当前位置: 仪器信息网 > 行业主题 > >

滤液天平

仪器信息网滤液天平专题为您提供2024年最新滤液天平价格报价、厂家品牌的相关信息, 包括滤液天平参数、型号等,不管是国产,还是进口品牌的滤液天平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合滤液天平相关的耗材配件、试剂标物,还有滤液天平相关的最新资讯、资料,以及滤液天平相关的解决方案。

滤液天平相关的论坛

  • 关于续滤液

    什么情况需要取续滤液进样,什么情况不需要续滤液?看药典质量标准里,化药制剂分析的供试品需要过滤取续滤液,而对照品不需要取续滤液,原料药分析时供试品不需要取续滤液,这是为什么?我知道取续滤液的作用是让滤纸吸附溶质饱和,以使进样浓度与溶液浓度一致。为什么对照品和原料药不需要取续滤液,只有制剂供试品要取续滤液?

  • 关于取续滤液

    什么情况需要取续滤液进样,什么情况不需要续滤液?看药典质量标准里,化药制剂分析的供试品需要过滤取续滤液,而对照品不需要取续滤液,原料药分析时供试品不需要取续滤液,这是为什么?我知道取续滤液的作用是让滤纸吸附溶质饱和,以使进样浓度与溶液浓度一致。为什么对照品和原料药不需要取续滤液,只有制剂供试品要取续滤液?

  • 续滤液

    为什么抽滤常取的都是续滤液啊???

  • 【讨论】关于滤液浑浊的讨论???

    最近做了几个样品的亚硝酸盐,过滤完以后滤液有点浑浊。 如果上机的话,吸光度非常高,但在538纳米没有颜色,所以我认为是浑浊滤液中存在吸光物质。 所以我就采用双光束分光光度,将滤液中吸光物质的背景扣除。 但是我今天又想,滤液浑浊首先不符合朗伯-比耳定律,不符合上机条件,上机本身就是错误的。 不知道具体什么情况,有点矛盾。希望和大家讨论讨论???

  • 请教初滤液及洗脱液操作问题

    本人有两个细节想弄清楚:①很多实验过程都有说弃去初滤液,收集续滤液,我想问一下这个对于初滤液和续滤液的收集操作由始至终都是必须要用同一个瓶子收集的吗?为什么不能分开两个瓶子收集?之所以弃去初滤液是因为初滤液的浓度,如果我用另外一个干净的瓶子收集续滤液应该没什么影响啊?②在洗脱样品时有时会先用水洗,弃去水液,再用其他溶剂洗脱,收集相应溶剂洗脱液,这个时候又是不是都必须用同一个瓶子收集水液和洗脱液?

  • 【分享】垃圾填埋场渗滤液的处理方法

    摘要:对城市垃圾填埋场渗滤液的国内外处理技术结合实际作了较为详细的阐述和系统的分析。重点对当前国内外垃圾渗滤液的生物处理、物理化学处理、上地处理等处理方法在实际运行过程中的成功与失败的经验作了总结和探讨。  关键词:城市垃圾,渗滤液,废水处理  近十几年来国外学者就垃圾渗滤液的处理进行了大量的探索和研究,取得了一些成功经验,有的已用于工程实践。我国在垃圾渗滤液的处理研究方面起步较晚、起点较低,有不少失败的教训,但也获得了一些宝贵的经验。由于渗滤液水质水量的复杂多变住,目前尚无十分完善的处理工艺,大多根据不同填埋场的具体情况及其它经济技术要求采取有针对性的处理工艺。纵观国内外垃圾渗滤液处理的现状,目前渗滤液的处理方案主要有场外综合处理和场内单独处理两大类。主要处理工艺有生物处理法、物化法、土地法以及上述方法的综合[1]。

  • 【资料】垃圾渗滤液高效复合降解菌的研究

    本课题以沈阳大莘填埋场垃圾渗滤液作为研究对象,研究并构建渗滤液的高效复合降解菌株;并研究该复合菌对渗滤液的处理性能及高效处理的最佳工艺参数。本课题得到渗滤液的高效降解菌细菌10株、放线菌4株、霉菌10株,处理CODCr为2240mg/L的渗滤液,CODCr去除率可达73%,NH3-N去除率可达93%,具有高效性。[img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=199228]垃圾渗滤液高效复合降解菌的研究.zip[/url]

  • 垃圾渗滤液处理工艺是否会受到垃圾分类的影响?

    [font=楷体, 楷体_GB2312, SimKai]垃圾渗滤液是垃圾分类和处置过程中产生的二次污染,是一种高浓度有机废水。随着垃圾分类的积极推进,垃圾渗滤液的产生量将会减少,填埋场渗滤液C/N比失调的现象会更加严重,并且促使现有渗滤液处理工艺优化调整。[/font][font=楷体, 楷体_GB2312, SimKai]垃圾分类会促使渗滤液处理领域排放标准发生变化,使其更加符合行业的特点和发展需求,并带动预脱氨、短程硝化反硝化和厌氧氨氧化等新的处理工艺在渗滤液处理领域广泛应用。[/font][font=楷体, 楷体_GB2312, SimKai]本文从渗滤液产量、水质、处理工艺、排放标准、浓缩液和新工艺的推广应用等方面,阐述了垃圾分类对垃圾渗滤液处理领域的影响,以期为渗滤液处理行业健康发展提供借鉴和参考。[/font]近年来,我国加速推行垃圾分类制度,全国垃圾分类工作由点到面逐步启动,已取得积极进展。垃圾分类收集与处理是垃圾合理处置和资源回收的重要基础,也是实现减量化、资源化和无害化的必经之路,对保护人体健康、提升环境卫生具有重大意义。目前大部分城市将生活垃圾划分为4类:可回收物、厨余垃圾(又称湿垃圾)、其他垃圾(又称干垃圾)和有害垃圾。其中,可回收物进入再生资源回收利用系统,厨余、其他垃圾进入垃圾处理系统,有害垃圾一般单独回收或进入危险废物处理系统,从而确保得到安全处置。垃圾渗滤液是垃圾分类和处置过程中产生的二次污染,是一种高浓度有机废水,其水质和水量受垃圾种类、当地环境及降水量等诸多因素影响,变化较大。我国垃圾渗滤液处理领域经过多年的健康发展,目前已经建成数百座渗滤液处理设施。垃圾分类的积极推进,将对渗滤液水量,水质和处理工艺产生很大影响,做好垃圾分类的同时,必须兼顾垃圾渗滤液处理。[b]01垃圾分类对渗滤液产量的影响[/b]垃圾渗滤液主要由垃圾本身的内含水和其他外部来水如降雨、降雪等混入的水分组成。垃圾焚烧厂和厨余垃圾处理厂中的渗滤液量基本不受降雨、降雪影响。随着干、湿垃圾分离,进入垃圾焚烧厂和垃圾填埋场中的垃圾含水率降低,这部分垃圾渗滤液量将会减少。随着垃圾分类工作的积极推进,居民逐渐养成良好的垃圾投放习惯,开敞式的老旧垃圾收集桶、运输车逐步被淘汰,新增密闭式垃圾收集桶和运输车,同时,政府不断加强监管,使垃圾暂存、收运、转运、处理、处置各个环节更加规范。这些分类工作也使其他外部来水产生的垃圾渗滤液量有所减少。针对分类后各种垃圾处理处置过程中产生的废水分析如下:(1)可回收物是指适宜回收和可循环利用的废弃物。这部分垃圾本身不产生水,在回收利用过程中会使用部分新鲜水,从而产生废水,但是水质较好,一般不归属于垃圾渗滤液范畴。(2)有害垃圾是指存有对人体健康有害的重金属、有毒的物质或者对环境造成现实危害或者潜在危害的废弃物。这部分垃圾在处理处置过程中会产生部分废水,水量比较小,水质与传统渗滤[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]比差异很大,处理工艺不同,一般不归属于垃圾渗滤液范畴。(3)厨余垃圾,又称湿垃圾,包括剩菜剩饭、骨头、菜根菜叶、瓜果皮壳等食品类废物。这部分垃圾有机质含量丰富、易腐烂、热值低,采用常规的填埋和焚烧很难妥善处理,目前国内主流处理工艺是预处理+厌氧。厌氧沼渣脱水后产生大量沼液,水质和传统渗滤[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]似,处理难度大。随着垃圾分类的进行,各地湿垃圾处理设施不断投入使用,需要处理的沼液量会越来越多,在垃圾渗滤液处理中的占比也会不断增大。厌氧沼液处理是当前垃圾渗滤液处理领域的热点,也是一大难点。(4)其他垃圾,又称干垃圾,是指除上述类别之外的砖瓦陶瓷、渣土、卫生间废纸、纸巾等难以回收的废弃物及尘土、食品袋(盒)。这部分垃圾目前仍然采用国内传统的垃圾处理方式——填埋或焚烧。由于实行了垃圾分类,致使最终进入垃圾填埋场和焚烧厂的垃圾量减少,产生的渗滤液量比未进行垃圾分类时也会减少。[b]02垃圾分类对渗滤液水质的影响[/b]传统的垃圾渗滤液水质特点主要有:(1)污染物成分复杂,水质波动比较大,处理难度大;(2)有机物和氨氮浓度高,难降解有机物占有一定的比例;(3)重金属和盐分含量高。实施垃圾分类后,垃圾渗滤液主要来源于湿垃圾厌氧脱水后的沼液和干垃圾焚烧或填埋产生的渗滤液。湿垃圾厌氧脱水后的沼液与传统垃圾渗滤液水质相似,但是也存在不同点:(1)由于湿垃圾中含有餐厨垃圾,油脂含量比较高,造成其沼液中的油脂含量比较高;(2)湿垃圾厌氧无论采用中温,还是高温处理,经过脱水后其沼液水温会高于常规的垃圾渗滤液;(3)由于湿垃圾成分复杂,厌氧脱水后沼液易形成浮渣,SS含量高,尤其是纤维状杂质比较多;(4)垃圾分类将湿垃圾和重金属类垃圾分开,沼液中的重金属含量有所降低。对于垃圾焚烧厂和填埋场产生的渗滤液而言,由于大量有机类湿垃圾单独处理,造成进入焚烧厂和填埋场的垃圾有机质减少,其产生的渗滤液中有机污染物浓度大幅降低,对于老龄化填埋场,渗滤液C/N比失调的现象更加严重。同样由于进入焚烧厂和填埋场含重金属类的垃圾单独收集,其渗滤液中重金属含量也会降低。[b]03垃圾分类对渗滤液处理工艺的影响[/b]1. 对有机垃圾处理厂污水处理工艺的影响有机垃圾处理厂主要处理厨余垃圾等易腐生物质废弃物。国内部分城市从2000年开始率先实行餐饮垃圾单独收集、单独处理,这部分餐饮垃圾处理厂产生的厌氧沼液根据不同的出水排放标准,可选择的处理工艺主要有以下几种:[align=center][img=640.png]https://imgs.h2o-china.com/news/2023/06/1685929391396930.png[/img][/align][align=center][size=12px]图1 餐饮垃圾处理厂厌氧沼液处理工艺流程[/size][/align]随着垃圾分类的实施,各地均加强了对厨余垃圾的分类收集,厨余垃圾一般在接收料斗(坑)中暂存,会产生高浓度的渗滤液,COD高达60000mg/L。此外,厨余垃圾干式厌氧脱水沼液的COD比餐饮垃圾湿式厌氧脱水后沼液要高,COD为30000mg/L左右。如果有机垃圾处理厂只有厨余垃圾处理,则污水处理工艺中须增设厌氧系统;如果有机垃圾处理厂包含餐饮垃圾和厨余垃圾综合处理,这部分高浓度渗滤液或沼液,一部分可以进入餐饮垃圾湿式厌氧系统,另一部分可以作为碳源,补充至污水处理缺氧工段。垃圾分类促使国内大部分城市开始新建有机垃圾综合处理厂,其沼液的处理量会越来越大,结合其他餐饮垃圾厌氧沼液处理的经验,后期该部分处理工艺设计应进行优化。(1)预处理系统餐饮垃圾含油率比较高,经预处理除油后,仍有部分油脂会进入污水处理系统;此外,餐饮和厨余垃圾成分复杂,厌氧后产生的沼液中含渣量比较大,尤其是干式厌氧沼液进入污水处理区后其含固率在2%左右,容易形成浮渣。而油脂和浮渣等杂质均会影响污水处理系统后续工段正常运行,必须在预处理系统中去除,因此预处理工艺的合理选择至关紧要。(2)进水沼液的温度餐饮和厨余垃圾经中温或高温厌氧后,沼液温度比常规渗滤液偏高,而温度过高或过低都会影响微生物的活性,直接影响整个系统的处理效率。因此,生化处理工段冷却系统的设计须考虑进水温度对生化处理的影响。(3)碳源餐饮和厨余垃圾厌氧脱水后沼液COD受厌氧系统影响较大,国内餐饮和厨余垃圾厌氧处理技术实际运行结果差异也较大,从而导致产生的沼液COD差异较大,但是沼液中总氮和氨氮含量受垃圾源项影响较大,有的城市厌氧沼液总氮高达4000mg/L,造成MBR系统碳源严重不足,如果只投加新鲜碳源如乙酸钠和葡萄糖等,运行成本会很高,实际运行中可以考虑将经过预处理后,进入厌氧之前的餐饮垃圾浆料做为补充碳源。(4)超滤膜的选择由于湿垃圾厌氧沼液中杂质含量高,尤其是纤维类轻物质比较多,MBR系统超滤膜堵塞严重,现场运行维护量大。目前国内常用的管式超滤膜清洗困难,并且清洗时容易刮破膜管,影响正常运行,相比较而言,内置式超滤膜清洗维护要简便,预计将来会占领更多的市场。2. 对填埋场渗滤液处理工艺的影响垃圾分类实施后,进入垃圾填埋场的垃圾量大幅减少,湿垃圾不再进入填埋场,垃圾含水率大幅下降,渗滤液产量下降,垃圾中有机质含量减少导致渗滤液水质变化较大,对填埋场现有渗滤液处理工艺系统影响较大,具体表现在以下方面:(1)渗滤液产量下降,造成现有填埋场调节池水力停留时间过长,可降解有机物在调节池得到充分降解,不利于后续生化工艺脱氮处理。(2)现有渗滤液处理系统配置过剩,造成部分设备闲置,如膜系统、冷却系统和污泥脱水系统。(3)填埋场渗滤液随着填埋时间的延长,有机污染物逐年下降,C/N比严重失调,通常情况下,填埋场利用补给的新垃圾产生的新鲜渗滤液与老龄化填埋场渗滤液进行合理调配,有利于渗滤液高效脱氮,节省运行成本,随着垃圾分类的进行,进入填埋场新鲜垃圾的有机质含量降低,从而产生的渗滤液有机物含量低,不能保证高效脱氮所需要的碳源,实际运行中只能通过投加葡萄糖或乙酸钠等新鲜碳源,确保脱氮效果。长期大量投加碳源,影响整个渗滤液处理系统稳定,降低系统抗冲击负荷能力。(4)渗滤液量的减少,造成浓缩液产量降低。3. 对焚烧厂渗滤液处理工艺的影响与垃圾填埋场情况相同,垃圾分类使得进入垃圾焚烧厂的垃圾量大幅减少、垃圾中有机质含量下降,导致垃圾焚烧厂渗滤液量和渗滤液中有机物含量均大幅下降。垃圾分类对垃圾焚烧厂现有渗滤液处理工艺的影响主要表现在以下方面:(1)渗滤液处理工艺路线的改变。目前,国内垃圾焚烧厂渗滤液处理常用工艺如图2所示。由于有机质含量大幅降低,原工艺路线中厌氧系统可以直接超越,厌氧系统的停用造成其配套设施如沼气处理系统等停用。(2)随着渗滤液水量和水质的双重变化,出现了一系列影响:现有MBR生化池容积会偏大,导致水力停留时间延长、活性污泥的活性下降;鼓风机配置会过剩,射流曝气溶解氧很难控制;内回流比降低;现有冷却系统停开或者间歇运行;剩余污泥量减少,造成部分污泥处理设备闲置。(3)深度处理系统处理水量减少,部分膜系统设备会闲置,电耗和药耗降低,整个渗滤液处理系统运行成本会下降。(4)渗滤液量的减少,造成浓缩液产量降低,长期困扰的浓缩液问题将会得到解决。[align=center][img=640 (1).png]https://imgs.h2o-china.com/news/2023/06/1685929420404867.png[/img][/align][align=center][size=12px]图2 垃圾焚烧厂渗滤液处理工艺流程[/size][/align][b]04垃圾分类对渗滤液处理的其他影响[/b]1. 排放标准的变化垃圾分类后,无论是垃圾填埋场还是垃圾焚烧厂,其渗滤液的水量和水质都发生很大的变化,处理工艺也可能会改变,相应的排放标准预计也会有所变化。目前国内渗滤液行业出水水质执行的标准有:《污水综合排放标准》GB 8978;《污水排入城镇下水道水质标准》GB/T 31962;《生活垃圾填埋场污染物控制标准》GB 16889;《城市污水再生利用 工业用水水质》GB/T 19923。未来排放标准的变化,会更加符合行业的特点和发展需求,从而推动行业的健康发展,如国内很多有机垃圾综合处理厂沼液处理后达到当地污水处理厂接管标准,排至附近污水处理厂进一步处理。2. 浓缩液问题垃圾分类后,进入垃圾填埋场和垃圾焚烧厂垃圾量减少,产生的渗滤液量也相应减少,从而产生的浓缩液量也会减小,并且随着湿垃圾、可回收物和有害垃圾的分开,干垃圾中的有机质、重金属和盐分含量均大幅降低,膜系统的产水率提高,浓缩液产生量也会减小。垃圾焚烧厂浓缩液完全回用或回喷成为可能,浓缩液将不再是困扰垃圾焚烧厂渗滤液处理的难题。另外随着出水排放标准的变化,深度处理工艺采用非膜法,逐渐受到渗滤液处理领域的青睐,非膜法没有浓缩液产生,彻底解决了浓缩液的问题。3. 新工艺在渗滤液行业内推广应用(1)预脱氨工艺的应用随着垃圾分类的开展,国内很多城市将新建厨余垃圾处理厂,厨余垃圾经过厌氧发酵后,沼液中的氨氮含量较高(已建项目实测值高达4000mg/L以上),而前端厌氧为了达到高产气率,出水沼液中的COD相对偏低,无法满足高效生物脱氮所要求的C/N比,投加碳源又引起运行成本直接上升,在这种情况下,预脱氨工艺将日益受到重视。预脱氨工艺包含膜脱氨、氨吹脱和汽提脱氨等。老龄化填埋场渗滤液C/N比严重失调,垃圾分类后新填入的垃圾有机质含量又低,产生的新鲜渗滤液也无法弥补碳源不足的问题,对于老龄化填埋场渗滤液处理工艺改造,同样需要预脱氨工艺。(2)短程硝化反硝化和厌氧氨氧化工艺的应用垃圾分类使得渗滤液处理领域迫切需要低碳源或无碳源的脱氮处理工艺,对于高氨氮餐饮厨余厌氧沼渣脱水后的沼液,采用短程硝化反硝化或厌氧氨氧化工艺去除大部分氨氮和总氮,可减轻后续生化处理负荷,大幅降低运行成本,提高处理效果。(3)深度生物脱氮技术的应用垃圾分类后,许多渗滤液处理项目,尤其是厨余垃圾处理厂中的渗滤液项目中COD比较容易达到排放标准要求,但是总氮达标仍然是处理系统中的重点和难点。结合其他类似项目运行数据,两级A/O+MBR系统出水TN在70~150mg/L之间,污水处理厂接管标准对TN要求比较苛刻,一般排放限值在40~50mg/L之间。如果单纯为去除TN而采用反渗透工艺则代价太大。因此深度生物脱氮工艺如反硝化滤池、深床反硝化滤池等将备受青睐,在确保TN达标排放的同时,又避免了浓缩液的产生。(4)非膜法深度处理工艺的应用随着垃圾分类的开展,厨余垃圾处理厂沼液的处理将是今后渗滤液处理领域的热点,相比垃圾焚烧厂和填埋场,厨余垃圾处理厂很难消纳渗滤液处理的二次污染物——浓缩液。因此,在满足排放标准的前提下,深度处理宜采用非膜法,以避免浓缩液产生,其应用的前景值得期待。[b]05结论[/b](1)随着垃圾分类的积极推进,垃圾渗滤液的产生量将会减少。(2)垃圾分类对渗滤液水质影响较大,填埋场渗滤液C/N比失调的现象会更加严重,重金属含量会降低。(3)垃圾分类会促使垃圾焚烧厂和填埋场对现有渗滤液处理工艺进行技改,厨余垃圾处理厂沼液处理工艺有待优化。(4)垃圾分类会促使渗滤液处理领域排放标准发生变化,使其更加符合行业的特点和发展需求。(5)新的处理工艺将会随着垃圾分类的开展在渗滤液处理领域得到推广应用。

  • 【我们不一YOUNG】+垃圾渗滤液处理技术现状及研究进展

    [font=宋体]近十几年来,随着我国城市化速度的加快和居民生活消费水平的不断提高,城市垃圾的增长非常迅速,垃圾的排放量迅速增加,每年新增垃圾约[/font][font=宋体]1亿吨,增长率高达10%左右。全国历年城市生活垃圾的堆存量达到60多亿吨,占地5万公顷,致使我国200多个城市陷入垃圾的包围中。城市生活垃圾的大量增加和堆存已成为我国城市可持续发展的严峻挑战。目前我国解决垃圾问题的方法主要有填埋、堆肥及焚烧处理三种处理方法,垃圾填埋因具有技术成熟、处理和管理费用低,运输方便等优点,在我国得到了广泛应用。垃圾填埋和堆放过程中,产生的大量废水,统称为垃圾渗滤液,未经处理的垃圾渗滤液流经地表或渗入地下水后,会对环境造成严重的二次污染,因此,垃圾渗滤液安全且无理是一直是一个世界性的环保难题。[/font][font=宋体]01 垃圾渗滤液来源[/font][font=宋体]垃圾渗滤液是由垃圾本身所含的游离水、自然降水和有机物分解产生的水以及渗入填埋场中的地表水和地下水通过淋浴作用产生的大量废水所形成,垃圾渗滤液的水量、水质受垃圾组成、填埋时间、填埋工艺、降雨渗透量等因素影响。尤其受降雨量影响较大,降雨量少时,垃圾渗滤液主要为垃圾本身所含游离水,大部分被蒸发,而降雨量大时,雨水流进垃圾堆体,产生大量渗滤液,渗滤液产生量与降雨量成正比。垃圾渗滤液具有污染物质成分复杂,有机污染物浓度高,水质变化大等特点,因此渗滤液处理起来较为困难。[/font][font=宋体]02 垃圾渗滤液的水质特征[/font][font=宋体](1)色度与嗅味[/font][font=宋体]渗滤液通常有很高的色度,其颜色多呈黑色和深褐色,色度可达[/font][font=宋体]2000-4000倍(稀释倍数),与此同时,渗滤液有很浓重的垃圾腐化臭味。[/font][font=宋体](2)pH值[/font][font=宋体]在垃圾场服务周期内,渗滤液[/font][font=宋体]pH值在6-7之间呈弱酸性,随着垃圾场服务年限的增长,填埋场也趋向稳定,pH值可提高到7-8,呈弱碱性。[/font][font=宋体](3)有机物[/font][font=宋体]垃圾渗滤液中的有机物可分为三大类,分别为相对分子质量低的脂肪酸类;腐殖质类、高分子的碳水化合物;相对分子质量中等的灰黄霉酸类物质。[/font][font=宋体](4)氨氮[/font][font=宋体]由于垃圾在堆体中的厌氧发酵和水解,导致垃圾渗滤液中的氨氮浓度高。渗滤液中的氨氮主要是以[/font][font=宋体]NH3-N的形式存在。中老年填埋场渗滤液中重要的水质特点之一是NH3-N很高。[/font][font=宋体](5)磷元素[/font][font=宋体]垃圾渗滤液的含磷量通常较低,尤其是溶解性的磷酸盐浓度更低。渗滤液中的溶解性磷酸盐含量受到[/font][font=宋体]Ca离子浓度和碱度的影响,导致渗滤液生物处理的缺磷严重。[/font][font=宋体](6)重金属[/font][font=宋体]生活垃圾中的微量重金属溶出率很低。由于垃圾本身对重金属有较强的吸附能力,故若将工业垃圾与生活垃圾混合填埋,渗滤液中重金属离子的溶出量将会明显增加。垃圾渗滤液中含有的常见重金属为[/font][font=宋体]Cu、Pb、Cr、Cd、Zn、As、Mn等。[/font][font=宋体](7)微生物[/font][font=宋体]垃圾渗滤液中含有大量微生物,其中许多微生物对渗滤液的降解起着重要作用,主要有亚硝化细菌、硝化细菌、反硝化细菌、脱硫杆菌、脱氮硫杆菌、铁细菌、硫酸盐还原菌以及产甲烷菌[/font][font=宋体]8类细菌。此外,渗滤液中还有大量的病原菌和致病微生物。[/font][font=宋体](8)溶解性固体[/font][font=宋体]垃圾渗滤液中含有较高浓度的总溶解性固体。这些溶解性固体在渗滤液中的浓度通常随填埋场时间的增加而变化,一般在填埋[/font][font=宋体]0.5~2.5年间达到高峰,此后,随填埋时间的增加,这些无机性盐类的浓度将逐渐下降,直至达到最终稳定。[/font][font=宋体]03 垃圾渗滤液的处理技术[/font][font=宋体]由于垃圾渗滤液的严重危害性,因此必须对其进行有效对处理,使其达标排放,同时由于垃圾渗滤液对水质特点,其处理难度和处理成本远超一般生活污水和工业废水,迄今为止还没有发展出完善的适合垃圾渗滤液处理的经济有效的工艺。[/font][font=宋体]现今常用的垃圾渗滤液处理技术可分为生物处理技术和物理化学处理技术,其中生物处理技术由于处理成本低,二次污染小,可作为垃圾渗滤液处理的核心工艺,但经此法处理后的垃圾渗滤液出水一般无法直接达到国家的相关排放标准,需要进行后续的深度处理。现有的深度处理技术主要有膜处理技术和高级氧化技术([/font][font=宋体]AdvancedOxidation Process,简称AOPs)[/font][font=宋体]3.1 垃圾渗滤液的生物处理技术[/font][font=宋体]生物法处理渗滤液是利用微生物降解渗滤液中的有机污染物净化废水的方法。垃圾渗滤液的生物处理是目前垃圾渗滤液的主要处理方式之一。根据生物处理过程中,其主要作用的微生物的呼吸类型,渗滤液的生物处理可分为好氧处理、厌氧处理、厌氧-好氧联合处理。[/font][font=宋体]3.1.1 好氧生物处理[/font][font=宋体]好氧生物处理好氧生物处理是利用微生物的好氧反应来降解渗滤液中的有机物,主要有活性污泥法、膜生物法等工艺。[/font][font=宋体]活性污泥法是一种好氧生物处理技术,主要通过向污水通入氧气来强化污水中微生物的生理活动,利用微生物降解污水中的污染物质。目前用于垃圾渗滤液处理的活性污泥法的运行方式有传统活性污泥法、序批式活性污泥法([/font][font=宋体]SequencingBatch Reactor,简称SBR)、膜生物法(MembraneBioreactor,简称MBR)。[/font][font=宋体]胡勤海等采用吹脱[/font][font=宋体]-SBR-吸附混凝法对杭州市天子岭垃圾填埋场渗滤液进行了处理试验研究。结果表明,该复合处理系统对渗滤液中高浓度对COD、氨氮及色度均有较好对处理效果,平均去除率分别达91%、81%、和95%,除氨氮外,其余指标均达到《生活垃圾填埋场污染控制标准》(GB16889-1997)中渗滤液二级排放标注限值。[/font][font=宋体]由此可见活性污泥法可以对垃圾渗滤液有较好的处理效果,但活性污泥法处理渗滤液的出水效果受温度影响很大,在温度较低时对渗滤液的[/font][font=宋体]COD去除率较低,而且对中老龄垃圾场渗滤液中的污染物质去除效果不理想,因而采用活性污泥法处理垃圾渗滤液会受到一定的限制。[/font][font=宋体]膜生物法污水处理技术是通过向污水中加入表面适于微生物生长的填料,经过一段时间后,在填料上就会附着一层由各种微生物构成的生物膜,污水流经填料时,填料上的微生物以污水中的有机物为养料,对其进行降解,从而达到净化污水的目的。膜生物法具有代表性的处理形式有生物滤池、生物转盘、生物接触氧化等。[/font][font=宋体]王庭等采用[/font][font=宋体]UASB-AO-MBR工艺对低碳氮比垃圾渗滤液进行短程硝化反硝化脱氮的实验研究。结果表明:在溶解氧浓度为0.5~1.0mg/L条件下,好氧池微氧区可实现稳定的短程硝化反应,亚硝态氮累积率可达 90%以上;当碳源(甲醇)投加量4gCOD/L时,UASB反应器可实现稳定高效的短程反硝化,出水COD低于500mg/L,氨氮低于5mg/L,总氮低于70mg/L,满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)的要求。[/font][font=宋体]膜生物法处理垃圾渗滤液具有抗水量水质冲击负荷、有利于水中需要较长停留时间才能去除的氨氮的去除优点;而且由于微生物生长在填料上,因而不需要污泥回流;同时由于生物链长,产生的剩余污泥量较少,有助于减少污水处理设施的基础建设资金。但维持生物膜运行需要较高但条件。[/font][font=宋体]3.1.2 厌氧生物处理法[/font][font=宋体]厌氧生物处理是在厌氧条件下,形成厌氧微生物所需要的营养条件和环境条件,通过厌氧菌和兼性菌代谢作用,对有机物进行生化降解过程。垃圾渗滤液对厌氧生物处理形式上主要有上流式厌氧过滤器([/font][font=宋体]AnaerobicUp-flow Filter,简称AF)、上流式厌氧污泥床反应器(Up-flowAnaerobic Sludge Blanket,简称UASB)、厌氧复合床反应器(Up-flowBlanket Filter,简称UBF)、厌氧折流板反应器(AnaerobicBaffled Reactor简称ABR)等。[/font][font=宋体](1)上流式厌氧过滤器[/font][font=宋体]上流式厌氧过滤器是一种厌氧生物滤池,该反应器具有启动周期短、耐冲击性好等特点。徐竺等对[/font][font=宋体]AF处理垃圾填埋场渗滤液进行了动态连续试验,结果表明:AF处理垃圾渗滤液的效果良好。在中温(35~40℃)消化时高浓度(3000~8000mg/L)进水的COD的去除率达95%左右,常温消化的COD去除率也可达90%左右;反应器的容积负荷可达5kgCODm-3d-1以上。[/font][font=宋体](2)上流式厌氧污泥床反应器[/font][font=宋体]上流式厌氧污泥床反应器是一种厌氧污水生物处理装置。在该反应器中,污水以一定流速从下部进入反应器,通过污泥层向上流动,在料液与污泥的接触中进行生物降解,并产生甲烷等气体,然后通过三相分离器进行泥[/font][font=宋体]-水-气分离,从而实现去除污水中污染物的目的,上流式厌氧污泥床的负荷要比上流式厌氧滤器大得多。[/font][font=宋体](3)厌氧复合床反应器[/font][font=宋体]厌氧复合床反应器是上流式厌氧污泥床反应器和上流式厌氧过滤器复合而成的上流式厌氧污泥床过滤器,复合床的上部为厌氧滤池。下部为上流式厌氧污泥床,这种设计可以集厌氧过滤器和厌氧污泥床反应器的优点于一体。[/font][font=宋体]潘骏等在[/font][font=宋体](38±2)℃条件下分别采用UASB和UBF厌氧反应器技术对生活垃圾渗滤液进行处理。结果表明:在厌氧运行过程中,有机负荷提升至15kgCOD( m3d),HRT为5 d,UASB 厌氧反应器原料产气率为 25.4 ~ 29.6m3/t,COD去除率高于94%,容积产气率为 5.77~6.02m3/m3,CH4 含量70%以上,pH值为7.21~8.25;UBF厌氧反应器原料产气率为22.7~25.4m3/t,COD去除率高于90%,容积产气率为4.99~5.60 m3/m3,CH4含量66%左右,pH值为7.29~8.01,UASB厌氧反应器处理生活垃圾渗滤液效果优于UBF厌氧反应器。[/font][font=宋体](4)厌氧折流板反应器[/font][font=宋体]厌氧折流板反应器是一个由多隔室组成的高效新型厌氧反应器。运行中的厌氧折流板反应器是一个整体为推流,而各隔室为全混合的反应器,因而可获得稳定的处理效果。研究结果发现,[/font][font=宋体]ABR可有效地改善混合废水的可生化性。[/font][font=宋体]沈耀良等用[/font][font=宋体]ABR处理苏州七子山生活垃圾填埋场渗滤液和城市污水混合液,结果表明,进水BOD5/COD为0.2~0.3时、出水BOD5/COD可提高至0.4~0.6;当容积负荷为4.71kg COD/(m3?d)时,可形成沉降性能良好、粒径为1~5mm的棒状颗粒污泥。[/font][font=宋体]厌氧生物处理技术适合处理溶解性有机物,而且在提高渗滤液可生化性方面表现出明显的优势,但经厌氧生物处理后的渗滤液出水[/font][font=宋体]COD和氨氮浓度仍比较高,溶解氧很低,很难达到国家规定的排放标准。因此目前而言,渗滤液的厌氧生物处理一般不作为单独使用的处理方式。[/font][font=宋体]3.1.3 厌氧-好氧结合处理法[/font][font=宋体]为了充分发挥垃圾渗滤液好氧处理和厌氧处理技术各自的优势,弥补这两种处理技术各自的不足,高浓度渗滤液的生物处理一般都采用厌氧-好氧两者结合处理工艺。实践证明,该工艺对渗滤液的处理效果远好于单纯的好氧工艺或厌氧工艺。[/font][font=宋体]孙廷岳等在处理泉州某生活垃圾焚烧厂渗滤液时,采用[/font][font=宋体]UASB+MBR+RO工艺,系统稳定运行的数据显示,当进水COD、BOD5为21410±2838mg/L、10527±1262mg/L时,出水COD、BOD5为76.6±19mg/L、28.3±8.6mg/L;进水NH3-N与SS质量浓度分别为1295±192mg/L和3336±210mg/L时,出水分别为2.95±1.14mg/L和1.59±0.45mg/L,满足水质排放标准。通过污染物降解过程分析可知,UASB与MBR可去除97.7%的COD,MBR可去除89.5%的NH3-N与87.1%的TN。[/font][font=宋体]高艳娇等采用厌氧复合床/生物接触氧化反应器([/font][font=宋体]UBF/BCOR)处理垃圾渗滤液。试验结果表明:经60d微生物培养,UBF/BCOR顺利完成启动;通过负荷试验,确定UBF/BCOR的COD 容积负荷最大为9.54kg/(m3d);UBF/BCOR稳定运行后期,COD总去除率平均为87.8%,BOD5总去除率平均为93.5%,NH3-N总去除率平均为72.4%去除效果较好。[/font][font=宋体]3.2 垃圾渗滤液的物理化学处理技术[/font][font=宋体]垃圾渗滤液的物理化学处理技术是指利用物理化学原理设计的垃圾渗滤液处理工艺,通过工艺的运行去除垃圾渗滤液中的污染物质,从而达到净化垃圾渗滤液的渗滤液处理技术。垃圾渗滤液的物理化学处理方法主要有混凝-化学沉淀、吸附、膜处理等。[/font][font=宋体]3.2.1 混凝-化学沉淀处理技术[/font][font=宋体]垃圾渗滤液的混凝处理是通过外加混凝剂使渗滤液中不能直接通过重力去除的微小物质和混凝剂一起聚结成较大的颗粒,这些颗粒可以在重力的作用下迅速沉降,分离出渗滤液,从而减少渗滤液中的污染物质。混凝沉淀的机理主要包括压缩双电层、电中和、吸附架桥和网捕沉淀。化学沉淀法是向渗滤液中加入某种化学药剂,使渗滤液中的污染物质和化学药剂发生反应生成沉淀物,从而去除渗滤液中污染物质的处理方法。[/font][font=宋体]3.2.2 吸附处理技术[/font][font=宋体]在相界面上,物质的浓度自动发生累积或浓集的现象称为吸附。利用固体物质表面对水中污染物质的吸附作用去除水中污染物质的方法是水处理技术中一种常用的方法。具有吸附能力的多孔性固体物质称为吸附剂,水处理中常用的吸附剂有活性炭、沸石、木炭等。近年来,采用吸附方法处理垃圾渗滤液的研究日益增多,尤其是活性炭吸附法在垃圾渗滤液处理中得到了广泛应用,[/font][font=宋体]沈耀良等采用[/font][font=宋体]PAC作混凝剂、焦炭作吸附剂处理杭州天子岭垃圾填埋场渗滤液,研究表明,采用PAC做混凝剂、焦炭做吸附剂可有效去除渗滤液中COD和各部分重金属离子。PAC和焦炭投入量分别为400mg/L和8~10g/L时,COD去除率达58.9%,重金属离子等去除率达60%左右,其中对Cu的去除率近100%;混凝和吸附对各污染物的去除具有互补性,因此工艺具有良好的运行灵活性和稳定性。[/font][font=宋体]3.2.3 膜处理技术[/font][font=宋体]膜处理技术是水处理技术中的一种常用技术,该技术主要是使污水在一定的压力下流过隔膜,在此过程中,由于水分子量较小,可以通过隔膜,而水中的污染物质分子量大于隔膜孔径,被隔膜所截留,从而分离出水中的污染物质,达到净化污水的目的。根据膜的孔径大小可以分为:微滤膜、超滤膜、纳滤膜、反渗透膜等。[/font][font=宋体]([/font][font=宋体]1)微滤膜[/font][font=宋体]微滤[/font][font=宋体](Microfiltration,简称MF)是一种精密过滤技术,利用孔径为0.1~1.5μm的滤膜对水进行过滤。微滤是一种低压膜滤,进水压力一般小于0.2MPa,过滤精度介于常规过滤和超滤之间,可分离水中直径为0.03~15μm的组分,能去除水中的颗粒物、浊度、细菌、病毒、藻类等。[/font][font=宋体]([/font][font=宋体]2)超滤膜[/font][font=宋体]超滤[/font][font=宋体](Ultrafiltration,简称UF)是以压力为推动力,利用孔径为 0.01~0.lμm的滤膜对水进行过滤的方法。操作压力在0.5MPa以下,过滤精度介于纳滤和超滤之间,可分离水中直径为0.005~10μm、分子量大于500的大分子化合物和胶体,能有效去除水中的悬浮物、胶体、细菌、病毒和部分有机物。[/font][font=宋体]([/font][font=宋体]3)纳滤膜[/font][font=宋体]纳滤[/font][font=宋体](Nanofiltration,简称 NF)过滤精度介于反渗透和超滤之间,早期又称松散反渗透(LooseRO),操作压力为3MPa以下。纳滤膜早期又称软化膜,对钙、镁离子具有很高的去除率,能有效去除水中分子量在200以上、分子大小约1nm的可溶性组分。[/font][font=宋体]([/font][font=宋体]4)反渗透膜[/font][font=宋体]反渗透[/font][font=宋体](ReverseOsmosis,简称RO)是目前最微细的过滤技术。反渗透膜可阻挡所有溶解的无机分子以及任何相对分子质量大于100的有机物,而水分子可通过薄膜成为纯水。其对水中二价离子的脱除率最高可达99.5%,对一价离子的脱除率也在95%以上。[/font][font=宋体]当前应用于垃圾渗滤液处理的膜主要为反渗透膜和超滤膜,这是因为反渗透分离技术相比其他污水处理技术具有这几处优点:反渗透技术的主动力是分离过程中施加的压力,不需要经过能量的密集交换,减少了处理过程中的能源消耗;反渗透技术的应用过程中不需要使用过多的吸附剂以及沉淀剂,降低了废水回用成本;反渗透技术的分离过程操作相对简单,不需要长时间的工程设计就能够实现,缩短了处理周期;反渗透技术对废水的净化效率较高,具有良好的运行环境。[/font][font=宋体]膜处理技术具有适应垃圾渗滤液水质水量变化大的特点,而且操作及维护方便,占地面积小,易于实现自动化控制。垃圾渗滤液经膜处理后,出水能够达到国家相应的排放标准,不会对环境造成任何危害。但是,一般情况下,垃圾渗滤液在进行膜处理之前要先预处理,去除渗滤液的浊度和悬浮固体,以防止膜堵塞。常用的预处理方法有:絮凝过滤、多介质过滤、活性炭吸附、精密过滤器(保安过滤)、氧化处理、杀菌消毒软化、阻垢剂加药等。[/font][font=宋体]现在比较成熟的膜处理工艺有[/font][font=宋体]MBR+NF、MBR+单级DTRO、两级DTRO,基本能够持续地保证达标排放。其中MBR+NF工艺更依赖于前级膜生物反应器生化处理的效果,即当生化处理效果不好时,NF不能完全保证出水达标(COD、氨氮)。相比较而言 MBR+单级DTRO能持续保证出水达标,即使在生化效果出现偏差时,碟管式反渗透(DiscTube Reverse Osmosis,简称 DTRO)也能做到较强的后续保障。[/font][font=宋体]而用膜法处理污水,必然存在浓缩液的问题。而工程中追求更高的清水产出率(浓缩比更高),则使产生的浓缩液更难处理。碟管式反渗透技术由于可直接应用于垃圾渗滤液,进行两级处理后,排放即可持续达到标准要求。虽然解决了生化法工程构筑物多周期长的缺点,但由于其比其他反渗透膜装置有更高的浓缩比,从而使其浓缩液问题更为突出。为使膜法处理在垃圾渗滤液处理中更为有效和合理,有必要对后续浓缩液的处理展开工程化研究。[/font][font=宋体]04 总结[/font][font=宋体]当前我国的垃圾渗滤液处理以生物处理技术为主,这类处理技术的主要特点是:技术成熟、工艺相对简单,但对处理的污水水质要求较高。特别对于垃圾渗滤液这种高浓度、成分复杂的废水来说,仅靠生物技术无法将其处理达标排放,需要结合其他工艺共同处理,在实际运行过程中存在着诸多亟待解决的问题。[/font][font=宋体]好氧处理工艺中的活性污泥法具有投资大、运行管理费用高、处理效果受温度影响较大的缺点;膜生物反应系统需氧量大、能耗高,难生物降解物质的积累容易造成微生物的毒害和膜污染,并且膜组件价格目前比较昂贵,处理费用昂贵。[/font][font=宋体]厌氧处理工艺适合高浓度有机废水,但缺点是停留时间长,污染物的去除率相对较低,对温度的变化比较敏感。普通厌氧消化池体积较大,需要有足够的搅拌,所以能耗较高;升流式厌氧污泥床工艺最大的缺点在于其对有毒物质较为敏感,从而影响处理性能;厌氧生物滤池则是布水不均匀、填料昂贵且易堵。[/font][font=宋体]厌氧-好氧组合工艺在处理早期渗滤液方面优势较为明显,但在晚期渗滤液处理上,存在[/font][font=宋体]COD去除率不高、脱氮流程复杂、TN去除率低等不足。另外还有投资大、运行管理费用高的缺点。[/font][font=宋体]为了弥补生物组合工艺的不足,国内外学者提出了更多新型生物组合工艺,它们既保留了传统生物组合工艺的优点又耦合了短程硝化反硝化、同时硝化反硝化、厌氧氨氧化等新型脱氮技术,在处理中晚期渗滤液上具有很大的潜力。然而目前这些组合工艺大多数处于实验室研究阶段,这些生物组合工艺能否顺利应用于实际工程,还需在提高处理效果、获得最佳运行条件、控制运行成本、高效管理等方面进行深入研究。[/font]

  • 【求助】淋滤液中离子测定

    各位大师你们好:我们实验室最近有一批土壤淋滤液的样品需要测定里面的阳离子含量,主要是钾钠钙镁。我们单位有icp-oes,但是测定老师不负责根本不准。因此想自己买仪器测定,现在我知道的有火焰光度计,但是只能测定钾钠,钙的话仪器就很贵了。测定镁的话不知道有没有什么仪器比较快的了?希望大师给点建议。

  • 【世界环境日】垃圾渗滤液检测哪些指标,用到哪些仪器

    垃圾渗滤液是垃圾在填埋过程中由于自然分解而产生的液体,它含有多种有机物、重金属、微生物等,需要经过严格的检测和处理。垃圾渗滤液的检测指标通常包括:1. 五日生化需氧量(BOD5):反映垃圾渗滤液中有机物的生化降解程度。2. 化学需氧量(COD):表示垃圾渗滤液中有机物和无机物的总氧化性。3. 悬浮物(SS):指垃圾渗滤液中悬浮颗粒物的含量。4. 总氮(TN)和总磷(TP):反映垃圾渗滤液中的营养盐含量。5. 氨氮(NH3-N):测量垃圾渗滤液中氨的含量,氨氮的含量可以反映水体富营养化的风险。6. 重金属离子(如Cd、Pb、Cr等):检测渗滤液中重金属的种类和含量,以评估其对环境的潜在污染风险。7. 微生物指标:如总大肠菌群、粪大肠菌群等,用来评价水质的卫生安全性。8. 有机污染物(如多环芳烃、有机氯农药等):检测这些持久性有机污染物的种类和含量。进行垃圾渗滤液检测通常会用到以下类型的仪器:1. 分光光度计:用于测定BOD5、COD等指标。2. [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计:用于检测重金属离子的含量。3. 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url](HPLC):用于测定有机污染物。4. [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]:用于分析挥发性有机物。5. [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]:用于测定溶液中的阴、阳离子。6. [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]):高灵敏度地检测多种金属元素。7. 总氮、总磷分析仪:专门用于测定TN和TP。8. 自动过滤器:用于SS的测定。9. 微生物检测设备:如平板计数器、生物显微镜等。这些指标和仪器选择会根据具体的水质监测需求和标准来确定。在检测过程中,为了保证结果的准确性和可靠性,相关操作应严格按照国家环境保护部门制定的标准和规范进行。

  • 【资料】垃圾卫生填埋场的渗滤液处理工程设计

    摘 要: 介绍了某垃圾卫生填埋场渗滤液产量的计算方法、处理系统的组成、构筑物及其设计参数和工程调试运行等情况。[img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=199222]垃圾卫生填埋场的渗滤液处理工程设计.zip[/url]

  • 填埋场渗滤液测试BOD5,如何培养菌种呢

    所测的填埋场渗滤液毒性较强,pH约9.5,氯化物 30000mg/L左右,氨氮上百。测试时,由于缺少菌种,BOD5达不到理想测试数据,请教各位,如何培养能适应渗滤液的菌种呢,或者怎样准确测试该渗滤液的BOD5?

  • 【转帖】垃圾渗滤液对土壤铁锰有效性及地下水质的影响

    【转帖】垃圾渗滤液对土壤铁锰有效性及地下水质的影响

    目前,我国大多数城市的生活垃圾处理仍然处于初期阶段,真正实现无害化处理的垃圾只占年产量的2.3%,绝大部分垃圾只能运往城外郊区堆放腐烂。垃圾堆放的一个直接后果就是由于无任何防渗措施而使大量水质极劣的渗滤液对土壤、水体造成严重污染,直接威胁着人类健康。 垃圾渗滤液是一种高浓度的复杂有机废水,含有大量的有机物,COD、BOD5浓度很高。郑曼英等[1]对垃圾渗滤液有机污染物的分析研究表明,渗滤液中含有主要有机污染物77种,其中芳烃类29种,烯烃类18种,酸类8种,醑类8种,醇、酚类6种,酮、醛类4种,酰胺类2种,其它5种。上述77种有机物仅占渗滤液中COD的10%左右;张兰英等鉴定出垃圾渗滤液中的93种有机化合物,其中有22种被列入我国和美国环保局环境优先控制污染物的“黑名单”中[2]。有研究资料显示,生活垃圾渗滤液的COD浓度范围一般为3000~45000mg/L,有机污染性很强[3]。此外,垃圾渗滤液还含有大量重金属离子和其它有害物质,对周边环境的危害性极大。 对北京西郊某垃圾堆放场周边土壤、地下水进行现场采样分析,在此基础上调控有关试验条件,研究垃圾渗滤液中的有机物对土壤铁锰有效性的影响,有利于揭示在垃圾堆放区污染土壤中有机污染物-金属的络合作用效应,为合理解释垃圾场地下水的铁锰污染成因提供依据。 表1供试土壤基本理化性质 [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911232046_186136_1636985_3.jpg[/img]

  • 【求助】吸附铜离子实验,吸附后用AAS测定滤液中铜离子浓度,请问。。。

    请高手帮忙: 1)过程描述: 我用三水合硝酸铜配制标准储备液(用1%硝酸配制,V/V),吸附时稀释后使用,吸附完成后,滤去吸附剂,得到滤液,要测定其中的残余铜离子量。由于我要做200-300次吸附,打算批量操作,且吸附体系的pH,铜离子浓度,等都得改变。想花3-4天完成80多次吸附,将搜集得滤液,一起拿去做AAS(AAS仪器非本研究组的,使用起来不太方便,即使提前预定,也难以100%保证能轮到我做)。2)请问: (1)配标准硝酸铜溶液时,精确称量时,如何解决三水合硝酸铜潮解的问题?或者,是否需要将三水合硝酸铜进行什么加热处理? (2)吸附后的滤液,其中铜离子浓度可能比较低,放置4-5天,再拿去测定AAS,可否? (3)吸附实验之前,我需要的pH和铜离子浓度都一定的溶液,最多可提前多少天配制?也即,它是否稳定? 请高手帮忙指点指点,非常感谢!!!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制