当前位置: 仪器信息网 > 行业主题 > >

迷宫系统

仪器信息网迷宫系统专题为您提供2024年最新迷宫系统价格报价、厂家品牌的相关信息, 包括迷宫系统参数、型号等,不管是国产,还是进口品牌的迷宫系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合迷宫系统相关的耗材配件、试剂标物,还有迷宫系统相关的最新资讯、资料,以及迷宫系统相关的解决方案。

迷宫系统相关的资讯

  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能 [6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • “生物计算”:比超级计算机更聪明、高效、紧凑
    上图 真菌可能与标准电子设备相连。图片来源:安德鲁阿达马茨基下图 实验室培养的脑细胞可用于计算。图片来源:托马斯哈滕/约翰斯霍普金斯大学细菌和超级计算机有什么区别?区别是细菌更“高级”,因为它有更多的回路和更强的处理能力。所有生命都在“计算”。从响应化学信号的单个细胞,到在特定环境中航行的复杂生物体,信息处理是生命系统的核心。经过数十年的尝试,科学家终于开始收集细胞、分子甚至整个生物体,来为人类自己的目的执行计算任务。从本质上讲,计算机也只是信息处理器,而且人们越来越认识到大自然拥有丰富的这种能力。最明显的例子是复杂生物体的神经系统,它能处理来自环境的大量数据并对各种复杂的行为“下指令”。但即使是最小的细胞,也充满了复杂的生物分子通路,这些通路响应输入信号,打开和关闭基因、产生化学物质或进行自我组织。最终,生命中所有令人难以置信的壮举,都依赖于DNA存储、复制和传递遗传指令的能力。如何构建一台生物计算机?生物系统有自身的独特优势:更紧凑、能源效率更高、可自我维持和自我修复,而且特别擅长处理来自自然界的信号。在过去的20年里,强大的细胞和分子工程工具让人们终于能在构建生物计算机领域迈出一步。美国麻省理工学院生物合成学家克里斯托弗沃伊特说,该方法的核心是“生物电路”,类似于计算机中的电子电路。这些电路涉及各种生物分子相互作用以获取输入,并对其进行处理以产生不同的输出,就像它们的硅对应物一样。通过编辑支撑这些过程的遗传指令,人们现在可以重新连接这些电路以执行自然界从未计划的功能。2019年,瑞士联邦理工学院利用CRISPR技术,构建了相当于计算机中央处理器(CPU)的生物等效物。这个CPU被插入一个细胞,在那里它调节不同基因的活动以响应专门设计的RNA序列,使细胞实现了类似于硅计算机中的逻辑门。印度萨哈核物理研究所在2021年更进一步,诱使一群大肠杆菌计算简单迷宫的解决方案。该电路分布在几个大肠杆菌菌株之间,每个菌株都被设计用来解决部分问题。通过共享信息,该电路成功地实现了如何在多个迷宫中导航。大多数生物系统并不同于经典计算机的二进制逻辑,它们也不会像计算机芯片那样一步步解决问题。它们充满了重复、奇怪的反馈循环和以不同速度并排运行的截然不同的过程。更怪异的是,生物的计算能力还能完全脱离其自然环境。瑞典隆德大学科学家正在试验一种完全不同的生物计算方法,使用由分子马达驱动的微小蛋白质丝围绕迷宫推进。迷宫的结构经过精心设计,而细丝能同时探索所有路线。这意味着解决更大的问题不需要更多的时间,只需要更多的细丝。重新设计生物系统会带来什么?但美国马萨诸塞州塔夫茨大学的迈克尔莱文认为,生命系统已经在生物学的各个层面展示了令人惊叹的计算壮举,人们应该将重点从尝试重新设计生物系统,转移到寻找与现有系统交互的方法。莱文实验室已经证明,他们可以操纵细胞之间的电通信,帮助它们决定如何以及在哪里生长。举个恐怖的例子,这可能让蝌蚪的内脏上长出眼睛,或让青蛙长出额外的腿。它并不等同于计算,但团队认为它代表了如何将自然界预先存在的电路折射为一个“新目标”。类似的方法可用来解决广泛的计算任务。此外,真菌计算的深奥领域也正在显示其应用潜力。英国布里斯托尔西英格兰大学研究显示,真菌在感知pH值、化学物质、光线、重力和机械应力等方面具有的能力令人印象深刻。它们似乎使用电活动的尖峰进行交流,这开辟了将它们与传统电子设备连接的前景。类器官智能有多智能?要探寻生物计算,离不开人们迄今已知的最强大计算设备:大脑。当前组织工程学的进步意味着,科学家们可从干细胞中培育出相当于微型大脑的复杂神经元簇,也就是“大脑类器官”。与此同时,能将信号传输到脑细胞并能解码它们的反应,意味着人们已经开始试验类器官的记忆和学习能力。今年早些时候,美国约翰斯霍普金斯大学团队概述了“类器官智能”这一新领域的愿景。目标与人工智能相反:他们不会让计算机更像大脑,而是试图让脑细胞更像计算机。初创公司Cortical已可训练在硅芯片上培养的人类脑细胞来玩电子乒乓游戏Pong。而在它们的新软件中,任何具有基本编码技能的人都能为“培养皿大脑”编程。不过,所有这些生物计算方法目前都远未成为主流。与设计和制造硅芯片的能力相比,人们操纵生物学的能力仍处于初级阶段。但生物计算的巨大潜力和投入生物技术的数十亿美元,将在未来几年为这个领域带来快速进步。
  • 科研攻坚不停歇!华东师大袁小兵/潘逸萱课题组揭示先天恐高反应神经机制
    沃的研究所这是一档关注“生命科学行业变化”的专题栏目。我们将从合作伙伴入手,每一期研究和解读一家科研机构或科研课题组、实验室的背后故事、相关方法论、使用的工具等等,帮助科研从业者获得启发和思考。本期【沃的研究所】对话主人公:尚蔚,博士研究生,华东师范大学生命科学学院袁小兵/潘逸萱课题组重要成员,本篇论文第一作者。恐高,其实跟我们每个人都息息相关。恐高反应会发生在每一个人身上,而恐高症患者会表现出对高度的非理性恐惧,即使暴露在很低的高处或者仅联想到高处时都会表现出对高度的非理性恐惧,这可能会对日常工作及生活带来一定的影响。那恐高反应究竟是如何产生的?科学界是如何解释这一现象?又该如何克服呢?2024年5月3日,华东师范大学生命科学学院袁小兵/潘逸萱团队在国际权威学术期刊Nature Communications 发表题为 A non-image-forming visual circuit mediates the innate fear of heights in male mice 的研究论文,他们对先天恐高反应开展研究,意外发现小鼠大脑中的非成像视觉系统诱发了恐高反应。 本期【沃的研究所】,我们将对话文章的第一作者尚蔚博士,一起深入了解小鼠先天恐高反应背后的神经机制。 逐层攻破技术瓶颈为探索恐高神经机理寻找靶点 尚蔚博士所在的课题组选择了广泛存在的生理视觉高度失衡的恐高来开展,他们首先建立行为学范式,细致观察小鼠在高台上的表现。曾有心理物理学家提出过这样一个假说,认为当人在高处时,随着人体与最近的静止物体之间的距离不断地增加,此时视觉提供的平衡信息会与前庭和躯体感觉系统提供的信息发生冲突,个体就容易出现晕眩的感觉,同时此时身体摆动幅度的增大,个体也会更容易感受到坠落,而这种对坠落的害怕会诱发个体的恐高情绪。根据心理物理学家的假说,尚博所在的课题组对视觉前庭和躯体感觉系统的作用进行了探究,发现视觉在恐高反应中发挥了主导作用。小鼠在高台上会出现类似于人类的恐高反应 课题组又参考了与视觉相关的先天恐惧行为学范式,通过视觉刺激(Looming Visual Stimuli )来寻找可能参与调控恐高的核团。最后通过光纤记录和化学遗传等手段来调控目标核团和神经环路连接,观察小鼠在行为学实验中的表现是否会有所不同,进一步发现小鼠大脑中存在两条神经环路,在调控先天恐高反应中发挥相反的作用。这项研究成果的发表有利于帮助人们理解人类的恐高现象,并为后续恐高反应的神经机制研究提供了思路,也为后续药物开发提供了一些帮助。但由于目前神经科学领域对“恐高”的研究还十分有限,已有的研究主要集中在流行病学调查和影像学方面。尚博介绍道:“刚开始的时候我们完全不知道到底要怎么来研究恐高,以及如何建立一个比较可靠的行为学范式,而且提出评估恐高程度的指标也是经历了不断的修改,基本一切都是未知的;另一方面,我们组确实不是做行为和神经环路机制的,所以对技术和思路也不熟,包括研究过程中有一部分是需要去做前庭系统,我对前庭系统非常陌生。”为了观察小鼠的恐高表现,他们需要多次制作高台,尚博笑着说:“那段时间我们不是在买亚克力,就是在买亚克力的路上,淘宝的订单截图可以拉很长。”为了了解前庭系统,尚博甚至鼓起勇气联系了交大六院耳鼻喉科的师兄,后又经过导师的介绍,到上海交大交流学习了一段时间,才慢慢克服了这些技术难题。“在我看来,合作真的是非常重要,这项研究也是大家共同努力的结果!”尚博说。截至目前,这项研究还在继续。 无心插柳,顺应偶然性机遇蕴含在变化之中 谈及当时是怎么想到要研究这个课题,尚博笑言:“这还真的挺有趣的,确实是无心插柳柳成荫的故事。”说起来,尚博所在的课题组主要的研究方向其实是孤独症谱系障碍以及神经发育。尚博最开始加入团队的时候,主要对孤独症谱系障碍风险基因的神经机制展开研究。可是当时的课题进展并不顺利,实验结果也不稳定。但也正是在这一次次的挫败中,课题组偶然间发现,实验小鼠在旷场实验中的自发运动量和焦虑水平都没什么变化,在高架O迷宫中却表现得特别焦虑,对高度的刺激非常敏感。他们又开始查阅文献、探究基因突变小鼠异常恐高的原因……“确实没想到当初那个课题能发展到现在这样。”尚博说。一次偶然,课题组开始了对恐高症的研究;又一次机缘巧合,课题组开始了与瑞沃德的合作。“其实在第一轮投稿的时候,我们已经通过化学遗传的方法发现了腹侧外侧膝状核(vLGN),特别是其中的抑制性 GABA 能神经元,还有 vLGN 到下游中央导水管周围灰质(Periaqueductal gray, PAG)参与调控恐高。但因为化学遗传没能实时观察到神经元对高度刺激的响应,所以审稿人明确提出希望我们可以补充光纤记录的实验。”说来也巧,刚好在补实验阶段,实验室就有一台瑞沃德的光纤记录系统。尚博所在实验室里的瑞沃德光纤记录系统 “我们用瑞沃德光纤记录系统做了对照实验,发现确实取得了很好的结果。而且我们原来第一轮投出的内容,它使用到的技术其实比较单一,在后面补实验增加了光纤记录这样在神经环路领域比较常用的技术,得到了导师的认可,这也对于我们这一项成果的发表有很大的帮助。”尚博在交谈中也对瑞沃德光纤记录系统表达了认可:“瑞沃德的光纤系统操作简单,使用方法也比较容易学习,分析软件也十分方便,可以快速给出想要的图,同时还可以计算线下面积、叠加不同个体的数据,对我们的实验有很大的帮助。”“在我看来瑞沃德是国内做得很好的品牌了,我也很开心看到国产的仪器近年来做得越来越好了,大家就有更多的选择。”该研究使用光纤记录检测了腹侧外侧膝状核(vLGN)脑区GABA能神经元和外侧/腹外侧导水管周围灰质(l/vlPAG)脑区谷氨酸能神经元的钙信号变化 “其实我们还挺幸运的,文章只返修了一轮。”尚博感慨道。采访过程中,尚博不止一次说起:“我认为自己一直都是一个比较幸运的人。”在尚博的自述中,她说到,高考、考研都比较顺利,父母愿意支持自己的选择,师兄会手把手带着她做实验、交流科研思路,师妹们会鼎力支持课题的进展,导师们也会在大家做实验情绪爆炸的时候给予足够的鼓励……“所以我真的觉得自己是很幸运的人。”尚博课题组合照(从左到右依次为尚蔚、袁小兵教授、谢双翼、潘逸萱副研究员、冯文博) 发现了吗?伟大的成就,其实并没有所谓的可复制的成功脚本,它们往往没有经过周密的计划便诞生。不管是做实验,还是生活,我们不时地顺应偶然性,也不见得是坏事。就像尚博所说的:“意外真的常有发生,一切都在你的计划之内,是非常小概率的事件,所以你要时刻地根据实际情况来灵活调整自己的方案或者计划,多一些Plan B。”不管是“无心插柳”,还是“有心栽树”,幸运会不断出现在你努力的路上!我们也祝福尚蔚博士及团队在自己热爱的领域里勤耕不辍! 如果您想了解尚蔚博士课题组同款瑞沃德多通道光纤记录系统长按识别下方二维码进行预约我们将会有专业人员与您联系▽
  • 并非只是呆萌摆件 智能植物检测器来了
    乍一看下图,可能会误以为是个迷宫图,亦或是个拼接摆件。没错,它是一个摆件,但它不是一个普通的摆件,它可以监测您家中的植物的生长环境。  并非只是呆萌摆件 智能植物检测器来了  Plant Friends 是一个植物环境监控系统。它能监测土壤湿度、空气温度和空气湿度,并将通过电子邮件和短信提醒你当你的植物口渴了。电池供电的系统,无线,Arduino和覆盆子基于APi和附带了一个Android应用程序。应用程序使您能够查看实时和历史数据(温度、湿度、土壤水分)在你的手机上。  植物伴侣有萌兔 、机器人、小恐龙等三种可爱的造型,内置土壤水分传感器系统的它们,可同时收集室内温度、湿度和土壤湿度 ,一旦土壤湿度低于某个数值,植物伴侣就会发送短信或邮件通知你及时浇水 。设计师甚至专门做了一个APP ,能在APP中实时监测当前数据及查看历史数据。
  • 北航文力课题组《Nature Communications》:基于超精密3D打印柔性传感的软体机器人
    人们经常向往能够拥有魔法,以实现各种神奇的操作比如隔空操控、隔空取物,即在不主动触碰某个物体的情况下,用类似意念的超能力操控物体移动,多用于神话科幻电影或小说。正所谓,科技来源于想象,想象力是推动人类走向物种最顶端的原动力。而当科技发展到一定程度时,这种对于超能力的向往、对神奇操作的想象有时也会成为现实。2022年8月26日,国际顶级期刊《自然通讯》(Nature Communications)报道了北京航空航天大学机械工程及自动化学院仿生机器人研究团队文力课题组在软体机器人交互控制领域取得的最新进展。 操作人员通过裸手不仅能够实现对具有大量自由度的软体机器人的非接触控制,而且可以完成各类复杂的操作。能够将复杂的软体机器人的运动控制变得大众可及,得益于北京航空航天大学研究团队最新提出的基于双模态智能传感界面的软体机器人非接触交互示教方法。在该研究中,基于研究团队所研发多模态柔性传感界面,示教者在不接触软体机器人、无任何穿戴设备的情况下利用裸手交互地示教软体机器人(如连续体软体臂),使其实现复杂三维运动。其主要原理是,利用“隔空”条件下交互界面与人手表面电荷产生的静电感应,将人手和软体机器人之间的距离信号转换为传感信号,进而“诱导”机器人的运动。这类基于多模态柔性感知的非接触的示教方法可以显著拓展人类与软体机器人的交互方式。该论文第一作者为北京航空航天大学机械工程及自动化学院博士研究生刘文博,朵有宁、刘嘉琦、袁菲阳为共同第一作者,文力教授为论文通讯作者。中国科学院北京纳米能源与系统研究所与清华大学计算机系为本研究的合作单位。瞄准领域痛点问题软体机器人是一种新型柔软机器人,能够适应各种非结构化环境。由于软体材料的自由度可以根据需求自由变化,因此软体机器人有着极高的灵活性,并且软体机器人与生俱来的高度适应性,使其在与人类互动方面同传统的刚性机器人相比更具安全优势,在生物工程、救灾救援、医疗领域有着很大的应用前景,受到越来越多的关注。然而,由于目前软件机器人在建模和编程方面存在一定挑战,使得非专业人员在使用软件机器人实现特定动作及执行特定任务时常常面临一些不容忽视的困难。交互式示教方法能够高效、灵活地引导软机器人实现对应的运动,这将有助于软体机器人在室内、生产线和其它非结构化环境中的应用。攻克两大研究挑战在传统刚性机器人上常用到的拖拽示教的方式,并不能很好地应用于软体机器人,其主要是由于软体机器人顺应性高、具有无限自由度的自身特性。因此,直接进行“拖拽”会使软体机器人产生很大的被动变形。如果想检测这些被动变形,则需要在软体机器人上布置大量传感器。在解决软体机器人示教交互问题上,目前面临着两大挑战。(1)一种柔性多模态智能传感器-能够在适应软体机器人大变形的前提下,对多种环境信息(距离、压力以及材质等)做出响应。(2)一种友好的无需编程的软体机器人示教系统-能够简单高效地将人的指令传递给软体机器人。挑战一:多模态柔性传感器由于操作人员在与软体机器人交互过程中可能产生多种信号,且传感器需适应软体机器人自身柔软的特性,因此用于人机交互的传感器应具有检测多模态信号、柔软可变形等特点。课题组基于摩擦纳米发电机原理和液态金属的压阻效应提出了一种能够对非接触信号和接触信号进行实时感知和解耦的柔性双模态智能传感器(flexible bimodal smart skin, FBSS)。该传感器结构上主要包括柔性介电层、柔性电极层、激励层、液态金属图案和封装层组成。该团队利用新型微立体面投影光刻技术(nanoArch S140,摩方精密)实现了柔性介电层表面微型金字塔模具的3D打印,该传感器自身具有较强的柔性和可拉伸性。图1. 接触/非接触柔性双模态智能传感器(FBSS)的设计与传感原理。(a)传感器将不同功能层堆叠在一起。包括柔性介电层(青色)、柔性电极层(灰色)、刺激层(浅黄色)、液态金属(黑色)和封装层(橙色)。(b)柔性介电层顶部微金字塔结构的电子显微镜图像。该金字塔型微结构一方面可以有效介电层的表面积,增加表面电荷量进而提高非接触传感的灵敏度;另一方面可以减少外力作用在液态金属腔道上的面积增加压强促进液态金属腔道变形,进而提高接触传感的灵敏度。(c)印刷在硅胶材料层上的液态金属材料的光学显微镜图像。(d) FBSS可被弯曲,展示了其柔性。(e)样机可被拉伸(最大拉伸率为58.4%)。(f)样机的接触/非接触传感机制:i)柔性介电层(灰色)和外部物体(红色)在接触几次后,由于电子亲和性不同,产生了等密度的负电荷和正电荷。ii)当外部物体接近柔性介电层时,自由电子被驱动并从大地流向柔性电极。iii)外部物体开始接触FBSS,电子转移量增加,液态金属电阻增加。iv)外部物体与FBSS完全接触,转移的电子数和液态金属的电阻都达到最大值。v)随着外界压力的释放,电子从柔性电极(灰色)回流到大地,液态金属的电阻减小。vi)随着外部物体(红色)与FBSS分离,回流电子增多,液态金属的电阻恢复到初始状态。研究团队对柔性双模态智能传感器进行了系统的实验测试,研究结果表明,该传感器可以灵敏地检测外界物体与传感之间的距离以及接触压力,并且能够实时解耦这两种模态。此外该传感器利用不同材质得失电子能力的差异性,还可以对接触物体的材质进行检测。最后,实验研究表明该传感器具有一定环境抗干扰能力以及良好的稳定性和耐久性。研究团队所提出的柔性双模态智能传感器可以有效地检测外部物体的接近和接触信息,比如高速下落的网球,在整个过程传感器可以实时感知和区分网球的接近和击中传感器的逐个阶段。此外,该传感器还可以检测一个羽毛的飘落过程:随着羽毛逐渐接近,传感器输出的非接触信号逐渐增加。该柔性双模态智能传感器还能够感知人手的接近和按压信号,无需在手上增加任何外接设备:研究人员将该传感器连接进入LED灯控制电路,利用人手的接近信号控制控制红色LED灯亮度,接触信号控制蓝色LED灯亮度。图2. FBSS接触和非接触传感特性的表征结果。(a, b)网球从FBSS上方落下(下落距离200mm)的高速相机图像和接触、非接触输出信号。(c, d)人手指按压FBSS时的场景和接触、非接触输出信号。当检测到的非接触信号超过一个阈值时,红色发光二极管点亮;当手指按压FBSS时,蓝色LED点亮。在此基础上,课题组人员尝试将多模态柔性传感器与一些简单的软体机器人结合,实现了软体机器人与环境、与人的初步交互。将柔性多模态智能传感器放置在一段软体驱动器末端,通过人手能够实现非接触地直接控制驱动器的弯曲和收缩。这给人一种魔法般的体验;将柔性多模态传感器与气动折纸结构软体手结合,即使软体手完全埋进沙子依旧能够感知附近玩具昆虫的接近信息,并对其进行精准地抓取;柔性多模态智能传感器与气动驱动软体手爪结合,亦可实现运动路径上目标物体的搜寻与抓取:随着软体手爪逐渐靠近目标物,传感器输出的非接触信号逐渐增加,当超过一定阈值时系统判定为软体抓手找到了目标物并进行抓取,抓取过程中传感器输出的接近信号开始逐渐增加,最终实现了对目标物体的成功抓捕。图3. 自驱动软体机器人被人和环境的非接触信号触发。气动三自由度软体机械臂被人手的接近信号触发实现(a)弯曲和(b)缩短。(c)装有FBSS的气动软体折纸机器人成功检测并抓住玩具昆虫。(d)一个装备有FBSS的软体抓手自主搜索、检测和抓取塑料圆柱体物体,(e)在这个过程中接触和非接触信号随时间变化的结果。挑战二:针对软体机器人的示教交互方式基于多模态柔性传感器,课题组针对10自由度(软体臂主体由9根波纹管式气动驱动器组成,末端有一气动软体手)气动软体机械臂提出了一种非接触示教交互方式:利用人手的接近信号进行非接触控制,软体机械臂运动的步长大小对应非接触信号的大小,人手的按压信号用于控制末端软体手的开合。无需额外的穿戴设备,操作人员通过裸手即可与软体机械臂进行交互。同时,为了实现对软体机器人复杂姿态的控制,研究团队另辟蹊径,提出了“变换传感器位置&示教”的方法。在传感器的背部以及软体机器人上放置小的圆形磁铁,利用磁力快速改变传感器在软体机器人上的位置,从而实现对软体机器人各个驱动段的位姿控制。为简单验证上述示教控制系统的可行性,课题组人员控制软体机械臂进行二维、三维空间物体抓取任务。其重复过程能够很好地对示教过程进行复现。这种示教方式能够有效地捕捉并抓取空间内高、中、低大范围内的目标物体。由于交互控制系统能够完整地记录示教交互过程的控制步长数据,操作人员可以对复现过程的速度进行控制,并且根据用户的需求做出相应的调节。此外,研究人员还在软体机械臂每一段末端和贴附传感器的弧形片上安装了小磁片,便于交互过程中传感器位置的切换。该方法通过简单、快速地更换传感器的位置,实现了对每一段的高效交互控制,最终实现了整个软体复杂位姿的简单控制。图4. 基于“传感器换位与示教”方法交互式示教软体机械臂实现复杂运动。FBSS I和FBSS II随时间变化的非接触和接触信号的归一化结果。每个图中的红色和蓝色箭头表示用户正在将FBSS从一个位置移动到另一个位置,以便与软体机械臂的不同位置进行交互。(a)示教者使用“传感器换位与示教”方法操纵软体臂实现二维空间运动。(b) 使用“传感器换位与示教”方法操纵软体臂实现复杂三维空间运动。除了简单的控制软体机器人完成空间物体的抓取任务以外,还可以与软体机器人进行无接触的互动教学,从而实现更加复杂、更具挑战性的任务。例如,将一根水彩笔安装软体臂末端,通过示教方式“教会”软体机械臂在迷宫中行走;通过示教方式操作软体机械臂进行咽拭子采样。为更好地展现软体机械臂的灵活性和示教交互方式的效果,课题组人员在软体机械臂和目标物之间放置一块障碍物,通过示教方式,“教会”软体机械臂越过障碍并成功抓取一朵花。图5. 交互式示教自驱动软机器人潜在应用的展示。(a)示教软体机械臂走迷宫的实验场景。(b, c)软体机械臂走迷宫实验中示教和复现的轨迹。(d)走迷宫实验示教过程中的信号曲线。咽拭子采集实验示教过程的(e)实验场景和(f)信号曲线。(g)交互式示教软体机械臂越过障碍物并成功抓取花朵。研究团队提出一种基于多模态柔性传感的软体机器人的“非接触示教”方法。基于所研发多模态柔性传感界面,示教者利用裸手可以无接触地、交互地示教软体机器人(如连续体软体臂),使其实现复杂三维运动。这类基于多模态柔性感知的非接触的示教方法可以扩展人类与软体机器人交互方式。这种简单、高效、友好的非接触交互示教方式,为软体机器人在非结构化环境中的交互控制提供了一种新的范式。图6. 软体机器人非接触交互示教概念图:人们通过非接触示教的方式轻松控制软体机器人在非结构化环境中作业。
  • 济南兰光“蒸发残渣恒重仪”通过科技鉴定已达国际领先水平
    2013年3月12日,济南市科学技术局组织来自山东省科学院、山东大学、山东建筑大学、山东轻工业学院、济南大学的专家召开了济南兰光&ldquo 蒸发残渣恒重测试仪&rdquo 项目科技成果鉴定会。鉴定委员听取了相关报告并审查了呈报资料,经讨论质询,认为该项目功能先进、自动化程度高,整体达到国际先进水平。  该项目旨在解决当前蒸发残渣测试方法中所需设备繁多,人工依赖性强的弊端,集成了实验过程中所需要的烘干、干燥、称重等操作环节,实现了全自动化称重,减少人为操作误差,提高工作效率。针对上述功能,兰光研制了环形迷宫式称重系统、天平开合装置、直线升降及定角度旋转装置,既能适应不同的测试条件,又能实现自动称重,保证称重精度。同时,为了提高测试条件的可控性,项目研发了高精度温湿度控制系统,能够精确控制蒸发环境。  该仪器经山东省计量科学研究院检验,各项指标均达到了设计要求。目前,用户反映使用良好,具有广阔的应用前景。  济南兰光ERT-01蒸发残渣恒重仪官网介绍:http://www.labthink.cn/cn/product-info-1014000.html
  • 安捷伦2011测试测量大会将在京即将拉开帷幕
    2011年1月11日,北京——安捷伦科技公司(NYSE:A)日前宣布2011 年安捷伦测试测量大会将于1月18日在西安金花大酒店盛大召开。  在本次会议中,您将会亲临现场见证安捷伦科技70年的技术飞跃与烁世贡献。从航空航天的尖端测试设备,到国防科技的集中专题探讨 从4G无线通信的最新测试方案,到高速数字技术的深入解析 从真实硬件模拟带宽高达32GHz的高性能实时示波器、到DANL可逼近到-172dBm理论极限值的高端频谱分析仪 从划时代的67GHz非线性网络分析仪,到模块化超宽带矢量信号分析仪 从雷达系统测试、复杂信号产生与分析,到光及高速数字总线的测试方案…… 您将有机会经历一次遨游科技迷宫一样的高集成度科技与测试专业课题研讨大会。  大会也将设立全面的现场展示环节,以及力邀安捷伦科技各应用领域内的资深技术专家、经验丰富的工程师共同为您现场讲解与演讲。  欢迎微波与射频设计工程师、航空航天与国防科技的研发人员、无线通信技术研发人员、项目经理、服务提供商、芯片组设计师、认证研究人员,以及当前和未来从事热门电子测试与测量各项应用的工程师与管理团队等积极参与2011安捷伦科技测试大会 – 西安站。安捷伦作为测试行业的技术领导者,作为您最值得信赖的合作伙伴,将与您并肩开创崭新的大时代!
  • 黑龙江药检所紧急采购786.2万元仪器设备
    黑龙江省药品检验所_仪器设备紧急招标公告  黑龙江省政府采购中心按照黑龙江省政府采购管理办公室下达的采购计划,依据《政府采购法》及相关法规,对黑龙江省药品检验所_仪器设备紧急采购及服务进行国内公开招标,现欢迎国内合格的供应商参加投标。  一、项目编号: SC[2012]1481  二、项目名称: 黑龙江省药品检验所_仪器设备紧急  三、资金来源及构成(采购预算): 预算内资金(786.2万元)  四、招标内容:项目名称数量采购预算(元)SC[2012]1481B0001合计1870000原子吸收分光光度计1 台750000傅里叶变换红外光谱仪1 台450000多通道固相萃取系统1 台450000 紫外-可见分光光度计1 台120000卡尔费休水分测定仪1 台100000SC[2012]1481B0002合计1832000高效液相色谱仪1 台620000溶出仪1 台192000液相色谱仪1 台525000液相色谱仪1 台495000SC[2012]1481B0003合计1800000电位滴定仪2 台30000016导生理记录仪1 台680000迷宫水迷宫1 台120000组织自动脱水机1 台150000组织包埋机(加配防雾罩)1 台120000混合型碾磨仪1 台120000凝胶成像系统1 台110000薄层成像系统1 台200000SC[2012]1481B0004合计1760000微波消解系统1 台320000生物显微镜(显微专用数码相机及软件分析系统)1 台120000快速溶剂萃取仪1 台750000三气细胞培养箱1 台195000全自动微生物平皿螺旋加样系统1 台240000显微镜1 台135000SC[2012]1481B0005合计600000多角度激光光散射仪1 台600000 总计7862000  五、评标方法:最低评标价法  交货时间:2013年2月15日前  六、潜在供应商的报名要求:  1、拟参加本项目投标的潜在投标人应具备《政府采购法》第二十二条供应商资格条件   2、拟参加本项目投标的潜在投标人须在黑龙江省内政府采购网注册登记并经黑龙江省政府采购管理办公室审核通过 (不符合本条要求的供应商可点击供应商申请填报说明根据要求办理注册登记及审核手续)  七、投标人资质要求:详见招标文件第二章  八、报名方式及时间:  有意向参加本项目招标活动的潜在供应商请到黑龙江省政府采购网“下载中心”的“招标采购文件”查阅招标文件。如确定参加本次招标活动,须到黑龙江省政府采购网凭用户名和密码登录进行网上报名,待采购中心工作人员确认后,报名成功。报名时间:2012年11月1日起至2012年11月13日17时。只有在黑龙江省政府采购网报名并经确认的潜在供应商,方有资格参加本项目的投标活动。  报名受理:技术审核处 王笳因 联系电话:0451-87220713  九、招标文件获取方式:  报名成功后请登录黑龙江省政府采购网“下载中心”的“招标采购文件”下载招标文件。  十、招标文件的公示:  供应商报名起止时间为招标文件公示期,报名成功供应商如对招标文件某些条款不理解、有疑问或存在异议,请于报名截止时间前提出,逾期将不予受理,并视为对招标文件无异议。  (一)询问受理:  1、请登陆黑龙江省政府采购网,凭用户名和密码登录后点击“网上答疑”,然后点击“进入”进行网上询问   2、电话询问:项目经办人 杜林 电话 0451-87220783  (二)质疑受理:  请登陆黑龙江省政府采购网,凭用户名和密码登录后点击“网上质疑”,然后点击“进入”进行网上质疑,同时将质疑书原件及法人代表授权书原件送达采购中心,质疑书原件及法人代表授权书原件送达采购中心时间为供应商提出质疑时间,未在规定时间内送达质疑书原件及法人代表授权书原件的质疑为无效质疑。  质疑受理人:办公室 尚欣 0451-87220726  十一、投标截止时间:2012年11月20日,上午9时30分。  十二、开标时间:2012年11月20日,上午9时30分。  十三、投标及开标地点:黑龙江省政府采购中心一楼招标大厅  十四、投标保证金金额及缴纳截止时间包号投标保证金金额(元)投标保证金缴纳截止时间第一包18000一、以银行汇款方式缴纳的投标保证金,请在2012年11月15日17时前到达采购中心保证金账户,采购中心以银行出具的纸质回单日期即银行转讫章日期为实际到账日期,否则投标无效。二、以银行保函或担保保函形式提交投标保证金的供应商,应于2012年11月15日17时前到达采购中心一楼一站式服务台办理登记确认手续,否则投标无效。单位名称:黑龙江省政府采购中心保证金户开户银行:龙江银行哈尔滨开发区支行行 号:313261020080账 号:2003 0121 0100 0000 3汇款用途:SC[2012]1481项目的投标保证金第二包18000第三包18000第四包17000第五包6000   十五、采购人: 黑龙江省药品检验所  联系人:田秀丽 电 话:0451-53663347  十六、集中采购机构:黑龙江省政府采购中心  地 址:哈尔滨市南岗区汉水路379号  邮 政 编 码:150090  药品器械采购处项目经办人:杜林 李磊  电 话:0451-87220783 传 真:0451-87220783  药品器械采购处项目负责人:李晖  电 话:0451-87220793 传 真:0451-87220793  黑龙江省政府采购中心  2012年10月30日  特别提示:经常有供应商因疏忽大意,递交的投标文件没有加盖公章或无法定代表人签字或签字人无法定代表人有效授权而导致其投标被拒绝,在此提醒广大参与政府采购的供应商应认真按招标文件要求编制投标文件,不要因不应该出现的错误而导致废标。
  • 第18届国际显微学会议开幕
    第18届国际显微学大会于2014年9月8日在捷克共和国首都布拉格开幕。共有来自68个国家的3125名显微学领域的学者参加了此次会议。76家厂商参加了同期举行的仪器展览。会议现场仪器展  IFMS总裁Barry Carter、IMC 2014大会主席Pavel Hozak、布拉格委员Martin Dlouhy、科学院的主席Jiri Drahos、ICMA总裁Paul Fischione带来了精彩的大会报告。大会报告嘉宾  会议期间还举行墙报展及&ldquo 布尔诺-显微谷&rdquo 海报展。一台在1958年布鲁塞尔世博会上荣获金奖的桌面电镜也在海报展展区展览。墙报展&ldquo 布尔诺-显微谷&rdquo 海报展&ldquo 布尔诺-显微谷&rdquo 海报展  特别值得一提的是,会议还特别准备了&ldquo 显微镜迷宫&rdquo 活动,旨在促进儿童对于显微镜在生命科学、医药、材料等领域的应用的了解。在会场的注册区还有特殊的纪念品可供购买。&ldquo 显微镜迷宫&rdquo 活动纪念品  另外,主办方还准备了美酒欢迎远道而来的客人,在这里与会者可以享用到美味的摩拉维亚葡萄酒和捷克啤酒。鸡尾酒会为与会者准备的捷克啤酒
  • 浙江食检院采购HPLC等一批进口仪器设备
    一.采购人名称:浙江省食品药品检验研究院  二.采购项目名称:体视显微镜等科研仪器设备  三.采购组织类型:分散采购委托代理  四.招标项目概况(内容、用途、数量、简要技术要求等):  水迷宫视频分析系统、体视显微镜、不溶性微粒检测仪、超高效液相色谱仪、高效液相色谱仪、荧光分光光度计、超声波清洗器、电子天平、高纯氮气发生器、膳食纤维测定仪、荧光定量PCR仪、三气培养箱、气相色谱串联质谱仪、原子吸收光谱仪、超低温冰箱及超净工作台、全谱直读电感耦合等离子体发射光谱仪等  五.拟采用的采购方式:公开招标  六.申请理由:  国内产品在分析精度及检测灵敏度方面仍与进口产品存在较大差距,且售后服务及设备使用寿命方面也相差甚远,因此,特申请采购进口产品。  七.拟定供应商:  八.其它事项:  供应商对该项目拟采购进口产品及其理由和相关需求有异议的,可以自本公示发出之日起三个工作日内,以书面形式向浙江省财政厅提出意见。  政府采购财政部门联系方式  财政部门:浙江省财政厅  地点:文一路80号文欣大厦421室  联系人:马瑞敏  联系电话:0571-87055741  传真:0571-87056984
  • 美探测器十年火星照片:壮观陨坑宽20公里(多图)
    北京时间12月21日消息,据美国国家地理网站报道,美国宇航局的“火星奥德赛”探测器自2001年进入这颗红色行星的轨道以来,已经对其进行了近10年的观测,下面是该探测器拍摄的部分火星图片。  1.宏伟壮观的火星陨石坑  宏伟壮观的火星陨石坑(图片提供:NASA/JPL-Caltech/ASU)  一颗陨石猛烈撞击火星,在地表形成巴库洛尔(Bacolor)陨石坑,碰撞产生的能量使地表远古物质向四面八方飞溅。巴库洛尔陨石坑是这颗红色行星表面的一个直径12英里(20公里)的深坑。这张“宏伟壮观的”火星陨石坑图片,是利用“火星奥德赛”探测器上的热辐射成像系统(THEMIS)在2002年到2005年间拍摄的照片合成的。据美国宇航局说,这周“火星奥德赛”探测器成为火星史上工作时间最长的飞船。  该飞船在2001年10月24日进入火星轨道,到今年12月15日,它已经在这颗红色行星周围工作了3340天(近10年)。“火星奥德赛”打破了“火星全球探勘者”号之前创下的记录,后者在1997年9月11日进入火星轨道,2006年11月2日停止运行。据加利福尼亚州帕萨迪纳美国宇航局喷气推进实验室“火星奥德赛”项目科学家杰弗里普朗特说,迄今为止“火星奥德赛”获得的最有名的发现,也是它的第一项发现——找到有大量水冰埋藏在干燥的火星地表下的证据。他说:“这一发现非常令人兴奋,因为这是该任务的一个重要目标。”  2.崎岖不平的火星地形   崎岖不平的火星地形(图片提供:NASA/JPL-Caltech/ASU)  从这张合成图上可以看到夜迷宫(Noctis Labyrinthus)裸露区的高原和山谷,这是利用“火星奥德赛”在2003年到2005年收集的数据合成的。这种崎岖不平的地形是由火星外壳拉伸和碎裂形成的。当断层分开时,地下冰和水会从裂缝涌出,导致地表坍塌。普朗特表示,“火星奥德赛”的最初任务有两个:确定火星表面的组成成分和测量这颗红色行星的放射性,为未来可能进行的人类火星探索任务做准备。  3.火星峡谷合成图  火星峡谷合成图(图片提供:NASA/JPL-Caltech/ASU)  这张迷宫(Noctis Labyrinthus)的峡谷伪彩色合成图,是用“火星奥德赛”在2003年4月到2005年9月间收集的图片合成的。该图着重强调了一个峡谷交汇处形成1.3万英尺(4000米)深的洼地。  按照最初计划,“火星奥德赛”还有一个飞船同伴,即已知的“2001火星观测者”登陆器,但是1999年火星气候轨道器和火星极地登陆者”号探测器失灵后,美国宇航局取消了该任务。  然而,为被取消的这项登陆器任务设计的仪器,又用在了美国宇航局的其他火星登陆器——“凤凰”号上,这颗探测器于2008年到达火星表面,现在已经停止运行。美国宇航局的普朗特表示,“火星奥德赛”的飞船同伴以这种方式“最终到达火星”。“这也是该探测器取名‘凤凰’号的原因——凤凰燃为灰烬后,再从灰烬里得到重生。”  4.泪滴状台地  .泪滴状台地(图片提供:NASA/JPL-Caltech/ASU)  从这张由“火星奥德赛”探测器拍摄的照片可以看到,位于火星战神谷(Ares Vallis)地区附近的泪滴形状的台地向外延伸开来。科学家认为,凸起的岩石结构曾转变了火星表面的洪水流向。这个探测器长期围绕该行星运行,使科学家可以监控火星上每年的季节变化,其中包括冬季极区上空大气里的二氧化碳是如何凝结的。  5.被穿透的陨石坑  被穿透的陨石坑(图片提供:NASA/JPL-Caltech/ASU)  火星上的这个重叠陨石坑看起来就像是一个被箭穿透的苹果。这张图片是美国宇航局的“火星奥德赛”探测器在2005年5月拍摄的。每个陨石坑的直径都有几英里,这是由一颗陨石在落地前的很短时间内分裂成两个后,在地面撞击出来的两个碗状陨坑。普朗特表示,“火星奥德赛”一生比较幸运,没有遇到过真正的困难。但在2003年的万圣节期间发生过“最大危机”,一个“超级太阳暴”释放出大量带电粒子,对火星表面的所有电子设备都造成了巨大破坏。“火星奥德赛”上的辐射测量仪失灵,不过稍后它又恢复了正常。  6.火星沙海  火星沙海(图片提供:NASA/JPL-Caltech/ASU)  在这张合成图上看到的这些由风塑造的黑色沙丘海洋,是利用“火星奥德赛”在2002年12月到2004年11月间拍摄到的照片合成的。这片沙丘位于火星北极极冠上,面积相当于德克萨斯州那么大,它拥有更冷区域(蓝色)和更温暖的区域(黄色和橙色)。普朗特表示,对于一艘在轨道里运行了将近10年的飞船来说,“火星奥德赛”目前的状况非常好。  它的大部分仪器仍在继续运行,“火星奥德赛”的备用系统还从没用过。也许这艘飞船面临的主要限制因素,是它在轨道里运行一周所需的少量燃料。据科研组成员估计,如果这艘飞船的轨道没有太大调整,“火星奥德赛”剩下的燃料最少还可供它运行10到15年。  7.沙丘艺术  沙丘艺术(图片提供: NASA/JPL-Caltech/ASU)  在2006年“火星奥德赛”拍摄的这张照片上,由众多风塑沙丘构成的图案,看起来很像一幅抽象画。按照最初计划,该飞船是去执行一项持续时间仅为3年的任务,但是到今年的10月,美国宇航局已经把它的工作寿命延长了3倍。现在该飞船打算运行到2012年底,这项任务可能还会被延长,用来帮助美国宇航局的火星科学实验室——“好奇”号,该计划预计将于2012年8月发射升空,前往火星。  美国宇航局的普朗特表示,目前“火星奥德赛”担任该局的火星车“勇气”号和“机遇”号的通讯中转站,它或许也能为“好奇”号提供相同服务。他说,“如果2012年后这艘飞船依旧很‘健壮’,我们将会继续让它再运行几年。”
  • 电子监管码在线研讨会幸运奖揭晓
    作为制药行业近期的热门话题之一,电子监管码受到了广泛关注。梅特勒托利多在5月31日举行的&ldquo 药品电子监管码&mdash &mdash 选择合适的设备供应商&rdquo 受到了广大客户的热烈欢迎,讨论踊跃。 为了感谢各位的热情参与,我们特为参加此次在线研讨会的部分幸运者提供电子监管码迷宫(迷宫路线不限)一份,获奖名单如下(排名不分先后)。 省份 姓名 浙江 陈军 浙江 方小聪 江苏 朱纯 江苏 张勇 江苏 刘旭飞 江苏 徐国强 河北 陈立波 广东 蒋晓刚 奖品已于2010年6月21日通过EMS分别邮寄,请获奖者注意查收! 如果您因为工作原因错过了以上活动,请不要遗憾,接下来我们还推出了多重参与机会,为您揭开电子监管码的神秘面纱。 - 您可以参加6月28日,10:00-10:45再次举行的&ldquo 药品电子监管码&mdash &mdash 选择合适的设备供应商&rdquo 在线研讨会,我要报名! - 您还可以作为邀请嘉宾,参加在ProPak现场由梅特勒托利多组织的关于电子监管码的研讨会,7月15日,13:00-14:30,西一馆M1会议室,我要报名! 您还可以作为邀请嘉宾,参加在ProPak现场由梅特勒托利多组织的关于电子监管码的研讨会,7月15日,13:00-14:30,西一馆M1会议室,我要报名! 期待您的更多关注与参与!所有市场活动最终解释权归梅特勒托利多所有。 ProPak2010,预登记赢世博门票更多制药行业电子监管码信息
  • 【喜讯】荣登医疗健康产业创新力产品榜,依利特展现技术创新力
    在医疗健康领域,中国正在诞生具备本土鲜明特征,具有世界级影响力的创新和实践。 在2023年,我国有34款国产1类新药获批,数量较2022年增长156%,刷新历史记录;我们有61款创新医疗器械设备通过审批,数量也创新高。在全球的出海业务上,2023年国内发生了近70笔创新药License-out交易,已披露交易总金额超350亿美元,又是一项历史新高;同时,中国医疗器械的出口金额高达184.18亿美 元,高值医疗器械的出海增速提升显著。创新医疗产品的集中爆发与火热出海意味着,中国医疗创新企业开始在最前沿的技术领域不断探索,已形成自有的行业独特认知和相对应的产品,逐渐开始摆脱“低价低技术含量的进口替代品”标签,也表明我国诸多医疗产品已具备与全球最强对手同台竞技的实力。 在2024年5月的第八届未来医疗生态展会上,动脉网首次面向产业发布“医疗健康产业创新力产品榜”,向世界集中展示中国医疗健康产业的创新实力。该榜单旨在发掘并展示能代表中国乃至全球医疗健康产业具有技术先进性、国产替代性高、满足临床未满足需求、具有全球竞争力、行业引领效应突出的医疗健康创新产品和创新解决方案,对参选创新产品从技术创新力、临床与应用价值、行业空间、行业影响力四大一级指标、共12项二级指标数据上的成长性与年度表现进行加权评选,通过企业自主申报、VBEF评审会评审、支持机构交叉评审、专家委员会终审的流程,从生物药及生物制品、高端智造及医疗器械、数字创新技术及供应链赋能产品、医疗产业链共四大领域中评选出共计200款具有代表性的创新医疗产品及解决方案。 依利特EClassical 3200L凭借其优秀的泵流速稳定性和较低的进样器残留,荣登创新力产品榜单。依利特科技旗舰产品 作为依利特科技的旗舰产品,EClassical 3200L具有超稳定和更耐压的系统。它的专利设计的低脉动高精度串联式双柱塞高压恒流泵,将脉动降至最低;多级微孔混合与迷宫设计的混合器,使泵混合更均匀,脉动更低。自动进样器超精准的进样精度,在微量体积或大体积进样来都有完美表现,并具备自动稀释和衍生功能,满足特殊药物柱前衍生检测的需求。另外还可选配制冷功能模块,以满足特殊生物活性样品需求。 同时,二维液相色谱系统检测平台依托于3200L, 进行全新系统升级和软硬件集成。经过大量实际临床检测项目实验,仪器方法按照国家法规进行性能验证,真实模拟临床检测环境,检验方法的可靠性与系统耐受性。解决了高效液相色谱前处理复杂繁琐、方法运行不稳定、检测能力受限、分离效果不理想等临床定量测定中的诸多难题,有效满足了神经精神类药物浓度监测的需求。为医院客户、第三方检测实验室等提供可靠、稳定的技术系统。
  • 北京中医药大学211项目仪器设备中标公告
    2011年5余人5日,中国政府采购网公布了北京中医药大学211项目仪器设备采购项目的中标结果。此次采购仪器涉及激光多普勒血流灌注成像仪、全波长酶标仪、电子万能试验机、微量热仪、电泳系列、移液器系列、分析天平、超微量高精度紫外/可见分光光度计系统、高效液相色谱自动进样器、高速逆流色谱仪等,采购金额近500万元。  项目名称:北京中医药大学211项目仪器设备采购项目  项目编号:0730-1161GD021101/01、02、03、04、05、06  采购人名称:北京中医药大学  采购人地址:北京市朝阳区北三环东路11号  第一包:激光多普勒血流灌注成像仪、多通道生物信息采集分析系统  招标编号:0730-1161GD021101/01  预中标商:中国科学器材公司  预中标金额:¥1015000.00(人民币小写)  壹佰零壹万伍仟元整(人民币大写)  第二包:全波长酶标仪、电子万能试验机、超速离心机、中医数字化采集及分析仪  招标编号:0730-1161GD021101/02  预中标商:北京诚茂兴业科技发展有限公司  预中标金额:¥1070000.00(人民币小写)  壹佰零柒万元整(人民币大写)  第三包:微量热仪、红外热像仪  招标编号:0730-1161GD021101/03  预中标商:众联瑞科科技(北京)有限公司  预中标金额:¥929288.00(人民币小写)  玖拾贰万玖仟贰佰捌拾捌元整(人民币大写)  第四包:正置荧光显微镜、无创性大鼠血压计、酸碱度PH计、自动高压灭菌锅、小型高速离心机、电泳系列、移液器系列、分析天平、水迷宫系统、组织捣碎匀浆机  招标编号:0730-1161GD021101/04  预中标商:众联瑞科科技(北京)有限公司  预中标金额:¥515398(人民币小写)  伍拾壹万伍仟叁佰玖拾捌元整(人民币大写)  第五包:低温高速离心机、超低温冰箱、酶标仪、核酸蛋白转印系统、超微量高精度紫外/可见分光光度计系统、高效液相色谱自动进样器、分液收集器、台式高速离心机、高速逆流色谱仪、低速大容量离心机、微波真空干燥机  招标编号:0730-1161GD021101/05  预中标商:众联瑞科科技(北京)有限公司  预中标金额:¥706020(人民币小写)  柒拾万陆仟零贰拾元整(人民币大写)  第六包:手动石蜡切片机、冰冻切片机、快速密闭自动组织脱水机、摊片机、石蜡包埋机  招标编号:0730-1161GD021101/06  预中标商:徕卡仪器有限公司  预中标金额:¥480000(人民币小写)  肆拾捌万元整(人民币大写)  联系人名称及联系方式:李伟 电话:51909634 传真:51909681中航技国际经贸发展有限公司2011年05月05日  相关新闻链接:北京中医药大学211项目仪器采购项目开始招标
  • 浙江食药检院拟采购1400万元色谱质谱等仪器
    此次采购的仪器涉及色谱、质谱、光谱等21台套,预算金额为1394万元人民币。采购仪器名单如下: 标项内容数量单位预算金额(万元)高效液相色谱仪(食品,标1)1.0批45.0全谱直读电感耦合等离子体发射光谱仪(食品,标2)1.0批68.0超低温冰箱及超净工作台(食品,标3)1.0批13.0原子吸收光谱仪一体机(食品,标4)1.0批57.0超高效液相色谱-串联四极杆质谱仪(食品,标5)1.0批220.0超高效液相色谱仪-串联质谱仪(食品,标6)1.0批335.0气相色谱仪(食品,标7)1.0批45.0气相色谱串联质谱仪(食品,标8)1.0批178.0三气培养箱(食品,标9)1.0批25.0荧光定量PCR(食品,标10)1.0批60.0膳食纤维测定仪等仪器(食品,标11)1.0批38.0原子荧光光度计(食品,标12)1.0批20.0高纯氮气发生器(药品,标1)1.0批10.0电子天平(药品,标2)1.0批72.0超声波清洗器等仪器(药品,标3)1.0批14.6荧光分光光度计等仪器(药品,标4)1.0批26.0高效液相色谱仪(药品,标5)1.0批37.0超高效液相色谱仪(药品,标6)1.0批55.0不溶性微粒检测仪(药品,标7)1.0批27.5水迷宫视频分析系统(药品,标9)1.0批20.0体视显微镜等仪器(药品,标8)1.0批28.0   招标文件的发售时间及地点等:  时间:2014年4月21日至2014年4月30日(双休日及法定节假日除外)  上午:9:00-11:30  下午:14:00-16:30  地点:杭州市拱墅区湖州街567号北城天地商业中心9幢12层  标书售价(元):每本300(售后不退)  五、投标截止时间:2014年5月13日 09:00  六、投标地点:易购商务酒店2楼睿智厅(拱墅区花园岗街168号)  七、开标时间:2014年5月13日 09:00  八、开标地点:易购商务酒店2楼睿智厅(拱墅区花园岗街168号)  九、投标保证金:  投标保证金:10000.0  交付方式:汇票/支票/银行转帐/  收款单位(户名):浙江天平投资咨询有限公司  开户银行:工商银行西湖支行  银行账号:1202020419900116858  十、其他事项:  1、投标人购买标书时应提交的资料:a)企业营业执照副本(复印件加盖公章)  b)法定代表人授权委托书(原件)  2、联系方式  采购代理机构名称:浙江天平投资咨询有限公司  地点:杭州市拱墅区湖州街567号北城天地商业中心9幢12层  联系人:白晶晶  联系电话:0571-56028192  传真:0571-88862995
  • 免疫细胞缺陷或为衰老元凶!
    T 细胞可以保护人体免受病原体侵害,但一项在小鼠身上进行的研究表明,T 细胞也可能是加速衰老的元凶。而通过阻断细胞引起的炎症或增加关键代谢分子的供应,可以减轻小鼠体内一些与衰老相关的症状,该研究思路可能使老年人受益。该研究是 “把代谢、炎症和衰老直接联系在一起的绝佳结果”。澳大利亚墨尔本皇家理工大学免疫学家凯丽 奎恩表示 “他们做的工作非常彻底”,足以证明小鼠迅速老化是 T 细胞导致的。T 细胞会随年龄增长而表现不佳,人的抵抗力也会因此变得越来越弱,这是老年人更易受感染、对疫苗反应更差的原因。T 细胞表现不佳的原因之一是其内部 “发电厂”——线粒体因年龄渐长而出现故障。但 T 细胞不只是反映衰老,还可能正是衰老的成因。老年人出现的全身慢性炎症就是例子。研究人员指出,炎症会刺激衰老,而 T 细胞会释放炎症因子,触发炎症。为了验证这一假设,西班牙马德里自治大学分子生物学中心的玛利亚 米特尔布伦和同事通过基因编辑方法对小鼠进行处理,使其 T 细胞线粒体中的蛋白质缺失。这一改变会迫使 T 细胞采用效率较低的代谢机制。研究小组发现,出生后 7 个月本应是小鼠的壮年期,但基因编辑小鼠已经比普通小鼠显得更老。它们迟缓、笨拙、肌肉萎缩、虚弱,对感染的抵抗力也更弱。正如许多老年人一般,这些小鼠的心脏都很虚弱,且体内脂肪大量减少。此外,经编辑的小鼠 T 细胞释放出大量炎症因子,这可能是造成动物身体退化的部分原因。其结果表明,免疫系统的确在加快衰老进程中发挥了作用。那么,衰老的时钟有可能往回拨吗?研究者给小鼠服用了一种阻断肿瘤坏死因子 TNF-α(该因子可诱导炎症出现,且由 T 细胞释放)的药物,结果发现小鼠的抓地力有好转,且在迷宫中表现得更敏捷,心脏也更有活力。米特尔布伦等人还提供了另一种化合物,可提升高烟酰胺腺嘌呤二核苷酸(NAD+)水平,NAD + 对代谢反应至关重要。通过这一分子,代谢系统可利用细胞从食物中获得能量。通常,随着年龄增长,NAD + 细胞浓度会下降。研究人员发现,采用新方法后,老鼠体内的 NAD + 浓度有所增加,且心脏功能更活跃。面对类风湿关节炎和克罗恩病等,抑制 TNF-α的药物是标准治疗手段。目前,市面上有一些公司出售能提高 NAD + 水平的药物。研究者表示,对这一新方法进行临床试验,可确定靶向 TNF-α或 NAD + 是否能减少衰老带来的负面影响。也有人质疑该研究与正常衰老的相关性。美国西北大学芬伯格医学院生物学家纳夫迪普 钱德尔指出,转基因鼠的线粒体受损程度比老年人更严重,“对大多数人而言,我敢打赌 T 细胞的负面作用没那么大”。但钱德尔也指出,线粒体功能异常的 T 细胞会导致某些人早衰,其在相对年轻时就出现老龄化疾病。巴克老龄化研究所分子细胞生物学家朱迪斯 坎皮西对此表示同意。她说,这项新研究可以帮助人们更好理解免疫系统如何随年龄变化而变化,但 “不知道它在多大程度上模仿了自然衰老”。
  • 走进复旦大学国家重点实验室,看VR如何用于科研
    VR即虚拟现实,在游戏、新闻报道等领域被广泛使用,如今,科学家们将这个技术用在科研中,下面跟随记者一起走进复旦大学的医学神经生物学国家重点实验室,看看小鼠如何遨游在VR的世界里。   如上图所示,在实验室里,小鼠在三块屏幕前奔跑着,这个通过VR呈现出来的视觉信息被小鼠的大脑所接收,并反应到了行动上。   研究者们给出不同的画面,小鼠也对此作出了不同的行为,比如,在这样的一个如同迷宫般的世界里,小鼠正疾步向前寻找出口,但这一切却都是虚拟的。   这些都是服务于实验室脑功能建立的相关研究,研究者通过给小鼠视觉、听觉和味觉的不同刺激,来观察小鼠的大脑变化。   复旦大学医学神经生物学国家重点实验室青年研究员张嘉漪说道:这个是一个小鼠的虚拟现实的系统,这个系统主要是由视觉的VR的信息、听觉的上面有4个喇叭,以及前面有对它(小鼠)嗅觉的这样多种的感觉输入的整合,所以我们主要是想让小鼠在这样一个(环境),下面有一个球,小鼠可以在自由活动的状态下进行没有干扰的行为,我们主要是想看在不同的感觉输入的情况下,小鼠的大脑活动的整体的变化。   复旦大学医学神经生物学国家重点实验室主要进行的是多领域的脑科学研究。在认识脑的相关研究中,脑功能的建立是重中之重,小鼠的VR实验正是以此为出发点。   此外,由于脑功能建立依赖于大脑神经环路的形成,因此,解析实施脑认知功能的神经环路成为实验室里多位学科家的研究命题,而这也是国际公认的科学前沿。   复旦大学医学神经生物学国家重点实验室研究员禹永春说道: 我们实验室主要研究的是大脑皮层的发育,最关注的是大脑皮层如何形成环路,并且最终行使高级的功能,这里边我们也很感兴趣在环路的发育过程中,存在的一系列的精神疾病的问题,像自闭症的一些疾病模型。   诸如帕金森等疾病,是大脑发育过程中某些神经元的缺失,科学家通过研究干细胞发育成神经元的过程,找出了调控发育过程的基因,为今后疾病的干预和治疗提供理论基础。   复旦大学医学神经生物学国家重点实验室研究员杨振纲说道: 绿色的就是神经元,从神经干细胞长到神经元是一个发育的过程,我们最近发现两个基因调控这个过程,这两个基因撬掉以后脑髓就长不出新的神经元,主要是在基底神经节纹状体这一类,比如说帕金森病和舞蹈症,又叫亨廷顿氏病,就是这个神经元缺失。
  • 新发现,基因组编辑技术可对DNA进行微调
    Crispr基因编辑——一种分子剪刀可以让科学家对生物体的DNA进行有针对性的改变。Crispr基因编辑毫无疑问是治疗镰状细胞病的一个希望。镰状细胞病是一种与之相关的血液疾病,被称为地中海贫血,是一种罕见的失明,以及一种毁灭性的疾病,被称为转甲状腺素淀粉样变性,在这种疾病中,一种畸形的蛋白质会在体内堆积。有时候,科学家可以使用Crispr剪掉有问题的DNA以达到治疗疾病的目的,但在某些情况下,保留一个基因并对其进行微调,即系进入表观遗传编辑,可能会达到更好的目的。表观遗传学是研究DNA在一生中发生的化学变化,这些变化反过来又影响基因的表达。这些变化可能是由于一个人的行为(如饮食或吸烟)或环境暴露(如毒素或紫外线)造成的。表观遗传学是一种分子记忆,反映了我们多年来遇到的经验。这就是为什么,在拥有相同DNA密码的同卵双胞胎中,一个可能会患上癌症,而另一个则保持健康。虽然基因编辑依赖于改变DNA密码本身,而表观遗传编辑则涉及到上调或下调单个基因的表达。基因包含制造重要蛋白质的指令,而它们的表达是基因被“开启”来制造它们的过程。如果将基因比喻成音板上的音量旋钮,表观遗传编辑控制着它们的设置是“响亮的”还是“柔和的”。对于这样的“音量控制”进行实验是一个新领域,而刚好在今年5月发表在《科学进展》杂志上的一项研究提供了一个有趣的线索,揭示了一个可能的应用:对抗早期饮酒改变基因工作方式的方式。在之前的研究中,科学家们发现,青春期的酗酒会改变杏仁核的大脑化学成分–杏仁核是大脑中控制恐惧和快乐反应的小杏仁形状的部分。在啮齿动物和人类身上,他们都发现,在生命早期接触酒精似乎会减少一种名为Arc的基因的表达。这个基因是大脑可塑性的主要调节器,也就是大脑基于经验的适应能力。当Arc的表达被抑制时,这种变化与成年后易患焦虑和酒精使用障碍有关。在这项新研究中,由伊利诺伊大学芝加哥分校酒精表观遗传学研究中心主任、精神病学教授Subhash Pandey带领的团队想看看他们是否可以通过在老鼠杏仁核中对Arc进行表观遗传编辑来逆转这种改变。他们构建了一种经过修改的Crispr形式,这种Crispr不是编辑或删除基因,而是增加基因的表达。然后,他们将其注射到成年大鼠的大脑中,这些成年大鼠在青少年时期曾接触过酒精——相当于10至18岁的人类。这种早期的接触意味着Arc的表达在成年动物中已经受到抑制。Subhash Pandey表示他们瞄准了杏仁核的中央核,因为这是处理进入大脑的信息的关键中枢,也是焦虑、恐惧和饮酒行为的中心。注射Crispr使Arc的表达恢复到基线水平,Subhash Pandey称之为大脑的“工厂重置”。之后,这些啮齿动物摄入的酒精减少了,焦虑也减少了——研究人员通过行为测试来测量这一点,包括老鼠在所谓的“高架迷宫”中的表现。十字形迷宫由两条暴露在外的臂和两条封闭的臂组成。啮齿类动物的压力越大,它们就越不愿意在迷宫的露天部分呆上一段时间。Subhash Pandey说:“我们没有看到任何迹象表明他们的饮酒水平会回到基线,所以我们认为,也许这种表观基因编辑会产生持久的影响,我认为,就如何将这种疗法转化为人类治疗而言,还有很多工作要做,但我抱有很高的希望。”为了测试Arc基因是否真的导致了这一结果,研究人员还设计了一种旨在减少其表达的Crispr注射。他们在青春期没有接触酒精的老鼠身上进行了测试。注射后,老鼠比之前更焦虑,喝了更多的酒。这项研究提出了一种可能性,即我们的分子记忆可能会被修改,甚至被删除。加州大学伯克利分校的遗传学教授、加州大学伯克利分校和加州大学旧金山分校创新基因组学研究所的科学主任费奥多尔乌尔诺夫说:“这项研究展示了改变基因对其经历的记忆的可行性,这深深给我留下了深刻的印象。”但是他也强调,老鼠不是人类,我们不应该草率下结论。乌尔诺夫说表示治愈一只老鼠和用表观遗传编辑器给一个酗酒成瘾的人注射之间的距离还很遥远。我们是否具备向那些轻度饮酒问题的人的杏仁核进行快速注射还有很长的路要走。乌尔诺夫作为表观遗传编辑公司Tune Therapeutics的联合创始人之一,他认为,这样的实验疗法可以在多次治疗后复发、没有其他治疗选择的酒精成瘾患者中进行测试。然而,与直接编辑基因一样,调整基因表达可能会产生意想不到的后果。因为Arc是一种与大脑可塑性有关的调节基因,修改它的表达可能会产生酒精成瘾以外的影响。俄勒冈健康与科学大学遗传学教授贝琪弗格森(Betsy Ferguson)研究成瘾和其他精神疾病的表观遗传机制,她说:“我们不知道这种变化会改变其他什么行为。”“这是一种平衡,既要找到有效的方法,又要找到不会破坏日常生活的方法。”另一个复杂的因素是,随着时间的推移,酒精的使用会改变数十个、甚至数百个基因的表达。在人类中,这可能不像提高Arc的表达那么简单,这只是其中之一。虽然解决方案似乎是调整所有这些基因,但同时操纵许多基因的表达可能会导致问题。“我们知道行为,包括饮酒行为,是由许多基因控制的,这真的是一个具有挑战性的问题来解决,”Betsy Ferguson说。目前还不清楚这种编辑的影响会持续多久。Betsy Ferguson表示自然发生的表观遗传变化可能是暂时的,也可能是永久性的,有些甚至可以传给后代。总的来说,她认为使用表观遗传编辑治疗酒精成瘾的想法很有趣,但她希望看到结果被复制,并在更接近人类的大型动物身上试验Crispr治疗。相信这一天可能不会太远,因为最近有几家公司推出了表观遗传编辑商业化。在总部设在圣地亚哥的Navega治疗公司,研究人员正在研究如何通过抑制一种名为SCN9A的基因的表达来治疗慢性疼痛。当它高度表达时,它会发出许多疼痛信号。但简单地删除这个基因并不是一个好主意,因为一定程度的疼痛是有用的;当身体出现问题时,它会发出信号。(在极少数情况下,携带SCN9A突变的人对疼痛具有免疫力,这使他们容易受到无法感觉到的伤害。)。在Navega的实验中,小鼠的表观遗传编辑似乎抑制了几个月的疼痛。点击图片免费报名参加“第五届基因测序网络大会”
  • 金坛亿通最新激光粉尘检测仪在昆山爆炸中的应用
    生产车间专用粉尘检测仪结构检测器外部空气进入吸引口,经迷宫式切割器除去粗大粒子,遮掉外部光线,进入检测器暗室。暗室内的平行光与受光部的视野成直角交叉构成灵敏区(图中斜线部分),粉尘通过灵敏区时,其90℃方向散射光透过狭缝射进光电倍增管转换成光电流,经光电流积分电路转换成与散射光成正比的单位时间内的脉冲数。因此记录单位时间内的脉冲数便可求出粉尘的相对质量浓度。本仪器相对质量浓度单位使用CPM(Count Per Minute),意为“每分钟的脉冲计数”,质量浓度单位使用mg/m3。生产车间专用粉尘检测仪使用场所◎劳动卫生呼吸性粉尘 ◎总粉尘浓度的测定◎工矿企业生产现场扬尘 ◎建设工地粉尘浓度连续在线监测◎公共场所可吸入颗料物(PM10、PM2.5)以及环境监测部门大气飘尘的快速和在线检测。生产车间专用粉尘检测仪主要性能指标○测量范围:0.001~1000 mg/M33;量程可以根据用户定做。在线连续测量。
  • 国产与进口离心机安装工艺要求的对比
    国产与进口离心机安装工艺要求的对比  进口离心机运行状态时的机组,有较严格的气流方向要求,否则很难使设备达到理想状态。     (1)为分离母液的排出口侧面接管排气,是自然排风口      (2)为强制进风口,该离心机设计有中间仓,依靠进风的风量封住固相及液相排出的气流,起到密封作用。在离心机运转时,因离心作用使腔内为负压,吸进等于吸出,故离心机固相及液相有气流排出      (3)为强制排风口,此气流不排出,会造成离心机下料仓气阻,增加了运行电流及振动,严重时易搭桥造成事故(脱水滤饼有一定的水含量,流动性非常差)。在考虑强制排风时,计算排风量要留有余量,因为进口离心机中间仓有外来气体介入。     国产离心机运行状态时机组,国产离心机无中间仓,依靠迷宫式密封及软密封来完成固液两相密封。     (1)为自然排风口,由设备厂家自带汽水分离罐,按分离罐上端法兰口配管就能满足排气要求      (2)为强制排气口,国产离心机虽无外来气体的介入,为使其能够达到最佳运行状态,应考虑强制排风。
  • “我”在故宫修文物,JULABO-Chemtron粘度测量系统助力故宫博物院藏品研究工作
    木器,陶瓷,钟表,书画,漆器,百宝镶嵌,织绣̷《我在故宫修文物》是中国中央电视台出品的一部三集文物修复纪录片,片中第一次完整呈现世界级的中国文物修复过程和技术,展现文物的原始状态和收藏状态。图片来源于网络 下面这幅画没有作者落款,没有画面内容介绍,也没有确切的创作时间,在此之前,它从来没有与公众见过面,连它的名字在修复时,也还没有定下来。但是经过故宫专家仔细研究和考证,它其实是乾隆皇帝给他母亲崇庆皇太后过80大寿时,现场祝寿的实景,这幅古画原本非常的残破,卷面有缺损和断裂,甚至还有霉迹̷ 中国古书画所用材料,大多为绢和纸,质地纤薄,再加上年代久远,很容易有破损和掉色,如果没有没有一代代修复师的工作,比如:《清明上河图》,《五牛图》,我们根本不可能那看到这些流传千年的传世名作̷图片来源于网络 传统技艺与现代科技的结合,将现代活力融入古书画修复,如果对颜料的分析测试,通过一些数据,你可以知道最初作画时的矿物颜料,甚至可以从这些数据知道它的产地,对现在的修复工作,所用的绘画全色的颜料,都是依据̷图片来源于网络 该部纪录片通过对文物修复领域“庙堂”与“江湖”互动,展现传统中国四大阶层“士农工商”中唯一传承有序的“工”的阶层的传承密码,以及他们的信仰和变革。 在主题为“坚持文化自信,做中华文化的忠实守望者”的演讲中,单霁翔院长以鲜活的事例、幽默的表达,分享了故宫在古建筑修缮、藏品保护、观众服务、科学研究、文化传播等方面取得的丰硕成果,一时成为人们热议的话题。在专题讲座中,优莱博的运动粘度系统实力抢镜,VISCO 370被用来测量纸张及纤维素的特性粘度和粘均分子量,进而能够辨别藏品的真伪,推算出藏品的年份。另外,丝绸墨宝的修复,壁画颜料的配比分析等,都可用到优莱博的粘度测量系统。 怎么样?是不是给正在看手机的您开了一个大大的脑洞,原来精密的科学仪器不仅可以用来分析当下和创造未来,还可以用来研究过去。 关于JULABO-Chemtron更多有意思的故事,请联系我们。
  • 新品发布 | 蔡司宫颈细胞学辅助诊断系统隆重上市
    你知道吗? 宫颈癌是发病率仅次于乳腺癌的女性恶性肿瘤,2020年全球每分钟就有1例宫颈癌新发病例。中国宫颈癌发病10.97万例,占世界18.2%,其中死亡人数接近6万例。 定期进行宫颈液基细胞学检查,是早期发现和预防宫颈癌的有效方法。宫颈液基细胞学检查需要病理医生在显微镜下对上万个细胞进行形态学观察,极度依赖病理医生的诊断经验,同时宫颈癌筛查样本量大,也对我国病理医师人数提出了巨大挑战。 ▲ 未明确诊断意义的非典型鳞状细胞(ASCUS)▲ 高级别鳞状上皮内病变细胞(HSIL)▲ 低度鳞状上皮内病变细胞(LSIL)▲ 霉菌 现在,蔡司携手迪英加科技,推出全新的宫颈细胞学辅助诊断系统,可以自动识别宫颈液基细胞样品并快速得到全片数字图像。细胞学智能模块实时分析全片图像,自动定位可疑病变区域,辅助您快速完成宫颈癌筛查与准确诊断。 ▲ 蔡司宫颈细胞学辅助诊断系统(蔡司和迪英加科技联合打造) 助您一站式高效完成筛查和诊断工作 蔡司宫颈细胞学辅助诊断系统集病理切片全数字化、细胞学辅助诊断和镜下实时复核于一体,无缝融入医生的日常诊断工作:成为您的“初筛”小助手,提高宫颈细胞学诊断效率和检出率。进一步助力中国宫颈癌防治能力提升,呵护中国女性健康。 • 全新的液基细胞自动影像平台,优异的光学质量,自动记录样品中每个细胞的细微差别 ▲ 灵活的多张样品装载和蔡司高级别20倍物镜扫描 • 系统整合迪英加宫颈细胞学智能分析模块,自动生成全场切片建议分析结果,辅助医生筛出大量阴性样本,同时按照TBS诊断标准提示多种病变细胞和微生物感染种类 ▲快速筛出阴性样本▲ 按照TBS诊断标准识别多种病变细胞和微生物感染种类 • 您还可以快速查看病例详情,点击可疑细胞,显微镜实时定位,帮助您实时镜下复核 ▲实时定位,直接镜下复核比对 中国防治宫颈癌相关政策 ✓ 2009年,宫颈癌和乳腺癌作为“两癌筛查”列入中国妇幼重大公共卫生项目。✓ 2019年,“两癌筛查”纳入国家基本公共卫生服务项目。✓ 2020年:世界卫生组织(WHO)发布《加速消除宫颈癌全球战略》,标志着包括中国在内的194个国家首次一致承诺消除一种癌症。✓ 2022年1月,卫健委发布《宫颈癌筛查工作方案》, 方案指出要积极运用互联网、人工智能等技术提高基层宫颈癌筛查能力。 关于迪英加科技 病理AI企业,专注AI+数字病理领域20余年,提供数字化、信息化、智能化病理科建设完整解决方案,全方位覆盖新一代病理科建设各方面需求,助力中国病理学科发展,为中国患者提供疾病初筛和精准诊断解决方案,以科技创新,助力健康中国。
  • 近5400万元!广州市疾病预防控制中心采购一批仪器
    近日,广州市疾病预防控制中心发布了一系列招标采购信息,采购一批仪器设备,预算总额近5400万元。  以下为招标详情:项目名称采购计划编号项目编号包号采购项目数量(台/套)采购包预算金额(万元)预算金额(万元)广州市疾病预防控制中心2021年仪器设备购置项目(之一)440101-2021-16588FEGD-CT2107091高通量全自动样品前处理系统185615.5296孔板高效氮吹浓缩仪1203全自动生化分析仪11004全自动模块式血液体液分析仪1855全自动染色机1336高分辨荧光显微镜平台11507组织脱水机137.58荧光显微镜1259高速冷冻大容量离心机24010全自动尿液分析仪140广州市疾病预防控制中心2021年仪器设备购置项目(之二)440101-2021-16586FEGD-CT2107081全自动血凝分析仪1402295.382动物运动轨迹跟踪系统(含水迷宫)1403遗传分析扫描系统13804液相色谱电感耦合等离子体质谱仪13365超高压(效)液相色谱串联三重四级杆质谱联用仪31009.986超高效液相色谱仪(二维高效液相色谱仪)1907CO2培养箱2102.4核酸定量仪1PCR仪2酶标仪1倒置显微镜1电子稀释配液仪套装1冷冻微量离心机18自动纯化和提取系统1609二氧化碳培养箱1208实时荧光核酸扩增检测系统110体视显微镜+显微镜相机129广州市疾病预防控制中心2021年仪器设备购置项目(之三)440101-2021-16587FEGD-CT2107071荧光定量PCR仪11001280.42荧光定量PCR仪1137.43荧光偏振仪(多功能酶标仪)1404CO2培养箱295全自动细菌培养监测系统15单分子纳米孔测序仪12006激光共聚焦显微镜13507超速离心机11308凝胶电泳及成像系统1459内循环生物安全柜5108低温高速离心机2干式转印系统1微量紫外分光光度计110大三维扫描水箱175广州市疾病预防控制中心2021年仪器设备购置项目(之四)440101-2021-16572FEGD-CT2107061高通量测序仪1300689.52生物信息分析服务器平台(高性能服务器和服务器安装)11103全自动核酸提取工作站11054生物自动稀释系统2455多功能PCR气溶胶污染清除仪2606十字对开门冰箱369.5试剂柜冰箱2洗板机2水浴箱5智能恒温摇床196孔板瞬时离心机5小型掌上离心机5高效组织细胞样品处理系统1广州市疾病预防控制中心2021年仪器设备购置项目(之五)440101-2021-16573FEGD-CT2107041智能试剂安全柜125512.22动物房中央空调通风系统及制冷设备12803全自动酶免仪1854脉动真空灭菌器1505烘箱142.6紫外分光光度计1十万分之一天平1试剂柜1水浴氮吹仪1氮气发生器16振荡器229.6电子天平1大容量微波炉2金属浴296孔板瞬时离心机2小型掌上离心机2核酸定量仪1电动玻璃匀浆机1药品保存箱3广州市疾病预防控制中心2021年仪器设备购置项目(之二)(挂网版).pdf广州市疾病预防控制中心2021年仪器设备购置项目(之四)(挂网版).pdf广州市疾病预防控制中心2021年仪器设备购置项目(之三)(挂网版).pdf广州市疾病预防控制中心2021年仪器设备购置项目(之五)(挂网版).pdf广州市疾病预防控制中心2021年仪器设备购置项目(之一)(挂网版).pd
  • 发展中的双面光伏发电
    什么是双面光伏?通过超越全球能源发电容量的吉瓦数(GW),双面光伏正慢慢找到成为主流的方向。并且,越来越多收集到的组件性能数据都有助于获得更可靠的效率增益预测。我们在本文中尝试概括叙述了双面光伏领域中的当前研究、亟待解决的疑问以及技术开发等问题。相见于“另一面”过去二十年间,光伏(PV)已发展成为一种成熟的技术,因此很难再有大幅度的效率提升。如今主要依靠缩减投资和运营成本来实现降低平准化度电成本(LCOE),而非通过技术进步提高 PV 电池的能源输出。然而,能显著提高 PV 电池效率的比较可靠的方法是将组件的背面也用于发电。因此,在不扩大组件占地的情况下,可同时利用反射或漫射的阳光进行发电。人们似乎已对双面光伏的巨大潜能达成了共识。但是,在能量输出增益的模拟和测量方法尚未普遍建立的情况下,通过双面 PV 组件预测的效率增长有着很大差异;这取决于假设的系统设置、地点和表面反照率以及所用的模拟算法。 双面光伏发电如何作用?其主要理念很简单。除了用 PV 组件的一面来收集太阳光线外,还可通过背面采集来自多个角度的反射和散射光线以生产更多电力。除了对背面材料和内部互联进行相应调整外,电池技术和几何结构均以经验证的单面组件原理为基础。也就是说,在未来 10 年内,双面 PV 很可能从一个发展远景顺利转变为被广泛应用的技术,且预计世界市场占有率将高达 30-50%。 发展中的双面光伏发电优化会对另一面的性能产生负面影响。因此,为双面 PV 电厂寻求理想设置是一个复杂的挑战。由于倾角是组件效率的一个重要因素,前后面的理想角度可以不同。 另一个参数则是组件的长度和各排组件之间的距离,即地面覆盖率(GCR)。适应太阳光束入射角度的高 GCR 值通常可提高一个发电厂的效率。但即使对单面PV 发电厂而言,较高的 GCR 值也会在太阳高度角较低的早晨或傍晚时分发生相互遮挡的情况。对于双面光伏发电厂,遮挡则是一个更大的问题。理想状态是在各排组件之间有足够的空间形成一个大小适合的表面,使地面反射不被遮挡。可是这将降低地面覆盖率和电厂的单位面积输出。 与组件设置相关的参数还包括建筑高度和扭力管。扭力管的作用是跟踪 PV 组件,因此应将双面组件放置于更高的位置,从而对更多来自地面的多角度的反照辐射光线进行转化;但建设成本也将由此增加。这一概念也同样适用于为了避免安装件构成遮蔽而修改扭力结构。 尽管早在 20 世纪 60 年代便已对双面 PV 电池进行了研究和开发,其被广泛使用的时代仍未到来。市场观察员们的普遍解释是,与单面系统相比,双面系统缺少可信赖的产量增益计算方法。因此,投资者们继续观望,因无法完全知晓准确的效率提升,而犹豫是否以更大的规模推动双面系统。即便在大数据和机器学习的年代,组件背面的太阳能辐射模拟仍是一项复杂的任务。因此,全世界的公司和研究机构持续对各种不同潜在相关参数及其对能量输出的影响进行调查研究。除了符合其他标准外,这些研究项目还覆盖了:● 地面反照率的影响● 背板材料● 系统设置和组件的几何结构● 测量背面的太阳能辐射● 系统设置&组件几何结构在单面 PV 组件中,被转化为电力的太阳光束直接来自天空。与之相反,双面组件的背面则收集在阴影迷宫、地面纹理和结构型障碍中穿行的光线。而对一面太阳辐照度进行优化会对另一面的性能产生负面影响。因此,为双面 PV 电厂寻求理想设置是一个复杂的挑战。由于倾角是组件效率的一个重要因素,前后面的理想角度可以不同。另一个参数则是组件的长度和各排组件之间的距离,即地面覆盖率(GCR)。适应太阳光束入射角度的高 GCR 值通常可提高一个发电厂的效率。但即使对单面PV 发电厂而言,较高的 GCR 值也会在太阳高度角较低的早晨或傍晚时分发生相互遮挡的情况。对于双面光伏发电厂,遮挡则是一个更大的问题。理想状态是在各排组件之间有足够的空间形成一个大小适合的表面,使地面反射不被遮挡。可是这将降低地面覆盖率和电厂的单位面积输出。 与组件设置相关的参数还包括建筑高度和扭力管。扭力管的作用是跟踪 PV 组件,因此应将双面组件放置于更高的位置,从而对更多来自地面的多角度的反照辐射光线进行转化;但建设成本也将由此增加。这一概念也同样适用于为了避免安装件构成遮蔽而修改扭力结构。
  • 自主“贡嘎”系统将发出中国“碳声音”
    11月23日,第二次青藏科考队“气候变化与生态系统碳循环”科考分队发布成果。科考团队成功研发了完全自主的“贡嘎”(GONGGA)大气碳反演系统(以下简称“贡嘎”系统),是全球碳计划2022年全球碳收支报告首轮脱颖而出的大气反演系统之一。这一成果标志着,我国科学家在全球碳收支评估中的角色正由数据贡献者向大气反演领域引领者转变,并将服务于我国及其他国家应对气候变化和实现碳中和的战略举措。专家表示,“贡嘎”系统作为首个获得‘全球碳计划’认证的我国完全自主的碳收支综合评估系统,扭转了我们对于全球及中国碳收支的评估依赖国外反演系统的局面,极大增强了我国在碳收支评估和气候谈判中的话语权。用自己的模型说清自己的“碳收支”“全球碳循环有两个关键科学问题:一个是碳汇分布在哪里?另一个是碳汇到底如何发生的?”中国科学院院士、中国科学院青藏高原研究所研究员朴世龙指出,准确回答这两大问题,有助于理解全球碳循环过程和机制,更有助于制定碳补偿和减缓政策。基于这一背景,2001年,国际地圈—生物圈计划、国际全球环境变化人文因素计划和世界气候研究计划联合发起了“全球碳计划”,该计划旨在对二氧化碳、甲烷和一氧化二氮的全球收支进行评估,以期共同解决温室气体浓度上升的问题。自2007年起,“全球碳计划”开始发布全球碳收支年度报告,将国际上各研究团队提交的反演结果与全球40多个基准站点观测的大气二氧化碳年增长率进行对比,并用基于洲际飞机的高空独立观测加以验证,达到精度要求后方可入选全球碳收支年度报告。其成果是IPCC第五、第六次评估报告以及国际气候变化政策制定的科学基础。朴世龙介绍,传统全球陆地碳汇估算方法以野外调查为主,探测量少,难以捕捉到碳汇年际连续变化,更重要的是,缺乏“unhealthy”生态系统碳源汇的监测。上世纪90年代中期,科学家们研发了更为先进的方法“大气碳反演系统”。“贡嘎”系统研发骨干、中科院青藏高原研究所研究员田向军介绍,大气碳反演系统是基于大气传输模式模拟、大气二氧化碳浓度观测以及二氧化碳排放清单估算自然碳汇的重要手段,能够实时估算全球和区域尺度陆地与海洋碳通量大小、评估全球碳收支。“我们早期利用国外的模型估算我国生态系统碳汇量,几年前,用美国模型的估算结果比用英国模型的估算结果碳汇量减少了50%左右,误差非常大。”朴世龙说,我国科学家过去在全球碳计划中扮演的角色主要是基础数据的贡献者,尚未拥有自主研发的碳收支评估模式,因而限制了在全球碳收支报告以及气候政策制定中的话语权。在第二次青藏高原科学研究考察的支持下,朴世龙带领的“气候变化与生态系统碳循环”科考分队开始研发自主大气碳反演系统,期望用我们自己的数据、方法和模型,说清楚我们自己的碳收支。“我们不仅要做全球尺度二氧化碳源汇评估,更希望利用更高精度的观测数据了解青藏高原碳源汇,为我国碳中和目标提供科学依据,提高国际影响力。”朴世龙说。自主系统“牛”在哪儿“取名为‘贡嘎’,就是为了与青藏高原科考更为贴切。”田向军说。“贡嘎”系统在“天河”超级计算机上部署运行并得出数据,经“全球碳计划”独立评估验证,与美国国家海洋和大气管理局观测的大气二氧化碳增长率相比,“贡嘎”的反演结果和观测之间的均方根误差最小。与国际其它反演系统相比,“贡嘎”系统有着三大优势和特点。田向军表示,“贡嘎”系统所采用的NLS-4DVar是本年度全球碳收支评估所有大气碳反演系统中唯一使用兼具集合与四维变分方法优势的系统;系统设计了独创性双通道优化框架,实现二氧化碳通量与浓度误差的有效分离、联合同化,确保系统的反演精度;系统可灵活转化为国产碳卫星验证平台,贯通碳卫星设计、发射与应用的全流程技术链条,可实现碳卫星载荷指标与“贡嘎”系统反演精度的有效联动。“贡嘎”系统得到了国际科学界的充分认可。今年11月11日,“全球碳计划”发布了《全球碳收支2022》,中国、法国、荷兰、日本等国的大气碳反演系统贡献了陆地和海洋碳汇的全球分布数据。其中,第二次青藏科考“气候变化与生态系统碳循环”科考分队成功研发的具有完全自主的“贡嘎”大气碳反演系统,成为首轮入选的4个先进国际系统之一。全球碳计划执行主席Josep Canadell教授指出,“在现代人类时代,温室气体从未像今天这样驱动地球变化,经济变革也正在促成我们所见过的规模最大、速度最快的全球能源转型。全球碳计划利用数百万的碳观测、能源数据,以及全球陆地、海洋和大气模型来完成碳收支计算,第二次青藏科考队研发的“贡嘎”模型对本年度碳收支计算做出了重要贡献”。2023年将发出“中国声音”未来,“贡嘎”系统将发挥着重要作用。田向军介绍,团队将在继续第二次青藏高原综合科学考察的支持下基于“贡嘎”兼容性系统设计、构建全球—全国—高原“贡嘎”多要素(二氧化碳和CH4)反演体系,包括构建区域“贡嘎”系统、聚焦青藏高原碳汇评估,扩展至全国、利用区域“贡嘎”系统开展全国自然碳汇综合评估,同时深度参与国际合作、参与全球碳收支评估,增强中国系统与中国数据的国际影响力。而在即将到来的2023年,“贡嘎”系统将第一次在全球碳收支的盘点中发出“中国声音”,为我国进行“碳中和”核算和国际气候履约谈判提供有力的科学工具与数据。会议同期举办了第二次青藏科考第八场跨学科学术交流“气候变化与碳循环”主题交流活动,科考队报告了“巅峰使命”珠峰科考最新研究成果。中国气象科学研究院研究员翟盘茂团队结合青藏高原冰芯代用资料和气象仪器最新观测记录的分析,发现青藏高原20世纪以来的快速升温在过去2000年历史上是前所未有的,揭示了在人类活动相关的全球温室气体排放的驱动下,青藏高原开始单调快速升温以及升温速率接近翻倍的时间分异点分别出现在20世纪初期和20世纪70年代中期。中科院大气物理研究所研究员周天军团队研究指出,青藏高原主体的暖湿化特征在未来10年内将持续,长期变化受温室气体排放情景决定,极高排放情景(SSP5-8.5)下的增幅是极低排放情景(SSP1-1.9)的近3倍。中科院青藏高原研究所副研究员汪宜龙报告了巅峰使命珠峰科考的大气温室气体浓度观测结果。他介绍,研究发现春季珠峰地区二氧化碳浓度高于美国夏威夷背景站点,是由中高纬度与热带地区的植被生长季时间差异所致;在特定气象条件下,珠峰地区高浓度的温室气体可能来自南亚的外部输入。科考队还利用“贡嘎”系统,提出了优化、经济布设观测站点的思路,为建立温室气体综合观测平台以实现青藏高原碳收支准确评估提供科学依据。朴世龙院士介绍“贡嘎”系统背景(中科院青藏所供图)
  • 库伦法微量水分测定仪试验结束后如何处理?
    库伦法微量水分测定仪试验结束后处理:(1)废液的处理将废液管、分子筛干燥管及瓶盖装在废液瓶上,通过自动给排液器将滴定池中的废液抽到废液瓶中。(2)滴定池的处理再次注入一定量的无水甲醇,利用搅拌清洗滴定池,然后将废液排出。重复此操作,以利于排净废液管中残留的废液。如滴定池中有大量残留物,请将滴定杯拆卸下来清洗,并晾干备用。(3)滴定管连接部分的处理定期清洁维护整个设备,尤其是滴定管接口部分,用无水甲醇或乙醇擦洗。滴定管的出液管一端,有防止渗液的迷宫,需要清洗,防止因堵塞造成的滴定管的损坏。 库伦法微量水分测定仪的电解池如何清洗、干燥?新购买的库伦法微量水分测定仪的电解池不需要清洗,当您使用中的卡尔费休试剂失效【判断试剂失效的具体表现为:①使用一个月以上;②卡尔费休试剂颜色变深(非过碘状态下);③电解过程很难达到终点】,需要更换时,我们建议您对电解池进行清洗、干燥:电解池的清洗:清洗时,请把电解池所有配件分别用无水乙醇、无水甲醇等试剂清洗干净(注意:电解电极和测量电极绝不能用水清洗,否则会造成测量误差,并且不要清洗到电极引线处)。电解池的干燥:放在大约60℃的烘箱内烘干4小时,然后使其自然冷却。
  • 北京中医药大学211项目仪器采购项目开始招标
    3月31日,中航技国际经贸发展有限公司受北京中医药大学的委托,对北京中医药大学211项目仪器设备采购项目进行国内公开招标。现邀请合格投标人参加投标。  1、 招标编号:0730-1161GD021101/01、02、03、04、05、06  2、 招标人名称:北京中医药大学  3、 招标人地址:北京市朝阳区北三环东路11号  4、 招标人电话:010-64286594  5、 采购内容:见下表项目名称:北京中医药大学211项目仪器设备采购(第一包)序号设备分类与名称数量(台/套)1激光多普勒血流灌注成像仪1台2多通道生物信息采集分析系统1套项目名称:北京中医药大学211项目仪器设备采购(第二包)序号设备分类与名称数量(台/套)1全波长酶标仪1台2电子万能试验机1台3超速离心机1台4中医数字化采集及分析仪1套项目名称:北京中医药大学211项目仪器设备采购(第三包)序号设备分类与名称数量(台/套)1微量热仪1台2红外热像仪1台项目名称:北京中医药大学211项目仪器设备采购(第四包)序号设备分类与名称数量(台/套)1正置荧光显微镜1台2无创性大鼠血压计1台3酸碱度PH计1台4自动高压灭菌锅1台5小型高速离心机1台6电泳系列1套7移液器系列1套8分析天平1台9水迷宫系统1套10组织捣碎匀浆机1台项目名称:北京中医药大学211项目仪器设备采购(第五包)序号设备分类与名称数量(台/套)1低温高速离心机1台2超低温冰箱1台3酶标仪1台4核酸蛋白转印系统1套5超微量高精度紫外/可见分光光度计系统1套6高效液相色谱自动进样器1套7分液收集器1台8台式高速离心机1台9高速逆流色谱仪1台10低速大容量离心机1台11微波真空干燥机1台项目名称:北京中医药大学211项目仪器设备采购(第六包)序号设备分类与名称数量(台/套)1手动石蜡切片机1台2冰冻切片机1台3快速密闭自动组织脱水机1台4摊片机1台5石蜡包埋机1台  6、 采购方式:公开招标  7、 投标人资格要求:  1、满足《政府采购法》第二十二条要求:  1)具有独立承担民事责任的能力   2)具有良好的商业信誉和健全的财务会计制度   3) 具有履行合同所必需的设备和专业技术能力   4)有依法缴纳税收和社会保障资金的良好记录   5)参加政府采购活动前三年内,在经营活动中没有重大违法记录   6)法律、行政法规规定的其他条件。  8、 评标方法和标准:综合评分法  9、 招标文件发售时间:从2011年3月31日-4月19日(节假日除外),每日上午9:00~11:30下午1:30~4:30(北京时间),经审查合格后方可购买招标文件,售价人民币 500元,售后不退。若须邮购,须另加人民币 50 元。  10、 招标文件发售地点:北京市朝阳区慧忠路5号远大中心B座20层  11、 投标截止日期:2011年4月20日上午9时00分(北京时间)  12、 开标日期:2011年4月20日上午9时00分 (北京时间)  13、 开标地点:北京中医药大学实验室与设备处会议室  14、 本招标公告同时在中国政府采购网、北京市政府采购网上发布。  凡购买招标文件的投标人,须由其法人授权代表携带资格证明文件、法人授权委托书(需包含购买本项目文件的授权)、本人身份证原件及复印件(每页须加盖投标人公章),到招标代理机构检查。经检查合格后,方可购买本项目的招标文件。  资格证明文件名称:  1. 营业执照复印件2、税务登记证3、授权书4、身份证原件及复印件  招标代理机构:中航技国际经贸发展有限公司  地址:北京市朝阳区慧忠路5号远大中心B座20层  邮编:100101  电话:010-51909695、010-51909634 传真:010-51909681  联系人: 刘洁、李伟中航技国际经贸发展有限公司2011年3月31日
  • 赛默飞世尔在华售首台汞排放监测系统
    中国上海(2007年7月17日)赛默飞世尔科技日前宣布向北京清华大学销售第一台汞排放监测系统,该系统将专门用于学校实验室研究和汞排放的初步检测。随后,这台监测系统将会被安装在一家燃煤发电厂使用(根据最新统计显示中国每10天就会有一家新的燃煤发电厂投入使用)。 “赛默飞世尔科技一直致力于为那些承诺改善和保护环境的世界商业实体和科研院所提供帮助。”赛默飞世尔科技空气质量事业部市场总监 Michael Nemergut 先生说到,“我们通过向中国的大学销售最先进的汞排放工艺和技术来带动这一世界上燃煤电力发展最快的国家对汞排放的认识。这次销售是我们在中国汞排放监测领域树立影响的第一步;并且对于中国来说,通过使用这一技术将最终有益于改善本地区乃至全球的环境。” Thermo Scientific(赛默飞世尔科技的品牌之一)的汞监测系统具有简洁的设计,其4个基础组件都无缝集成在一个标准双插门机柜内。该类系统具有使用方便,易于维护,安装及操作成本低,同时还具有高可靠性和较低的空间要求等特性。图为赛默飞世尔专家现场安装调试汞监测系统screen.width-300)this.width=screen.width-300"
  • 专家解读:中国自主研发光学系统助力天舟一号“牵手”天宫
    p  中国首艘货运飞船“天舟一号”20日在文昌航天发射场发射成功,之后这位“太空快递员”将与天宫二号空间实验室进行自动交会对接。在此过程中,中国自主研发的“光学成像敏感器”是二者太空精准“牵手”的关键设备。/pp  20日,中科院长春光机所空间目标成像项目组带头人、研究员刘伟奇在接受中新社记者专访时介绍,中国自主研发的第三代光学成像敏感器提高了抗干扰能力,可以使“天舟一号”与天宫二号空间实验室在太空中精确无误地进行瞄准。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/noimg/2f9a8c7c-8a7e-4b17-85f0-817ac07b042b.jpg" title="1.jpg"//pp  中国自主研制的首艘货运飞船“天舟一号”于4月20日晚间19时41分在海南文昌航天发射场成功发射升空。/pp  刘伟奇带领的项目组负责中国第三代光学成像敏感器两个关键组件——光学成像敏感器匀化器和光学成像敏感器光学系统的研发。/pp  通俗地讲,光学成像敏感器匀化器好比一把“手电”,光学成像敏感器光学系统则是一双“眼睛”。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/noimg/6c1fdca2-81a1-4519-bd34-2beb88da49e6.jpg" title="2.jpg"//pp  中国自主研制的首艘货运飞船“天舟一号”于4月20日晚间19时41分在海南文昌航天发射场成功发射升空。/pp  飞船对接前,“天舟一号”用“手电”照射天宫二号空间实验室上的几个标志物,然后用“眼睛”观察标志物的分布就能够知道双方的相对位置,以此确保准确交会对接。/pp  刘伟奇表示,太空对接不可差一丝一毫。“飞船自动对接需要一套精准的瞄准系统,我们研发的这套光学系统的绝对畸变精度为± 1微米,同时它还具备良好的空间适应性,能够承受震动、冲击、热真空、热循环以及太空辐照。”/pp  刘伟奇带领的项目团队由近20位科研人员组成,这个平均年龄在37岁左右的年轻队伍耗时7年才完成上述两个组件的研发。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/noimg/32caecfe-17d8-44b2-ae90-44408fc0307a.jpg" title="3.jpg"//pp  中国自主研制的首艘货运飞船“天舟一号”于4月20日晚间19时41分在海南文昌航天发射场发射升空。/pp  刘伟奇直言,团队在研发过程中没有国外资料可查,都是根据实际需要慢慢摸索,受到不少考验。“比如做空间环境辐照实验时,因为所用的玻璃材料不行,导致在辐照的情况下变黑,大家不断通过各种技术方案试验,才最终攻克难题。”/pp  据悉,第三代光学成像敏感器除应用在“天舟一号”之外,未来还将在中国其它航天器上应用。/pp  /ppbr//p
  • 1.89亿!日本鹭宫中标铁建所2500kN电液伺服疲劳试验系统采购项目
    日前,中国铁道科学研究院集团有限公司铁道建筑研究所发布国际公开招标公告(招标编号:0747-2240SCCZBR97),欲采购1套2500kN电液伺服疲劳试验系统。简要技术要求:*12.2 设备最大载荷(静态和动态):±2500kN。*12.3 设备活塞最大行程:±100mm。*12.4 设备最大速度:0.07m/s;空载、5Hz、2mm可连续工作;2500kN负载、0.5Hz、6mm可连续工作。2022年8月12日-15日,该项目对中标候选人进行公示。根据公示内容,日本株式会社鹭宫制作所以投标报价1.89亿元成为排序第一、且唯一的项目中标候选人。中标候选人基本情况:排序中标候选人名称投标报价质量工期/交货期1株式会社鹭宫制作所189000000.00元合格300天2无无无无3无无无无关于日本鹭宫鹭宫制作所创办于1940年,其前身是西見茂先生(首任社长)在日本中野区鹭宫创立的「波纹管研究所」。1948年,株式会社鹭宫制作所成立,正式开始研发和生产自动控制器产品的业务。鹭宫制作所从生产波纹管应用产品开始,发展到现在的自动控制器的龙头企业,其产品广泛应用于冷冻制冷、空调、热水供暖、电力设备、汽车、列车、船舶、医疗机器、半导体制造装置等各行各业。1964年,鹭宫制作所开始试验机生产业务,并通过技术革新创造出DiM(driving simulator)等试验设备,产品获得了国内外客户的高度评价。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制