当前位置: 仪器信息网 > 行业主题 > >

快门相机

仪器信息网快门相机专题为您提供2024年最新快门相机价格报价、厂家品牌的相关信息, 包括快门相机参数、型号等,不管是国产,还是进口品牌的快门相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快门相机相关的耗材配件、试剂标物,还有快门相机相关的最新资讯、资料,以及快门相机相关的解决方案。

快门相机相关的资讯

  • Lumenera发布Lumenera Lt1245R 1200万像素CMOS相机新品
    Lt1245RPregius全局快门CMOS USB 3.1 Gen 1相机产品规格书 工业和科学相机宣传册Teledyne Lumenera Lt1245R采用索尼全局快门CMOS传感器中最大的SonyPregiusIMX253传感器。Lt1245R采用FPGA技术并集成帧缓冲和Teledyne Lumenera先进的图像处理技术,可从小尺寸的相机中提供高分辨率图像。 这使得Lt1245R非常适合机器视觉,生命科学,无人机和ATI应用。Lt1245R相机产品亮点彩色或黑白SONY IMX253 CMOS 1200万像素全局电子快门传感器1.1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt1245R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt1245RM 1200万像素黑白相机Lt1245RC 1200万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX253, 彩色, 黑白芯片尺寸:1.1″像素大小:3.45 x 3.45 μm分辨率:4112 x 3008 pixelsROI控制:Yes帧数:30 fps at 4112 x 3008位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 14μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:74 dB满阱容量:~10,500 e-相对响应率:61% @ 530 nm peak color, 68% @ 570nm peak mono读出噪声:~2.41e-暗电流噪声:1.2 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。产品亮点:全局快门CMOSCMOS传感器具有类似CCD的性能,并提高了帧速率P-Iris连接器,用于支持精确的光圈镜头控制高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍)高动态范围,高速,低读取噪声?2e-无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像容USB3 Vision兼Windows和Linux SDKLumenera Lt1245R 1200万像素CMOS相机
  • Lumenera发布Lumenera Lt945R 890万像素CMOS相机 新品
    Lt945RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt945R相机将先进的Teledyne Lumenera技术与SonyPregiusIMX255 CMOS全局快门传感器相结合。它的小尺寸和轻便设计意味着Lt945R非常适合机器视觉,生命科学和无人机的应用。 Lt945R采用FPGA技术并集成帧缓冲,提供快速,可靠的图像传输。Lt945R相机产品亮点彩色或黑白SONY IMX255 CMOS 890万像素全局电子快门传感器1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt945R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt945RM 890万像素黑白相机Lt945RC 890万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX255, 彩色, 黑白芯片尺寸:1″像素大小:3.45 x 3.45 μm分辨率:4112 x 2176 pixelsROI控制:Yes帧数:42 fps at 4112 x 2176位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 15μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:72.7 dB满阱容量:~10,500 e-相对响应率:63% @ 530 nm peak color, 67% @ 560nm peak mono读出噪声:~2.41e-暗电流噪声:1.3 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。产品亮点:全局快门CMOSCMOS传感器具有类似CCD的性能,并提高了帧速率P-Iris连接器,用于支持精确的光圈镜头控制高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍)高动态范围,高速,低读取噪声?2e-无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像容USB3 Vision兼Windows和Linux SDKLumenera Lt945R 890万像素CMOS相机
  • Lumenera发布Lumenera Lt545R 500万像素CMOS相机新品
    Lt545RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt545R相机采用SONY的高性能全局快门CMOS IMX250传感器,以最佳的图像质量和非常快的帧速率输出图像。Lt545R从SONY Pregius传感器提供最快的全分辨率图像,加上Teledyne Lumenera久经考验和可靠的USB 3.1 Gen1技术。可以使用硬件或软件触发来同步图像捕获。FPGA支持的性能,以及用于帧缓冲的板载存储器,即使在最苛刻的机器视觉系统中也能确保可靠的图像传输。Lt545R相机产品亮点彩色或黑白SONY IMX250 CMOS 500万像素全局电子快门传感器2/3“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt545R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用运动捕捉Motion Capture人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System自动驾驶车辆Autonomous Self-driving Vehicles超快3D扫描Ultra-fast 3D Scanning眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging粒子图像测速Particle Image Velocity Measurement工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt545RM 500万像素黑白相机Lt545RC 500万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX250, 彩色,黑白芯片尺寸:2/3”像素大小:3.45 x 3.45 μm分辨率:2464 x 2056 pixelsROI控制:Yes帧数:75 fps at 2464 x 2056位数:8 bit or 12 bit曝光时间:25μs to 71.6m (snapshot) 14μs to 9.6s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:73 dB满阱容量:~10,800 e-相对响应率:63%@ 530nm peak color, 69%@ 540nm peak mono读出噪声:~2.36e-暗电流噪声:1.5 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。产品亮点:全局快门CMOSCMOS传感器具有类似CCD的性能,并提高了帧速率P-Iris连接器,用于支持精确的光圈镜头控制高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍)高动态范围,高速,低读取噪声?2e-无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像容USB3 Vision兼Windows和Linux SDKLumenera Lt545R 500万像素CMOS相机
  • 自适应光学波前传感的理想选择—sCMOS 相机
    自适应光学波前传感的理想选择—sCMOS 相机牛津仪器 Andor sCMOS 相机作为自适应光学波前传感的优选设备,拥有高度并行的像素读出产生的高帧频,结合短曝光条件下的低噪声和高量子效率能够获得最佳信噪比图像。在本次技术说明中,我们比较了Andor sCMOS 系列中三款特别适合波前传感的相机: Marana 4.2B-6(具有CoaXpress接口) Zyla 4.2 PLUS(具有CameraLink接口) Balor 17F(具有CoaXpress接口)下表总结了每款相机的关键性能参数。表1 用于波前传感的三款 Andor sCMOS 相机的关键成像参数在第1部分中,我们将详细分析潜在的帧频性能,尤其是 ROI 模式下帧频的提升。在第2部分中,我们将比较三款相机相对“延迟”特性,这是自适应光学应用的一个重要考虑因素,因为它决定了图像在软件中的准备时间,以便作为闭环可变形镜像系统的一部分进行处理。Part 1 | sCMOS 帧频高速帧频性能对于波前传感至关重要,使用(ROI)子阵列能够实现每秒数百帧的图像采集。作为波前传感备选的成像探测器,表2显示了上述三款 sCMOS 相机在不同 ROI 阵列尺寸上的帧频。表 2 的关键成像参数(可用选项): 卷帘快门曝光模式 重叠(100%占空比)模式 16位(全动态范围)模式 中心 ROI 成像 CoaXpress(CXP)接口(Marana 和 Balor) CameraLink(CL)接口(Zyla)表2 三款 Andor sCMOS 相机在不同 ROI 阵列尺寸上的帧频 请注意,在比较 Marana 和 Zyla(均为2048 x 2048阵列)时,尽管 Zyla 能够实现更快的帧频,但 Zyla 是使用前照式芯片,通过在每个像素上使用微透镜来实现高量子效率。Marana 使用背照式芯片,在没有微透镜的情况下可实现高达95%的量子效率。此外,如果 Zyla 的 ROI 没有在垂直方向上居中,帧频将会降低(降低到原来的2倍),而对于Marana 和 Balor,ROI 可在任何区域,帧频的降低可以忽略不计。Part 2 | “延迟”比较科学成像相机用作波前传感器的一个关键考虑因素是“延迟”。由于波前传感成像是 AO 配置闭环系统的一部分,因此软件必须快速采集图像以进行实时处理,以便它能够持续地通知变形镜系统如何在到达科学探测器的过程中对入射波前进行重塑和展平。比较波前传感器相机,我们需要清楚地了解曝光、传感器读出和任何图像传输耗时相关的相对时间。在成像的时序流程中,对于“延迟”的定义可能存在一些主观的变化。为了在当前的比较研究中实现标准化,我们将考虑从曝光开始到软件处理该曝光时间内的完整图像/ROI 的整个端到端时间。我们还将通过假设曝光时间为 10 毫秒(帧频达到100 fps)进行标准化。但是请注意,我们比较的三款相机,这 10 毫秒的曝光对应于不同的 ROI 阵列大小和相应的视野。图 1 和图 2 为 Zyla 4.2 PLUS 与 Marana 4.2B-6 进行比较的时序示意图。sCMOS 相机之间的“延迟”区别如下:Zyla 必须先将整个 ROI 阵列(10 毫秒)读出到组装图像的相机 FPGA,然后再通过 CameraLink 接口传输图像,这里又需要10 ms。由于这些过程是按序发生而不是同时进行的,因此整个端到端处理接近曝光(10 ms)+ 读出(10 ms)+ 通过 CameraLink 的数据传输(10 ms)= 30 ms。注意,Zyla图像必须首先在 FPGA上组装的原因是其复杂的传感器读出,这涉及到同时读出阵列的两半,从中间行开始,向外分别移动到顶部和底部行。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。 Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机 PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Balor 未在所示的图中具体表示,但具有与 Marana 相似的单向传感器读出架构,区别在于 Balor 通过同时读取每组 4 行的数据来提高速度。因此,如果 Balor 定义了 ROI 阵列,其结果是曝光时间为 10 ms(相应的读数为10 ms),那么 Balor 的整个端到端过程也将近似于曝光时间(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。因此,相对于 Zyla 固有的“延迟”, Marana 和 Balor 的“延迟”减少了。然而,如第 1 节所示,Zyla 4.2 PLUS 相对于Marana 4.2B-6 可能具有更高的帧速。在为您的装置选择最合适的波前传感成像相机时,应在确切的实验要求范围内考虑这两个因素。图 1 和图 2 的关键成像参数(可用选项): 曝光时间/读出时间 — 10毫秒(需要选择ROI) 卷帘快门曝光模式图1 Zyla4.2 PLUS:表示曝光、读出和图像传输(通过 CameraLink接口)的计时示意图图2 Marana 4.2B-6:表示曝光、同时读出/图像传输(通过Coaxress 接口)的计时示意图。Balor 的实验数据接近Marana 4.2B-6
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 《自然》:科学家研制出世界最快相机
    新相机每163纳秒就能拍一幅图像     世界最快相机每秒拍610万张照片  北京时间4月30日消息,据美国《探索》杂志报道,光学研究人员已经发明了一种利用红外激光器反射物体上的光线的照相机,他们表示,这项发明将使摄影爱好者不再有技术差异。他们发明的这种照相机,一秒钟内可拍摄610万张照片,快门速度是四点四亿兆分之一秒。在这段时间里,光仅能前进不到一厘米。论文联合作者本田惠介(Keisuke Goda)说:“这是世界上速度最快的照相机。”  常规数码相机利用电荷耦合器(CCD)拍照。电荷耦合器里的半导体芯片在与光线发生反应时,会产生电子。电子读出芯片上的内容后,把它们转变成电子信号,然后通过电子放大,把这些信号编码成数码图像。但是常规数码相机的这个过程存在很大限制。最好的传统相机的最大相速大约是每秒30帧,而最先进的科学仪器大约可以达到每秒100万帧。对本田惠介和他的同事们来说,这种速度还不够高。  为了制造这种连续时间编码放大显微镜(serial time-encoded amplified microscopy,STEAM)照相机,这些研究人员发射一束红外激光,来扩大光脉冲,形成光谱图像。这项研究结果发表在《自然》杂志上。通过视频进行演示,解释了STEAM是如何产生作用的。然后这些研究人员把这种光线照在他们想拍照的物体上。这意味着物体的不同部位被不同波长的光照亮。发射光经过一个特殊的纤维光学电缆,使不同波长的光以不同速度传输。波长较长的光走在前面,而波长较短的光则落在后面。光束被放大后,由一个光电探测器读出来。这个光电探测器记录每种波长的光的到达时间,这种简单数据将被用来重新修改物体的图像。  人们可以利用这种照相机研究燃烧、激光切割和任何改变迅速及无法预测的系统。本田惠介说:“我认为以后每个科学家都会利用这种照相机。”
  • Lumenera发布Lumenera INFINITY5-3 320万像素CMOS显微相机新品
    INFINITY5-3320万像素全局快门CMOS显微相机高性能显微相机,适用于各种应用。具有双输出至HDMI和USB 3Teledyne Lumenera的INFINITY5-3是一款高品质的320万像素显微相机,可在高分辨率下提供高速度。 INFINITY5-3基于可与sCMOS技术相媲美的SonyPregius™ 全局快门CMOS传感器。 INFINITY5-3可在高达每秒120帧的高帧速率下快速聚焦,可在各种应用中使用。INFINITY5-3的1/1.8英寸传感器格式可容纳2064 x 1544分辨率,像素为3.45微米。 HDMI接口允许INFINITY5-3同时输出到计算机和HDMI电视或显示器,以用于知识共享至关重要的应用。在计算机和HDMI显示器上同时实时查看通过直接连接到HDMI显示器来操作相机,或通过USB 3将相机连接到PC或Mac进行图像预览和拍摄。无论是否连接计算机,都可使用轻触式响应按钮控制相机。随时准备好INFINITY5-3随时可以使用电缆(USB和HDMI),电源和INFINITY CAPTURE软件满足常规成像需求,包括相机设置调整,实时预览,图像拍摄和视频剪辑。 INFINITY5-3还提供与MetaMorph和Micro-Manager显微软件插件,MatLab系统工程软件,LabVIEW分析软件以及TWAIN和DirectShow接口的第三方互操作性。准确的颜色Teledyne Lumenera的专业算法可确保准确的色彩再现,从而使显示器上的样本预览与显微镜目镜中的视图相匹配。保证质量Teledyne Lumenera为所有显微相机提供行业领先的四年保修。产品亮点Sony Pregius全局快门传感器技术彩色或黑白IMX252全局快门CMOS传感器,1/1.8″光学格式,使用3.45 x3.45μm像素提供2064 x 1544分辨率8位全分辨率时帧速率达120 fps双输出至USB 3和HDMI兼容显示器直观的相机按钮,用于电源,白平衡和图像拍摄可选的8或12位像素数据高速USB 3.1 Gen 1接口,可实现最快的图像传输和简化的连接。支持USB 2.0软件与Windows 10,Windows 8.1,Windows 7,MAC OS X 10.13,32和64位操作系统兼容支持第三方拍摄和分析应用软件:MetaMorph和Micro-Manager推荐的C-mount耦合器:0.5x 或 0.63x推荐的应用明场/暗场/相差/微分干涉相差DIC(Bright Field/Dark Field/Phase Contrast/Differential Interference Contrast)绿色荧光蛋白GFP/荧光原位杂交FISH/近红外NIR/荧光共振能量转移FRET(Green Fluorescent Protein/Fluorescence In Situ Hybridization/Near Infrared/Fluorescence Resonance Energy Transfer)活细胞成像 (Live Cell Imaging)细胞计数 (Cell Counting)电生理学(Electrophysiology)凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)眼底成像 (Fundus Imaging)显微测量 (Microscopic Measurment)半导体检测 (Semiconductor Inspection)组织学/病理学/肿瘤学 (Histology/Pathology/Oncology)金相学/材料学/地质学 (Metallography/Materials Science/Geology)文档编制和归档 (Documentation and Archiving)包装盒中包含INFINITY5-3 320万像素数字显微相机配备3米USB 3电缆LuINFLTSW-CD – 带有INFINITY CAPTURE软件的CD,TWAIN驱动程序和文档La050315 – 电源,5VDC,15W,3A,国际标准La2030HD – 3米HDMI电缆订购选项INFINITY5-3C -320万像素CMOS彩色USB 3.1 Gen 1相机INFINITY5-3M -320万像素CMOS黑白USB 3.1 Gen 1相机LuIAP-2 – INFINITY高级功能包2:包含USB密钥,用于额外的INFINITY ANALYZE许可证+高级功能模块,5年总保修,1次更换产品La050315 – 电源,5VDC,15W,3A,国际标准La2000PAFL – 带引线的GPIO电缆La2030HD – 3米HDMI电缆技术规格图像传感器:SONY IMX252 1/1.8“ CMOS 彩色或黑白芯片尺寸:对角线8.9mm像素大小:3.45 x 3.45 μm分辨率:2064 x 1544 pixelsROI控制:支持帧率:1080P60 (~120 fps at full resolution) in 8-bit位深:8 bit 或12 bit像素合并:2 x 2 for mono增益:1~16x曝光时间:14 μs to 11.9s (video), 38 μs to 59.5min (snapshot)曝光:自动、手动可选白平衡:自动、手动可选灵敏度:Mono: 4.8 DN/(nJ/cm2), Color: 4.4 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:~73dB满井容量:~10,775 e-量子效率:60% @ 530 nm (color), 63% @ 530 nm (mono)读出噪声:~2.35e-暗电流噪声:1.0 e-/s (at 22 oC ambient, 35 oC internal camera)外型尺寸:97.8 x 69.8 x 50.8 mm电源要求:External 5 V DC, 1.2 A, power supply (included)功耗:~4 W工作温度:0°C to +50°C工作湿度:5% – 95%, Non-condensing接口:USB 3.1和HDMI镜头接口:可调节的C-Mount创新点:Lumenera向其显微镜相机系列发布了新的高性能INFINITY5系列高性能显微镜相机,适用于广泛的应用–具有HDMI和USB3双输出高性能数字相机和定制影像解决方案的领先制造商和开发商Lumenera Corporation高兴地宣布发布新的Lumenera INFINITY5系列。这些高性能的全局快门CMOS显微镜相机现在提供3.2和5.1兆像素分辨率的彩色和单色版本。Lumenera总裁Huw Leahy表示:“新的Lumenera INFINITY5系列显微相机延续了客户对我们品牌期望的高质量和高性能。” “这些相机可提供高分辨率和高速度,使其能够在各种应用中运行,并使INFINITY5系列成为几乎任何实验室或研究机构的多功能选择。”INFINITY5系列基于可与sCMOS技术匹敌的Sony® Pregius™ 全局快门CMOS传感器。 INFINITY5-3相机可以以120帧/秒,INFINITY5-5相机可以高达75帧/秒的高帧速率进行快速对焦,因此可以在各种应用中使用。INFINITY5系列相机配备了HDMI和USB 3的双路输出,允许INFINITY5系列同时连接到计算机和HDMI TV或显示器,以进行知识共享至关重要的应用。相机面板上的软触摸按钮可在连接或不连接计算机的情况下轻松控制相机。INFINITY5系列相机可随时与INFINITY CAPTURE软件配合使用,满足常规成像需求,包括相机设置调整,实时预览,图像捕获和视频剪辑。 INFINITY5系列还提供了与MetaMorph® 和Micro-Manager显微软件的第三方互操作性,并且在不久的将来还会有其他互操作性。Lumenera INFINITY5-3 320万像素CMOS显微相机
  • Lumenera发布Lumenera INFINITY5-5 510万像素CMOS显微相机新品
    INFINITY5-5510万像素全局快门CMOS显微相机高性能显微相机,适用于各种应用 – 具有双输出至HDMI和USB 3Teledyne Lumenera的INFINITY5-5是一款高品质的510万像素显微相机,可在高分辨率下提供高速度。 INFINITY5-5基于可与sCMOS技术相媲美的SonyPregius™ 全局快门CMOS传感器。 INFINITY5-5可在高达每秒75帧的高帧速率下快速聚焦,可在各种应用中使用。INFINITY5-5的2/3英寸传感器格式可容纳2464 x 2056分辨率,像素为3.45微米。 HDMI接口允许INFINITY5-5同时输出到计算机和HDMI电视或显示器,以用于知识共享至关重要的应用。在计算机和HDMI显示器上同时实时查看通过直接连接到HDMI显示器来操作相机,或通过USB 3将相机连接到PC或Mac进行图像预览和拍摄。无论是否连接计算机,都可使用轻触式响应按钮控制相机。随时准备好INFINITY5-5随时可以使用电缆(USB和HDMI),电源和INFINITY CAPTURE软件满足常规成像需求,包括相机设置调整,实时预览,图像拍摄和视频剪辑。 INFINITY5-5还提供与MetaMorph和Micro-Manager显微软件,MatLab系统工程软件,LabVIEW分析软件以及TWAIN和DirectShow接口的第三方互操作性。准确的颜色Teledyne Lumenera的专业算法可确保准确的色彩再现,从而使显示器上的样本预览与显微镜目镜中的视图相匹配。保证质量Teledyne Lumenera为所有显微相机提供行业领先的四年保修。产品亮点Sony Pregius全局快门传感器技术彩色或黑白IMX250全局快门CMOS传感器,2/3“光学格式,使用3.45 x3.45μm像素提供2464 x 2056分辨率8位全分辨率时帧速率达75fps双输出至USB 3和HDMI兼容显示器直观的相机按钮,用于电源,白平衡和图像拍摄可选的8或12位像素数据高速USB 3.1 Gen 1接口,可实现最快的图像传输和简化的连接。支持USB 2.0软件与Windows 10,Windows 8.1,Windows 7,MAC OS X 10.13,32和64位操作系统兼容支持第三方拍摄和分析应用软件:MetaMorph和Micro-Manager推荐的C-mount耦合器:0.6x 或 0.7x推荐的应用明场/暗场/相差/微分干涉相差DIC(Bright Field/Dark Field/Phase Contrast/Differential Interference Contrast)绿色荧光蛋白GFP/荧光原位杂交FISH/近红外NIR/荧光共振能量转移FRET(Green Fluorescent Protein/Fluorescence In Situ Hybridization/Near Infrared/Fluorescence Resonance Energy Transfer)活细胞成像 (Live Cell Imaging)细胞计数 (Cell Counting)电生理学(Electrophysiology)凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)眼底成像 (Fundus Imaging)显微测量 (Microscopic Measurment)半导体检测 (Semiconductor Inspection)组织学/病理学/肿瘤学 (Histology/Pathology/Oncology)金相学/材料学/地质学 (Metallography/Materials Science/Geology)文档编制和归档 (Documentation and Archiving)包装盒中包含INFINITY5-5 510万像素数字显微相机配备3米USB 3电缆LuINFLTSW-CD – 带有INFINITY CAPTURE软件的CD,TWAIN驱动程序和文档La050315 – 电源,5VDC,15W,3A,国际标准La2030HD – 3米HDMI电缆订购选项INFINITY5-5C -510万像素CMOS彩色USB 3.1 Gen 1相机INFINITY5-5M -510万像素CMOS黑白USB 3.1 Gen 1相机LuIAP-2 – INFINITY高级功能包2:包含USB密钥,用于额外的INFINITY ANALYZE许可证+高级功能模块,5年总保修,1次更换产品La050315 – 电源,5VDC,15W,3A,国际标准La2000PAFL – 带引线的GPIO电缆La2030HD – 3米HDMI电缆技术规格图像传感器:SONY IMX250 2/3“ CMOS 彩色或黑白芯片尺寸:对角线11.1mm像素大小:3.45 x 3.45 μm分辨率:2464 x 2056 pixelsROI控制:支持帧率:1080P60 (~75fps at full resolution) in 8-bit位深:8 bit 或12 bit像素合并:2 x 2 for mono增益:1~16x曝光时间:14 μs to 14 (video), 42μs to 59.5min (snapshot)曝光:自动、手动可选白平衡:自动、手动可选灵敏度:Mono: 4.9 DN/(nJ/cm2), Color: 4.3DN/(nJ/cm2)(Global and channel gains at unity)动态范围:~72dB满井容量:~10,500 e-量子效率:59% @ 530 nm (color), 63% @ 530 nm (mono)读出噪声:~2.30e-暗电流噪声:1.0 e-/s (at 22 oC ambient, 35 oC internal camera)外型尺寸:97.8 x 69.8 x 50.8 mm电源要求:External 5 V DC, 1.2 A, power supply (included)功耗:~4 W工作温度:0°C to +50°C工作湿度:5% – 95%, Non-condensing接口:USB 3.1和HDMI镜头接口:可调节的C-Mount创新点:Lumenera向其显微镜相机系列发布了新的高性能INFINITY5系列高性能显微镜相机,适用于广泛的应用–具有HDMI和USB3双输出高性能数字相机和定制影像解决方案的领先制造商和开发商Lumenera Corporation高兴地宣布发布新的Lumenera INFINITY5系列。这些高性能的全局快门CMOS显微镜相机现在提供3.2和5.1兆像素分辨率的彩色和单色版本。Lumenera总裁Huw Leahy表示:“新的Lumenera INFINITY5系列显微相机延续了客户对我们品牌期望的高质量和高性能。” “这些相机可提供高分辨率和高速度,使其能够在各种应用中运行,并使INFINITY5系列成为几乎任何实验室或研究机构的多功能选择。”INFINITY5系列基于可与sCMOS技术匹敌的Sony® Pregius™ 全局快门CMOS传感器。 INFINITY5-3相机可以以120帧/秒,INFINITY5-5相机可以高达75帧/秒的高帧速率进行快速对焦,因此可以在各种应用中使用。INFINITY5系列相机配备了HDMI和USB 3的双路输出,允许INFINITY5系列同时连接到计算机和HDMI TV或显示器,以进行知识共享至关重要的应用。相机面板上的软触摸按钮可在连接或不连接计算机的情况下轻松控制相机。INFINITY5系列相机可随时与INFINITY CAPTURE软件配合使用,满足常规成像需求,包括相机设置调整,实时预览,图像捕获和视频剪辑。 INFINITY5系列还提供了与MetaMorph® 和Micro-Manager显微软件的第三方互操作性,并且在不久的将来还会有其他互操作性。Lumenera INFINITY5-5 510万像素CMOS显微相机
  • 鑫图Aries 16相机 | 钙钛矿闪烁体极弱光探测实验
    钙钛矿材料因其优异的光电性能备受关注,在光电领域有着广泛的应用前景。其中,其闪烁特性在X射线成像、辐射检测等领域具有重要意义。通过对钙钛矿闪烁体进行性能测试,可以评估其灵敏度、响应速度、能量分辨率等关键指标,为其在各种光电应用中的性能优化和实际应用提供依据。近期,华中科技大学牛广达教授组使用鑫图Aries16成功完成了低剂量条件下的钙钛矿闪烁体的实验测试。该实验使用X射线源产生的高能X射线照射样品后,经过闪烁体变换将X射线信号转化为可见光信号,最后由Aries 16进行探测。图 1 钙钛矿闪烁体弱光探测实验装置示意图“因为相机实验空间里存在X射线,如果进行长时间曝光,图像上会充满高能X射线带来的雪花点,而进行短时间曝光,信号又太弱,我们之前使用的相机没有办法获得高质量的图像,但Aries 16拍出的效果超出了我的想象。” 负责此次实验的刘博士这样评价Aries 16 的应用优势。图 2 Aries 16 HDR 2000ms 所拍摄的图像Aries 16 是鑫图在科学弱光成像领域攻克EMCCD替代的重磅新品。它具有16微米像元尺寸和 90%的量子效率水平,同时读出噪声实现了<1.0e- 的关键突破,在极弱光下成像信噪比几乎与EMCCD (CCD97) 相当,可以有效降低X射线对图像质量的干扰;同时其Global Reset 功能还结合了全局快门和卷帘快门两种传统曝光方式的优势,可实现所有行同时开始曝光,并从上到下依次结束曝光,实现高速、低噪声、无失真的图像拍摄。
  • 条纹相机校准用-黑体校准积分球光源
    在开发用于测量光源色温 (CCT) 的相机系统时,对其进行正确的校准以提供准确的读数是非常重要的。通常使用已知温度的标准黑体光源来完成校准。 一家研究机构需要一个可以模拟 5000K 和 2856K 曲线的黑体光源来校准他们正在开发的条纹相机。 客户要求该系统尺寸足够小,可通过 340 mm的开口孔安装到用于其测试配置的腔室中。 图1 条纹相机(源于网络图片)Labsphere(蓝菲光学)为客户提供了一个准确、安全、易于使用且可以轻松集成到他们的测试环境中的黑体光源。系统中的 8 英寸的积分球有一个 2 英寸的开口,并配备了几个高级组件,使其能够满足客户的规格要求:图2 Labsphere(蓝菲光学)提供的黑体校准积分球光源图3 标准化测量辐亮度和5015K黑体曲线两个卤素灯,可在开口处提供高达 40,000 cd/m2 的光通量;开口端的色彩平衡 Omega 滤光片可调整 CCT 并将光谱输出完美匹配黑体曲线;硅探测器组件:用于测量可见光光谱通量的;以及光谱仪:用于测量两次测试之间的波长分布;-两个探测器的滤光片组件,包括一个快门滑片、附加色彩平衡 Omega 滤光片和一个用于第三个滤光片的滑片特定应用的安装底板,设计用于安装在腔室中,以及 3 米长的电缆,使电源机架和计算机能放在外面使用;制冷风扇,以防止意外灼伤和设备损坏。特点图4 面均匀性-97.5%具有 97.5% 的面均匀性,每次测试都能保证准确的结果;设计灵活,客户可使用一个系统在多种温度下校准相机;光谱输出与客户要求的黑体曲线完美匹配,提供与标准黑体光源相同的精度;使用 Labsphere (蓝菲光学)的 HELIOSense 软件可以轻松对每个组件进行微调控制以及实时数据收集和可视化;Labsphere(蓝菲光学) 保持与客户密切沟通,使客户能够获得专为他们的测试环境设计和构建的系统;提供的探测器可确保灯准确校准,并且提供可靠地测试数据。
  • 进军电影界:FLIR机器视觉相机在3D动画电影中的应用
    每当在电影出现新技术的时候,电影制作人们都会讨论这项技术的原理,在电影《攻壳机动队》中,剑道战士或倒茶艺妓等人物的实景全息图被投放到城市上空。这种展现形式其实是一种趋势,表示未来的3D广告可能由实景全息图或“单息图”进行展示,你可能会看见它们悬挂在空中、停留在建筑上方和建筑之间,或者在街道上的人群中间流动。那我们一起来了解一下这项技术吧!单息图的发展为了创建单息图,一家VFX和相机阵列技术公司Digital Air Inc.创建了一个特殊的运动摄影测量相机系统。在运动图片和视频游戏中进行了大量的摄影测量,以生成纹理结构的、测量体积的3D扫描,可对扫描执行操纵和动画处理以实现运动。虽然这种静态的摄影测量可生成非常真实的静态3D图像,但它依赖于对单个纹理地图执行和后期动画处理,而这会在对扫描进行动画处理时产生问题。例如,人脸和织物等复杂表面的运动看起来就不太自然。传统的摄影测量是瞬间性的,需要重新进行动画处理。但是在《攻壳机动队》的电影中,观众就体验到了完美的运动3D图像,这是如何做到的呢?全新的运动摄影测量系统在电影中使用的Digital Air系统采用的是圆顶状的装备形式,它由80个同步的FLIR Grasshopper (GS3-U3-50S5C-C)相机组成。这些相机以2.5k分辨率和24 FPS记录,创建纹理结构的多帧对象序列,这些序列的源对于每个3D模型都相同。FLIR Grasshopper的自动同步功能确保所有相机快门完美计时,这在运动摄影测量装备正确运行方面起到了至关重要的作用,同时设备中会记录所有演员的表演,以便制作电影的3D动画。Digital Air的硬件系统生成了一致的RGB数据,通过这些数据可实现每秒24个全身摄影测量扫描。现实中捕捉摄影测量软件用于创造序列化3D模型,以便将摄影测量扫描制作成规模和源保持一致的动画运动序列。每一帧都是一个全新的3D模型,但具有不同的纹理。该过程创造了可从任何视角呈现的资产,并且还捕获了逼真的原始表演动作。这与传统的3D扫描不同,通过Digital Air生成的扫描随后可以重新呈现在后期制作中,以重现原始表演与CG构建的背板和相机移动相结合产生的效果。通过此过程,还能增加一些细微差别,例如城市较富裕地区的高密度、高分辨率的声波图等其他地区中伪影的像素化声波图。Digital Air的创始人及总裁Dayton Taylor表示,他所希望的单息图是一项“视觉技术”,即之前从未出现过并且可以使电影中的各个演员都不尽相同。他觉得这需要充分发挥运动摄影测量的可能性,以便完美呈现电影效果。如果电影因其惊人的视觉效果而备受赞誉,这款产品可能会在全世界受到认可。随着科技的发展FLIR技术的不断进步Grasshopper的升级款:Blackfly S USB3、FLIR Blackfly S板级和FLIR Oryx 10GigE已上市一起来具体了解下吧~FLIR Blackfly S相机FLIR Blackfly S采用业内先进的冰块外形传感器。它具有强大功能,使您可以轻松生成所需的精确图像,并加速您的应用程序开发。这包括对图像捕获和相机预处理的自动和精确手动控制。Blackfly S提供GigE、USB3、套装和板级版本。您需要的精确图像索尼CMOS传感器中的选择包括:全局快门、偏振和高灵敏度BSI传感器。色彩转换工具可确保得到逼真的色彩先进的自动算法或精确的手动控制。FLIR Blackfly S 板级FLIR Blackfly板级变体属于高性能机器视觉区域扫描摄像头,设计用于嵌入狭小空间。与许多其他板级摄像头不同,它具有丰富的功能组,适合新的 CMOS 传感器,与箱式版本功能组相同。以其可靠的兼容性,随时可集成至主流SBC和SOM。Blackfly S板级型号采用嵌入式系统连接,具有丰富的功能,能够使 OEM 开发更小、更轻且成本更低的解决方案。FLIR Oryx 10GigE屡获殊荣Oryx 10GigE相机系列支持10Gbit/s 的传输速度,并能够以超过60FPS的帧率拍摄4K 分辨率的12位图像,从而允许系统设计员充分利用传感器。Oryx 的10GBASE-T接口是经过证明且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e 上提供可靠的图像传输。相机内部功能(包括 IEEE1588时钟同步以及与支持 GigE Vision的热门第三方软件完全兼容)为系统设计员提供了相关工具,以便快速开发创新型解决方案。如果这些产品受到认可并且流行了起来我们会不会在街上看见喜欢的人物形象呢?想要了解产品的更多信息
  • 重磅发布 | Marana-X--用于直接软X射线和EUV成像的超快、高灵敏相机
    近期,专业的科学成像与光谱解决方案供应商牛津仪器Andor Technology宣布推出新的Marana-X系列相机,专业用于高能射线的检测分析和成像。兼具高帧频、高动态范围、高量子效率 该产品集成全新科研CMOS技术(sCMOS),专为超快软X射线/EUV层析成像和高次谐波产生(HHG)等应用而设计。与传统的慢扫描CCD相机相比,Marana-X的出现代表了重大的技术进步。它通过同时提供高帧频、高灵敏度和高动态范围,克服了软X射线-EUV能量范围内慢扫描CCD的传统局限性。它集成了“无涂层”、420万像素的sCMOS传感器,在80 eV-1keV范围内量子效率大于90%、全幅速率为74帧/秒以及更高的动态范围(34000:1@16bit), 这种独特的组合使用户可以更好地采集动态变化的过程,增加高质量图像数据的输出通量,同时可缩短实验时间,非常适用于大型层析扫描图像的重构等实验。sCMOS内置的无快门技术解决了传统机械快门寿命和重复率有限的问题。Marana-X 同时配备即插即用的USB3接口和适用于高能物理环境的CoaXPress接口,可轻松集成到各种基于真空的实验装置中。牛津仪器Andor-高能探测产品专家Thomas Woodward 评价该款仪器:"Marana-X是对Andor高性能sCMOS产品系列的进一步补充。随着世界范围内高能物理光源升级到更高的光学通量和重复频率,科学家需要合适的探测器技术来最大限度地利用这些新的高能光源。Marana-X具备的高灵敏度、高帧频和出色的动态范围,是应对这些实验挑战的理想选择。" Marana-X 参数 项目参数高灵敏:QE高达99%高帧频:可高达74帧/秒高动态范围:可高至16位抗EMP:CoaXPress数据接口真空深度冷却:-45℃ 制冷
  • 强悍智能!奥林巴斯DP28和DP23显微镜相机全新上市,实现工业成像简化
    全新DP系列相机具备能够简化工业显微镜成像的一系列智能功能和精确的色彩精确度。具有4K分辨率的DP28相机能够提供无噪点的高分辨率图像,而DP23相机则在全高清分辨率与便捷功能之间实现平衡,几乎对所有工业成像应用均可实现出色的价值。 显微镜相机用于检查制造材料的质量,确保其不存在缺陷。清晰的图像和准确的色彩还原是用户能够发现细微缺陷的必备关键性能。奥林巴斯DP28和DP23相机所具备的出色图像质量和智能功能有助于快速高效执行成像任务。(DP28拍摄)以舒适的方式在屏幕上查看图像DP系列显微镜相机让用户不必通过显微镜目镜观察,而是以舒适的方式在屏幕上观看图像。为了获得平滑、超清晰的4K图像,DP28相机配备了890万像素CMOS传感器和全局快门。640万像素的DP23相机在进行快速样品扫描时能够以每秒60帧的速度拍摄高清图像,并可提供高达FN25的视场,让用户一次即可查看更多样品,并用很短时间就可将小尺寸图像拼接在一起。*智能功能让分析和检查工作得到简化这款相机的功能让普通成像任务更加轻松,用户只需将注意力集中在屏幕上,不必花费时间进行调整。关键功能包括可在长时间曝光成像期间以高帧率在弱光条件下获得出色图像质量的快速实时功能,以及快速识别样品哪些区域处于聚焦状态的聚焦峰值功能。* 高效的远程协作包括图像、注释和分析数据的所有关键数据均可在本地或远程显示和共享。另外这两款相机还可与奥林巴斯Stream™ 2.4.4版软件兼容进行复杂或高级图像分析,从而进一步简化您的工作流程。** 强悍的功能、精确的色彩精确度以及更宽视场的4K(DP28)或全高清(DP23)分辨率让DP28和DP23相机能够提供高质量的图像并快速高效完成常规成像任务。*在与0.35X TV(DP23)配合使用时。**奥林巴斯Stream与远程共享功能不兼容。
  • FLIR Chameleon3相机优化眼动跟踪技术,让视线操作拥有更多可能......
    眼动跟踪,听起来就极具科技未来感每天下班累的不想动动动眼球就能实现很多事情比如游戏过程中,身处对战鼠标移动的一刻迟疑就很可能被对方找到破绽,瞬间KO如果使用眼动追踪技术可就能胜券在握,立刻翻盘了!如今,非侵入性眼动跟踪器应用领域已颇为广泛今天小菲就来详细说说这项“贴心”的技术~UX/UI专家和学术研究人员利用眼动跟踪技术,对图像、视频和网站执行行为数据收集和分析。视线追踪可让残障人士控制计算机鼠标或屏幕键盘。同时,开发人员使用该技术创建新的眼动跟踪应用。研发团队不断升级视觉相机Gazepoint是拥有十余年的高性能视线跟踪系统开发经验的团队。Gazepoint的使命是让市场研究人员和神经市场营销人员、UI/UX专家和学术研究人员能够对广泛的介质类型执行行为眼动跟踪数据收集和分析。Gazepoint通过向学术研究、视频游戏设计等领域的客户提供价格低廉的高性能眼动跟踪器来实现这一目标。他们期望未来眼动跟踪器可以应用在每个桌面设备、手机、平板电脑、汽车和驾驶舱,帮助用户在自然环境中实现良好交互。过去三年中,Gazepoint 的GP3眼动跟踪器在这些市场取得了前所未有的发展。GP3配置有Firefly MV相机,这是以低廉价格提供高性能和可靠性的眼动跟踪器。2016年夏季,Gazepoint发布了GP3HD。该产品配备FLIR Chameleon3 USB3视觉相机,可进一步扩展眼动追踪能力。眼动跟踪系统的组成与操作原理先前版本的GP3桌面眼动跟踪器的理想安装位置是显示屏下方,离用户大约一臂远。为了计算视点,红外 (IR) 灯会照亮面部和眼睛,从而降低对环境光的灵敏度。该系统包括板级FLIR Firefly相机,用于捕捉高质量的瞳孔图像和角膜表面反射(称为闪光)图像。该系统还包含显微镜头、红外通滤波器、精巧的红外LED灯以及相关控件和I/O电子器件。在FlyCapture SDK获取图像后,图像处理算法会将瞳孔图像和闪光图像隔离,并将这些图像特征转换为注视点,以估计用户正在查看计算机显示屏的焦点区域。GP3系统同时提供一个API,可供开发人员研究用于增强自然人机交互的创新技术。Gazepoint的联合创始人Craig Hennessey博士表示:“由于眼睛是用户思想的窗口,通过眼动跟踪获取的信息对于大量应用都至关重要,包括可用性测试以及认知过程的学术研究等。”FLIR机器视觉相机:高性能、低价格Gazepoint开始开发GP3时,工程师们考虑了许多来自世界各地的相机制造商。Hennessey 回忆说:“我们之所以选择FLIR,是因为其低廉的价格、高质量的机器视觉产品、友好的客户服务以及功能齐全的SDK。”Gazepoint之后很自然地选择了其另一款产品,用于下一代眼动跟踪器GP3HD。FLIR Chameleon3 相机在各项重要指标上对原始GP3进行了改善。相机配备来自On Semi的 ½″ P1300全局快门CMOS 传感器,提高了分辨率 (1280x1024),扩大了相机视野,因此用户头部可在系统前方一定范围内移动。同时,帧率从60 Hz增加到150Hz,这提高了 GP3HD的时域跟踪能力并提升了视线数据信号的稳定性。与GP3中的Firefly MV一样,GP3HD将使用 FLIR Chameleon3相机的图像选通同步红外LED照明系统。正如Gazepoint因通用连接总线(USB2) 选择了 Firefly MV,该公司同样选择了FLIR Chameleon3 及其USB3总线。Hennessey 提到:“这些是打造价格低廉且使用广泛系统的核心要求。” 这两种相机的其他优点还包括高质量的机器视觉相机传感器、良好的红外灵敏度以及红外照明系统电气控制。得益于自身可靠的制造流程以及高质量的组件,GP3之前一直被视为一种高性能且易于使用、集所有功能于一身的眼动跟踪解决方案。有了FLIR Chameleon3相机的支持,Gazepoint推出的GP3HD为研究人员和开发人员用户提供了更多优势,让眼动跟踪技术的发展更上一层楼!推荐相机:FLIR Blackfly S 板级为了给用户更佳的体验,菲力尔不断创新技术,致力于提升机器视觉相机的性能,目前FLIR Blackfly S 板级相机在眼动跟踪技术上适配性更强。FLIR Blackfly板级变体属于高性能机器视觉区域扫描相机,设计用于嵌入狭小空间。与许多其他板级相机不同,它具有丰富的功能组,适合CMOS传感器。与箱式版本功能组相同,以其可靠的兼容性,随时可集成至主流SBC和SOM。FLIR Blackfly S 板级型号采用嵌入式系统连接,丰富的功能组,让它成为使OEM开发更小、更轻且成本更低的解决方案。科学技术的发展是为了满足更多人的需求未来眼动跟踪技术拥有广阔无比的应用场景眼动跟踪技术的发展离不开高性能相机的选择
  • 德国Greateyes全新平台Alex!全帧、深度制冷CCD 相机
    全帧转移,深度制冷,高性能科研级CCD 相机全新平台ALEX,这是德国greateyes为您提供的新平台 ,适用于在VUV,EUV,软X射线和硬X射线范围中的光谱和成像应用。ALEX集成了先进的低噪声电子设备和超深冷却技术,同时保持了紧凑的相机设计。可以选择多种读出速度,以支持从50KHz到5 MHz的像素速率。真正的18bit AD转换允许利用CCD传感器的全部动态范围,以实现高性能和SNR。ALEX非常适合用于探测弱信号,这种情况下低的本底噪声是非常重要的。ALEX为您的科学研究提供了前所未有的可能性。下图是由Max Born Institute的成像和相干X射线小组与柏林Helmholtz-Zentrum(BESSY)的X射线显微术部门合作,使用ALEX得到的硅藻在软X射线显微镜下纳米图像。主要特点• 超低温半导体制冷系统(-100°)产生极低的暗电流来达到更佳检测限• 千兆以太网GigE 及 USB 3.0 数据接口您可选择本地或远程进行操作• 高达 98% 的量子效率灵敏的传感器适合弱光应用• 用户可选择增益在优信噪比和动态范围间平衡传感器• 快速读取速度可达5MHz高帧率搭配低噪声电子系统• 灵活的软件选项多种 软件或各类开发包 SDK可选光谱应用成像应用ALEXsALEXiEUV光刻技术软x射线光谱近边精细吸收光谱等离子体发射光谱高谐波光谱共振非弹性x射线散射X射线断层扫描成像傅里叶变换全息术X光透射成像相干衍射成像叠层衍射显微光谱成像掠入射小角度x射线散射典型型号ALEXs系列ALEX1024x256ALEX 2048x512芯片种类FIFI DDBI UV1BI DDFIBIBI UV1像素规格1024 × 2562048 × 512感光区域26.6 mm × 6.7 mm27.6 mm × 6.9 mm像素尺寸26 μm × 26 μm13.5 μm × 13.5 μm(图片为4096x4096)ALEXi系列ALEX 1024 x1024ALEX 2048x2048ALEX4096x4096芯片种类FIBI/BI DDBI UV1FIBI/BI DDBI UV1BIBI UV1像素规格1024 × 10242048 × 20484096 × 4096感光区域13.3 mm × 13.3 mm27.6 mm × 27.6 mm61.4 mm × 61.4 mm像素尺寸13 μm × 13 μm13.5 μm × 13.5 μm15 μm × 15 μm量子效率曲线★ 可选/定制配置 ★01不同型号法兰02芯片倾斜角度/突出03快门等机械配置04软件及SDK特殊开发客户发表文章不断在勤奋、专业、精益求精和追求卓越的Greateyes团队的共同努力下,继发布适用于紫外-可见-近红外波段的全帧转移、深度制冷科研级CCD相机:ELSE系列和适用于在VUV,EUV,软X射线和硬X射线波段的全帧转移、深度制冷科研级CCD相机:Alex系列。同时我们相机在客户现场也表现卓越,仅仅在2020年初就主力了4片论文的发表。简要信息如下:1. Arikkatt, A., et al. "Spectral Investigation of Laser Plasma Sources for X-Ray Coherence Tomography." Acta Physica Polonica, A. 137.1 (2020).波兰军事科技大学光电子研究所的A. Arikkatt团队对于专用于X射线相干断层成像研究所的激光驱动高原子序数等离子源辐射的EUV和SXR光谱进行了研究。该源使用了4ns,650mj的激光器来驱动双气体靶的结构。坐着使用了三个光谱仪来表征1-70nm的辐射光谱:掠入射光谱仪用于测试1-5nm和10-70两个波、透射光栅光谱仪用于测试4-16nm波段。作者标定了光源适用于SXR和EUV相干断层层析实验的波段。整个实验装置非常紧凑,约1.5m*1.5m,非常适用于实验室环境。2. Varvarezos, Lazaros, et al. "Soft x-ray photoabsorption spectra of photoionized CH4 and CO2 plasmas." Journal of Physics B: Atomic, Molecular and Optical Physics 53.4 (2020): 045701.爱尔兰都柏林城市大学和波兰军事科技大学的研究团队对中性甲烷和二氧化碳分子及它们的光电离等离子体的软X射线的吸收光谱进行了测量。SXR是激光驱动双气体靶产生的。在低的软X射线强度下,吸收光谱中只有与中性分子有关的特征。另一方面,随着辐射强度的增加,我们在光谱的低量一侧观察到新的吸收特征。在这种情况下,中性和电离的分子、原子和原子离子等碎片对等离子体的吸收光谱有贡献。作者还提到,这是首次利用这种激光等离子体为基础的SXR源用于创建和探测分子等离子体。重点是确定片段种类和相应的转变。3. Wachulak, P., et al. "EXAFS of titanium L III edge using a compact laboratory system based on a laser-plasma soft X-ray source." Applied Physics B 126.1 (2020): 11.作者利用激光等离子体软x射线源建立的小型实验室系统,对钛在LIII吸收边缘附近的扩展x射线吸收精细结构(EXAFS)光谱进行了研究。使用激光激发氪气/氦气双流充气靶等离子辐射源,其光谱范围优化为200 ~ 700 eV。在EXAFS研究中,宽的SXR谱和高的光子通量是必不可少的。实验装置保证了同时获取参考光谱和吸收光谱。用掠入射平场谱仪记录了它们的光谱。薄(200纳米厚)钛样品的吸收光谱揭示了EXAFS区域的特征,可以相当准确地测定原子间的径向距离。结果与基于光电子波函数散射的数值模拟输出及同步加速器源的数据吻合较好。这证实了这种光源,在标准的EXAFS方法中的适用性。4. Baumann, Jonas, et al. "Toroidal multilayer mirrors for laboratory soft X-ray grazing emission X-ray fluorescence." Review of Scientific Instruments 91.1 (2020): 016102.作者报道了一种用应用于激光驱动等离子体(LPP)射线源的超环面多层膜镜片的设计,并对镜片进行了表征。将此种镜片与已有光源耦合后在热电掺杂金氧化铜纳米膜上实现了无扫描掠射x射线荧光测量。德国Greateyesgreateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。成立于2008年的greateyes,以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。About us:北京众星联恒科技有限公司作为Greateyes公司中国区授权总代理商(EUV-SXR-X ray range),为中国客户提供Greateyes所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的x射线产品及解决方案。
  • 中智科仪逐光IsCMOS像增强相机用于纳秒脉冲DBD在空气消毒领域的应用机理研究
    清华大学电机工程与应用电子技术系付洋洋老师团队利用逐光IsCMOS像增强相机进行大气压介质阻挡放电等离子体在空气消毒方面的应用研究,相关成果近期以“Air disinfection by nanosecond pulsed DBD plasma”为题发表在“Journal of Hazardous Materials”期刊上。   1、研究背景   在公共场所的空气消毒应用中,大气压介质阻挡放电(dielectric barrier discharge,DBD)等离子体是一种新兴且有前景的技术。放电电源是其中的关键因素,但其对等离子体空气消毒性能的影响尚不清楚。   作者采用纳秒脉冲电源驱动一种新型光栅式DBD阵列,实现快速单次通过空气消毒。揭示了脉冲参数和环境因素对放电特性和单次细菌灭活效率的影响。为纳秒脉冲DBD的放电特性和空气消毒研究提供了基础认知。   文中给出了两个可能的评估参数:   1. 特定输入能量(Specific Input Energy,SIE),定义为单位体积的气体接受到的放电能量。   2. Z值,定义为使微生物存活率下降一个数量级所需的特定输入能量SIE。Z值越小,意味着消灭同样数量的微生物所需的能量越小。   2、实验装置和材料   实验装置部分是用于测试DBD等离子体对细菌气溶胶单次通过灭活效率的通风管道系统,以下为该系统各部分的说明。   1. 通风管道:在气溶胶入口前增加了一个可调节的管道加热器(0-1200 W),用以瞬间加热入口空气,探究在仅加热或“加热+等离子体”条件下气流温度对等离子体放电特性和细菌气溶胶存活特性的影响。   2. 温度和湿度监测:在加热器出口后安装了温度计,同时在等离子体反应器前后放置了两个温湿度计,用以监测气流的温度和相对湿度。   3. 气流速度:使用风速计测量反应器前的空气面速度(vin),在实验中固定为1米/秒,总流量为40立方米/小时。   4. DBD反应器:建立了一个垂直型光栅式DBD反应器,其电极被石英管包围,交替连接到高压和地线产生等离子体阵列。反应器内部空气通过尺寸为85×85平方毫米,有16个空气间隙。   5. 电源激发:DBD由单极纳秒脉冲源或交流电源激发,测量了电压和电流波形。   6. 放电功率和臭氧浓度:计算了脉冲DBD的平均放电功率,并使用臭氧分析仪测量了臭氧浓度。   7. 光学诊断:使用光谱仪(MX2500+, 海洋光学)记录等离子体的光发射光谱,并使用逐光IsCMOS像增强相机(TRC411-H20-U,中智科仪)和变焦镜头对等离子体进行了成像,以探测放电区域形成的激发的物质种类,确定放电均匀性。   图1 光栅式DBD反应器测试系统示意图   实验装置的设计允许研究者控制和监测影响DBD等离子体放电和细菌灭活效率的关键参数,如气流速度、温度、湿度和电源类型。   3、实验结果和讨论   为了比较由脉冲源驱动的DBD与交流(AC)源的电气参数和光发射信号,保持了气流速率、湿度和放电功率尽可能相同。脉冲电压的基本参数包括脉冲上升时间(tr)、宽度(tw)、下降时间(tf)、频率(f)和电压幅度(Vp),而交流电压包括电压频率(f)和幅度(Vp)。   将电压频率固定在5 kHz,vin为1 m/s,RH在15-17%。脉冲参数如下:tr = tf = 50 ns,tw = 100 ns,Vp约为14 kV。为了保持与脉冲源相当的放电功率34-35 W,将交流源的电压幅度调整为10.75 kV。   图2   图2 共对7个气隙进行了成像,并给出了第3个气隙的线发射密度。(a)脉冲源和(b)交流源的放电图像比较,交流源和脉冲源的线平均强度分别为135.6和175.5 a.u.(相对单位) 。注意:气隙旁边的光是由透明石英管的光折射和反射产生的。对于两种光源,曝光时间固定为200 μs(一个周期)。以上等离子体图像由中智科仪IsCMOS相机拍摄。   为了可视化放电的空间分布,应用了短曝光成像。曝光时间固定在200 μs,对应一个周期,成像区域为45 × 30.5 平方毫米,包括总共七个空气间隙。如图2(a)所示,对于交流DBD,放电丝非常明显,几乎均匀分布在空气间隙中,间隔约1 mm。与此同时,脉冲DBD的放电更加均匀,但整体发射强度似乎更弱(图2(b))。   以第三个间隙为例,图3显示了间隙中心线和线平均强度的发射强度。尽管单个放电丝的最大强度更高,但对于交流源,放电丝更稀疏。结果,平均发射强度比脉冲源低22.7%,这与光谱仪测量结果一致。   4、结论   研究发现,通过提高电压幅度、缩短脉冲上升时间以及增加气流湿度和温度,可以增强光栅式DBD的单脉冲放电能量。相反,提高频率则会降低放电能量。这些发现与先前关于脉冲放电的报告一致。比较了脉冲源和交流源消灭微生物的性能。脉冲源在低频率(1 kHz)下产生的Z值低于交流源,但在某些情况下略高。这表明脉冲源在特定条件下可能更优。建议将特定输入能量(SIE)作为基于等离子体的空气消毒的剂量参数,而Z值主要取决于湿度。该研究提供了纳秒脉冲DBD等离子体空气消毒特性的基础认识,为供暖、通风和空调系统中的高效节能空气消毒提供了理论和工程基础。      免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。   5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 中智科仪“匠人”精神打造国产仪器—— 5/10,000,000,000秒的”逐光者”
    “王教授,实在抱歉,因全球供应链滞后,咱们去年购买的进口货物还在排期生产,发货时间无法确定。”“李教授,您咨询的这款产品因受进出口贸易管制,我们很抱歉无法为您提供。”……国际形式、市场环境及技术垄断处处限制着我国光电领域科学研究的进步与发展,同时也鞭挞着国产仪器快速崛起。从0到1,重新定义中国光电科技速度2016年,一群扎根光电领域十余年的行业“老人”集结于北京并以北京为主营中心,依托西安及昆山两大研发基地创立中智科仪(北京)科技有限公司,开启新型光电探测技术的国产自研路。中智科仪始终秉承国产自研、锐意进取的精神,以科研需求为核心,依托精准的探测技术、在产品研发上追求两个物理极限:1. 极限灵敏度:单光子成像技术通过对光电子的高增益放大以及高精度单光子识别算法,中智科仪的单光子相机可完全消除读出电路的噪声,并准确识别每一个被探测到的光子,一次达到物理探测的灵敏度极限-单光子探测。2. 超快时间探测:10皮秒同步精度,500皮秒光学快门中智科仪自主研发的高速皮秒快门驱动和同步时序控制器,可实现短至500皮秒的光学快门以及10皮秒同步精度,满足多种超快时间分辨成像以及光谱实验的极端要求,甚至可以轻松抓拍光速的飞行轨迹。“逐光者”也由此而来。众所周知,光的传播速度约为3×108米/秒,我们无法直接观察到光的传播过程,即使是高速相机也无法拍摄到。但如果传播时间足够短,光在有限时间内传播的空间距离就会大大减少,观察光的传播过程也就变得可能。随着超窄光学快门的时间分辨探测技术的发展和成熟,直接捕捉并观察光的传播过程已成为现实。通过一个有趣的实验,可以让大家更好理解500皮秒的光学快门:准备一台脉宽为1纳秒的脉冲激光器、一个带有4块反射镜的小水缸、光学快门为500皮秒的逐光IsCMOS时间分辨像增强相机,将水缸中充满水,并在水中撒上一些散射颗粒,通过相机和激光器以皮秒级精度精确同步,在不断增加相机和激光器之间延迟时间的情况下,可以获得激光束在不同位置的图像,将其保存为视频,这样,大家就能够看到激光束在水中的传播过程,实现真正意义上的“逐光“。精益求精,勇担国产仪器建造“工匠”创立至今,中智科仪始终高度注重科研原动力的投入,由多名博士和硕士组成的高素质研发团队长期致力于高性能、高品质、高可靠性科学解决方案的摸索。中智科仪不仅以打破国外技术垄断为要求,更是以超越国际标准,打造具有中国特色的技术方案为目标。经年沉淀,中智科仪已陆续攻破多项核心技术,开发落地相应商品化产品。公司匠心打磨皮秒/纳秒时间分辨像增强相机以及皮秒时间分辨单光子相机等产品,不仅打破国外技术垄断,更是以超越国际标准为目标填补我国在超快及时间分辨领域的空白。公司发展历程:核心技术:1. 皮秒/纳秒高速快门驱动;2. 皮秒精度同步时序控制 3. 增益控制及单光子探测;4. 像增强器与sCMOS耦合工艺;5. 微型窄脉宽低抖动纳秒/皮秒激光模组。科学级产品:逐光IsCMOS像增强相机,采用高量子效率低噪声的第二代Hi-QE以及第三代GaAs像增强器,针对皮秒时间分辨光谱及成像实验优化设计,光学门宽短至500皮秒;采用1600×1088分辨率相机芯片,全分辨率帧速高达98幅/秒;内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置。该相机已广泛应用于片状激光诱导荧光(PLIF)燃烧诊断、等离子成像及光谱诊断、激光诱导击穿等离子光谱(LIBS)、距离选通成像、时间分辨荧光光谱等前沿研究。逐光系列2DSPC单光子计数相机,采用了最先进的单光子计数技术,光子计数相机是一种能够准确识别单个光子的二维成像探测器。170万像素的二维阵列同时探测并记录到达探测单元内的所有单光子事件,借助实时光子识别算法,将电子学带来的读出噪声及暗噪声完全去除,获得高信噪比光子空间分布信息。该相机广泛应用于单光子探测、离子阱荧光成像、自发参量下转换、量子光联成像、时间门控拉曼、远程拉曼等前沿研究。得益于纳秒级高速电子快门及皮秒级高精度时序控制,2DSPC相机可以通过同步触发捕获精准时刻的光子信号,2DSPC单光子计数相机是目前市场上最先进的单光子成像设备之一。逐光系列MF分幅相机,最多可采用8台逐光IsCMOS相机配合孔径分光系统,以超高帧频记录不可重复的实验过程,是爆炸、高速撞击、等离子和燃烧诊断等实验中不可或缺的成像设备,同时具备高时间和高空间分辨率。EyeiTS系列高速像增强模组,通过内置的单层和双层像增强器实现高达103-106倍以上光学增益,该模组在科学级相机应用中,配合科学及CCD,CMOS和EMCCD相机,可实现单光子级探测能力;在高速相机应用中,特有Hi-QE系列高量子效率光阴极,在紫外和蓝光优化波段,其量子效率可达30%以上,实现高灵敏度的高速成像。2023年,中智科仪自主研发的PicoSpec系列皮秒门控单光子光谱仪由影像校正光栅光谱仪和逐光2DSPC时间分辨单光子相机组成。影像校正光栅光谱仪具有高光谱分辨率,宽光谱测量范围等特点;逐光2DSPC时间分辨单光子相机具有超窄光学门宽和超高增益,可实现单光子探测灵敏度,皮秒级超短光学快门以及单光子计数采集等优势;二者完美结合使得PicoSpec皮秒门控单光子光谱仪兼具超高光谱分辨率和超高灵敏光谱采集效率,可实现时间分辨光谱(固定延时采样模式和可变延时采样模式),单光子计数,“零”噪声连续采集,多通道光谱采集等多种光谱工作模式,非常适合光子稀少的应用场景,比如拉曼光谱(气体拉曼,火焰拉曼,高压拉曼,高温拉曼以及远程拉曼)、微流体、实时化学过程监测、实时医疗诊断等。孜孜以求,逐光者的民族使命8年间,中智研发团队始终聆听客户的声音,为满足我国科研领域多元化的需求,相继迭代发布新型产品,优化逐光IsCMOS时间分辨像增强相机的时序扫描功能,提升高速电学驱动的效率,增加离子阱量子计算的智能降噪模式和质心算法,更新迭代数十个版本的SmartCapture软件等。每一步升级的背后都承载着成千上百次研究者及科学家真实有效的实践测试。用数据说话是中智科仪的创新及研发的态度。截至至今,中智科仪自研产品已获得相关专利十余项,并在超过百余家高校及研究院所成功交付,以成熟稳定的性能支持数十个重点项目的具体实施,已然成为众多知名大学、研究机构和企业的首选合作伙伴。2022年,中智科仪荣获国家级“高新技术企业”证书,这份荣誉是对中智科仪在创新实力、研发能力、技术管理、服务水平等方面的充分肯定。中智科仪将继续紧扣极限灵敏度和超快时间探测两个维度进行新产品研发,相信不久的将来,拥有更快的单光子计数频率的单光子计数相机以及高达50%量子效率的GaAsP的像增强相机将会面市。“要打好科技仪器设备、操作系统和基础软件国产化攻坚战,鼓励科研机构、高校同企业开展联合攻关,提升国产化替代水平和应用规模,争取早日实现用我国自主的研究平台、仪器设备来解决重大基础研究问题。”2023年2月21日,习近平总书记的发言不断敲击着每位中智人的初心。自主创新道路,收获与挑战并行,科学家们和合作伙伴的高度认可更加坚定了中智科仪的信心和决心。未来,中智科仪(北京)科技有限公司将持续秉承着专注、专业、严谨和敬业的精神,以研发、市场、销售、客户服务四位一体的高标准体系,努力保持领先优势,矢志成为全球卓越的光电科技公司,致力推动科技成果的应用转化,在“科技兴国”的道路上为中国科研贡献力量。
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style="text-align: justify text-indent: 2em "说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "strong显微投影仪/strong/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "(友情提示:移动端用户下方点击阅读全文,/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受)/span/pp style="text-align: justify text-indent: 2em "图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title="图像2.png" alt="图像2.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。span style="color: rgb(0, 176, 240) "strong由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line)/strong/span。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strong图像法在线测量原理示意图/strong/pp style="text-align: justify text-indent: 2em "与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling shutter)和全局快门(global shutter)2类。span style="color: rgb(0, 176, 240) "为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门/span。/pp style="text-align: justify text-indent: 2em "作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。/pp style="text-align: justify text-indent: 2em "在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于strongspan style="color: rgb(0, 176, 240) "远心镜头/span/strong的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。/pp style="text-align: justify text-indent: 2em "在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。strongspan style="color: rgb(0, 176, 240) "对于离焦颗粒图像,可以有2种处理方法/span/strong,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title="图像4.png" alt="图像4.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。/pp style="text-align: justify text-indent: 2em "strong图像法与RGB三波段消光法融合在线测量/strong/pp style="text-align: justify text-indent: 2em "受光学原理和硬件的限制,strongspan style="color: rgb(0, 176, 240) "图像法在线测量下限一般在2-3微米/span/strong。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以strongspan style="color: rgb(0, 176, 240) "将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度/span/strong。/pp style="text-align: justify text-indent: 2em "彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title="图片5.jpg" alt="图片5.jpg"//pp style="text-align: center text-indent: 0em "strong同时存在大小颗粒的图像/strong/pp style="text-align: center text-indent: 0em "strong图像法与后向光散射融合测量大气颗粒和排放烟尘浓度/strong/pp style="text-align: justify text-indent: 2em "图像法不仅可以测量成像的颗粒的粒度,还可以strongspan style="color: rgb(0, 176, 240) "与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度/span/strong。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。strongspan style="color: rgb(0, 176, 240) "该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关/span/strong。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title="图像6.png" alt="图像6.png"//pp style="text-align: justify text-indent: 2em "strongimg style="max-width: 100% max-height: 100% float: left width: 125px height: 125px " src="https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title="蔡小舒_.jpg" alt="蔡小舒_.jpg" width="125" height="125" border="0" vspace="0"/span style="color: rgb(0, 176, 240) "作/spanspan style="color: rgb(0, 176, 240) "者简介:/span/strong曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/p
  • PreciGenome发布微流体高速显微摄像系统新品
    产品介绍:微流控研究持续促进新技术的萌芽和发展,这些新技术所需的理化物质和空间更少,而分析处理过程更快。由于时间和空间尺度的缩小使得微流控事件变化太快,以至于无法使用标准像机进行分析。高速显微系统具有高速、高分辨率成像的特点,可显著提高微流控实验的研究质量。PreciGenome高速成像系统使研究人员能够以足够高的速度捕获图像,从而能够观测微流体研究中流体作用的细节。 PreciGenome高速摄像机分辨率可自行调节,最高可以达到38,000 帧/秒。产品特点:u 集成高速相机的显微镜系统,即插即用u 140万像素高速摄像,可达1050帧/秒,低分辨率下高达38000帧/秒u 高品质光学组件,高分辨率成像,高清观测微流控实验u 具有高倍率放大和缩小功能,覆盖毫米到微米尺寸u 三种照明类型,适用于大多数应用u 曝光时间低至1微秒,可对高达 MHz 频率流动的液滴、颗粒或细胞成像u 可通过PG-MFC流控仪进行控制u 自带操控触摸屏,也可通过HDMI外接显示器,可靠便捷u 可根据客户要求集成设计,如荧光检测、高倍放大等技术参数:技术参数PG-HSV-MPG-HSV-M-X(客户定制)放大倍数0.94X-6.0X,手动调节可选更高放大倍数照明系统环形光,同轴照明,背光照明,亮度调节旋钮客户定制工作距离36mm(标准),36-37mm(手动调节)客户定制分辨率和摄像速率1028*1024@1050fps, 1280*96@11110fps, 640*96@21600fps,更低分辨率下可高达38000fps1028*1024@1050fps, 1280*96@11110fps, 640*96@21600fps,更低分辨率下可高达38000fps视频格式H.264, cinemaDNG RawH.264, cinemaDNG Raw相机内存16GB高达32GB显示屏5英寸触摸屏,可通过HDMI外接显示器5英寸触摸屏,可通过HDMI外接显示器成像组件1.3兆像素单色摄影机,6.6um像素CMOS传感器可选彩色相机快门全局电子快门,1us-1s全局电子快门,1us-1s动态范围56 dB56 dB色位深度12-bit12-bit输入/输出控制触发器输入,亦可通过PG-MFC流控仪来控制客户定制其他接口SD卡,HDMI接口,USB接口SD卡,HDMI接口,USB接口XYZ移动范围X: 100mm, Y: 100mm Z: 25mm, 10um分辨率客户定制创新点:PreciGenome高速成像系统使研究人员能够以足够高的速度捕获图像,从而能够观测微流体研究中流体作用的细节。 PreciGenome高速摄像机具有140万像素,可达1050帧/秒,低分辨率下高达38000帧/秒。此系统具有高倍率放大和缩小功能,覆盖毫米到微米尺寸,曝光时间低至1微秒,可对高达 MHz 频率流动的液滴、颗粒或细胞成像。高速显微摄像系统自带操控触摸屏,也可通过HDMI外接显示器,可靠便捷。微流体高速显微摄像系统
  • EMCCD可以被取代吗?从它的起源说起……
    现阶段EMCCD在弱光成像领域的地位似乎正面临sCMOS技术的全面威胁,属于EMCCD的王者时代结束了吗?本篇文章不会在原理上做过多深度解析,而是对大家更关心的结论性问题做了总结性输出,相信能帮助使用者理解两者之间的区别,作为产品选型时的参考。》》EMCCD的崛起之路《《EMCCD的出现曾是一种技术进步,它通过降低读出噪声来大幅提高相机的灵敏度,或者更准确地说是通过放大信号使读出噪声相对变小,在单分子级别的极弱光应用中备受推崇。早在1990年代初,e2V(现在的Teledyne e2V)和德州仪器(TI)就推出了EMCCD的第一代技术,但这项技术直到1990年代末才最终取得实质性进展。其中512x512分辨率、16μm像元以及背照式设计方案逐渐成为EMCCD的主流技术方案,并在业内产生了深远影响。图1 EMCCD工作原理示意图:EMCCD的增益寄存器可以对信号进行成百上千倍的放大,因为这个过程发生在芯片数据读出前,所以不会放大读出噪声。16μm像元在显微镜下收集到的信号是当时主流CCD(Sony ICX285芯片)的6倍,再加上背照式的设计带来的量子效率提升,使得EMCCD即使不用EM增益放大,灵敏度仍是CCD的7倍。除了像素大小和背照式带来的灵敏度大幅提升,读出噪声降至1个电子以下也是EMCCD崛起的关键,这使得它在单光子等极限信号探测领域里所向披靡。即使它的增益技术并不完美,这个过程会放大信号的不确定性,还会使得散粒噪声、暗电流噪声等变为1.4倍;但好在它仅为极弱光而生,高达3万美元的售价就足见其实力无可匹敌,和当时的CCD不是一个层级的竞争关系。》》EMCCD面临的挑战《《EMCCD技术本身存在的乘性噪声和增益老化等不利的因素,随着sCMOS技术的崛起,EMCCD迎来了正面冲击。图2 EMCCD信噪比公式:G为EM Gain值,F为额外噪声因子(约1.414)刚开始是前照式sCMOS,6.5μm像元的读出噪声降到了1.5e-左右的水平,开始替代一部分高灵敏度应用;接着是2016年的背照式sCMOS面世,像元尺寸和背照式技术优势的叠加使其灵敏度较前照式技术提高了3.5倍以上,逐步逼近EMCCD水平;而到了2021年,sCMOS则再次将读出噪声降到了<0.5e-的亚电子水平。所有这些似乎意味着EMCCD时代即将终结。》》EMCCD和sCMOS的较量《《但实际上,sCMOS的临门一脚首先还是和像元大小有关。虽然前文提到的6.5μm像元可以进行更高分辨率的成像,但我们不得不承认其收集光子的能力要远小于16μm的像元,两者有着近6倍的差距。像素合并功能可以帮助解决这一差距,但别忘了这同时也会让读出噪声成倍增加。这也正是为什么人们更喜欢直接使用6.5μm像元,而不会通过像素合并把它合并成一个更大的像元使用,因为这会将读出噪声从原本的1.5e-增加到3e-以上,在个位数的极弱光领域得不偿失。图3 sCMOS Binning功能示意图:sCMOS技术目前仅能进行数字Binning,因为像素合并发生在芯片数据读出后,所以Binning不仅会合并信号,也会合并读出噪声。另外,增益带来的对比度优势现阶段仍然不可替代。即使sCMOS和EMCCD的读出噪声已经可以达到一致的水平,但对比一下两者的电子、灰度的转化比例,你就不得不感叹EMCCD增益的威力了:理论上EMCCD单个电子通常会转化为上百个灰度,但sCMOS每个电子只能实现2-4个灰度的转化比,这使得EMCCD的图像有更佳的对比度。图4 sCMOS和EMCCD灰度转化比示意图。EMCCD由于读出噪声相对很低,在背景信号仅为读出噪声的成像模式下,其图像有更高的信背比。最后,我们还要提一下全局快门。这种快门方式在采集转瞬即逝的高速信号,和在复杂的系统中非常好用。现阶段,大部分sCMOS相机为了保持在弱光成像时的灵敏度,仍然首选卷帘快门,即使提供了全局重置(Global Reset)功能,能够适用于一部分同步拍摄的需求,但还是无法完全达到EMCCD全局快门的优势。图5 卷帘和全局快门的曝光示意图上述所列的几个技术点都和sCMOS所采用的芯片底层技术逻辑有关。目前的背照式sCMOS产品中,鑫图Aries 16是一款和EMCCD(512 x 512)技术性能较为相近的sCMOS相机。它具有16μm大像元,0.9e-的读出噪声,无需使用binning就可以直接应用在差不多5个光子级的弱信号探测中,而且价格仅为EMCCD的一半。图6 鑫图Aries 16产品图及主要参数》》EMCCD时代真的结束了吗《《不,EMCCD还没有完全被替代,直到有一天我们能够再次创造这么伟大的发明。但它的问题也依然存在:乘性噪声、增益老化、速度、视野、成本,然后还有出口管制……EMCCD好比一架协和超音速飞机(Concorde),每个人都会喜欢它,但并不是所有人都真的需要它。如果有个新选择也能成功到达大洋彼岸,不需要额外的支出,还提供更大的座位和平躺的床,让您能够美美地在空中睡上三个小时,我想大部分人都会考虑换乘吧。图7 协和超音速飞机(Concorde)是世界上少数曾投入商业使用的超音速客机,于1976年进行商业首飞,但因载客量有限,最终于2003年退役。(图片来源网络,如有侵权,请联系删除)。EMCCD始终会是一小部分应用的选择,只是这部分应用越来越少了。我们感叹EMCCD成就的同时,也不得不感叹时代的车轮滚滚向前,总是驱动着进步发生。向时代潮流中所有伟大的发明创造者们致敬!
  • PreciGenome发布微流体高速显微摄像系统新品
    PreciGenome微流控高速成像系统PG-HSV功能图解触摸屏UI简洁友好:外接显示器使用,连接简单简介PreciGenome微流控高速成像系统由美国PreciGenome公司研制,专为微流控芯片流体观测与成像录制而设计,其采用倒置方式观察芯片,调节XYZ轴位移平台方便观测芯片不同区域,调焦简单方便,并拥有3种照明模式(环形光源,同轴照明和背光照明),仪器右侧就是亮度调节旋钮,使用方便,并集成了触摸显示屏,可脱离显示器(有HDMI接口,支持外接显示器),直接在5寸触摸屏上进行芯片观测,视频录制等操作。此外,此系统快门时间低至1μs,帧率可达38000FPS,拥有高倍放大倍率,可选单色与彩色款,同时支持定制,非常适用于微流控实验中的流体观察、图像拍摄和视频录制,是微流控研究人员的得力工具。产品特色即插即用式显微镜系统,集成高速CMOS成像传感器帧率可达38000FPS,全分辨率1280*1024下帧率 1050FPS高品质光学部件,高分辨率成像,保证微流控实验清晰可见高放大倍率变焦,适用于mm到μm级尺度观察3种照明,适配绝大多数应用曝光时间低至1μs,微颗粒(液滴、细胞流动等)成像频率达MHz兼容PreciGenome PG-MFC流控仪,可通过PG-MFC流控仪触发相机成像或录像集成触摸显示屏,也可连接显示器(HDMI接口),使用简单可靠附加功能支持定制,如荧光检测、更高倍放大等规格参数技术参数\型号PG-HSV-MPG-HSV-M-X(定制)放大倍率0.94X-6.0X;手动调节更高放大倍率,可选照明环形光源;同轴照明;背光照明;亮度调节旋钮客户定制物距/mm36(参数)36-37(手动调节)客户定制分辨率&帧率1280*1024 @ 1050fps;1280*96 @ 11110fps640*96 @ 21600fps;可达38000fps视频格式H.264, cinemaDNG Raw相机内存16GB32GB显示屏5寸触摸屏,可通过HDMI接口外接显示器成像设备130万单色相机CMOS传感器6.6μm像距可选彩色相机快门电子全局快门,1μs至1s动态范围56dB色彩深度12-bitIO控制触发输入可通过PG-MFC控制可定制其它接口SD卡,HDMI,USBXYZ轴位移范围X: 100mm;Y: 100mm;Z: 25mm精度为10μm可定制相关产品触屏版PG-MFC高精密压力控制器简版双通道PG-MFC-light高精密压力控制器液滴制备系统FAQs常见问答1. 高速成像系统帧率是多少?答:可达38000FPS,1280*1024 分辨率下帧率为1050FPS。 2. 高速成像系统哪些功能支持定制?答:照明(荧光),放大倍率,IO接口,XYZ轴位移平台还有物距,都支持定制。 3. 高速成像系统可以外接显示器吗?答:当然可以,通过HDMI接口连接显示器即可。Datasheet请在此网页顶部品牌介绍处下载样本。创新点:PreciGenome高速成像系统使研究人员能够以足够高的速度捕获图像,从而能够观测微流体研究中流体作用的细节。 PreciGenome高速摄像机具有140万像素,可达1050帧/秒,低分辨率下高达38000帧/秒。此系统具有高倍率放大和缩小功能,覆盖毫米到微米尺寸,曝光时间低至1微秒,可对高达 MHz 频率流动的液滴、颗粒或细胞成像。高速显微摄像系统自带操控触摸屏,也可通过HDMI外接显示器,可靠便捷。微流体高速显微摄像系统
  • 相机里的劳斯莱斯:在徕卡相机总部感受高冷自信
    徕卡相机公司总部大楼,工作人员讲解公司文化徕卡相机  在摄影爱好者眼中,徕卡相机被誉为“神一般的存在”。在其早期岁月,轻巧、耐用的徕卡相机让战地摄影成为可能,巴顿将军、隆美尔元帅都留下了在战场上使用徕卡相机的记录。而因为价格不菲,它也被称为“相机里的劳斯莱斯”。在英国,一些绅士并不拍照,但身上常挂一台徕卡,作为身份象征。历经百年沧桑,如今的徕卡面对数码洪流,却不愿意放弃自己对机械的坚守,其半个世纪前推出的M3相机至今式样基本没有变过。在性能方便为王的时代,这种坚守还能获得多少拥趸?《环球时报》记者日前走进徕卡公司位于德国西部小城韦茨拉尔的总部,试图探究到底是什么支撑了徕卡的自信。  “零部件最少化”  韦茨拉尔市位于德国黑森州西北部,是一个人口只有5万多的小城。19世纪80年代后,这里汇聚了德国光学工业的精华,建立了包括徕卡公司在内的十几家光学公司,以生产照相机、显微镜和望远镜闻名遐迩。与显赫的名声相比,徕卡公司总部显得格外低调。银灰色的4层大楼坐落在一片空地上,整个大楼的造型好像露天放置的徕卡相机双镜头。这里就是世界上第一台便携式相机Ur-Leica型相机的诞生地。  徕卡公司为什么选择在这样一个不起眼的小城安家落户呢?徕卡公司公关部的埃尔伯特先生告诉《环球时报》记者,这里的水土好,空气清新,有利于光学玻璃的生产,可确保其通透性。另外,这里远离喧嚣,能让工厂的设计人员和工人保持宁静的心态,潜心投入到产品的研发上。  谈到徕卡公司的过人之处,埃尔伯特很自豪,“徕卡相机绝对没有可有可无的多余部件。‘零部件最少化’使徕卡真正达到了增一分觉多、减一分嫌少的地步。”公司一直坚持直观、简练的设计,核心理念是高度重视产品的实用性,这绝不是让徕卡拥有繁多花哨的功能,它只拥有摄影所需的最基本功能。  据埃尔伯特介绍,徕卡公司对产品质量的追求是压倒一切的。他举例说,徕卡公司在上世纪50 年代曾研发出一种相机镜头边缘涂抹的黑漆,这种漆的质量非常好,已经使用了几十年。最近徕卡公司开发出一种新漆,效果更好,唯一的不足是牢固度不如旧漆,使用久了会脱落。为确保涂漆几十年如一日地粘在镜头上,公司毅然决定放弃新漆,仍用旧漆,牺牲了镜头的部分性能。但公司认为这样做是值得的,“如果新技术不能保证产品质量的稳定,即使能提高产品性能也要弃用,说到底只有可靠的质量才是吸引用户的最大竞争力。”  总部里的那个空车间  在参观时,记者看到一个空空的车间,里面没有人。埃尔伯特说,这个车间是相机镜头研磨车间,主要由女工来做。由于这个工序比较独立,女工们又要求早上班早回家,公司就把她们的工作时间调整为早上6点上班,中午12点下班。这样她们可以用下午时间照顾家人。今年欧锦赛期间,公司还特许部分球迷职工晚上班两个小时,让他们在家享受足球狂欢。埃尔伯特说,“员工在愉快心情下和郁闷心情下的工作质量是完全不一样的。”这让记者想起了一个故事,一名技艺精湛的钟表匠在监狱里无论如何也达不到原来的水平,出狱后又神奇地恢复了创造力。  徕卡公司对员工意愿和权利的尊重是有传统的。早在1885年,徕卡公司前身莱茨工厂就开始在工人中发放孤寡伤残抚恤金,1906年实行8小时工作制,这些重大福利制度比国家法定提早了至少10年。莱茨工厂的名气和声誉吸引了很多周边大城市的高级技工。“在莱茨上班”成了当时名副其实的光荣。  徕卡相机的历史可追溯到1849年。韦茨拉尔小镇上一名德国机械匠人凯尔纳成立了一家光学仪器作坊。20年后,该厂由曾在瑞士表厂做过学徒的年轻师傅莱茨接手,厂子更名为莱茨光学工厂,主要生产显微镜,到1907年售出10万台。一战前夕该工厂成为全球知名的光学仪器厂,产品覆盖望远镜、投影仪、电影摄影机等全线光学产品。然而一战让莱茨工厂和整个国家陷入困境。莱茨1920年病故后,他的儿子小莱茨临危受命。4年后,他做出了一个决定,投产徕卡相机。在1925年莱比锡春季博览会上,莱茨工厂推出了第一部量产135mm徕卡相机,一炮而红。  数码时代,为何坚守机械  一家企业的兴衰逃不开世事风雨。上世纪70年代,日本竞争者们不断开发低端产品以占领市场,徕卡相机的市场份额被不断蚕食。70年代中期,徕卡公司首次出现财务危机,7000名员工急剧裁员至3000人,生产线部分转移至人工成本只有德国1/4的葡萄牙。在80年代中期艰难的出售谈判中,莱茨后人不得已彻底退出了这一百年的家族企业。1987年,徕卡公司被瑞士同行WildHeerbruggAG收购,后几经易主。  2000年,日本数码相机的销售额首次超越传统相机。佳能、尼康等很快以高质量的数码相机树立了在这一领域的声望。柯达公司在2004年停止生产传统相机产品,彻底转向数码领域。而徕卡仍固守传统工艺和极其昂贵的价格,这使它不可避免地陷入困境。2004年,徕卡亏损超过1000万欧元。在2005年破产之际,公司被奥地利商人考夫曼收购。所幸,徕卡多年来坚持销售额10%以上的研发投入为其在激光显微镜等领域的技术发展保驾护航,徕卡作为高端光学仪器供应商的国际地位得以确保。徕卡的品牌价值并未出现剧烈下滑。目前,徕卡相机公司已成为徕卡品牌冠名却彼此独立的三家公司之一。  如今,徕卡坚持两条腿走路,一方面和日本松下合作生产数码相机。最近还和中国华为合作生产手机镜头。在T系列、S系列和SL系列的产品上应用并优化了自动对焦技术,实现产品的自动化。另一方面,继续在M系列相机上使用手动对焦技术,坚持机械相机制造。  在数码时代依然坚守机械相机,有人表示质疑和不解。徕卡公司调研发现,在传统机械相机巅峰之作的M3相机使用人群里,年轻人依然占很大比例。这就表明,在性能方便为王、数码相机大行其道的时代,精密机械相机仍是很多人的梦想极品。因为徕卡粉丝们欣赏的是制造哲学,追求的是使用机械相机所具有的事必躬亲的参与感。这是高度自动化相机不能给予的。徕卡相机的优势是,对相机机械制造有绝对自信,但对电子元件就不敢保证。因此徕卡公司决定,以M3系列为代表的经典路线必须坚持,电子元件越少越好。在机身制造上,还用黄铜取代钛铝合金,要的就是这种“沧桑感”。  即便是数字化的徕卡相机,依然坚持传统设计,比如在镜头卡口上一致,可使用几十年前的镜头,甚至连存放电池的位置与方式都像极了胶片时代的M系列。中国一名张姓摄影爱好者表示,“这让徕卡的拥趸能继续感受经典。但同时,新进用户会抱怨这台机子操作起来很难,甚至不如一台微单‘好用’。”  据说每台徕卡相机都有一个单独编号,从第一台至今都是连续的。这使其极具收藏价值。目前收藏市场上最热门的是百年经典徕卡M3系列。上世纪30年代生产的、品相保存完好的可达百万元级别,其中还分军版和民版。  “现在的徕卡价格的确让人有些难以接受。几十万元买上一套限量版渐渐成了一种炫耀方式。”这名徕卡迷说,“但真正热爱徕卡的摄影者还是要用它来拍摄的。因此,二手市场已成为一种性价比更高的拥有徕卡的方式。”
  • 响应设备更新政策 | 2024 牛津仪器物理科学产品选型指南
    科学相机及光谱解决方案(Andor Technology)科学相机、显微成像系统、模块化光谱仪和多维可视化图像分析软件的开发和制造商,为学术、工业和政府客户提供多种高性能科学成像解决方案。满足您所有需求的解决方案:1. iXon Ultra 单光子灵敏度EMCCD量子效率90%13um或16um像元尺寸1024x1024或512x512芯片格式TE制冷至-100°C6fps最大帧率SRRF-Stream+实时超分辨能力2. Sona Extreme系列 sCMOS 相机-精确定量活细胞成像超高灵敏度,量子效率高达95%UltraVacTM专利真空密封水循环制冷模式,制冷温度低至 -45℃99.7%超高测量精度,挑战精确定量神经元成像对角线高达32mm的成像视野,捕获神经细胞或脑组织的广阔视野具有12-bit低噪音模式3. Zyla sCMOS系列-突破性灵敏度和清晰度新一代 sCMOS 芯片可将 QE 进一步提升10%,可提供优异的可见/近红外波长覆盖范围Zyla高效的数据传输效率和12位高速模式相结合,可选择USB3.0或Cameralink接口可提供最高100fps的全画幅帧率Zyla 4.2 PLUS 智能算法可提供 99.8%的线性值,整个动态范围内提供定量测量精度LightScan PLUS–将滚动快门扫描模式,应用于扫描光片显微成像和线扫描共聚焦等应用FCS–模式最高可达 26,041fps,适用于高速光谱采集4. iKon系列深制冷慢扫描大像元CCD多种芯片格式可选1kx1k, 2kx2k, 4kx4k及6kx6k提供多种QE曲线,可针对紫外至近红外不同波段进行优化TE制冷最低可至-100°C,卓越的暗噪声性能适应各种稳态弱信号如天文光度学的长曝光采集 5. Balor 17F大靶面sCMOS相机,近地空间物体观察的选择低噪声sCMOS16.9 MP - 超大视野18.5毫秒超快单幅读出时间采集帧频高达54fps真空密封无需机械快门 6. Kymera 328i成像光谱仪自适应聚焦(专利)四光栅塔伦 & 射频识别技术双入双出选项TruResTM光谱分辨率增强技术兼容 μ-Manager 软件/显微光谱Andor提供紫外-近红外的各类CCD,sCMOS探测器以满足不同实验需求
  • 牛津仪器携多款产品和解决方案亮相慕尼黑上海光博会
    仪器信息网讯 慕尼黑上海光博会于2024年3月20-22日在新国际博览中心(上海)盛大举行,慕尼黑上海光博会以国际化的视角呈现光电行业的全方位产品内容,专为满足中国市场的独特需求。作为亚洲激光、光学、光电行业的盛会,此次展会有近1200家企业参展,吸引了55000余位专业观众莅临现场。牛津仪器Andor科学相机部门也积极参与了本次盛会,并在展会中设立了展位(展位号:W4.4215)。展位上,牛津仪器展示了在科学相机、光谱解决方案以及显微分析检测等领域的全面解决方案,吸引了众多观众前来了解产品。展位前人潮涌动,观众们络绎不绝,对牛津仪器的产品表示出浓厚的兴趣。牛津仪器在此次展会上携带了多款独具特色的产品,其中包括Kymera 328i成像光谱仪、iKon-XL 231超大靶面 CCD 探测器、Balor 17F-12、Sona sCMOS系列、Zyla sCMOS系列等。这些产品各具特色,不仅彰显了牛津仪器在科学相机及光谱解决方案领域的卓越地位,还充分展现了其在技术创新和产品优势方面的实力。跟随小编的笔触,一同了解这些特色产品的亮点吧!01 Kymera 328i成像光谱仪自适应聚焦(专利)、四光栅塔伦 & 射频识别技术、双入双出选项、TruResTM光谱分辨率增强技术、兼容 μ-Manager 软件/显微光谱、Andor提供紫外-近红外的各类CCD,sCMOS探测器以满足不同实验需求。02 iKon-XL 231超大靶面 CCD 探测器 1680万像元数传感器 (CCD231-84)、-100 oC 热电制冷(ColdSpaceTM 技术)、2.1 e- 超低读出噪声、350,000 e- 满阱容量、标准硅基或者深耗尽型芯片、无需液氮或者其他制冷冷媒、16 位或 18 位数字化。03 Balor 17F-12低噪声sCMOS、16.9 MP - 超大视野、18.5毫秒超快单幅读出时间、采集帧频高达54fps、真空密封、无需机械快门。04 Sona sCMOS系列-精确定量活细胞成像超高灵敏度,量子效率高达95%、UltraVacTM专利真空密封、水循环制冷模式,制冷温度低至-45℃、99.7%超高测量精度,挑战精确定量神经元成像、对角线高达32mm的成像视野,捕获神经细胞或脑组织的广阔视野、具有12-bit低噪音模式。05 Zyla sCMOS系列-突破性灵敏度和清晰度新一代 sCMOS 芯片可将 QE 进一步提升10%,可提供优异的可见/近红外波长覆盖范围、Zyla高效的数据传输效率和12位高速模式相结合,通过 USB 3.0接口可提供53 fps 的帧率、Zyla 4.2 PLUS 智能算法可提供 99.8%的线性值,整个动态范围内提供定量测量精度、LightScan PLUS–将滚动快门扫描模式,应用于扫描光片显微成像和线扫描共聚焦等应用、FCS–模式 最高 可达 26,041 fps,适光关光谱。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 超快光谱探测技术:捕捉"最短"瞬间
    10月3日,2023年诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶三位科学家,以表彰他们在阿秒光脉冲方面作出的贡献。1阿秒到底有多短呢?举一个例子,我们都知道光速是最快的速度,然而一束光从房间的一端发射到对面的墙壁,时间却“达到”了惊人的100亿阿秒。1阿秒等于10的负18次方秒,是人类目前所掌握的最快的时间尺度。它就像一把尺子,尺子刻度越细,测量的精度就越精细。更重要的是,这为超快光谱探测技术提供了新的时间分辨率——依靠更快的速度,人类可以观测定格到更加清晰细小的微观世界。什么是超快光谱探测技术?超快光谱探测技术是怎么定格到微小世界的?未来又有哪些应用前景?今天,让我们共同关注。超快光谱探测技术应用原理示意图从“骏马在奔驰中是否四脚离地”说起关于人类第一次利用光学成像技术解决问题,要从“骏马在奔驰中是否四脚离地”说起。人们喜欢看骏马疾驰时的样子,然而,由于骏马奔跑时的速度实在太快,人类用肉眼很难捕捉到清晰的画面。关于马在奔跑过程中,是否会有四条腿同时离开地面的争论也一直都存在。直至1878年6月11日,英国摄影师艾德沃德迈布里奇开创了一种全新的拍摄方式。他在骏马的奔跑轨迹上连续设置了12组相连的相机装置,同时将地雷触发线连到相机快门上。当马蹄触及地面上的触发线时,相机快门就会被连续触发,从而获得一系列连续的照片。这种方法将马蹄的运动在多张照片中分解展现出来。最后,照片呈现的结果显示,马在奔跑时确实会四脚离地。这个创举改变了人类观察世界的方式,也引领了科学界对时间分辨能力的追问:如果未来拍摄比马移动更快的物体要怎么办?人类一直在追求捕捉物体运动更快的画面。后来,随着对自然界瞬态过程的不断探索,人类陆续达到毫秒量级、微秒量级、纳秒量级、皮秒量级和飞秒量级的时间分辨率。1999年,诺贝尔化学奖颁发给了致力于时间分辨率上的超快光谱探测技术的科学家。超快光谱探测技术将人类自然科学的研究带入了一个更快的世界。时至今日,超快光谱探测技术已经成为研究物质微观粒子动力学最重要的技术。所谓超快光谱探测技术,是指利用脉冲激光器对样品进行激光刺激,并用激光对刺激后的样品进行探测,以研究样品在极短时间内的光物理、光化学和光生物反应的一种方法。通俗地来比喻,超快光谱探测技术类似超快摄像机一样,让人们能够通过一帧一帧的“慢动作”观察处于化学反应过程中原子与分子的转变状态。目前,超快光谱探测技术主要依赖于飞秒激光,其优点在于能够瞬间获得样品状态,具有快速、高灵敏度、高分辨率的特点。通常情况下,激光的波长为可见光范围内的波长,使用时需要特别注意光能量对样品的影响。现如今,正在积极发展的新一代基于泵浦-探测技术的超快光谱探测技术,具备前所未有的时间分辨率,可以将超快成像的观测范围压缩到飞秒甚至阿秒的尺度。这意味着能在短短一秒钟内拍摄远超亿计的照片。在这极短的时间尺度下,即使光的速度也几乎“凝固”不动,仅能传播不到百万分之一米的距离。在这个基础上,一些瞬时的现象,往常难以被常规技术手段观测到的奥秘,如化学键的形成、量子隧穿、强关联物理等,将在这些高时间分辨率的成像中得以清晰呈现。超快光谱探测技术的出现,将极大地拓展我们对事物运行机制的认知。通过这种技术,我们有望揭示出许多过去被掩盖的现象和过程,这可能会催生出更多新的科学发现,甚至可能开创出全新的领域,为人类社会带来更多的创新和进步。揭示微观世界的奥秘一只小小的蜂鸟每秒可以拍打翅膀80次,然而对于人类来说,只能感觉到嗡嗡的声音和模糊的翅膀动作……对于人类的感官来说,快速的运动会变得模糊。任何测量都必须比目标系统发生明显变化的时间更快,才能得到测量的结果。借助超快光谱探测技术成像,我们得以捕捉到那些转瞬即逝的现象的具体形貌。在拍摄电影和广告中,很多特殊镜头的拍摄都会用到超快光谱高速摄影机,它能用特殊的视角展现出极为丰富的镜头效果,给大家带来更为丰富的视觉冲击。在拍摄荷叶时,我们可以捕捉到荷叶表面的细微纹理,进而分析荷叶超疏水现象背后的奥秘。可以说,超快光谱探测技术涉及人类生活的方方面面,已经被广泛应用于航天、工业和生物医学等诸多领域。在航天领域,超快光谱高速相机可以精确地捕捉航天器点火升空瞬间的所有细节,有助于查找和分析航天器设计中的潜在问题和疏漏。在工业领域,采用超快光谱高速相机观察产品受到冲击时内部的状态,可用来分析产品被破坏时物质的结构。在军事领域中,采用超快光谱高速相机来捕获炸药爆炸、子弹出膛、火箭发射等过程,以及应用于弹道分析、撞击分析、武器机械运动分析等。与此同时,随着物质微观体系的不断发展,人们对微观物质特征和物质本质认识的要求也越来越高。在人类探索和控制物质相关变化的瞬态过程中,超快光谱探测技术为人们探索发现新现象、新物质和阐述相关物理机制提供了重要参考。例如,在分子生物学研究中,可以利用超快光谱探测技术研究DNA、RNA等生物大分子在光激发后的反应过程和动力学过程,用来揭示这些生物大分子的结构和生理机能,对生物医学领域的基因工程等研究具有重要意义。而最新的研究表明,超快光谱探测技术正被看作是量子力学诞生以来,能够在相应时间尺度内探索微观量子性质的“武器”,在研究超导材料的机理及实验依据、非平衡物理及新奇量子态的诱导、量子态的外场调控等方面同样具有重要作用,被科学家们称为与“量子”的经典组合。此外,也有不少新材料在超快光谱探测技术的促进下产生。例如,在钙钛矿太阳能电池等光伏器件中,利用光伏效应收集光能并将其转化为可供日常生活使用的电能。借助超快光谱探测技术记录的光电特性演化过程,可为太阳能电池及光伏器件的设计制备提供指导,大幅改善光电转换效率、提高材料使用寿命。近年来,据《自然》杂志等期刊报道,钙钛矿太阳能电池的效率已超过26%,有望成为继多晶硅之后的新一代太阳能电池核心能源材料。半导体磁性材料、超导体、绝缘体、复杂材料、太阳能电池……人类的好奇心永无止境,相信随着超快光谱探测技术的时间分辨率越来越高,未来将会有越来越多关于微观世界的奥秘被一一发现。向着更快更清晰的未来前进对于超快光谱探测技术当前的研究进展,科研人员表示,该技术会更加注重快速、高效和精准:一方面,时间更快,即在超快的基础上提出更小的时间尺度,以便了解更多分子、原子里的电子的动力学过程;另一方面,空间分辨率更高,以便可以看到事物更小、更加清楚的动态过程。除此之外,也有国内外的科研人员在尝试把超快光谱拓展到不同的波长。例如从X光到太赫兹波甚至微波,以持续推动超快光谱前沿技术的应用拓展。而随着人工智能技术的不断完善,未来人工智能或将与超快光谱探测技术相结合。通过机器学习等方法,科研人员可以更加准确地分析和理解超快光谱数据,从而更好地探索材料和分子之间的微小变化,进一步挖掘出有价值的信息。“虽然超快光谱探测技术当前在科学研究中得到大家的青睐,但未来在其成为一种通用技术的道路上还有许多局限性。”也有不少科研人员指出了超快光谱探测技术现今存在的制约因素,如:采集数据的时间较长,需要专业人员分析数据,激光探测设备成本较高,等等。当前,皮秒甚至飞秒激光探测器费用可高达百万元以上,加上搭建激光探测器、光路和探测仪器等费用,一套仪器设备的投入耗资巨大,这些问题在一定程度上限制了当前超快光谱探测技术更大规模地应用于市场。综上所述,即使有发展局限,但不可否认,超快光谱探测技术已经成为分析化学、生物医学、材料科学等领域中的重要研究手段之一。随着对超快光谱探测技术认识的深入,其应用领域将会进一步扩大和深化。从拍摄骏马奔跑时四腿离地、定格昆虫扇动翅膀的瞬间,到看清子弹出膛的慢动作,再到观测电路中的电流变化,随着超快光谱探测技术的发展,人类定格世界的快门越来越快,看到了越来越清楚的微观世界。我们期待,借助该技术,人类未来能看到并揭示大千世界中更多令人心生好奇、心生向往的美妙瞬间!
  • 如何校准遥感相机
    大多数遥感相机本质上是内置复杂软件的高质量电子数码相机。许多还具有光谱成像功能,允许它们同时在多个光谱带中对场景进行成像。 这些相机性能可以在地面上通过光学校准来验证并增强。 积分球均匀源用于此校准,可提供:用于大型遥感定标应用的孔径为一米的积分球均匀光源。Labsphere 独特的系统利用精密测量技术来满足遥感相机校准的苛刻要求。均匀的辐亮度已知的、稳定的光谱特性具有时间稳定性不改变光谱特性的辐亮度可调性已知的辐亮度均匀的辐亮度精心设计的积分球均匀光源,当从积分球外观察时,呈现出几乎完美均匀的辐亮度——均匀性优于 1%。 当这样的光源校准相机时,相机的输出通常不会那么均匀,主要是因为探测器阵列的像素之间的不均匀性。 但是,这些影响是恒定的,可以通过软件进行校正。时间稳定性通过选择稳定的卤钨灯和稳定的电流控制电源,均匀光源积分球的辐亮度非常恒定。 此外,很容易在积分球上安装一个探测器,该探测器监测相机“看到”的相同辐亮度,因此辐亮度的任何变化,例如由相机的反射光引起的变化,都很容易识别和量化。已知辐亮度相机设计人员了解地面的照明条件以及所观察场景的预期反射系数范围。 因此,他们设计相机以拍摄特定范围的辐亮度水平。 积分球均匀光源可以验证相机是否按照设计对特定的辐亮度水平做出响应。已知、稳定的光谱特征由于许多遥感相机具有光谱成像能力,并且响应过程中都存在光谱变化,因此了解校准光源的光谱分布非常重要。 使用稳定的灯和电源意味着可以在实验室中测量积分球输出,并在相当长的一段时间内保持该光谱特性。 此外,可以使用多个滤光片的监测检测器或者监测光谱仪,连续验证光谱特性。亮度可调通过在积分球中安装多个灯,可以输出多个级别的均匀、稳定的辐亮度。实际上,通过使用附带可变光阑的外部灯以及选择合适功率的内部灯,积分球可以调整到从零到最大的任何亮度水平。一个监测探测器可以连续地检查和报告辐亮度。通过采用积分球光源,摄像机可以在整个动态范围内进行测试。
  • 案例研究:用于呈现电影中现实3D动作效果的运动摄影测量
    电影制作人就像魔术师一样 - 当他们向您展示一项新技巧时,您会想知道这项技巧的实现方式和灵感来源。当然,对于 Scarlett Johansson 主演的电影攻壳机动队的制作人也是如此。像剑道战士或倒茶艺妓这样的人物实景全息图出现在电影的整个城市风景中。这些实景全息图或“单息图”表示未来的 3D 广告,它们通过以下方式显示:悬挂在空中、停留在建筑上方和建筑之间,以及在街道上的人群中间流动。电影使用的系统采用圆顶状的装备形式,这由 80 个同步的 FLIR Grasshopper 相机组成为了创建单息图,一家 VFX 和相机阵列技术公司 Digital Air Inc. 创建了一个特殊的运动摄影测量相机系统。摄影测量广泛运用于运动图片和视频游戏中,以生成纹理结构的、测量体积的 3D 扫描,可对扫描执行操纵和动画处理以实现运动。虽然这种静态的摄影测量可生成非常真实的静态 3D 图像,但它依赖于对单个纹理地图执行后期动画处理,而这会在对扫描进行动画处理时产生问题。例如,人脸和织物等复杂表面的运动看起来就不太自然。传统的摄影测量是瞬间性的,需要重新进行动画处理。在诸如攻壳机动队的电影中,将背景设置在技术先进的未来会使观众期待体验到完美的运动 3D 图像。进入 Digital Air,这是他们的新运动摄影测量系统。电影使用的 Digital Air 系统采用圆顶状的装备形式,这由 80 个同步的 FLIR Grasshopper (GS3-U3-50S5C-C) 相机组成。这些相机以 2.5k 分辨率和 24 FPS 记录,创建纹理结构的多帧对象序列,这些序列的源对于每个 3D 模型都相同。Grasshopper 的自动同步功能确保所有相机快门完美计时,这对于使运动摄影测量装备正确运行至关重要。设备中会记录所有演员的表演,以便制作电影的 3D 动画。Digital Air 的硬件系统生成了一致的 RGB 数据,通过这些数据可实现每秒 24 个全身摄影测量扫描。现实捕捉摄影测量软件用于创造所需的序列化 3D 模型,以便将摄影测量扫描制作成规模和源保持一致的动画运动序列。每一帧都是一个全新的 3D 模型,但具有不同的纹理。该过程创造了可从任何视角呈现的资产,并且还捕获了逼真的原始表演动作,这与传统的 3D 扫描不同。生成的扫描随后可以连续重新呈现在后期制作中,以重现原始表演与 CG 构建的背板和相机移动相结合产生的效果。通过此过程,还能增加一些细微差别,例如城市较富裕地区的高密度、高分辨率的声波图等其他地区中伪影的像素化声波图。Digital Air 的创始人及总裁 Dayton Taylor 表示,之前从未出现过并且使电影中的各个演员都不尽相同。他觉得这需要充分发挥运动摄影测量的可能性,以便完美呈现电影效果。鉴于电影因其惊人的视觉效果而备受赞誉,这款产品似乎会在全世界受到认可。关于 Digital AirDigital Air 开发和生产视觉效果以及相机阵列相关的技术。他们提供相机系统作为针对全世界电影拍摄的视觉效果生成服务。他们还许可、建立和安装定制相机系统,以用于活动安装。
  • 广州明慧|显微镜相机的安装、应用及使用方法
    今天广州明慧和大家分享的是关于显微镜相机的安装、应用及使用方法。作为一家专业生产与研发显微镜相机的工厂,我们深知显微镜相机在科学研究和医学领域的重要性。因此,我们致力于为客户提供最优质的显微镜相机和相关软件。首先,让我们来了解一下显微镜相机的摄像头软件安装。我们的显微镜相机摄像头软件安装非常简单,只需按照说明书上的步骤进行操作即可。显微镜数码相机MHC600我们的显微镜相机的优势在于要求出色的荧光成像应用中获得广泛认可,适用于荧光显微镜。我们的显微镜相机可以与荧光显微镜配合使用,拍摄高质量的荧光图像,具有高灵敏度和低噪声的特点,可以轻松捕捉到非常微弱的荧光信号,在黑暗的环境下也可得到高亮度的照片。除了显微镜相机,显微镜制冷相机能够在低温下观察样品,从而提高数据的准确性和可靠性。有效减少样品的热噪声,提高图像的清晰度和分辨率。三目倒置荧光显微镜接相机MHS900除了适用于荧光显微镜的相机外,我们还提供显微镜拍照软件。MingHui显微成像软件可以处理粉末、颗粒、物体表面、材料裂纹、液体成分和含量、农作物和病虫害分析、零部件尺寸测量以及组织细胞形态学等任务。此外,该软件还支持金相显微组织和晶粒度分析,以及化学工业中反应物和粒子的形态分析。MingHui显微成像软件可以支持多种操作系统,包括Windows、Mac和Linux等;支持多种语言,方便客户在不同国家和地区使用。可以让用户轻松地拍摄高质量的显微镜图像,支持多种拍摄模式,包括单张拍摄、连续拍摄和时间-lapse拍摄等。此外,也支持图像处理和分析,可以帮助用户更好地理解和研究样本。显微镜相机软件显微镜相机摄像头适配显微镜型号作为一家专业生产与研发显微镜相机的工厂,我们致力于为客户提供最优质的显微镜相机和相关软件,显微镜相机摄像头软件安装非常简单,支持多种操作系统和语言。相机适用于生物显微镜、荧光显微镜、倒置显微镜、金相显微镜、偏光显微镜和体视显微镜,具有高灵敏度和低噪声的特点。MingHui显微成像软件可以让用户轻松地拍摄高质量的显微镜图像,并支持图像处理和分析。如果您有任何关于显微镜相机的需求,随时可以联系我们。谢谢!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制