当前位置: 仪器信息网 > 行业主题 > >

六源有机

仪器信息网六源有机专题为您提供2024年最新六源有机价格报价、厂家品牌的相关信息, 包括六源有机参数、型号等,不管是国产,还是进口品牌的六源有机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合六源有机相关的耗材配件、试剂标物,还有六源有机相关的最新资讯、资料,以及六源有机相关的解决方案。

六源有机相关的资讯

  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD2.0%。 表1 样品重复性测定结果同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果 图4 催化剂状态 图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01 方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD2.0%。 表1 样品重复性测定结果 同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。 图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果图4 催化剂状态图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 广州地化所刘德汉研究员获2019年度“有机地球化学终身成就奖”
    本文转载自 中国科学院广州地球化学研究所12月14—16日,由中国石油学会石油地质专业委员会、中国地质学会石油地质专业委员会和中国矿物岩石地球化学学会沉积学专业委员会联合主办,中国石油大学(北京)承办的“第十七届全国有机地球化学学术会议”在福州召开。经过大会学术委员会评选,广州地球化学研究所刘德汉研究员荣获“有机地球化学终身成就奖”,以表彰他在我国有机岩石学和油气地球化学领域方面做出的杰出贡献。刘德汉在获奖感言中感谢国内有机地球化学领域的各位同仁对广州地化所和其本人的长期支持,并祝愿有机地球化学学科继续蓬勃发展,为我国油气勘探事业不断做出新贡献。“有机地球化学终身成就奖”是三个学会共同设立的荣誉奖,旨在表彰为我国有机地球化学研究做出突出贡献的科学家。前五位获奖者分别为黄第藩教授(2009)、徐永昌研究员(2011)、盛国英研究员(2013)、王培荣教授(2015)和梁狄刚教授(2017),刘德汉是第六位获此殊荣的学者,也是广州地化所继盛国英后第二次获得该项荣誉。刘德汉,1935年出生,四川资阳人,1958年毕业于北京矿业学院,广州地化所研究员,曾任有机地球化学研究室副主任。从事煤岩学、石油和天然气地质地球化学、有机岩石学和油气流体包裹体等研究,发表论文100多篇,出版专著7本,获国家科技进步奖一等奖1次。刘德汉研究员在有机岩石学与地球化学方法具有深厚积累与丰富经验,目前还坚持在实验室一线工作。戴金星院士为刘德汉研究员颁发”有机地球化学终身成就奖”荣誉证书和纪念品刘德汉研究员”有机地球化学终身成就奖”学术成果介绍荣誉证书刘德汉研究员发表获奖感言刘德汉研究员与广州地化所参加会议的部分代表合影(有机地球化学国家重点实验室供稿)本文系转载自“ 中国科学院广州地球化学研究所”扫描右侧二维码查看原文 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及时进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 德国IKA(广州仪科实验室技术有限公司)参加第六届全国有机化学会议圆满成功
    2009年8月17日至20日,第六届全国有机化学会议在古城西安&mdash 陕西宾馆隆重召开。该会议以&ldquo 自然、环境和化学协调发展&rdquo 为主题,会议内容涉及有机合成化学、天然有机化学、物理有机化学、金属与元素有机化学、生物有机化学、药物化学等多个研究领域; 该会议为我国有机化学在科学研究、技术创新和教育艺术等方面取得的成果和进展提供了一个难得的展示机会。本次会议实际注册人数高达1700多人,比原订计划多了600多人;主要参展厂商有德国IKA,梅特勒-托利多,西格玛奥德里奇,优莱博,东京理化,百灵威化学及其它国有品牌等二十多家。 我们在现场提供了多台样机,再次推出了IKA最新产品RCT反应套装和加热块套装,以及荣获德国IF工业设计大奖的新型旋转蒸发仪RV10;我们在现场对产品应用和先进技术做了详细的讲解。值得一提的是,不少老师对外形美观、功能优异、性价比高的RV10旋转蒸发仪反应热烈,现场吸引了众多来宾上前咨询。 来自各大高校、中科院等机构1000多名老师和学生光临了IKA展台,其中兰州大学、兰州化物所、中科院化学所、南开大学等多位老师和研究员现场传达了采购意向。 作为实验室前处理技术的领先品牌,德国IKA公司一直致力于提供和创造先进技术和完美品质,正因为我们的不断努力,IKA产品正越来越多的受到国内用户的关注和认可,而用户的满意,是我们一如既往前行的目标所在!
  • IKA将参加第六届全国有机化学学术会议
    中国化学会第六届全国有机化学学术会议定于2009年8月12-16日在历史悠久、景色宜人的古都西安隆重召开。本届会议由中国化学会、国家自然科学基金委员会主办,西北大学承办,陕西师范大学协办。大会将邀请国际、国内著名的专家学者就有机化学的热点领域作大会报告。本届会议将云集大陆、新加坡、香港、澳门、台湾等地学者,就有机化学及相关学科领域的新成就进行广泛、深入的交流。本届会议将代表中国有机化学研究的一流水平,为有机化学工作者提供一个高水平的交流平台。截止目前为止,大会已收到学术论文共1300多篇。IKA作为实验室技术行业的领先品牌,在化学领域的运用尤其广泛,这次全国有机化学学术会议,IKA将一展风采。
  • 中国化学会第六届有机化学学术会议举行
    中国化学会第六届有机化学学术会议8月20日在西安结束。本届会议以“自然、环境和化学协调发展”为主题,由中国化学会、国家自然科学基金委主办,西北大学承办,陕西师范大学协办。本次会议得到陕西省科学技术协会的大力支持,并已列入陕西省科协2009年“学术金秋”重点活动项目。  会议邀请了来自日本、俄罗斯、韩国和我国香港特别行政区的著名专家学者,以及全国200余所高校、科研单位和企业界代表共1200多人。代表们就有机化学各个领域的发展现状和前景进行了讨论和交流。会议内容主要涉及有机合成化学、天然有机化学、物理有机化学、金属与元素有机化学、有机分析化学、生物有机化学、化学生物学、药物化学等领域。会议期间还安排了来自国内外有机化学试剂和仪器公司的产品展示。  据悉,前五届有机化学会议分别由中科院成都有机化学研究所、浙江大学、兰州大学、云南大学、郑州大学承办,规模逐渐扩大,参与范围日益广泛,层次不断提高,为我国化学学科发展提供了难得的交流平台。下一届会议将由南京大学承办
  • “超有机”不存在:消灭农药残留是作假
    三安超有机食品专卖店货架上的超有机大米。  一种打着“超有机”旗号的食品,正以强大的宣传攻势,考验着消费者脆弱的判断力。事实上,根据南都记者调查,无论是在质量认证还是在学术体系上,“超有机”概念都不存在,在国际专业学术期刊上也找不到一篇相关论文。然而,4年来,“超有机”食品却一路绿灯横扫北京及至全国市场。  这种吊诡局面展现了中国食品安全问题面临的多重困境:商人的夸夸其谈和误导,食品专家的推波助澜,主管部门的监管空白,以及缺乏食品安全知识的普通消费者的无所适从。  3月的一天,北京市民王旭买鸡蛋的时候充满了困惑。在位于西大望路的三安超有机专卖店,促销员告诉他,“超有机”鸡蛋是目前最安全的无激素的鸡蛋。这种“超有机”鸡蛋价格不菲。一个礼盒装60枚鸡蛋66元,平均10元一斤,而普通鸡蛋平均价格不过3.5元一斤。他买回家吃了之后,感觉并无特别之处。现在他有点怀疑:超有机和有机是一回事吗,超有机如何能保证绝对安全?  王旭的困惑折射了中国消费者对于食品安全普遍存在的某种担心。不合理使用人工合成化肥和农药,造成土壤污染、水污染、食品农药残留,已是农业生产公开的秘密。现在越来越多号称无公害无农残的有机产品的出现,不仅没有减轻消费者的疑惑,反而让很多人愈发无所适从。  王旭说:“我非常想弄清楚,有机产品真的无农残吗?超有机比有机更安全吗?”  “超有机”旋风  号称“当今世界最安全的食品”  带着王旭的疑问,3月9日,记者来到位于北京长椿街地铁边的金隅大厦15层,三安公司总部即在此间。风靡市场的“超有机”食品就是这家公司生产的。  公司入口的书架上,摆满三安总裁张令玉所著“三安超有机标准化农业系列丛书”,作序者为中国工程院院士陈君石,售价158元。“三安超有机食品,是目前世界上唯一的无化学残留、无农药残留、无兽药残留即‘三无残留’的安全食品之极品,是真正意义上的安全食品。”这样的宣传语,充斥着三安的每个角落。  公司客服人员称,三安“超有机”产品主要包括大米、牛奶、鸡蛋,此外还有应季蔬果。目前在北京金融界和西大望路两处昂贵地段拥有专卖店,近40家超市出售三安超有机食品。销售范围遍布北京、天津、河北、江苏、上海、杭州多个省市,全国有100多个代理商。截至2008年底,已在全国22个省(市)、56个县市、91个示范点展开,近百万人购买和品尝了三安超有机产品。客服人员所言不虚。随后几天,记者发现北京市场随处可见三安超有机产品的身影。  三安刮起的“超有机”旋风,在北京其他的有机农场中间掀起了波澜。大兴青圃园有机农场总经理张希庆去年慕名前去三安总部参观,当时三安董事长张令玉的儿子、三安副总张程,现场为张希庆一行讲解,张程的口若悬河令张希庆十分折服,“他们告诉我,只要用他们生产的试剂一擦,就检验不出任何农药残留了。”而有30年种植经验的青圃园总园艺师贾延贺则不以为然,“消完毒了再去检验,我也能保证无农残。不过,那还叫有机蔬菜吗?”  三安公司客服魏经理称,“三安生物技术主要应用在生产全过程,有机农业标准有30项,而三安超有机标准达到300多项。”他说,在达到300多项严格标准之后,三安超有机产品“全面超越日本、欧盟和中国有机食品标准,是当今世界最安全的食品”,但具体技术则“涉及到企业秘密,无可奉告”。  “未检出”背后  媒体送检证实三安有机米有化学残留  事实上,早在2008年11月,三安超有机食品“无农残”的宣传,就引起了媒体的质疑。生命时报记者在北京市场随机抽取了三安超有机精品米、金豚泰国香米、华藤小站米、日本新澙县米4种大米,送交北京市理化分析测试中心进行营养及安全性检验。该检测中心是北京奥组委定点食品检测机构之一。  检测涉及到的营养指标共有水分、碳水化合物、蛋白质、钙、硒5项。结果,水分、碳水化合物、蛋白质,4种大米不相上下,但是钙和硒,三安超有机精品米含量均为最低。  最关键的安全性指标检测,共涉及重金属汞、铅等,以及农药残留六六六、滴滴涕等23个检测。  结果表明,三安有机米虽然号称“三无”:“无化学残留、无农药残留、无兽药残留”,但在实际检测中,铅含量为0.022mg/kg,根本不是其宣传单页上声称的“未检出” 铜含量为1.65mg/kg,也远大于其自称的0.5mg/kg,其他指标它也未占优势,和其近20元/斤的高价实在难以匹配。  三安宣称拥有108项自主知识产权。记者通过世界知识产权组织(WIPO)PCT专利文献检索入口,在发明人一项中输入ZhangLingyu,只能检索到3项专利。通过中国国家知识产权局,以申请(专利权)人查询,只有8项 以发明(设计)人查询,是25项。知识产权人士称,这些都不是PCT专利,并且其中许多专利都已被视为主动撤回。  三安生物科学院副院长魏刚说:“‘超有机’全面超越有机,我们有检测报告作证。”他所说的检测报告,被印制成册页夹带在出售的产品中。在安全性指标测试中,多数检测均显示“未检出”或“零含量”,这几乎成为“超有机”无毒的最有力证据。  三安牛奶的检测报告显示为北京出入境检验疫局食品安全检测中心出具。但是10日该检测中心人士声明:只对来样负责检测,对企业生产的真实性并不负责。该人士说:“去年给三安做过检测。我们只是接受委托。来样检测无农残,并不代表认同企业生产的所有东西都是安全的。”  三安大桃和葡萄的检验报告,显示为国家食品质量安全监督检验中心出具。该中心工作人员亦表示,只对来样负责。  农业部绿色食品管理办公室人士表示,超有机这个概念就是对有机的混淆。据了解,有机食品产业在中国的发展仍处于起步阶段,直到2005年国家才出台有机产品标准。南京国环有机产品认证中心颁证委员会主任俞开锦认为,有机产品的标准只有一个国家标准,三安宣传的“超有机”是夸大,很容易误导消费者。“超有机再怎么号称安全,也不可能超过有机产品的标准。”  专家批驳“超有机”  使用生物制剂“消灭”农药残留是“作假”  学术界打假明星、新语丝网站的方舟子,看到张令玉声称“自1974年致力于生命科学信息调控技术(BioinformationAdjustmentTechnology,简称Tech-BIA)平台的研究,于1983年基本创建成功Tech-BIA平台”,不禁哑然失笑。  “调控的规范英语不是Adjust-ment,而是regulation。专业英语根本没这个说法!这明显是查汉英辞典东拼西凑自己翻译的。在上世纪90年代以后基因组学兴起后,才有生物信息学(bioinformatics)、生物信息(bioinformation)这些说法。张令玉说1974年就开始研究简直是笑话。”方舟子说。  “张令玉号称有108项技术专利,似乎在说明产品有多么高科技。其实专利说明不了任何问题。专利只考察独创性,对是不是真能运用,并不在考察范围之内。”方说。  超有机宣称的“零农残”在方舟子看来不值得一驳。因为,“空气中、土壤中、水中,本来就都含有种种有害的化学物质能被作物吸收,根本不可能保证‘零农残’,只是量多量少的区别,绝不可能像三安宣称的‘三无残留’。”  “无论是国际学术界,还是实际生产中,根本没有所谓的‘超有机’存在。”3月10日,中国农业大学教授、农业部质量安全中心评审专家曹志平在接受采访时说。  三安超有机声称,之所以能做到无农残是因为用生物制剂净化被污染的土壤和水,实现了种植环境无害,并且在生产过程中用生物制剂取代各种化学肥料和农药杀虫剂。再经过三安自己拟定的标准进行认证,达到了完全安全。  “这种技术没什么新东西,大家都在用。”曹志平认为,使用生物制剂就是降解,称之为恢复,这样做的目的也仅是达到有机的要求而已,并不能超越。另外,如果是使用生物制剂擦拭,使得产品检测不出农药残留,则是“作假”。她强调,有机其实是一种生产方式,检测结果“未检出”,并不代表生产方式就是有机的。  顺风顺水的“超有机”  “一是舍得宣传,另外背后有人”  在农业和生物界人士看来,不难识破“超有机”的破绽。对于普通消费者而言则不容易。随机采访的多位消费者多表示“听说过超有机食品”、“它的概念就是超越有机”。  在持续的宣传攻势下,4年来三安超有机一直顺风顺水,占据了不小的市场份额。中国农科院一位不愿具名的教授称:“张令玉的能量很大,一是舍得宣传,另外好像中国工程院、农科院都有领导专家在关照,背后有人支持。”  其中,中国工程院院士陈君石对于超有机的追捧,尤为引人关注。陈君石院士同时还是中国疾病预防控制中心营养与食品安全所研究员。  据三安网页上的宣传,陈君石曾亲自写信给领导推荐三安模式。2008年3月,张令玉教授编著的《三安超有机标准化农业系列丛书》由中国农业科学技术出版社出版。陈君石在序言中欣然写道:“食品生产的源头环境污染是一个世界性的顽症,即便是世界上科技和经济最发达的国家和地区,也还不能有效地解决这些问题。难以置信的是,张令玉先生创建的三安标准和农业系统从根本上解决了以上危害。”  陈君石说:“从我接触三安开始,已经有三个年头了,作为一个专业人士,我可以告诉大家,三安农业能够保证农产品源头不受污染,从效果来讲,已经有几十个县的种植结果来证明了。我一方面要强调三安的技术是很先进的,它的生物制剂是很安全很见效,而且是很管用的 进一步讲,三安也解决了我们国家现在十分关心的三农问题。”  南都记者致电陈君石,陈院士说“不谈这个问题”,拒绝对此置评。  方舟子对院士为企业出头炒作现象提出了批评。方舟子认为,商人喜欢找院士,因为可以增加可信度。而院士参与这种商业炒作,带给消费者的误导会十分严重,虽然这些不检点的行为均违背了院士自律和道德准则,但是没有一个部门对此进行处罚和规范。  “超有机”发明人、董事长张令玉被三安公司宣传描绘成一个划时代的科技奇才。虽然还有一个名为三安生物科技院的机构存在,但是看不到研发的迹象,常见的状态就是客服人员接听热线,推广宣读“超有机”理念。工作人员显然训练有素,对于“超有机”之外的话题都保持警惕。  似乎没有一个员工能知道张令玉的去向。在三安生物科学院副院长魏刚以到基地视察为由拒绝了南都记者的采访之后,这处神秘的公司总部就被越来越厚的迷雾包裹起来。  “三安超有机食品,是目前世界上唯一的无化学残留、无农药残留、无兽药残留即‘三无残留’的安全食品之极品,是真正意义上的安全食品。”  ———三安宣传语  “无论是国际学术界,还是实际生产中,根本没有所谓的‘超有机’存在。”  ———中国农业大学教授、农业部质量安全中心评审专家曹志平  “消完毒了再去检验,我也能保证无农残。不过,那还叫有机蔬菜吗?”  认证混乱监管缺席产销萎靡  有机菜,有尴尬  2009年11月13日,在广州火车东站旁的超市里,顾客在有机蔬菜专区认真选购。实习生 陈文才 本报记者 冯宙锋 摄  有机食品认证本代表着农产品供应方面国家最高级别的认证,但这道原本最难跨越的关口如今却在利益驱动下日渐形同虚设,认证机构如雨后春笋,企业过关也就难免蜕化成了“交钱拿证” 而过关后的监管,也“主要靠企业自律”。安全难放心,叫消费者如何拿出数倍的价钱,去买内有“玄机”的有机菜?  价高不是问题,消费者安全信心疲软,才是位于新鲜蔬菜金字塔尖有机蔬菜的致命伤。  “产前、产中、产后各个环节都缺乏足够的安全保障,消费者犹豫,生产商放不开,所以做不大”,2005年曾就食品安全提出议案的广东省人大代表万洪富认为,与全国有机菜现状一样,这一行业虽前景可观,但眼下普遍亏损,谈不上暴利,亏就亏在“体制性不安全”。  “叫好不叫座”  有机蔬菜虽比普通蔬菜贵上5-10倍,但销量只有2%-3%  3月12日上午,广州从化吕田镇水埔村狮象岩段山雨欲来,空气里似乎随时能拧得出水来。  东升农场场长刘真云在田埂上巡视,两侧地里刚种了20多天的芥兰苗和奶白菜,已经青青葱葱连成了一片,长势喜人。  “老板要求很严,绝不允许使用化肥、农药,谁敢用就开(掉)谁”,刘真云说,因广州气候湿润,种植叶菜特别容易长跳甲,一种似乎怎么灭也灭不尽的小虫,但农场还是坚持用植物性农药来防治,仅农药成本一项,就要比种植普通蔬菜贵上5-6倍。  此外,由于生长过程中绝不允许使用化肥,有机蔬菜一般要比普通蔬菜长得慢得多、产量也低。  东升农场的老板区景泰原籍番禺,早年去了香港,曾靠手推车卖菜为生。上世纪80年代初,内地市场放开,区景泰回到番禺承包下成片土地搞农场种植。由于供港蔬菜要求一直比内地严格,从未丢掉新鲜蔬菜供港业务的东升农场,在内地有机蔬菜兴起后,也于2003年前后开始试水种植有机蔬菜。  目前,作为广州地区唯一一家通过认证、能生产有机蔬菜的公司,东升公司在云南、江西、四川等国内5省已分布有8大农场共2万多亩菜地,其中仅珠三角的种菜面积就已达6000多亩。但在如此大面积的蔬菜基地中,东升公司绝大部分国内农场种植的都是安全质量要求稍低的无公害蔬菜和绿色食品蔬菜,仅从化水埔村的1500亩菜地能生产有机蔬菜。  水埔村狮象岩段依山傍水,多是坡地山田。村里菜地边,随处可见大大小小的堆肥池,一些塑料菜棚内,还悬挂有专门的蜂箱。“等一些蔬菜开花时,再放进蜜蜂箱,助其传粉采蜜,有些蜂还可以杀虫”,东升公司工作人员统计,由于有机蔬菜生产程序严格,目前该农场蔬菜产量并不大:每天除一半供港外,能供应整个珠三角市场的有机菜每天仅3-4吨,其中广州约1吨,多销往了超市和高档酒楼。  在广州五羊新城万家、家乐福万国店等大型超市内,记者发现包装精致的有机蔬菜虽十分抢眼,但与普通蔬菜柜台前熙熙攘攘的人群比,仍颇显冷落。单纯从售价上看,无公害小黄瓜4.8元/公斤,有机小黄瓜29.7元/公斤,有机菜是普通蔬菜的6倍多。而差价最大的一款有机白萝卜,要30元/公斤,比普通白萝卜贵了近17倍。  从广州其它超市现场调查来看,有机蔬菜一般都要比普通蔬菜贵上5-10倍,名为“天价蔬菜”也不为过。但奇怪的是,如此价高的单品蔬菜,在进入市场十多年间,却一直未能让为数寥寥的生产供应商眉开眼笑过,更不用说坊间猜测的“暴利”了。  东升公司采购经理伍尚锦看好有机蔬菜的前景,他承认,截至目前,东升公司的有机蔬菜生产仍无法赢利,还要靠平均每天销售量是其200-300倍的无公害蔬菜和绿色食品蔬菜来弥补亏空。同样,另一家生产有机蔬菜的广东公司也大抵如此,要靠销售大量有机茶叶来弥补。  广州家乐福万国店负责人证实,有机蔬菜虽然高档、高贵,但好看不叫座,如今在该店设有专柜的广东河源另一有机蔬菜品牌,过年期间每天的销售量仅占超市同类产品销售量的5%-8%,平时更只有2%-3%,“如此少的销售量,根本谈不上赢利,超市愿意卖这个产品,更重要的意义是为了产品线齐全,毕竟社会上已经出现了少量的这个高消费群体”。  有机认证乱象  合法认证机构20多家 “这家不过那家过” “交钱就能拿到证”  对我国农产品供应商而言,有机食品认证是国家最高级别认证,也往往是把关最严、最难过的关口。然而这道原本最难跨越的关口如今却认证混乱,变得让消费者难以放心。  “有机蔬菜认证不容易通过”,3月上旬,作为农业部下属最早一批获得有机认证资格的中绿华夏广东分中心介绍,按照国家颁布的《有机产品生产和加工认证规范》,对生产有机蔬菜的大气、水和土壤等,都必须严格检测,要求绝对“纯天然”、“无污染”。  但对于申请认证企业而言,最难过关的显然还不是自然条件,而是“在生产过程中绝对不能使用任何人工合成的化学性农药和化肥”,以及对每一件售出的有机蔬菜产品都必须建有全套溯源台账这两条。  由于国家规定严格,中绿华夏广东省分中心成立7年来,全省仅通过了9家有机食品认证。“首先要由企业提出申请,然后认证机构会辅导企业按国家要求建立、落实一系列规范管理文件,尤其是从选种,到种植收割、储运加工等一系列溯源体系的建立”,中绿华夏介绍,有机蔬菜通常需要两三年才能完成全部认证,而进入种植期,还将根据土地状况,设有1-3年不等的有机菜生产转换期。  但这些由繁杂文件和严苛程序所垒就的高门槛,在利益驱动下,如今竟日渐形同虚设。据了解,上世纪90年代未期,我国刚试行有机食品认证时,认证主要由国家环保局下属机构负责。2004年5月,有机食品认证转归国家认监委下属机构。其中,2003年前后,国家农业部也对有机食品认证成立了专门的认证机构。如今,10多年间,得到国家认监委认可的合法认证机构已发展到20多家。  “这家通不过,另外一家可能就通过了”,让中绿华夏广东省分中心负责人马细兰印象深刻的是:去年夏天,她所在中心正对一家省内申请有机认证的企业进行认证前辅导,并要求其按规定做出一定整改,不料两个月后,这家企业却将通过另一机构获得认证的有机食品证书,“有意无意”传回到了中绿办公室。  近些年,与国家级认证机构对应,在国内各省市,除了各国家级认证机构的地方外派机构外,越来越多的外围商业机构也开始搭便车挤入认证行列,使得有机食品认证市场,一度出现“凡咨询必能通过”、“凡交钱就能拿到证”的行内怪现象。  在广东地区,公开声称自己能办理有机食品认证的机构多达近十家。经南都记者调查,其中一半以上为各种认证机构的代理商,或者自称“与认证机构关系很铁”、“保证能帮助企业拿到认证”。位于广州天河体育西路的一家公司,承认该单位是受有机认证单位委托,专门对需要认证企业提供管理咨询,“如果包括办证,总费用一次5万-6万元”,对于第二年、第三年的协助复查,费用还可以打8折或8.5折。而广东省内一些省、市级农业科研单位,虽也纷纷宣称自己能够进行有机食品认证,但据记者了解,事实上他们也只是对部分有机认证指标负责检测,并不能直接进行认证。  珠海一家认证机构则表现强势,自称是“中南五省唯一的官方认定机构,只要企业需要申请,一个月内就可以派人去实地调查,对申报资料也可以进行辅导,整个程序认证下来,估计约2-3个月,而且第一年认证过关收费、加上做资料费用,总共4万-5万元”。该认证机构工作人员强调,与其它国内有机食品认证机构不同,“通过该机构认证的资格证书,目前已经获得了欧盟、日本等国际互认,其它机构认证的有机证书则只能在国内使用”。  但这一说法被农业部下属的中绿华夏广东省分中心否定。该中心透露,目前国内有机食品认证,由于各国贸易间绿色壁垒存在,尚不能与欧盟、日本等国互认,“如果说能够与国外通行,那肯定是假的”。  对眼下国内有机食品认证市场的混乱现状,中绿华夏广东分中心也深感无奈,该中心肯定,广东目前只有三家有机蔬菜企业通过了认证,且大多处于河源、梅州、粤东等偏远山区,其中一家还处于有机生产转换期,至于其它认证机构发证,“我们只认南京国环的,其它机构都不认”。  监管主要靠自律  “这是一个诚信行业” “认证通过后,一般不会出现大漏洞”  家住广州天河区的白领Suling,家庭收入绝对属于金领一列。Suling平时对食材挑选十分精细,但对超市普遍昂贵的有机蔬菜,她却也不经常买。“不是嫌价格高,就是不放心,担心不值得”。  “消费者对有机菜安全没信心,这是个死穴,结果越贵越没人买,越没人买企业越不敢放开种植,造成有机蔬菜市场长期萎靡难振”,关注有机蔬菜市场的华南农业大学园艺学教授陈日远,对近十年广东有机蔬菜的发展大有恨其不争之感。但他也无法否认,有机蔬菜在突破认证第一关之后,进入市场流通环节之后,与国内众多普通蔬菜一样,也同样是在多重监管的缝隙中游刃有余,甚至余地更大。  与国外蔬菜瓜果的生产与流通不一样,国外凡是合格上市者,均要求质量安全达标,但我国蔬菜瓜果等农鲜产品,通常有四个管理层级,即最基本的是普通果蔬,其次是无公害果蔬,再往上才是只有国家才能认定的绿色食品和顶尖级有机食品。  “按国家标准,绿色食品允许有少量农药残留,而有机蔬菜则要求农药残留必须在国标基础的5%以内,相当于是5‰,几乎不存在农药残留”,中绿华夏广东分中心解释,通常情况下,无公害蔬菜的管理尺度相对要宽些,通常各省自行就可以认定,而有机蔬菜和绿色食品的认证权在国家层面。  3月12日中午,从化东升农场一处包装车间内,场部技术人员正将当天收割的菜心、波菜和芹菜封进一个个透明包装袋,除了部分留在农场自检外,其余样品将一一送到从化市、广州市等农业部门进行检查。“企业自己对有机蔬菜要求是批批检,市区各农业部门则通常每个月送检1-2次”,农场一技术人员反映,有机蔬菜质量监测这一块,目前主要还是靠企业自律,“不要说省、市监管部门,就是区里现在也少有下到农场办公的了”。  此外,按照有机食品认证规定,有机食品在完成认证后,负责认证的机构还应对其产品生产和管理进行监督。而且有机认证证书的有效期只有一年,过完一年企业还须重新认证。但据记者调查,这相较于其它新鲜蔬菜产品,原本更多一道的安全阀,竟在众多认证机构混杂竞争的情形下再度轻易失守。  在广东,即使是有国家认定资质的有机食品认证机构,在企业通过认证后,也基本不再监管企业行为,事后取消企业资格认证的情形更等同于零。“我们着重是帮助企业在认证前建立一整套完整的管理程序,这样认证通过后,落实起来一般不会出现大漏洞”,广东一认证机构认为,目前对包括有机蔬菜在内有机食品的安全监管,更多责任应该归于企业。“这是一个诚信行业,不诚信者不应进入”,“国外也主要由生产企业负责,生产企业一般会宣誓,一旦产品出现问题,首先倒掉的就是品牌企业,尽管认证机构声誉也会受到一定影响”。  负责粤东某市农产品认证的政府工作人员证实,不仅国家认证级别最高的有机蔬菜,就是级别稍低的绿色食品,一般须三年重新认证一次,但一旦通过认证,也极少有被取消的,“除非企业经营不善自己倒掉”。几年前,该市一获绿色食品称号的米粉样品,被送到湛江一国家级检测中心检测,结果发现送检样品水质不合格。于是该市农业部门重新通知生产企业,允许生产企业不采用日常生产所用的山溪水,而是单独改用干净的自来水重新制作了一批样品,重新送检过关。“这不是秘密,行业内大多如此”,该工作人员称。  广东省农业部门反映,上世纪90年代中后期,农产品认证刚刚兴起时,省内生产企业一度曾热情很高,不少企业纷纷向政府申请认证。但后来品牌认证渐渐变成了“你有我有全都有”,品牌信誉度直线下降,对企业的吸引力衰减。“尤其是三鹿奶粉事件后,不仅消费者,就是行业内部对品牌认证也很受打击”,一工作人员强调:“三鹿奶粉不仅是绿色食品,还是国家免检产品,几乎什么认证都拿到了”。  按照国家规定,省市农业部门对所有上市农产品都有抽检任务,“有时还是相邻省份互检”,但广东省农业部门相关人员承认:平时对高端有机蔬菜抽查较少。“因为有机蔬菜大不了是不合格,质量再差也差不过普通蔬菜,不会出大问题,所以在监查人力物力不充裕的情形下,通常不抽检有机这一块”。  “最关键是认证和监管这两个环节,这两个环节扎实硬朗了,消费终端的价格不是问题”,陈日远信心满满:“要知道目前广州每天销售1吨有机菜,仅相当于正常估算量的1/400”。  “每个月多出300-500块钱菜金,相信广深等珠三角大多数家庭都能接受,但如果质不抵价,因此而多买了一份不放心或闹心,那还是少些麻烦好”。尽管不知不觉中,不用刻意去大超市就已经能够在社区方便买到有机蔬菜了,身边也渐渐有了越来越多尝鲜的邻居加入,但Suling依然不愿意更多地选购有机蔬菜。显然,在始终不够坚挺的安全面前,高价有机蔬菜还有较长的路要走。
  • 持久性有机污染物论坛2011 暨第六届持久性有机污染物全国学术研讨会通知
    论坛背景  持久性有机污染物(POPs)对人类健康和全球生态环境的巨大危害引起了世界各国政府、学术界、工业界以及公众的广泛重视,2001 年5 月签署并于2004 年5 月17 日正式生效的《关于持久性有机污染物的斯德哥尔摩公约》使POPs 成为一个重要的全球性环境问题。我国是首批签约国,2007年4 月国务院批准了《中国履行〈关于持久性有机污染物的斯德哥尔摩公约〉国家实施计划》,拉开了我国围剿持久性有机污染物的序幕。全面削减和淘汰首批12 类POPs 物质,是未来数十年我国和全球共同面临的重大任务。  “持久性有机污染物论坛暨持久性有机污染物全国学术研讨会”(以下简称“POPs 论坛”)是由清华大学持久性有机污染物研究中心发起,并与环境保护部斯德哥尔摩公约履约办、中国环境科学学会持久性有机污染物专业委员会、中国化学会环境化学专业委员会共同主办的系列年会,旨在为我国POPs 领域的学术界、管理界和产业界提供一个集思广益、共谋对策的高层次交流平台,纵观POPs 履约国际动态和我国进展,研讨POPs 研究热点和发展趋势,展示POPs 分析和控制的高新技术与先进产品。首届POPs 论坛于2006 年5 月17 日-18 日在北京清华大学成功召开,参会代表230 余人 第二届POPs 论坛于2007 年5 月17 日-18 日在大连理工大学成功召开,参会代表210 余人 第三届POPs 论坛于2008 年5 月17 日-18 日在北京清华大学召开,参会代表250 余人。第四届POPs 论坛于2009 年5 月17 日-19 日在浙江宁波市召开,参会代表300 余人。第五届POPs 论坛于2010 年5 月17 日-19 日在江苏省南京市召开,参会代表300 余人。  “持久性有机污染物论坛2011 暨第六届持久性有机污染物全国学术研讨会”定于2011 年5月17 日-19 日在黑龙江省哈尔滨市召开。本届论坛时逢《关于持久性有机污染物的斯德哥尔摩公约》通过及中国签署POPs 公约十周年、POPs 论坛6 周年庆典等重要事件,论坛主办单位热忱欢迎从事POPs 及相关工作的各界人士相聚在天鹅项下的明珠—冰城哈尔滨!  主办单位  清华大学持久性有机污染物研究中心  环境保护部斯德哥尔摩公约履约办公室  中国环境科学学会持久性有机污染物专业委员会  中国化学会环境化学专业委员会  承办单位  哈尔滨工业大学 城市水资源与水环境国家重点实验室  协办单位  美国哈希公司  中持依迪亚(北京)环境研究所有限公司  参展单位  征集中  论坛主题  持久性有机污染物公约履约十年进展  论坛议题1. POPs 履约需求与应对策略2. POPs 科学研究与决策支持3. POPs 技术研发与应用实践POPs 控制战略与技术对策POPs 分析方法与样品处理POPs监测分析与最新仪器 POPs 管理框架与政策法规POPs 迁移转化与环境归趋 POPs处置修复与示范工程POPs 资金需求与融资机制POPs 危害效应与生态毒理POPs替代产品与技术方案POPs 公众意识和宣传教育POPs 风险评价与预警体系POPs减排技术与企业实践  重要活动  高层报告:邀请国内外负责POPs 公约履约工作的高级官员、从事POPs 研究的知名专家学者以及POPs 分析和处置方面的优秀企业人士作大会报告,纵论一年来国内外履约动  态、最新研究进展和产业   研讨热点:针对垃圾处置中的 POPs 污染问题,交流在环境存在、毒理效应、降解行为、代替技术、处置技术、减排实践、履约政策等方面的研究   履约论坛:结合正在开展的 POPs 履约省市示范工作,针对地区特点、实施计划、地方法规、意识增强等议题展开讨论   表彰先进:颁发“2011 年度消除持久性有机污染物杰出贡献奖”,表彰为我国POPs 事业做出重要贡献的杰出人士   青年交流:举行研究生专场学术报告,评选“POPs 论坛2011 优秀研究生论文奖”、“POPs 论坛2011 优秀研究生学术墙报奖”,激励POPs 领域优秀青年的成长   企业展示:国内外知名 POPs 企业将通过最新技术推广报告和产品介绍介绍最新的设备、产品和技术,并解答应用方面的问题   宣传教育:发放 POPs 公约方面的宣传材料,开展科普教育活动,增强POPs 履约意识   重要日期  2011 年01 月17 日:发布会议通知  2011 年04 月18 日:论文提交截止  2011 年04 月25 日:优惠注册截止  2011 年05 月05 日:住宿及考察回执截止  2010 年05 月12 日:会议日程通知  2010 年05 月17 日:论坛开幕  日程安排  2011 年5 月16 日(一): [下午] 注册报到  2011 年5 月17 日二): [上午] 开幕式、大会报告  [中午] 产品展示与报告、技术交流、宣传一角  [下午] 研究生专场、大会报告  [晚上] 欢迎宴会  2011 年5 月18 日(三): [上午] 大会报告  [中午] 产品展示与报告、技术交流、宣传一角  [下午] 大会报告、闭幕式  [晚上] 欢送晚宴  2011 年5 月19 日(四):技术参观或生态考察(自由选择)  注册方式  通过 POPs 论坛网站http://www.china-pops.net/admin_/index.asp 网上注册。  会议论文、版报与格式  1.论文集:POPs 论坛2011 贯彻绿色理念,会议论文集分有纸质和光盘两种形式供选择。为节约资源,保护环境,组委会鼓励参会代表选择光盘(论文集电子版)作为会议资料 如选择纸质论  文集需在提交会议申请时注明(2011 年4 月25 日前,逾期会务组将只提供电子版会议论文集),并额外交纳80 元工本费。  2. 征稿要求:论文总字数(含图表)不宜超过2000 字,篇幅不超过2 页。论文的详细格式见会议网站--征稿要求:http://www.china-pops.net/admin_/ltjj5.asp。  3. 报告及墙报:会议报告形式包括大会报告、研究生论坛、墙报展。  研究生论坛由专家主持和点评,并评选最佳研究生论文 论坛同时设立墙报展,并评选最佳研究生学术墙报,以达到进一步促进交流、活跃学术气氛的目的 墙报建议规格50cm*70cm,墙报需自行打印,会务组提供展板及粘贴材料。  另注:凡参加优秀研究生论文奖、及优秀研究生学术墙报奖的参会代表需在提交会议申请中注明参加评选,申请时未注明者组委会将不安排评选。  参会费用  论坛将收取资料费和注册费。   代表类型2011 年04 月25 日前2011 年04 月25 日后一般参会代表12001600非在职研究生(凭研究生证)600 800  付款方式  (1)银行汇款:  开户银行:工行北京分行海淀西区支行  汇款帐号:0200004509089131550  收款单位:清华大学(备注:POPs 论坛2011,汇款人:名字)  (2)邮政汇款:  收款单位:清华大学环境科学与工程系  收款人名:张丹(备注:POPs 论坛2011,汇款人:名字)  联系电话:010-6279-4006 (邮编:100084)  注:汇款后请将您的汇兑单信息及发票要求通过论坛网站中“用户中心”提交给我们 以便我们核查汇款和开具发票。  联系方式  联系人:郑慧婷、刘曼  地 址:北京市海淀区清华园1 号清华大学环境科学与工程系(中意清华环境节能楼504 室)  邮 编:100084  电话:010-62771637、010-62794006  传真:010-62794006  电邮:zhenght@tsinghua.edu.cn 、popspc@.tsinghua.edu.cn  论坛网站  http://www.china-pops.net/admin_/index.asp
  • 上海市发布非甲烷总烃和有机硫在线监测标准
    p  上海市质量技术监督局发布了一批地方标准公告,其中包括《DB31/T 1089-2018 环境空气有机硫在线监测技术规范》和《DB31/T 1090-2018 环境空气非甲烷总烃在线监测技术规范》两项环境标准。  /pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201810/attachment/93dbdc60-113c-429d-80e7-99a897e92909.pdf" title="1090-非甲烷在线.pdf"DB31/T 1090-2018 环境空气非甲烷总烃在线监测技术规范.pdf/a/pp  由上海市环境监测中心、上海市化工环境保护监测站、上海市计量测试技术研究院起草。本标准规定了非甲烷总烃在线监测系统的技术要求、性能指标、检测方法和质量控制与质量保证等,适用于环境空气及厂界非甲烷总烃在线监测,包括直接法和差减法两类。  /pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201810/attachment/9f04008c-5681-47f0-bc10-2a3c73023fd8.pdf" title="1089-有机硫在线.pdf"DB31/T 1089-2018 环境空气有机硫在线监测技术规范.pdf/a/pp  由上海市环境监测中心、上海市化工环境保护监测站、上海市计量测试技术研究院起草。本标准规定了环境空气及厂界有机硫在线监测的系统构成、技术要求、性能指标和质量控制与质量保证等,适用于环境空气及厂界中甲硫醇、乙硫醇、甲硫醚、二硫化碳、乙硫醚和二甲二硫醚6种有机硫进行在线监测,每种有机硫化合物的方法检出限均为0.5nmol/mol。/p
  • 科“谱”时刻 | 持久性有机污染物六溴环十二烷(HBCDD)知多少?
    质谱技术在多个科研领域都扮演着重要角色。禾信仪器以质谱为主业发展近20年,各式各样的产品被广泛应用于环境监测、食品安全及犯罪调查等。公众号开设“科‘谱’时刻”专栏,带您深入探索质谱技术原理、常见应用领域及最新研究进展,一起跨入质谱技术的奇妙世界。什么是持久性有机污染物?“持久性有机污染物”是Persistent Organic Pollutants的中文翻译,英文简称“POPs”,是指“持久存在于环境中、在生物体中积累并对我们的健康和环境构成风险的有机物质。它们可以通过空运、水运或迁徙物种穿越国际边界,到达从未生产或使用过它们的地区。”(定义引自欧盟“POPs”法规)。为了保护全球生态环境和人类健康发展,推动持久性污染物的淘汰、限制、限排,联合国环境规划署主持国际成员国于2001年5月在瑞典首都斯德哥尔摩共同缔结了一项公约,即《关于持久性有机污染物的斯德哥尔摩公约》。欧盟POPs法规,将评估过的POPs按禁用、限制、减排、废弃分类形成清单加以管控。截止目前,POPs清单已收录31种有害物质,包含了杀虫剂(如滴滴涕)、工业有毒化学品(如多氯联苯)、工业制造中无意产生的副产物(如二噁英、呋喃)等,其中就包括六溴环十二烷(HBCDD)。POPs清单中管控的HBCDD(包含主要的非对应异构体)HBCDD的危害与控制一.性质与危害①分子式:C12H18Br6,溴含量高达74.7%;②熔点:175℃-195℃;超过240℃会脱溴裂解;③不溶于水,易溶于丙酮、甲苯等有机溶剂;④自然界常见的有α,β,γ-HBCDD三种异构体;HBCDD不同结构式⑤在光、热下稳定,具有优异的阻燃性能,常被用于家具装饰材料、电子产品、泡沫纺织等聚合材料中;⑥一种合成物质,难降解,可远距离传输,具有生物累积性,可造成人体器官衰竭。二.相关管控法规①《关于持久性有机污染物的斯德哥尔摩公约》;②POPs法规(EU)2019/2021;③ 欧盟RECHA法规,SVHC候选清单;④中国重点管控新污染物清单(2023版)。测定HBCDD的方法有哪些?HBCDD的测定常用气相色谱质谱法和液相色谱质谱联用法,提取方法有索氏提取法、超声提取法、微波辅助萃取法、加速溶剂萃取法、超临界流体萃取技术等。下表中列出几种常见的标准方法。HBCDD测定的不同方法禾信仪器测定HBCDD解决方案禾信仪器拥有GCMS和LC-TQ系列产品,并有众多提高前处理效率的自动化浓缩设备和固相萃取设备,可以满足以上不同聚合物材质的检测需求。
  • 安捷伦第六届全国有机质谱用户学术交流会
    我公司定于2005年10月28日至30日在云南省丽江实力酒店召开"安捷伦公司第六届全国有机质谱用户学术交流会"。目前报名正在进行中,请尚未报名参加会议的用户尽快与我们联系,我们的报名时间将延续到9月30日。联系方式:电话:800 820 3278 或 (010)65647513传真:(010)65669223邮件:yan-ping_liu@agilent.com
  • 台湾食品安全问题连环爆 有机糙米检测出农药残留
    台&ldquo 消基会&rdquo 公布市售糙米检验,样本中高达六成、12件等级&ldquo 膨风&rdquo , 其中花莲县富里乡农会推出的&ldquo 富丽有机糙米&rdquo (图下方)也被验出微量农药残留,引发消费者震撼。  富丽有机糙米 验出农药残留  综合台湾媒体报道,&ldquo 消基会&rdquo 昨天公布20件市售糙米抽检结果,发现市面相当知名、由花莲富里乡农会出产的&ldquo 富丽有机糙米&rdquo ,被验出残留微量农药(加保利,杀虫剂用途),消息一出,引发当地农会、花莲县府及消费者震撼。  &ldquo 消基会&rdquo 表示,米类加保利容许量是零点五ppm,&ldquo 富丽有机糙米&rdquo 被验出的残留量,虽符合标准CNS的一般米残留标准,却违反现行有机农产品农药零检出规定,除可开罚3到15万元(新台币),业者也应立即下架、回收。  不过,&ldquo 消基会&rdquo 却未公布农药确切残留值,无法得知残留程度是逼近容许值,还是微量到可能是受到后续产制环境污染。昨晚记者向消基会多次查询,消基会表示今才能向检验部人员确认数据。  &ldquo 消基会&rdquo 验出农药 富丽米摇摇欲坠  &ldquo 真是一颗老鼠屎!&rdquo 花莲县政府农业处长张智超得知富丽有机米被验出农药残留,表示十分痛心,县长傅昆萁震怒,要求富里农会有机白米、糙米、胚芽米全数下架,每包都检测,并要求撤换辅导有机验证的辅导团队。  对违规用药的农户,农业处将他从辅导有机农户名单中除名,张智超说,&ldquo 现在全面检测,不论结果如何,验出多少人违规,就全部立即除名&rdquo 。  &ldquo 没想到,一、二十年辛苦的成果,竟然被破坏&rdquo 。张智超当年担任富里乡农会总干事,就是推动富里有机农业最大推手。&ldquo 花莲县好不容易建立起有机无毒农业的商誉,如今受到污染,实在很痛心&rdquo 。张智超说,&ldquo 螺丝松了,一点都不可原谅&rdquo 。  &ldquo 好像被打了一记闷棍&rdquo 。富里乡农会推广股长林辉煌表示,政府单位检验农产品,若有问题,多会先联络县府及农会,再针对问题深入探讨。这次消基会突然公布验出有机糙米含农药残留,让富丽米品牌摇摇欲坠。  学者建议:农药残留 改在容许值下分级  台湾有机农产品不时传出农药残留事件,到底哪个环节出问题?台大农艺学系教授郭华仁指出,台湾有机作物农药残留&ldquo 零检出&rdquo 的规定或许该检讨,因现在农药太泛滥,很多遵守有机验证程序的农场,即使完全未使用农药及化肥,也可能因外来污染,如空飘、下雨,导致作物沾上农药。  郭华仁表示,现在国际的做法,包括美国、英国、瑞士及日本,都已舍弃&ldquo 零检出&rdquo ,改在安全容许值以下,区分等级,越接近安全容许值越危险,有机产品必须先下架检查,了解是外来污染还是偷用农药 相对的,如果趋近&ldquo 零检出&rdquo ,仍算有机,产品根本不必下架。  郭华仁说,台湾有机&ldquo 零检出&rdquo 规定之前也曾引发争议,农粮署曾试图修&ldquo 法&rdquo ,但都过不了消费大众这关 他呼吁官方应该从教育着手,借镜日本&ldquo 食育基本法&rdquo ,追求对环境友善、民众健康的有机农业,而非数据上追求&ldquo 零检出&rdquo 的有机农业。
  • 上海有机所肿瘤免疫靶向小分子药物技术授权金额创纪录
    p  中国科学院上海有机化学研究所与信达生物制药(苏州)有限公司近期就肿瘤免疫靶向小分子药物的授权开发达成了合作协议。信达生物以首付款、研发里程碑和销售里程碑付款共计4.57亿美元另加销售提成的合作方式,获得上海有机所研发的吲哚胺 2,3-双加氧酶(IDO)小分子抑制剂的全球独家开发许可权。这是目前国内科研院所与本土生物制药企业达成的合作金额最高的项目,充分体现了分子创制的价值,有望成为中国院企创新药合作的重大里程碑事件。/pp  创新药物的研发是当前国际科技竞争的战略制高点之一,对经济发展和社会进步具有重要而深远的影响。国际创新药物研发的一个重要趋势是以基础研究的突破为引领。目前,在国际创新药物研发中,肿瘤免疫治疗药物研发成为备受关注的新方向。中科院生物与化学交叉研究中心研究员王召印、朱继东致力于肿瘤免疫治疗小分子靶向药物及肿瘤免疫治疗的研究攻关,通过紧密合作研究,获得新型结构的高活性IDO抑制剂,成为肿瘤免疫治疗药物开发的“种子选手”。/pp  科技创新绝不仅仅是实验室里的研究,而是必须将科技创新成果转化为推动经济社会发展的现实动力。信达生物制药致力于抗体创新药的研发,目前已与多家国际著名制药企业达成肿瘤免疫疗法的合作。中科院上海有机所研发的IDO抑制剂与信达生物当前正在开发的肿瘤免疫类抗体有着潜在的协同治疗效果。此次合作,是科研院所与中国生物药创新企业在重要的免疫疗法上的强强联合,将共同开创肿瘤免疫治疗的新天地,合作成果不仅有望惠及中国乃至全球病人,而且将推动中国生物药抢占国际市场,打响“中国创新”品牌。/pp  近年来国内外临床研究证明,IDO抑制剂与PD-1抗体的联合疗法已取得令人满意的临床结果。PD-1是信达生物的“拳头产品”,目前信达生物与其国际战略合作伙伴合作开发的PD-1抗体已进入三期临床。此次院企联手,可使信达生物的PD-1产品“如虎添翼”,有望达到更加有效的治疗作用。/pp  IDO可以抑制免疫细胞的活性,目前研究已发现在前列腺癌、胰腺癌、乳腺癌、胃癌等多种肿瘤细胞内都有IDO的过度表达。所谓IDO过度表达,是指肿瘤细胞通过过度释放IDO造成色氨酸耗尽而阻止免疫细胞增殖激活,从而使肿瘤细胞逃避免疫系统的监视而“逍遥法外”,这也是早期癌症难以被免疫系统发现的原因之一。IDO抑制剂可以对IDO的过度表达进行抑制,从而让肿瘤微环境中的免疫细胞重新恢复活性,精准杀死肿瘤细胞。/pp/p
  • 【广东】政协委员提议大规模推广“有机食品”
    如何吃得健康?委员提议大规模推广“有机食品”  “广东人会吃,但怎么吃,吃得放心,吃得健康,口感更好,今后市场的需求会要求提供更多有机食品。”3月2日,针对食品安全这一餐桌上的问题,赴京参加全国两会的全国政协委员、国际欧亚科学院院士、中山大学食品与健康工程研究院院长刘昕教授认为,“有机食品”大规模推广在技术上完全可行,曾因成本高昂而被诟病的“有机食品”有望走上平民家庭的餐桌。  “有机食品的供应量并不小”,刘昕说,就像大家对奶粉的需求那样,市场需求量扩大后,大规模种植提供给市场,这样成本就降下来了。“有机食品大规模种植,在技术上可行”。刘昕说,国家已有很多有机食品、绿色食品种植基地,“关键问题是有些消费者不相信究竟是不是有机食品”,所以要求国家在监管监控上进一步透明化。  广东有足够多安全的土地提供有机食品生产吗?是可以的。刘昕介绍说,经调查,广东很多源头水源好的地方都可以提供大量有机食品的资源,比如在广东一些城市化的边缘地区,如河源、龙门,靠近江西等地区都可以大规模种植。“现在的问题是,种出来,卖不出去 养出来的有机猪,卖不出去。”因为卖不出去,市场不好,成本也提高了。  “菜市场只有一、两个档口卖有机菜”,针对有机食品的供应问题,刘昕说,因为这个链条比较长,如果市场需求有限,越小规模,成本越高。  有机食品价格的降低依赖于大规模的生产,这种大规模的生产会不会导致有机食品的异化?“不会!”刘昕说,国家必须在监控方面,从源头做起,包括整个链条都必须加强检测,另外,刘昕建议,要提高监测的门槛,“有些食品我们说安全,但到国外检测却有问题。”刘昕说,希望广东在吃的方面也敢为人先,让人觉得广东的东西最好吃,最健康,最放心。  谈地沟油:绝大部分可转为生物柴油  针对去年曾经被炒得沸沸扬扬的地沟油事件,刘昕提出,地沟油绝对不能吃,但可以废物利用,转化用来做生物柴油,“利润很可观”。  刘昕表示,我们要给地沟油一个出路,在技术上,绝大部分的地沟油都可转化为生物柴油,可直接用作能源。  谈食品安全监管:加大对不法商家的打击力度  为何食品安全问题天天抓,个个管,有毒豇豆,皮革奶等食品安全事件还是屡禁不止?刘昕认为,目前我国由于食品生产经营链条长,涉及面广,许多地方食品安全监管存在真空地带和盲点、盲区。  刘昕讲了一个他亲眼看到的例子,他去一个大市场视察,虽然有现代化的检测设备,价值几十万上百万,但基本上就是摆在那里,成为一种形式。  “今年的打击力度会更大”,日前,刑法修正案加大对食品安全犯罪惩处打击力度,最高可判死刑。刘昕认为非常必要。“只有加大对不法商家的打击力度,才能有效遏制制造、销售有毒有害食品的嚣张气焰。”  他同时建议,要从生产源头抓起,改变注重对终端产品评价的做法,改变过去仅对食物链的重点环节监管,转变为向加强食物链全过程监管。
  • 六部委联合印发《“十三五”挥发性有机物污染防治工作方案》多行业或受影响
    p  近日,环保部等六部委联合印发《“十三五”挥发性有机物污染防治工作方案》(以下简称:方案),明确主要目标是到2020 年,建立健全以改善环境空气质量为核心的VOCs 污染防治管理体系,实施重点地区、重点行业VOCs 污染减排,排放总量下降10%以上。通过与NOx 等污染物的协同控制,实现环境空气质量持续改善。/pp  方案指出,“十三五”期间将重点治理京津冀及周边、长三角、珠三角等区域,涵盖北京、天津、河北、辽宁等16个省(市),重点推进石化、化工、包装印刷、工业涂装等重点行业以及机动车、油品储运销等交通源VOCs 污染防治,加强芳香烃、烯烃、炔烃、醛类等活性强的VOCs 排放控制。/pp  依据方案内容,“十三五”期间明确建立健全VOCs 管理体系,包括加快标准体系建设、建立健全监测监控体系、实标施排污许可制度、加强统计与调查、加强监督执法、完善经济政策六个方面的建设。其中标准体系建设、监测监控体系建设以及经济政策方面建设内容如下:/pp  strong加快标准体系建设。/strong/pp  环境保护部制修订制药、农药、汽车涂装、集装箱制造、印刷包装、家具制造、人造板、涂料油墨、纺织印染、船舶制造、储油库、汽油运输、干洗、油烟等行业大气污染物排放标准,制订挥发性有机物无组织排放控制标准,修订恶臭污染物排放标准和大气污染物综合排放标准。建立与排放标准相适应的VOCs 监测分析方法标准、监测仪器技术要求,加快制定固定污染源废气VOCs 自动监测系统、便携式监测仪技术要求及检测方法。质检总局出台和完善涂料、油墨、胶粘剂、清洗剂等产品VOCs 含量限值标准。地方结合本地产业特点加快制定地方排放标准。/pp  strong建立健全监测监控体系。/strong/pp  加强环境质量和污染源排放VOCs 自动监测工作,强化VOCs 执法能力建设,全面提升VOCs 环保监管能力。重点地区O3 超标城市至少建成一套VOCs 组分自动监测系统。将石化、化工、包装印刷、工业涂装等VOCs 排放重点源纳入重点排污单位名录,主要排污口要安装污染物排放自动监测设备,并与环保部门联网,其他企业逐步配备自动监测设备或便携式VOCs 检测仪。推进VOCs 重点排放源厂界VOCs 监测。加快石油炼制、石油化工、制药、农药、化学纤维制造、橡胶和塑料制品制造、纺织、皮革、喷涂、涂料油墨制造、人造板制造等行业自行监测技术指南制定。工业园区应结合园区排放特征,配置VOCs 连续自动采样体系或符合园区排放特征的VOCs 监测监控体系。/pp  strong完善经济政策。/strong/pp  研究将VOCs 排放适时纳入环境保护税征收范畴。加大财政资金对VOCs 治理的支持力度,有关地方可将符合规定的VOCs 污染防治项目纳入中央大气污染防治专项资金支持范围,利用专项资金、扩大绿色信贷等方式支持企业实施VOCs 防治工作。选择石化、化工、工业涂装、包装印刷等VOCs 治理重点行业,实施环保“领跑者”制度。推进集装箱等实施行业治理自律公约。推进政府绿色采购,要求家具、印刷、汽车维修等政府定点招标采购企业使用低挥发性原辅材料。支持符合条件的企业发行企业债券直接融资,募集资金用于VOCs 污染治理。落实支持节能减排企业所得税、增值税等优惠政策。推进地方建立基于环境绩效的VOCs 减排激励机制。/pp  具体通知如下:/pp style="text-align: center "strong关于印发《“十三五”挥发性有机物污染防治工作方案》的通知/strong/pp  各省、自治区、直辖市、新疆生产建设兵团环境保护厅(局)、发展改革委、财政厅(局)、交通运输厅(局、委)、质量技术监督局(市场监督管理部门)、能源局:/pp  为落实《中华人民共和国国民经济和社会发展第十三个五年规划纲要》《“十三五”生态环境保护规划》《“十三五”节能减排综合工作方案》相关要求,全面加强挥发性有机物(VOCs)污染防治工作,强化重点地区、重点行业、重点污染物的减排,提高管理的科学性、针对性和有效性,遏制臭氧上升势头,促进环境空气质量持续改善,我们制定了《“十三五”挥发性有机物污染防治工作方案》(见附件)。现印发给你们,请认真落实方案要求,扎实推进各项工作,及时报送有关材料,推动VOCs污染防治工作取得积极进展。/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201709/ueattachment/56e4ef54-ec10-4987-92fd-def057d11eb6.pdf"“十三五”挥发性有机物污染防治工作方案.pdf/a/pp style="text-align: right "  环境保护部/pp style="text-align: right "  发展改革委/pp style="text-align: right "  财政部/pp style="text-align: right "  交通运输部/pp style="text-align: right "  质检总局/pp style="text-align: right "  能源局/pp style="text-align: right "  2017年9月13日/pp  抄送:中国石油天然气集团公司、中国石油化工集团公司、中国海洋石油总公司、中国中化集团公司。/pp  环境保护部办公厅2017年9月14日印发/pp /p
  • 微电子所在在有机分子晶体器件的载流子输运研究中获进展
    近日,中国科学院微电子研究所微电子器件与集成技术重点实验室在有机分子晶体器件的载流子输运研究中取得重要进展。相比于传统基于无序半导体材料的场效应晶体管中掺杂引起的缺陷钝化(trap-healing)现象,由有序单晶电荷转移界面制备的场效应晶体管整体电导、迁移率高,并具有跨导不依赖于栅压的电学特性,这表明迁移率的提高取决于trap-healing效应,且存在其他影响电学性能的机制。中科院院士、微电子所研究员刘明团队制备了基于p型和n型有机分子构成的单晶电荷转移界面的晶体管器件,探究了电荷转移界面以及栅氧界面电场的相互作用对晶体管工作时载流子及电导分布特性的影响。相较于界面,单晶体内的缺陷态减少3个数量级以上,这意味着更小的散射概率和更高的器件迁移率。研究通过开尔文探针显微镜对表面电势的栅压依赖性表征和二维数值仿真证实,电荷转移界面的内建电场与栅氧界面电场发生有效耦合,提高了载流子体传输比例,减少了界面无序因素对载流子传输的限制作用,大幅提升了器件的跨导。相关研究成果以Surface Doping Induced Mobility Modulation Effect for Transport Enhancement in Organic Single Crystal Transistors为题,发表在Advanced Material上。研究工作得到国家重点研发计划、微电子所微电子器件与集成技术重点实验室开放课题、国家自然科学基金、中科院战略性先导科技项目的支持。图1.电荷转移晶体管的迁移率调制效应的原理图图2.利用扫描开尔文探针显微镜对电荷转移界面的表面电势的表征分析
  • 可口可乐美汁源疑含有机磷 致1死1伤
    11月28日晚,长春市民刘某与其子楚某饮用可口可乐美汁源果粒奶优(清新草莓口味),相继发生疑似食物中毒,经120送院救治,刘某昏迷,楚某死亡。临床诊断疑似有机磷中毒。经公安部门检验认定,剩余饮料中含有剧毒杀虫剂。  事发后,长春市委、市政府对此高度重视,责成相关部门迅速查清事件原因,全力救治患者,全面检查食品安全。长春市工商局连夜组织对全市流通场所进行地毯式排查,对此类饮品就地下架、封存待查。长春市卫生局、质量技术监督局做好各项检验监测工作。长春市公安局抽调精干力量,立即展开调查侦破工作。  中新网长春11月30日电 11月28日晚,长春市民刘某与其子楚某饮用可口可乐美汁源果粒奶优(清新草莓口味),相继发生疑似食物中毒,经120送院救治,刘某昏迷,楚某死亡。临床诊断疑似有机磷中毒。经公安部门检验认定,剩余饮料中含有剧毒杀虫剂。  事发后,长春市委、市政府对此高度重视,责成相关部门迅速查清事件原因,全力救治患者,全面检查食品安全。长春市工商局连夜组织对全市流通场所进行地毯式排查,对此类饮品就地下架、封存待查。长春市卫生局、质量技术监督局做好各项检验监测工作。长春市公安局抽调精干力量,立即展开调查侦破工作。  30日上午,长春市食品安全委员会办公室也通过电视台发出提示:近期勿饮用可口可乐美汁源果粒奶优(清新草莓口味),家中存有此饮品者,请与当地工商部门联系。  记者30日中午在长春市部分超市看到,工作人员正将可口可乐产品下架,超市内摆放的可口可乐饮料柜也被装车拉走。  目前,案件正在进一步侦办中。
  • 浙江医药300万元捐赠有机所
    缺少生活费资助,使我国博士生在申请世界一流实验室博士后的竞争中处于劣势。借助企业捐赠,中科院上海有机化学研究所跨出了尝试性的一步:昨天,该所举行仪式,接受浙江医药的300万元捐赠,成立博士后基金,计划5年内每年资助6名该所优秀博士生出国进修。  有机所副所长马大为说,一位美国著名实验室的负责人告诉他,每年他不得不拒绝100多个来自中国的博士后申请——并非他们不够优秀,而是他们缺乏资助。“除去科研经费,一个博士后在国外一年的工资大约20万元人民币。”他说,如果没有基金资助,实验室就必须另外申请这笔经费。对于优秀人才趋之若鹜的世界一流实验室而言,自然会优先考虑“不用发工资”的博士后申请者。所长丁奎岭告诉记者,现在越来越多的年轻科研人才在国外完成博士后工作后,选择回国工作,这也使得国外实验室更吝惜经费,不愿培养“不能为我所用”的人才。  然而,中国对于博士后的进修资助却十分匮乏。近年,有机所已在多方筹措经费,准备向优秀博士生提供博士后基金。而这笔捐赠恰好为我国高级科研人才的培养雪中送炭。根据计划,博士后基金资助每人10万元,有机所再资助10万元,作为博士后期间的生活费用。
  • 人参、黄芪、甘草配方颗粒“其他有机氯类农药残留量”应对方案上线
    10月31日,国家药品监督管理局发布公告“批准颁布第二批中药配方颗粒国家药品标准”。11月2日,国家药典委发布公告,转发第二批36个配方颗粒国家标准文件。 经岛津技术人员查询和整理,2020版药典“人参、黄芪、甘草”药材在【检查】项目处对“其他有机氯类农药残留量”有检测规定,两批配方颗粒国家标准中对“人参(第二批品种)、黄芪(蒙古黄芪)、甘草(甘草)”也有“其他有机氯类农药残留量”检测要求,同品种检测方法、项目、限量要求保持一致。 中药“其他有机氯类农药残留量”检测解决方案 面对配方颗粒国家标准和2020版药典中人参、黄芪、甘草“其他有机氯类农药残留量”检测要求,岛津向广大用户提供全整体解决方案,包括分析仪器、色谱柱和应用方案。 分析仪器和色谱柱ECD-2010 Exceed 电子捕获检测器全新设计的内部结构带来更持久的耐用性、更优异的灵敏度、更宽泛的线性范围,实现良好的ECD性能。ECD池的结构优化,达到卓越的灵敏度。 人参“其他有机氯类农药残留量”应用实例 岛津按照人参品种“其他有机氯类农药残留量”检测标准建立了应用方案,结果如下:9种有机氯混合对照品溶液(100ppb)色谱图9种有机氯混合对照品溶液(1ppb)色谱图 参照《中国药典》的分析方法,采用色谱柱SH-1701 (30 m, 0.32 mm × 0.25 μm )分析 9 种有机氯类农药残留,两个相邻色谱峰的分离度均大于1.5,峰形和重现性良好,且在低浓度下(1 ppb)也能得到较好的峰形,满足《中国药典》需求。此方法可为9 种有机氯类农药残留测定提供参考。 六六六(BHC)(α-BHC,β-BHC,γ-BHC, δ-BHC)、滴滴涕(DDT)(p,p' -DDE,p,p' -DDD,o,p' -DDT,p,p' -DDT)八个化合物属于禁用农药,可使用本方案对植物类药材和饮片中8个禁用农药化合物做初步筛查。 “12 种有机磷类农药残留量” 和“22 种有机氯类农药残留量”测定应用方案 岛津(上海)实验器材有限公司同时参照《中国药典》四部2341通则“第二法 有机磷类农药残留量测定法(色谱法)”、“22种有机氯类农药残留量测定法”分别建立了应用方案,为广大客户检测相应项目提供参考。12 种有机磷类农药混合对照溶液(1ppm)色谱图22 种有机氯类农药混合对照溶液(100ppb)色谱图
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法—— HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 美农业部要求有机产品认证机构定期开展残留检测
    美国农业部(USDA)农业市场服务局(AMS)于2012年11月8日发布公告称,“国家有机项目”(National Organic Program,NOP)已发布一项最终法规,要求经认可的有机产品认证机构必须对标注为“100%有机”、“有机”或“采用有机配料制成”的农产品进行定期的残留检测。  该检测项目将于2013年1月1日正式开始。认证机构要对其认证的有机产品经营商的至少5%产品进行检测,除非其认证的经营商少于30个,那么只要求对其中一家经营商的产品进行检测。这项检测为每年执行一次。值得注意的是,执行这项检测的实验室必须根据ISO/IEC 17025:2005认可。其他可开展的检测项目,如砷和其它金属污染物、转基因生物、抗生素和激素等,可算作对所要求检测的一部分。  具体的抽样项目程序也已发布。该文件中包含了具体禁用农药清单。此外,指南草案也制订完成,解释了根据检测结果所要实施的处理措施。美国农业部农业市场服务局NOP发布该最终法规的原因为,在此前开展的2010年至2011年有机产品农药残留审核中,AMS发现571个样品中有21个样本的农药残留水平超过了美国环境保护署(EPA)规定的食品中最大农药残留量限值。
  • iCMR 2017特邀报告:核磁共振残留偶极耦合参数在有机分子结构鉴定中的应用
    p style="TEXT-ALIGN: center"strong第一届磁共振网络会议(iCMR 2017)特邀报告/strong/pp style="TEXT-ALIGN: center"strong核磁共振残留偶极耦合参数在有机分子结构鉴定中的应用/strong/pp style="TEXT-ALIGN: center"strongimg title="QQ截图20171026164003.jpg" style="HEIGHT: 299px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201710/insimg/e8577b4c-88b2-4b59-a0cc-09b1187ef006.jpg" width="400" height="299"/ /strong/pp style="TEXT-ALIGN: center"strong雷新响 教授/strong/pp style="TEXT-ALIGN: center"strong中南民族大学药学院/strong/ppstrong  报告摘要:/strong/pp  残留偶极耦合(residual dipolar coupling, RDC)作为核磁共振各向异性参数在有机分子构型及优势构象等方面的应用具有强而有力的优势, 它反映分子中原子在磁场中的空间距离与角度信息, 实现分子三维空间的构建。 将针对残留偶极耦合在有机分子结构鉴定方面的进展进行介绍。首先,简要介绍残留偶极耦合的原理;其次,介绍定向介质和脉冲方法;再次,以若干实例展示RDC在天然产物, 合成药物,有机反应中间体络合物中的应用;最后,展望未来的发展趋势。/ppstrong  报告人简介:/strong/pp  雷新响,男,博士,毕业于中国科学院成都生物研究所,于2010-2011年在耶鲁大学从事研究工作1年。现为中南民族大学药学院教授,硕士研究生导师,从事有机及生物分析研究工作15年,讲授波谱分析,生物化学,化学生物学等课程,主持国家自然科学基金及国际合作等项目。目前已在JACS,《德国应用化学》,《核酸研究》,《欧洲化学》,Organic Letters,《磁共振化学》等期刊发表SCI文章30余篇,曾被美国化学会(Highlighted by ACS " Noteworthy Chemistry" )进行了专栏介绍点评。多次应邀在国际、全国或地区学术研讨会上做核磁共振在有机分子研究中的应用工作报告。2014年11月与德国科学院院士,磁共振主席Christian,Griesinger教授合作共同组织的,由中德科学研究中心资助的“中德核磁共振新方法在有机化学中的应用及前沿研讨会”,成功召开。2014年以“有机分子的立体化学及手性的核磁共振新分析方法”获得了中国分析测试协会科学技术奖(CAIA)“三等奖”1项。/pp  strong报名地址:/stronga title="" href="http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target="_self" textvalue="http://www.instrument.com.cn/webinar/meetings/iCMR2017/"http://www.instrument.com.cn/webinar/meetings/iCMR2017//a/p
  • 农残检测新进展|新型多孔复合材料可有效提高有机磷农药残留分析的准确性
    有机磷农药,是指含磷元素的有机化合物农药。主要用于防治植物病、虫、草害,在农业生产中的广泛使用,导致农作物中发生不同程度的残留。有机磷农药对人体的危害以急性毒性为主,多发生于大剂量或反复接触之后,会出现一系列神经中毒症状,如出汗、震颤、精神错乱、语言失常,严重者会出现呼吸麻痹,甚至死亡。虽然在蔬菜上应用的剧毒、高毒有机磷农药大多已被列入禁限用范围,但实际生产中仍存在有机磷农药违法违规使用现象。因此,建立有机磷农药高效前处理和精准检测技术,严格控制其残留水平,对于保障蔬菜产品质量安全具有重要意义。近日,中国农业科学院蔬菜花卉研究所质量安全课题组探索出新型多孔复合材料(3DGA@COFs)的制备方法,并成功应用于蔬菜有机磷农药残留分析,为有效提高有机磷农药残留定量准确度和检测效率提供了新路径。相关研究成果发表在《食品化学(Food Chemistry)》上。据徐东辉研究员介绍,该团队创造性地通过三维石墨烯水凝胶(3DGA)的柔性表面引导COFs自组装生长,成功制备了3DGA@COFs复合材料,证实了该材料可有效吸附富集蔬菜中的马拉硫磷、喹硫磷和三唑磷等有机磷农药残留,并具有优异的再生性能。结合固相萃取技术,该研究成功地建立了一种灵敏度高、选择性强、重现性好的有机磷农药检测方法。在最优条件下,方法的最低检测限为0.01微克/升-0.14微克/升,线性范围检测覆盖了0.50微克/升-100微克/升,显著提高了有机磷农药残留前处理方法的准确性和稳定性。该研究得到国家自然科学基金、国家重点研发计划、国家大宗蔬菜产业技术体系及中国农科院科技创新工程等项目的资助和农业农村部蔬菜质量安全控制重点实验室的支持。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
  • 药品中有机溶剂残留检测气相色谱仪特价销售
    药品中有机溶剂残留检测气相色谱仪特价销售,欢迎致电南京科捷(http://www.kj17.com)了解详情!联系电话:尹先生13951792301参考配置:(需根据检测物质不同更改配置)色谱仪器配置色谱柱及试剂GC5890气相色谱仪(FID检测器)毛细管专用柱30*0.32.*0.5乙醇、二氯甲烷各一瓶顶空进样器:DK-300ANN二甲基甲酰胺1瓶N2000色谱工作站(电脑自备1台)二甲亚枫1瓶氢氮氧一体发生器或钢瓶气各一瓶顶空压盖机1台(南京科捷)顶空瓶20ml (带塞) 50只药品中有机溶剂残留检测气相色谱仪主要特点:★全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.仪器技术指标、性能,检测器灵敏度可与HP5890相媲美!★GC5890气相色谱仪全新集成数字电子电路,控制精度高,性能稳定可靠,温控精度可达0.01℃.★柱箱容积大,智能后开门系统无级可变进出风量,缩短了程序升/降温后系统稳定平衡时间;加热炉系统:(温度范围)环境温度+7℃-400℃.三阶程序升温,升温速率0-50℃/min;增量0.1℃/min可以由用户重新校正炉温,并随意设定最高温度。由用户决定加热炉温度平衡时间。★独特的进样口设计解决进样歧视;双柱补偿功能不仅解决升温带来的程序漂移,而且减去背景噪音的影响,可以得到更低的最小的检测限。5、可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、裂解炉进样器、甲烷转化炉.★具有开机自诊断功能、秒表功能(方便流量测定)、运转定时器功能、停电储存保护功能、键盘锁定功能。★检测器系统:火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴;高阻值单柱热导检测器检测灵敏度高,基线稳定快(15分钟即可稳定);输入信号可进行对数放大,减少干扰,提高灵敏度.可选配TCD、ECD、NPD、FPD。南京科捷热忱为您服务!欢迎您的来电!
  • 我国著名有机化学家中科院院士黄宪逝世
    中国科学院院士、我国著名有机化学家、浙江大学教授黄宪同志因病医治无效,于2010年3月6日2时07分在杭州逝世,享年78岁。  黄宪同志遗体告别会定于3月10日上午9时30分在杭州殡仪馆举行。  我国有机化学家中科院院士黄宪  黄宪院士遗体告别仪式举行,国家领导人表示悼念  黄宪院士逝世后,中共中央总书记、国家主席胡锦涛,对黄宪院士逝世表示悼念并对其家属致以慰问。党和国家领导人温家宝、李长春、习近平、李克强、李源潮、张德江、刘延东、吴官正、路甬祥送了花圈。  浙江日报杭州3月10日讯 我国著名有机化学家、中国科学院院士、浙江大学教授黄宪院士遗体告别仪式,3月10日上午在杭州举行。  黄宪院士逝世后,中共中央总书记、国家主席胡锦涛对黄宪院士逝世表示悼念并对其家属致以慰问。党和国家领导人温家宝、李长春、习近平、李克强、刘延东、李源潮、张德江、吴官正、路甬祥送了花圈。  中央和国家机关有关部委领导沈跃跃、袁贵仁、白春礼、潘云鹤、李静海,省领导赵洪祝、吕祖善、蔡奇、陈加元、金德水、郑继伟、徐辉、姚克、冯明光,浙江大学校长杨卫,老同志郑树、毛昭晰、杨士林、王承绪、薛艳庄、丁德云、阙端麟、汪希萱、陈昭典、冯培恩等以及40余名两院院士以不同形式对黄宪院士的去世表示深切哀悼,并送了花圈。  省委常委、宣传部长茅临生,浙江大学党委书记张曦,老同志张浚生,中国科学院院士曹楚南、沈家骢、沈之荃、周其林,中国工程院院士郑树森、宫先仪,省委组织部、省委教育工委、省教育厅部门负责同志和各界干部群众及黄宪院士生前友好300余人参加了告别仪式。  中央组织部、教育部、全国总工会、中国科学院学部主席团、院士工作局,中共浙江省委、省政府、省委组织部、统战部、省委人才工作领导小组办公室、省教育厅、科技厅,北京大学、清华大学,以及黄宪院士家乡江苏省扬州市人民政府送了花圈、花篮或发来唁电、唁函。  黄宪院士遗体告别仪式  杭州殡仪馆一号大厅庄严肃穆,哀乐低回。大厅入口两侧:“勤勉三日易,先生守拙五十载 躬聆半刻难,学生奢望一百年”的挽联,道出了海内外学子对恩师深深的敬仰和无尽的哀思。大厅正中,黄宪院士的遗像两侧:“艰苦岁月启科研育人才,腾飞年代结硕果品芬芳”的挽幛,则是黄先生一生的真实写照。上午9:30,浙江省领导茅临生,浙大校领导张曦、张浚生、陈子辰、王玉芝、郑强、任少波,中国科学院院士曹楚南、沈家骢、沈之荃、周其林,中国工程院院士郑树森、宫先仪和各界干部群众及黄宪院士生前友好300余人,向静卧在鲜花和翠柏丛中的黄宪院士的遗体作最后的告别。  《化学试剂》编委会唁电   黄宪教授生前任《化学试剂》编委会副主任。黄宪教授30年来一直关注我国化学试剂事业的发展,从《化学试剂》1979年创刊起就为提高刊物学术水平不懈努力.除亲自撰写发多篇论文以外,还提出许多宝贵建议。黄宪教授严谨认真的学术风范,赢得学术界和试剂业极高的尊重。2009年6月黄宪教授还在上海主持了《化学试剂》编委会、纪念《化学试剂》期刊创刊30周年、试剂发展专题研讨会等一系列活动。时隔仅仅数月,惊悉突然辞世.痛感化学试剂事业失去重要支撑力量。  黄宪院士不幸去世,《化学试剂》编委会和编辑部发去唁电并敬献花圈,表示深痛哀悼。  2009年6月黄宪教授在上海主持《化学试剂》编委会会议  中科院院士、有机化学家黄宪  黄宪院士1933年12月出生于江苏扬州,1951年毕业于江苏省立扬州中学,1958年毕业于南京大学化学系 1958年任原杭州大学化学系助教,1981年晋升为副教授,1986年晋升为教授,2003年当选为中国科学院院士。先后获“全国先进工作者”(全国劳动模范)、“全国优秀教师”等荣誉称号。  黄宪院士热爱祖国,忠诚党的教育事业,教书育人,治学严谨。在半个多世纪的教学和科研工作中,他一直坚持在教学科研第一线,直至半年前罹患重病,才离开了实验室。即使在病重期间,他仍然关心学校的学科建设与人才培养。他将自己的毕生精力奉献给了化学科学研究和教育事业。在教学工作中,始终以身作则,言传身教。他培养的学生中有中国科学院院士、有年轻的长江学者,还有更多的从事化学事业的教授、工程师。他是一位受全国高校同行尊重、受学生爱戴的名师楷模。他于1983年组织编著出版的《有机合成化学》一书,成为高等院校及科研人员的重要参考书,在国内外产生了重要影响。他在1992年撰写的我国第一部《有机合成》统编教材,获1995年国家教委优秀教材二等奖。他的“追踪前沿严格要求,提高化学学科博士生质量的探讨和实践”项目获1997年国家级优秀教学成果二等奖。  黄宪院士是我国有机合成化学的开拓者,取得多方面创新性研究成果。他长期承担国家重大研究项目,潜心于有机合成新反应、新试剂和新方法的探索,发展了许多高选择性的有机合成方法学,推动了有机化学的发展。在国内外重要学术刊物上发表研究论文近400篇,获多项省部级科技进步奖。上世纪90年代后期,他在自己原创性工作的基础上开展了独特的固相反应和组合化学的研究,开发了多种杂环化合物的固相合成,并建立了杂环化合物分子库。  黄宪院士对浙江大学的化学学科建设与发展倾注了满腔热情与大量心血。该学科2007年被评为国家一级重点学科,成为国内有重要影响的学科之一。浙江大学党委书记张曦在告别辞中说,黄宪院士的逝世,不仅是浙江大学的重大损失,也是我国化学界的教育界的重大损失,他的高尚品德和道德风范永远值得我们学习和敬仰。
  • 庚雨仪器赞助第二届“海西有机青年学者论坛”圆满成功
    2018年1月13日-14日由中国科学院海西研究院主办、杭州庚雨仪器有限公司赞助的“第二届海西有机青年学者论坛”取得圆满成功,此次会议是为了促进中科院海西研究院内有机化学课题组之间的沟通和了解,营造开放的学术交流氛围。庚雨仪器总经理作开幕式致辞会议主要围绕参加本次论坛的有机化学课题组展开研究交流,课题组工作人员及研究生们系统全面地汇报了2017年度的研究工作,交流最新研究成果,展望学科未来发展趋势。大家还通过交流和讨论科研成果,提出新的研究方案。庚雨仪器作为国内优秀的有机化学仪器研究开发生产企业赞助本次论坛,同时庚雨仪器的研发工程师也积极参与各个课题组的研究讨论,为了满足未来有机研究发展趋势的需要,庚雨仪器将针对本次会议的研究建议、方向在未来有机化学仪器研发方面作出更好的贡献。本次会议对优秀报告人进行了嘉奖,庚雨仪器总经理刘建伟先生作为颁奖嘉宾预祝大家在未来的工作中创新发展,取得更优秀的科研发成果。海西有机青年学者论坛颁奖现场 庚雨仪器总经理刘建伟颁发特等奖海西研究研究经过50多年发展,获得国家科技三大奖及中科院科技进步特等奖等230多项重要科技成果和奖励,已成为在国际上具有重要影响力的结构化学、新材料与器件集成与应用的综合研究基地。庚雨仪器作为行业内的优秀企业,在未来发展的历程中将紧密与海西研究院合作,针对有机化学研究提供更好的助力,也将针对自身的优秀产品:旋转蒸发仪、低温冷却循环泵、化学隔膜泵、高低温循环装置等仪器进一步改良为有机化学研究提供更多的帮助。“2018第二届海西有机青年学者论坛”为期两天的会议取得圆满成功,庚雨仪器会通过“持久创新,不断超越”的理念提供更优质的产品和服务,在有机化学研究领域贡献自己的绵薄之力。
  • 多角度深入交流 2018全国有机质谱会议圆满闭幕
    p style="line-height: 1.5em text-align: justify " strong仪器信息网讯 /strong2018年月27-28日,2018全国有机质谱学术会议在河南开封召开。此次会议由国家大型科学仪器中心主办,中国科学院生物物理研究所协办,河南大学承办。本次会议分为大会报告、青年论坛以及前沿技术展示等部分,共有四十余个精彩报告。/pp style="line-height: 1.5em text-align: justify " 在大会报告环节,众多有机质谱的专家学者就最新的研究进展作精彩报告。除之前已经报道的精彩报告之外,包括北京化工大学杜振霞教授、北京大学纪建国教授、郑州大学徐霞教授、军事医学研究院国家生物医学分析中心杨松成研究员、郑州大学张书胜教授、福州大学林子俺教授、澳门科技大学伍健林副教授、中科院植物所漆小泉研究员、河南大学刘浩博士、中科院华南植物园王瑛研究员、河南大学张学斌教授、中国农科院北京畜牧所庞永珍研究员、中科院上海有机化学研究所郭寅龙研究员、河南大学卢明华教授等分别做精彩报告。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/b2e00d98-44b5-44e2-9f82-4e06354d07bb.jpg" title="1.png" alt="1.png"//pp style="line-height: 1.5em text-align: center "北京化工大学 杜振霞教授/pp style="line-height: 1.5em text-align: center "报告题目:全二维气相色谱-飞行时间质谱在复杂天然产物分析中的应用/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/392f49f7-ab2a-4144-88b9-f5a411ba4efd.jpg" title="2.png" alt="2.png"//pp style="line-height: 1.5em text-align: center "北京大学 纪建国教授/pp style="line-height: 1.5em text-align: center "报告题目:肿瘤微环境蛋白质组研究进展/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/16c53746-c542-4517-aba6-a32097ad4a70.jpg" title="3.png" alt="3.png"//pp style="line-height: 1.5em text-align: center "郑州大学 徐霞教授/pp style="line-height: 1.5em text-align: center "报告题目:基于代谢组学的Flavokawain A 抗前列腺癌的作用机制研究/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/dc5c6ddf-28c1-49be-968e-b3c994aca771.jpg" title="4.png" alt="4.png"//pp style="line-height: 1.5em text-align: center "军事医学研究院国家生物医学分析中心 杨松成研究员/pp style="line-height: 1.5em text-align: center "报告题目:质谱在鉴定治疗性单克隆抗体中的应用/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/41276b46-5039-444b-bc3d-19b836ed2399.jpg" title="5.png" alt="5.png"//pp style="line-height: 1.5em text-align: center "郑州大学 张书胜教授/pp style="line-height: 1.5em text-align: center "报告题目:基于质谱多组学技术研究紫癜性肾炎潜在尿液疾病标志物/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/a24fc412-b72e-4fc0-8e66-87eed746fa9e.jpg" title="6.png" alt="6.png"//pp style="line-height: 1.5em text-align: center "福州大学 林子俺教授/pp style="line-height: 1.5em text-align: center "报告题目:表面辅助激光解吸离子化质谱及小分子成像研究/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/a014a42d-2294-4e43-a5b5-2b9b0cdfdbbd.jpg" title="7.png" alt="7.png"//pp style="line-height: 1.5em text-align: center "澳门科技大学 伍健林副教授/pp style="line-height: 1.5em text-align: center "报告题目:黑茶发酵机理、全成分分析及保健作用和安全评估/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/3b349ebc-0650-41f9-9022-9d982feeef36.jpg" title="1.png" alt="1.png"//pp style="line-height: 1.5em text-align: center "中科院植物所 漆小泉研究员/pp style="line-height: 1.5em text-align: center "报告题目:植物代谢组研究方法及其应用/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/60ef4a48-1004-4f79-b252-f260127578e5.jpg" title="2.png" alt="2.png"//pp style="line-height: 1.5em text-align: center "河南大学 刘浩博士/pp style="line-height: 1.5em text-align: center "报告题目:A novel gibberellin oxidase-dependent synthesis pathway generates a new bioactive gibberellin for fine-tuning of ABA action in seedling establishment /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/00b87b00-4c8f-4d8a-a646-146fa06f1c16.jpg" title="3.png" alt="3.png"//pp style="line-height: 1.5em text-align: center "中科院华南植物园 王瑛研究员/pp style="line-height: 1.5em text-align: center "报告题目:淫羊藿野生资源挖掘和可持续利用/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/88e309da-7337-4126-818a-654ec4a07d64.jpg" title="4.png" alt="4.png"//pp style="line-height: 1.5em text-align: center "河南大学 张学斌教授/pp style="line-height: 1.5em text-align: center "报告题目:Plant Secondary Metabolites in Fungus-Induced Plants Defense/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/e811fd50-5c11-4b6c-bb1e-66b9ebb14eb2.jpg" title="5.png" alt="5.png"//pp style="line-height: 1.5em text-align: center "中国农科院北京畜牧所 庞永珍研究员/pp style="line-height: 1.5em text-align: center "报告题目:银杏类黄酮的生物合成与调控/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/7ae44a1b-5b3e-446d-aa51-3bac92ed1462.jpg" title="6.png" alt="6.png"//pp style="line-height: 1.5em text-align: center "中科院上海有机化学研究所 郭寅龙研究员/pp style="line-height: 1.5em text-align: center "报告题目:衍生化技术在小分子代谢物质质谱分析中的应用/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/a1cbd46e-6800-42ef-9828-646e3fccafcb.jpg" title="7.png" alt="7.png"//pp style="line-height: 1.5em text-align: center "河南大学 卢明华教授/pp style="line-height: 1.5em text-align: center "报告题目:无机纳米材料在有机质谱及色谱分析中的应用/pp style="line-height: 1.5em text-align: justify " 为例鼓励有机质谱领域的青年人、给年轻学者一个展示的空间,完善有机质谱技术人才队伍的建设,本次会议特别于9月28日上午设立了“青年论坛”。本次“青年论坛”共有10名青年才俊作报告,与会现场众多专家对学生的报告从多角度给予了建议指导,并在28日晚的大会闭幕式上对获得优秀论文的青年进行了表彰。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/fb7831e9-217d-401c-9264-a140e4af6135.jpg" title="未命名_meitu_111.jpg" alt="未命名_meitu_111.jpg"//pp style="line-height: 1.5em text-align: center "青年论坛集锦/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/1cd53edb-ef40-4189-b259-c7326a73e9aa.jpg" title="8.png" alt="8.png"//pp style="line-height: 1.5em text-align: center "闭幕式颁发岛津青年优秀论文奖/pp style="line-height: 1.5em " 质谱技术的发展离不开相关企业的努力,本次会议特别开设了前沿技术展示部分,安捷伦、岛津、沃特世、布鲁克、爱博才思、华质泰科、力可等各大质谱相关企业纷纷作报告,展示了最新的有机质谱技术及应用解决方案。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/4806352b-58cf-4f7b-9944-a3904e9835dc.jpg" title="未命名_meitu_333.jpg" alt="未命名_meitu_333.jpg"//pp style="line-height: 1.5em text-align: center "前沿技术报告集锦br//pp style="line-height: 1.5em text-align: justify " 在大会最后的闭幕环节,由军事医学研究院国家生物医学分析中心杨松成研究员做总结发言,他表示全国有机质谱会议已经举行了二十年,今年是第十一次。在这次会议上,由于有来自全国各地特别是港澳台的质谱学界同仁参加,更具有广泛性和代表性。本次大会在古都开封举办并由百年老校河南大学承办也具有特殊的意义。在这次会议上,既有老朋友重聚、也有新朋友相识,与会代表就有机质谱的相关最新科研进展进行了深入交流。他希望与会代表能借这次会议的东风,在今后的工作中取得更大的成绩。/ppbr//pp style="line-height: 1.5em text-align: justify "br//ppbr//p
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • 研究员开发便携式传感平台实现有机磷农残的快速可视化检测
    草甘膦凭借其高效、快速等特点成为国际上使用量最大的除草剂,在有机磷农药中占有重要位置。但较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标,高残留、毒性强等问题将直接影响到消费者安全。   因此,发展快速、高选择性地检测草甘膦残留方法成为了控制和处理有机磷农残污染与危害的关键环节。目前人们通常采用实验室仪器或酶抑制法等检测方法来保证农残检测的灵敏度和选择性,但这些方法通常存在对环境要求苛刻以及操作复杂等问题。因此,建立高选择性及高灵敏的草甘膦残留快速定量分析方法对贸易、环境、食品和人体健康都具有重要意义。   近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队基于比率荧光材料构建可视化传感平台,实现快速定量检测环境和食品中的草甘膦。相关研究成果发表在Journal of Hazardous Materials上。   该传感器由设计制备的蓝色碳点(CDs)和金纳米团簇(Au NCs)构成,当草甘膦与碳点反应时,聚集诱导猝灭(ACQ)导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。由于该传感器不依赖于酶,仅通过荧光色度变化,所以在极短时间(2秒)内即可实现对草甘膦的快速可视化响应及读数检测,检测限(LOD)低至4.19 nM,远低于国家标准。   此外,研究人员还结合3D打印技术及智能手机颜色识别器,开发了便携式荧光检测平台,可在实时/现场条件下对草甘膦进行快速可视化定量监测,为农药残留现场快速检测提供了新的策略。   上述研究工作得到了国家自然科学基金项目、安徽省重点研究与开发计划、国家重点研发计划和安徽省博士后科研计划的支持。图1 比率荧光传感器快速可视化定量检测草甘膦残留示意图图2 基于智能手机的监测平台可视化定量检测草甘膦
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制