户会拿成人的标准衡量你,所以这就要你快速地成长起来。&rdquo   陈惠民也表示,下一步就是要继续把DNA检测平台做好,尽快建立起自己的产品线和国外的产品进行竞争。  &ldquo 作为科研人员,我们当然希望自己做出来的东西能够有用,能够被社会所接受。在推广过程中也会遇到各种各样的问题,我们也会去改善。同时也会注重新技术的开发,因为如果一项技术被新技术替代了就没有生命力了。&rdquo 陈惠民说。
  • 日本地震对我国精密测量和计量产生影响
    中国计量科学研究院专家接受本报记者采访时表示:日本地震对我国精密测量和计量产生影响  3月11日,日本东北地区发生9.0级强烈地震。中国计量科学研究院力学与声学研究所振动冲击研究室的副研究员蔡晨光在接受本报记者采访时表示,如此强度的大地震,对我国精密测量和计量将带来一些影响。  蔡晨光所在的振动冲击研究室是从事振动、冲击、转速3个计量专业的实验室。振动冲击转速计量是涉及多学科的动态测量技术,它广泛应用于机械制造、车辆船舶、航空航天地球物理、地质物探等众多科研和工程领域,在国民经济建设中发挥着十分重要的作用。蔡晨光说,日本地震对精密测量和计量的影响,从时间上可以分为两个阶段:第一个阶段是地震和余震持续发生时 第二个阶段是震后地质稳定周期。  这次日本地震的震级达到了9.0级,释放的能量较大,其低频振动分量传递较远,对我国高精密计量仪器有显著的影响。  据了解,高精密测量和计量仪器对环境振动的要求极高。美国环境科学和技术研究院经过大量的理论和实验研究推荐:微米级的测量要求1~100赫兹频带内的环境振动控制在12.5微米/秒以下(VC-C级),否则无法保证精密测量的测量精度。例如,1000倍的精密显微镜,要想保证其测量精度,必须对环境振动进行严格控制,否则就会出现丢失像素,甚至丢失整帧图像的问题 而对于测量精度更高的扫描电子显微镜和透射电子显微镜,则要求环境振动控制在VC-D级(即1~100赫兹频带内的环境振动控制在6微米/秒以下) 对于纳米级的精密测量,例如半导体线宽、三磷酸腺苷及DNA测量,对环境振动的要求更高。美国国家标准和技术研究院(NIST)还针对纳米尺度的计量开展了大量研究,制定了纳米计量需要满足的环境振动标准。  据蔡晨光介绍,由于日本地震的影响,中国计量科学研究院的环境振动远远超出了精密计量所需要控制的量级。“虽然计量院昌平基地的一些精密实验室位于地下14米,可以隔离掉一部分地表传播的地震波,但是对于深度传播的低频地震波却无法进行有效衰减,致使高精密测量仪器无法正常工作。”他举例说,由于地震的影响,精密质量比较仪会长时间内无法稳定,致使高精度的质量量值无法传递和溯源 纳米尺度的精密测量仪器也会受影响而导致无法正常工作。  蔡晨光说,目前中国计量科学研究院昌平基地还没有建立起环境振动的实时监测系统,还无法实时、有效、准确地评估日本大地震这类偶发事件对高精度计量溯源系统的具体影响。“我国现在急需建立环境振动的实时监测系统。”  除了地震波给精密测量造成的直接影响外,在震后的地质稳定周期,精密测量和计量也会受到影响。据蔡晨光介绍,地震将会造成一定程度的地质运动,在震后需要长时间的稳定周期。例如由于地质的液化会造成地面倾斜,地面的倾斜角会在地质状况稳定过程中发生持续漂移变化,而地面倾斜角是精密导航系统中的一个关键参数,需要进行精确测量。  据介绍,在地质情况稳定状态下,地面倾斜角的累积变化量较小,不会对精密导航系统造成太大的初始误差。而当地震发生时,由于地质运动及地质液化造成的倾斜角偏移,将极大地改变当地的倾斜角,从而带来较大的初始误差。所以在地震发生后的很长一段时间内,都需要对倾斜角进行监测,从而保证导航测量的精准。  “在计量院昌平基地有很多精密隔振平台,这些平台上的很多测量系统对倾斜角都比较敏感。例如长度计量中,激光平台和被测平台可能在相邻两米的两个平台上,如果地面倾斜角发生0.001度的变化,垂直方向即会发生35 微米的位移变化,这么大的位移变化即使是微米级的测量都无法允许的,更不要说是纳米测量。”蔡晨光说,我国急需建立倾斜角测量系统和监测系统,来保障我国计量量值复现的准确性和可靠性。
  • 半导体、精密仪器发展对精密定位运动系统提出更高要求—访日照阿米精控孟令臣
    近日,日照阿米精控科技有限公司参展了第十三届纳博会。展会现场,仪器信息网就解决方案、市场热点、国产替代等话题采访了日照阿米精控科技有限公司孟令臣工程师。孟令臣表示,日照阿米精控致力于解决精密仪器以及半导体产业的精密控制的一些“卡脖子”问题,带来了纳米电容传感器、系列纳米扫描平台、纳米定位平台等产品......更多观点请查看视频以下是对日照阿米精控科技有限公司孟令臣工程师的现场采访视频:2022年3月1-3日,由科技部、中国科学院指导,中国微米纳米技术学会、中国国际科学技术合作协会、国家第三代半导体技术创新中心(苏州)主办,苏州纳米科技发展有限公司承办的第十三届中国国际纳米技术产业博览会(CHInano 2023)在苏州国际博览中心举行。本届纳博会为期3天,聚焦第三代半导体、微纳制造、纳米新材料、纳米大健康等热门领域,开设1场大会主报告、11场专业论坛、344场行业报告、22000平米展览、2场创新创业大赛,包括19位院士在内的300余位顶级专家、行业精英齐聚一堂,新技术、新产品、新成果集中亮相,为大家奉上一场干货满满、精彩纷呈的科技盛会,推出专业论坛、创新赛事、沉浸式游学等系列活动,全方位释放大会红利,推动产业生态建设,共绘美好发展蓝图。回望过去,寄语未来。展会现场,仪器信息网采访了15位专家、厂商代表,分别谈了各自的与会感受以及他们眼中中国半导体、MEMS、OLED、半导体设备、科学仪器、微流控、封装技术等产业的发展现状和前景展望。
  • 赛默飞将承担北京药检所1422台精密仪器搬迁项目
    仪器信息网编辑最新获悉,赛默飞或将承担北京市药品检验所(北京市保健食品化妆品检验中心)1422台/套精密仪器的搬迁项目。  据悉,该单位计划5月份从西城区水车胡同13号搬迁至昌平区中关村生命科技园内,其中涉及到了1422台/套高价值精密仪器设备的搬迁任务。  2015年4月9日,该单位就上述仪器搬迁项目发出招标公告,希望寻求具备较强的技术能力和经验的服务商,主要是指能够提供仪器设备整体搬迁的方案制定,组织实施和搬迁的后续服务等。  鉴于该项目的特殊服务以及时间要求,为加快采购进度,该单位申请将该项目采购方式变更为单一来源。  最终经评委会评审,仅赛默飞世尔科技(中国)有限公司符合招标要求合格,成为拟定的唯一供应商,搬迁经费预算为362.7万元。编辑:刘玉兰
  • 计量院与清华共建精密测量联合实验室
    中国计量院与清华大学共建精密测量联合实验室签约仪式在京举行强强联合 优势互补 共创一流蒲长城陈希出席并讲话 1月14日,中国计量科学研究院(以下简称中国计量院)与清华大学共同建立精密测量联合实验室签约仪式在北京举行。这标志着中国计量院在交流合作、提升能力、凝聚人才、创新机制方面取得了新突破。国家质检总局副局长蒲长城、国家教育部副部长陈希出席签约仪式并讲话。 双方于2008年6月就启动了联合实验室的筹备调研工作。中国计量院是国家最高计量科学研究中心和国家级法定计量技术机构,具备了计量科学研究的综合优势和实验条件。清华大学是中国著名高等学府,是中国高层次人才培养和科学技术研究的重要基地之一。联合实验室建立的宗旨就是为了充分发挥双方的资源优势,建立开放共享的综合性研究平台、人才培养和交流平台、国际合作研究平台以及信息交流平台。联合实验室将聚集一流的技术、设施和人才,共同开展与计量科学有关的前瞻性、原创性和长期性基础研究和科研合作。通过研究项目培养计量科技人才,带动大学建立计量学科,有效促进大学重点学科和国家计量事业的可持续发展。 据介绍,联合实验室的合作领域将集中在精密测试技术研究和计量前沿科技研究上。具体的研究方向包括空气及组分气体折射率精密测量、重力加速度绝对测量、光钟、原子钟、离子钟的研究等。 蒲长城在签约仪式上表示,希望双方能将联合实验室建成机制创新的示范实验室,在人才培养机制、激励创新机制、交流合作机制、资源共享机制以及联合实验室管理运行机制等诸方面积极探索,为质检科技其他方面开展交流合作提供更多宝贵经验。 陈希认为,清华大学与中国计量院的这次合作是高等院校与国家级科研院所的一次强强联手,通过双方的共同努力,一定能培养一流的科研人才,创造一流的科研成果,建立具有国际水平的实验室。 中国计量院院长张玉宽、清华大学副校长康克军分别代表双方在协议上签字。
  • GTI吉泰精密闪耀2023中国制冷展!
    2023年4月7日,第34届中国制冷展在上海新国际博览中心拉开帷幕。GTI吉泰精密作为合作单位,参加了本次展会,为参展观众带来一系列重磅产品及通风测试领域测量解决方案。 GTI管道漏风量测试机一经亮相,便吸引了众多客户前来参观咨询。本仪器用于空调风管、消防风管及密闭空间的漏风量测试,可对分段管道和整个系统安装后的总管道进行检测,保证系统的工作效率,避免能源浪费。 GTI全新推出的管道漏风量测试机DALT6910集成了欧美及国内风管行业多种现行测试标准,根据相关的鉴定标准进行检测后,可直接确定管道的密封性是否合格。通过外接打印机可实现打印功能,且整机尺寸小,重量轻,家用轿车后备箱即可装载运输,可测流量范围更大。触摸屏一体化操作,LCD彩屏显示,良好的人机交互界面可实现测试全过程操作。 GTI直流式小型风洞X5605,能够提供高精度且稳定的流速,可将风速传感器、皮托管或其他实物模型固定在风洞的可视测试实验段后进行反复吹风,即可得知测试数据或物理量变化。 GTI展台吸引了众多参观者的目光,现场人气满满,风量罩GTI620、微差压计等产品也备受客户欢迎,GTI工程师们通过耐心细致的讲解,为客户带来全面专业的服务体验。 此次展会,GTI团队有幸与诸多业内专业人士进行深入的探讨交流与学习,并且结交众多行业新用户,对GTI在产品创新和发展有了进一步的助力。 GTI将继续坚持科技创新,在制冷、空调、供暖、通风检测行业稳步前行,以更精益的品质和完善的服务回馈于广大客户,为新老客户创造更多价值!本次盛会将持续到4月9日,GTI吉泰精密恭候您的莅临!
  • GTI吉泰精密邀您参加第8届中国被动房设计师大会
    第8届中国被动房设计师大会将于2024年6月18日在北京华腾美居酒店多功能厅举行。本届会议由都市发展设计集团有限公司、南通温科新材料科技有限公司主办,绿色建筑研习社承办,会议将邀请10位嘉宾,以项目为例,分享超低能耗建筑设计策略、先进技术、实践经验等。GTI吉泰精密作为超低能耗建筑产业优质产品供应商,应邀参加此次会议,与您面对面交流被动房工程中建筑气密性、门窗气密性测试解决方案,为广大行业人员提供产品参考。一、建筑气密性测试系统GTI650GTI650 是一款技术先进、设计科学的建筑物气密性检测设备,主要用于测试建筑围护结构的气密性水平,诊断和演示空气渗透问题以及估计自然空气渗透率以及空气渗透所产生的能效损失,并可用于对建筑整体性能进行评估,用于建筑物能效,建筑物气密性检测,降低用能需求,提高能源利用效率。二、手持式微差压计GTI115GTI 115 是一款测量精度高、性能稳定、操作简单,用于非腐蚀气体的手持式微差压测试仪。适用于测量气体的正压,负压及差压,是医院,洁净室,实验室,暖通空调,壁挂炉燃气压力测试或标定压力的理想仪器。连接皮托管可测风速、风量。具有数据存储功能和导出功能,更加方便用户使用。三、叶轮风速仪GTI600GTI 600是一款手持式叶轮风速仪,可更换大、中、小三种叶轮式传感器,广泛应用于精确测试散流器、格栅出风口和过滤器等不均匀分布的风速、温度并计算风量。在“双碳”目标战略背景下,被动式超低能耗建筑产业发展其时已至,其风正劲。GTI吉泰精密致力于为建筑节能行业提供高效、精确的气密性检测解决方案,以帮助企业实现超低能耗标准、近零能耗标准和零能耗标准的目标,我们期待在本次大会上与您建立深入的交流与合作,共同推动建筑节能行业的繁荣发展,期待您的到来。
  • 海南大学精密仪器高等研究中心成立
    日前,海南大学精密仪器高等研究中心(以下简称中心)正式成立,与海南大学分析测试中心合署运行。据介绍,中心拥有一支具备独特专业技术优势的电子显微镜专家团队,建有材料和物质科学领域全国和东南亚地区最大的皮米电镜实验室。中心现有精密仪器设备共计132台,总价值1.8亿元,包括3台球差校正透射电子显微镜、7台电子显微镜、三维原子探针、核磁共振、多台套波谱仪、光谱仪、质谱仪设备等,可满足材料、物理、化学、医药、农学、机械等不同学科和不同专业的科研需求。中心以大型精密仪器设备共享和科技服务为主线,融合精密仪器研发、科学研究,人才培养和社会服务,旨在突破制约高校高端科学仪器设备研发和应用的制度藩篱,推动多学科协同创新与交叉融合,构建“产学研用管”全链条服务体系,建立大型精密仪器设备高效、高水平运行的全成本核算体制机制,打造推动高质量发展、服务国家战略需求的科技创新平台。面向国家重大战略和海南自贸港建设发展需求,中心将以建成高标准的学术研究平台为目标,持续开展关键核心技术攻关和产业共性技术研发,积极探索卓越拔尖创新人才培养体系,不断加强常态化国际学术交流合作,努力提升国内外一流大型精密仪器的社会共享服务水平和效率,实现科技成果快速高质量转化和应用推广。据悉,近年来,海南大学科研创新能力不断提升,高端仪器研制领域取得了突破性进展。以“脑血管光子计数显微CT成像与定量分析系统”为研制目标的海南大学教授刘谦团队在2022年获批国家重大科研仪器研制项目,填补了海南省国家重大科研仪器研制项目的空白;海南大学教授张喜瑞团队研发的智能仿形进阶割胶机,创新“自适应防偏捆绑固定装置”和“贴树仿形割胶”技术,解决了割胶深度稳定控制的关键技术难题,实现了毫米级精度作业,目前正在澄迈、屯昌等地推广示范1000余台;海南大学研究员万逸团队设计研发的FORBID荧光光电微生物检测仪,将生物分析、微电子、结构电子工程等多学科深度交叉融合,开创性地解决了复杂体系中微生物原位在线检测难题。
  • 三英精密进入新三板创新层
    近日,全国中小企业股份转让系统发布2022年第二次创新层进层决定的公告,三英精密脱颖而出,正式迈入新三板“创新层”,跻身“优等生”行列。回顾三英精密奋斗历程2013年:天津三英精密仪器有限公司成立2015年:通过国家级高新技术企业认定2016年:新三板挂牌成功,成立博士后工作站2018年:产品入选2018 年天津市中小企业“专精特新”产品2020年:成立合资公司,提升在石油地质领域的整体解决方案能力2021年:产品入选天津市首台(套)重大技术装备集成应用目录2022年:公司进入新三板创新层入选创新层的标准主要从企业盈利、收入增速、市值等三个维度进行考量。三英精密作为X射线CT无损成像技术的佼佼者,全面系列化产品提供整体解决方案,获得市场和用户的高度认可。此次入选创新层表明股转平台对三英精密营业规模、盈利能力和发展前景的充分肯定和进一步认可,预示着企业在高质量发展道路上行稳致远,未来可期。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 12月初大批精密设备将运往美国,首批300名台积电骨干家属赴美
    近日,据媒体报道,台积电首批300名骨干员工的家属登上美国客机,直飞凤凰城芯片工厂的配套住宅区。两周后12月初,再有大批精密设备将运过去,目前台岛工程师正在拆卸设备进行打包。美方随后还会安排大量客机把剩余的过千名芯片骨干接到凤凰城。台湾“中央社”、联合新闻网消息称,台积电创办人张忠谋21日证实,台积电将在美国亚利桑那州设立3纳米先进制程的晶圆厂。美国《华尔街日报》9日援引匿名知情人士的话透露,台积电计划在未来几个月内宣布将在美国亚利桑那州凤凰城北部再建造一座尖端的半导体工厂,投资规模约120亿美元,接近2020年拍板的5纳米工厂。新厂将采用最先进的3纳米制程,可用于制造目前最小、速度最快的芯片。报道称,台积电的这一决定是在华盛顿同意向半导体制造商提供补助金,以使先进的制造业回到美国本土后,该公司对在美国制造芯片所下的大赌注。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制